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Motivation

Quantum field theory

Perturbation theory

Renormalization

Observables

� not (exactly) solvable

� Observables are infinite

f (α) = f0 + αf1 + α2f2 + . . .

doableeasy hard

. . .

no convergence

Dyson [1952]

�

Non-perturbative methods

Bender and Wu [1969], Lipatov [1977], Brezin, Le Guillou, and Zinn-Justin [1977]

Renormalons

t’Hooft [1979]

�

McKane and Wallace [1978]

McKane, Wallace, and de Alcantara Bonfim [1984]

Large fn inaccessible ⇔ Large α inaccessible
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An algebraic combinatorial study

Algebra of graphs

1. Perturbative QFT

no convergence Renormalons

Ring of factorially
divergent power series

2. Non-perturbative aspects

Hopf algebra of graphs

3. Renormalization

Zero-dimensional
toy models and

diagram counting

4. Application
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Algebra of graphs

1. Perturbative QFT

Feynman [1949] Organize perturbation
expansion in terms of
graphs.

Each graph represents an
integral.

⇒ Use an algebra to represent
graphs.

Encode Feynman rules as
algebra homomorphisms.
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Algebra homomorphisms of graphs

The algebra of graphs:

G :=

〈{
, , , , , , . . .

}〉

Feynman rules are algebra homomorphisms φ : G → A.
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In zero-dimensional QFT:

φλ : Γ 7→ ~#edges−#vertices
∏
v∈VΓ

λ
d

(v)
Γ

,

where d
(v)
Γ is the degree of the vertex v in Γ and the λk

control the allowed degrees of the vertices.

Explicit access to unrenormalized quantities by path integral:

Zλ(~) := φλ

 ∑
graphs Γ

Γ

|Aut Γ|

 =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+
∑

k≥3 λk
xk

k!

)

= φλ

(
1 +

1

8
+

1

12
+

1

8
+

1

128
+ . . .

)
= 1 +

((
1

8
+

1

12

)
λ2

3 +
1

8
λ4

)
~ + . . .

Hurst [1952], Cvitanović, Lautrup, and Pearson [1978]

Argyres, van Hameren, Kleiss, and Papadopoulos [2001]
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Interpret observables as perturbation expansions∫
R

dx√
2π~

e
1
~

(
− x2

2
+
∑

k≥3 λk
xk

k!

)
=
∞∑
n=0

zn(λ)~n

The coefficients zn(λ) count graphs of excess n with degree
distribution encoded in λ.
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The large n asymptotics of zn(λ) are accessible

Theorem MB [2017]

zn(λ) =
n→∞ A−nΓ(n)

(
c0(λ) + c1(λ) A

n−1 + c2(λ) A2

(n−1)(n−2) + . . .
)

where with S(x) = − x2

2 +
∑

k≥0 λk
xk

k!∫
R

dx√
2π~

e−
1
~ (S(x+τ)−S(τ)) =

∞∑
m=0

cm(λ)(−~)m

and (τ,A) are the coordinates of the dominant saddle point of
S(x), which can be obtained by analysis of the hyperelliptic

curve − y2

2 = S(x).

cm(λ) = zm(λ′) - the asymptotic expansion enumerates
graphs with a modified degree distribution.

This is a generalization of a result of Başar, Dunne, and Ünsal
[2013] and a resurgence phenomenon.
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−4 −2 0 2 4

−4

−2

0

2

4

x

y

Figure: Example: The curve y2

2 = x2

2 −
x3

3! associated to Zϕ3

.

⇒ x(y) has a (dominant) branch-cut singularity at y = ρ = 2√
3

,

where x(ρ) = τ = 2.
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Example

For cubic graphs or equivalently ϕ3 theory, we are interested
in the action − x2

2 + x3

3! , therefore λ3 = 1 and λk = 0 for all
k 6= 3,

φλ3

(
1 +

1

8
+

1

12
+

1

128
+ . . .

)
1 +

5

24
~ +

385

1152
~2 +

85085

82944
~3 + · · ·

We find τ = 2, A = 2
3 and the coefficients of the asymptotic

expansion
∞∑
k=0

ck(−~)k =
1

2π
φλ′

3

(∑
Γ

Γ

|Aut Γ|

)
=

1

2π
φλ3

(∑
Γ

Γ

|Aut Γ|

)

=
1

2π

(
1 +

5

24
~ +

385

1152
~2 +

85085

82944
~3 + . . .

)
⇒ The asymptotic expansion is [~n]F [S(x)] (~) =∑R−1

k=0 ckA
−n+kΓ(n − k) +O(A−n+RΓ(n − R)).
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Ring of factorially
divergent power series

2. Non-perturbative aspects

Interest in composite
quantities, e.g.

log (Zλ(~))

for connected graphs or the
free energy of the QFT.
Asymptotic expansions can
be extracted using the ring
of factorially divergent
power series MB [2016a].

