Dr. H. Dorn
Institut für Physik
Humboldt-Universität

Exercises for the course "Conformal Field Theory"

Spring 2014

1. Show that the group $O(4,2)$ has four components characterized by

$$
\operatorname{det} \Lambda= \pm 1, \quad\left|\Lambda_{0}^{0} \Lambda_{0^{\prime}}^{0^{\prime}}-\Lambda_{0^{\prime}}^{0} \Lambda_{0}^{0^{\prime}}\right| \geq 1
$$

Starting with $\operatorname{Conf}_{e}\left(\mathbb{R}^{(3,1)}\right)=S O_{e}(4,2) / Z_{2}$ substantiate that the full conformal group of four-dimensional Minkowski space has the four components

$$
S O_{e}(4,2) / Z_{2}, \quad T S O_{e}(4,2) / Z_{2}, \quad P S O_{e}(4,2) / Z_{2}, \quad \text { and } T P S O_{e}(4,2) / Z_{2}
$$

where T and P denote the $O(4,2)$ representatives of time inversion and parity. Discuss in this pattern also the role of the inversion on the unit hyperboloid $S: \quad x \mapsto x / x^{2}$.
2. Consider the map from the lightcone in $\mathbb{R} P^{N+1}$ to $\mathbb{R}^{(N-1,1)}$

$$
x^{\mu}=\frac{W^{\mu}}{W^{0^{\prime}}+W^{N}}, \quad \mu=0,1, \ldots N-1
$$

and show

$$
(x-y)^{2}=\frac{(W-V)^{2}}{\left(W^{0^{\prime}}+W^{N}\right)\left(V^{0^{\prime}}+V^{N}\right)}
$$

as well as for the cross ratios of four points $x_{(1)}, \ldots x_{(4)}$

$$
\frac{\left(x_{(1)}-x_{(3)}\right)^{2}\left(x_{(2)}-x_{(4)}\right)^{2}}{\left(x_{(1)}-x_{(4)}\right)^{2}\left(x_{(2)}-x_{(3)}\right)^{2}}=\frac{\left(W_{(1)} W_{(3)}\right)\left(W_{(2)} W_{(4)}\right)}{\left(W_{(1)} W_{(4)}\right)\left(W_{(2)} W_{(3)}\right)} .
$$

3. Show that for solutions of the conformal Killing equation in $\mathbb{R}^{N}, N>2$ all third and higher derivatives vanish.
4. Show that the stereographic projection of S^{N} to \mathbb{R}^{N} is a conformal map.
5. Consider a pseudo-Riemannian space with metric $g_{\mu \nu}$. Show that each null geodesic $x^{\mu}(t)$ with respect to the corresponding Levi-Civita connection is also null geodesic with respect to the Levi-Civita connection for the Weyl rescaled metric $\hat{g}_{\mu \nu}(x)=\rho(x) g_{\mu \nu}(x)$.
6. Show that in two-dimensional Riemann spaces around each point there is an open set in which, after a suitable coordinate transformation, the metric takes the form $g_{\mu \nu}(x)=\rho(x) \delta_{\mu \nu}$.
7. To find the special conformal transformations in $\mathbb{R}^{(1,1)}$ perform the explicit integration of the conformal Killingvector field $k^{\mu}(x)=c^{\mu} x^{2}-2 x^{\mu} c x$.
8. Consider the often used bijection between the flat plane $\mathbb{R} \times \mathbb{R}$ and the flat cylinder $\mathbb{R} \times S^{1}$:

$$
t=e^{\tau} \cos \sigma, \quad x=e^{\tau} \sin \sigma, \quad t, x, \tau \in \mathbb{R}, \quad 0 \leq \sigma<2 \pi
$$

Show that this map is conformally in the Euclidean case, but not conformally in the Lorentzian case.
Furthermore, show that in the Lorentzian case the bijection between $\mathbb{R} \times \mathbb{R}$ and the torus $S^{1} \times S^{1}$:

$$
t \pm x=i \frac{1-e^{i(\tau \pm \sigma)}}{1+e^{i(\tau \pm \sigma)}}, \quad t, x \in \mathbb{R}, \quad \tau \pm \sigma \in[0,2 \pi)
$$

is conformally.
9. Show that the following action

$$
S=-\frac{1}{2} \int d^{N} x \sqrt{-g}\left(g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi+\frac{N-2}{4(N-1)} R \varphi^{2}\right)
$$

is invariant under the Weyl transformation

$$
g_{\mu \nu}(x) \rightarrow(\lambda(x))^{2} g_{\mu \nu}(x), \quad \varphi(x) \rightarrow(\lambda(x))^{\frac{2-N}{2}} \varphi(x) .
$$

Calculate the corresponding energy-momentum tensor

$$
T^{\mu \nu}(x)=\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g_{\mu \nu}(x)}
$$

10. Show that in a CFT the transformation formula for quasi-primary operators

$$
U(K) \varphi_{j}\left(x^{\prime}\right) U^{-1}(K)=\left|\operatorname{det} \frac{\partial x^{\prime}}{\partial x}\right|^{-d / N} D_{j}^{l}(R) \varphi_{l}(x)
$$

implies for infinitesimal $K: x^{\prime}=x+\epsilon k(x), k(x)$ conformal Killing, $D_{j}^{l}(R(K))=\delta_{j}^{l}+\epsilon \omega_{j}^{l}$ and with \mathcal{K} denoting the quantum representative of the generator of the infinitesimal trafo K :

$$
\left[\mathcal{K}, \varphi_{j}(x)\right]=i\left(\frac{d}{N}\left(\partial^{\mu} k_{\mu}\right)+k^{\mu} \partial_{\mu}\right) \varphi_{j}(x)-i \omega_{j}^{l} \varphi_{l}(x) .
$$

11. Calculate both the canonical as well as the Belinfante energy momentum tensor for the Maxwell action

$$
S=-\frac{1}{4} \int d^{N} x F_{\mu \nu} F^{\mu \nu}
$$

Show that the general transformation formula for quasiprimaries, given in the lectures, implies (with scaling dimension $d=2$ for the field strength tensor F and $\left.\rho^{N / 2}=\operatorname{det} \frac{\partial x^{\prime}}{\partial x}\right)$

$$
F^{\prime \mu \nu}\left(x^{\prime}\right)=\rho^{-2} \frac{\partial x^{\prime \mu}}{\partial x^{\alpha}} \frac{\partial x^{\prime \nu}}{\partial x^{\beta}} F^{\alpha \beta}(x), \quad \text { but } F_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} F_{\alpha \beta}(x) .
$$

12. Show that

$$
G_{n}\left(\lambda x_{j}, g, \mu\right)=\lambda^{-n d_{c l}} G_{n}\left(