Powerseries version of alien
calculus [Écalle, 1981].
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Structure of factorially divergent power series

Power series
∑

n≥0 fnx
n, which admit an asymptotic expansion

fn =
n→∞

A−nΓ(n)

(
c0 + c1

A

n − 1
+ c2

A2

(n − 1)(n − 2)
+ . . .

)
,

form a subring R[[x ]]A of R[[x ]], which is closed under
composition and inversion of power series.

First step: Interpret the coefficients ck as a new power series.

Second step: Define an operator on R[[x ]]A:

A : R[[x ]]A → R[[x ]]

f (x) 7→
∑
k≥0

ckx
k
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A is a derivation on R[[x ]]A:

Theorem MB [2016a]

(A f · g)(x) = f (x)(A g)(x) + (A f )(x)g(x)

⇒ R[[x ]]A is a subring of R[[x ]].

Proof sketch

With h(x) = f (x)g(x),

hn =
R−1∑
k=0

fn−kgk +
R−1∑
k=0

fkgn−k︸ ︷︷ ︸
High order times low order

+
n−R∑
k=R

fkgn−k︸ ︷︷ ︸
O(A−nΓ(n−R))

.

∑n−R
k=R fkgn−k ∈ O(A−nΓ(n − R)) follows from the

log-convexity of the Γ function.
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What happens for composition of power series ∈ R[[x ]]A?

Theorem Bender [1975]

If |fn| ≤ Cn then, for g ∈ R[[x ]]A with g0 = 0:

f ◦ g ∈ R[[x ]]A

(A f ◦ g)(x) = f ′(g(x))(A g)(x).

Bender considered more general power series, but this is a
direct corollary of his theorem in 1975.
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Example

A reducible permutation:

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

An irreducible permutation:

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A permutation π of [n] = {1, . . . , n} is called irreducible if
there is no m < n such that π([m]) = [m].

Set F (x) =
∑∞

n=1 n!xn - the OGF of all permutations.

The OGF of irreducible permutations I fulfills

I (x) = 1− 1

1 + F (x)
.
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I (x) = 1− 1

1 + F (x)
F (x) =

∞∑
n=1

n!xn.

By definition: F ∈ R[[x ]]1 and (AF )(x) = 1
x .

1
1+x is analytic at the origin, therefore by the chain rule

(A I )(x) =

(
A
(

1− 1

1 + F (x)

))
(x) =

1

x

1

(1 + F (x))2

Theorem Comtet [1972]

Therefore the asymptotic expansion of the coefficients of I (x) is

[xn]I (x) =
R−1∑
k=0

ck(n − k)! +O((n − R)!) ∀R ∈ N0,

where ck = [xk ] 1
(1+F (x))2 .
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This chain rule can easily be generalized to multivalued analytic
functions:

Theorem MB [2016a]

More general: For f ∈ R{y1, . . . , yL} and g1, . . . , gL ∈ xR[[x ]]A:

(A(f (g1, . . . , gL))(x) =
L∑

l=1

∂f

∂g l
(g1, . . . , gL)(A g l)(x).

M. Borinsky (HU Berlin) Graphs in perturbation theory 18



What happens if f is not an analytic function?

A fulfills a general ‘chain rule’:

Theorem MB [2016a]

If f , g ∈ R[[x ]]A with g0 = 0 and g1 = 1, then f ◦ g ∈ R[[x ]]A and

(A f ◦ g)(x) = f ′(g(x))(A g)(x) + e
A g(x)−x

xg(x) (A f )(g(x))

⇒ R[[x ]]A is closed under composition and inversion.

⇒ We can solve for asymptotics of implicitly defined power series.
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Example: Simple permutations

A non-simple permutation:

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A simple permutation:

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A permutation π of [n] = {1, . . . , n} is called simple if there is
no (non-trivial) interval [i , j ] = {i , . . . , j} such that π([i , j ]) is
another interval. (’Rooted dinner party permutations’)

The OGF S(x) of simple permutations fulfills

F (x)− F (x)2

1 + F (x)
= x + S(F (x)),

with F (x) =
∑∞

n=1 n!xn [Albert, Klazar, and Atkinson, 2003].
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F (x)− F (x)2

1 + F (x)
= x + S(F (x)).

By definition: F ∈ R[[x ]]1 and (AF )(x) = 1
x .

Extract asymptotics by applying the A-derivative:

A
(
F (x)− F (x)2

1 + F (x)

)
= A (x + S(F (x))) .

Apply chain rule on both sides

1− 2F (x)− F (x)2

(1 + F (x))2
(AF )(x) = S ′(F (x))(AF )(x)

+

(
x

F (x)

)1

e
F (x)−x
xF (x) (AS)(F (x)),

which can be solved for (AS)(x).
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After simplifications:

(AS)(x) =
1

x

1

1 + x

1− x − (1 + x)S(x)
x

1 + (1 + x)S(x)
x2

e
−

2+(1+x)
S(x)

x2

1−x−(1+x)
S(x)
x

We get the full asymptotic expansion for S :

[xn]S(x) =
R−1∑
k=0

ck(n − k)! +O((n − R)!) ∀R ∈ N0

where ck = [xk ](AS)(x).

[xn]S(x) = e−2n!

(
1− 4

n
+

2

n(n − 1)
− 40

3n(n − 1)(n − 2)
+ . . .

)
,

the first three coefficients have been obtained by Albert,
Klazar, and Atkinson [2003].
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Ring of factorially
divergent power series

Direct combina-
torial applications

Allows to extract explicit
asymptotic information from
implicitly given power
series.

Combinatorial applications
include permutations MB

[2016a], chord diagrams Courtiel,

Yeats, and Zeilberger [2016] and graphs.

Necessary to obtain all order
asymptotics from
renormalized quantities:

f (α)→ f (α(αren))

f (α)→ f (α(αren))
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Hopf algebra of graphs

3. Renormalization

Hopf algebraic approach
based on the works of Connes
and Kreimer [2001], Kreimer and Yeats [2006],
van Suijlekom [2007].

Generalized to allow
arbitrary graphs.
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Starting point is to equip G with a coproduct:

∆ : G → G ⊗ G

Γ 7→
∑
γ⊂Γ

γ ⊗ Γ/γ

where the sum is over any subgraphs of Γ.

Example:

∆ =
∑
γ⊂

γ ⊗ /γ = 2 ⊗ + ⊗

+ 3 ⊗ + 3 ⊗
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Hopf ideals in G MB [2018 PhD thesis]

A given set of graphs P, which is closed under insertion and
contraction of subgraphs corresponds to a Hopf ideal IP of G.

The quotient of G/IP with respect of one of these ideals is the
Connes-Kreimer Hopf algebra.
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The coproduct gives rise to a group structure ΦGA on the set
of all algebra homomorphisms.

If φ and ψ are algebra homomorphisms G → A, then

φ ? ψ = m ◦ (φ⊗ ψ) ◦∆

is another algebra homomorphism.

Every ideal IP gives rise to another group Φ
G/IP
A which acts

on ΦGA.
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The inverse φ?−1 of φ ∈ ΦGA may be analysed using the
inclusion poset of subgraphs.

In physical QFTs these posets turn out to be algebraic
lattices MB [2016b].

Quotients G/IP give rise to annihilation mappings,

ζ?−1|P ? ζ(Γ) =

{
1 if Γ does not contain a subgraph from P.

0 else

where ζ is the characteristic map ζ : Γ 7→ 1.

These maps allow us to obtain generating functions of graphs
without subgraphs in P.
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We have an identity on G Kreimer [2006], van Suijlekom [2007], Yeats [2008]

∆X =
∑

Γ

∏
v∈VΓ

(d
(v)
Γ !)X(v) ⊗ Γ

|Aut Γ|
,

where X =
∑

Γ
Γ

|Aut Γ| and X(v) :=
∑

res Γ=v
Γ

|Aut Γ| .

Allows the explicit evaluation of products of algebra
homomorphisms in the combinatorial case,

ζ?−1|P ? φ (X) =

∫
R

dx√
2π~

e
1
~

(
− x2

2
+
∑

k≥0 ζ
?−1|P(X(vk )) xk

k!

)

The generating function of graphs without subgraphs in P.

The factors ζ?−1|P
(
X(v)

)
are the ‘counterterms’.

Explicit asymptotics can be obtained in the ring of factorially
divergent power series.
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Counting subgraph restricted graphs

Let fM be the generating function of all graphs M with
marked degrees

fM(λ0, λ1, λ2, . . .) =
∑
Γ∈M

∏
v∈VΓ

λ
d

(v)
Γ

|Aut Γ|
=

∫
R

dx√
2π

e−
x2

2
+
∑

k≥0 λk
xk

k!

We can write this generating function as an image of an
algebra homomorphism

skλ ? ζ(X) = fM(λ0, λ1, λ2, . . .),

where ζ : Γ 7→ 1 is a characteristic map and

skλ : Γ 7→

{∏
v∈VΓ

λ
d

(v)
Γ

if Γ has no edges

0 else
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Using the modified algebra homomorphism,

skλ ? (ζ?−1|P ? ζ) (X) =
∑
Γ∈M

s.t. Γ has no subgraphs from P

∏
v∈VΓ

λ
d

(v)
Γ

|Aut Γ|

gives the generating function

=: fM/P(λ0, λ1, . . . )

of all graphs without subgraphs from P.
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By using the factorization formula for the coproduct:

fM/P(λ0, λ1, . . . ) = skλ ? (ζ?−1|P ? ζ) (X)

= (skλ ? ζ
?−1|P) ? ζ (X) =

∑
Γ∈M

∏
v∈VΓ

(d
(v)
Γ !)skλ ? ζ

?−1|P
(
X(v)

)
|Aut Γ|

= fM

(
(0!)skλ ? ζ

?−1|P
(
X(0)

)
, (1!)skλ ? ζ

?−1|P
(
X(1)

)
, . . .

)
where we expressed fM/P(λ0, λ1, . . . ) as a generalized

composition of fM and skλ ? ζ
?−1|P

(
X(k)

)
.
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More explicitly

fM/P(λ0, λ1, . . .) = fM
(
(0!)g0

P(λ0, . . .), (1!)g1
P(λ0, . . .), . . .

)

where

gk
P(λ0, λ1, . . .) = skλ ? ζ

?−1|P
(
X(k)

)
=

∑
Γ∈P

Γ cntd. with k legs

ζ?−1|P(Γ)

∏
v∈VΓ

λ
d

(v)
Γ

|Aut Γ|

and ζ?−1|P(Γ) can be expressed as a Moebius function,

ζ?−1|P(Γ) = −1−
∑
γ(Γ
γ∈P

ζ?−1|P(γ)
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Example

Set P to the set of all graphs with one leg, for instance .

Clearly, this set is closed under contraction and insertion of
subgraphs.

The set M/P of graphs without subgraphs from P is the

set of bridgeless graphs.

Using our results,

fM/P (λ0, λ1, . . .) = fM

(
(0!)g0

P (λ0, . . .), (1!)g1
P (λ0, . . .), . . .

)
where now gk

P (λ0, . . .) = λk
k! for all k 6= 1.

Moreover, by analysing the Moebius function we find that

g1
P (λ0, . . .) = −

∑
Γ∈P

s.t. Γ is 1PI

∏
v∈VΓ

λ
d

(v)
Γ

|Aut Γ|
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Hopf algebra of graphs

Applications to re-
stricted graph counting

Generating functions of
subgraph restricted families
of graphs can be obtained.

Feynman rules for physical
theories carry additional
structures MB [2016b].
Hopf algebraic interpretation
of the Legendre
transformation in QFT MB
[2018 PhD thesis].
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Application

Zero-dimensional
toy models and

diagram counting

4. Application

Both Hopf algebra and
factorially divergent power
series may be used to study
zero-dimensional QFT
explicitly.
All-order generating
functions for asymptotics of
renormalization quantities
can be obtained. MB [2017]

The densities of primitive
diagrams can be computed.
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Example

The generating function of ϕ4 primitives is

p(~ren) = 1− z( )(~ren) + 3
∑
n≥2

(−1)n
(
~ren

2

)n

which can be proven using the algebraic lattice structure of
Feynman diagrams MB [2016b].

The asymptotics of this quantity can be obtained using the
ring of factorially divergent power series MB [2017]:

[~nren]p(~ren) ∼
n→∞

e−
15
4

√
2π

(
2

3

)n+3

Γ(n + 3) (36+

−3

2

243

2

1

n + 2
+

(
3

2

)2 729

32

1

(n + 1)(n + 2)
+ . . .

)
.

Which can be compared with the expansion of the ϕ4

β-function Kompaniets and Panzer [2017], where asymptotically only
primitives are expected to contribute.
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Similarly, the number of primitives in quenched QED:

1− z( )(~ren)

The asymptotics can again be calculated to arbitrary order,

[~nren](1− z( )(~ren)) ∼
n→∞

e−2(2n + 1)!!

(
1− 6

2n + 1

− 4

(2n − 1)(2n + 1)
− 218

3

1

(2n − 3)(2n − 1)(2n + 1)
+ . . .

)
.

MB [2017] which resolves a question by David Broadhurst and
Freeman Dyson.
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Summary

Algebra of graphs

1. Perturbative QFT

Ring of factorially
divergent power series

2. Non-perturbative aspects

Hopf algebra of graphs

3. Renormalization

Zero-dimensional
toy models and

diagram counting

4. Application

Direct combina-
torial applications

Applications
to restricted

graph counting
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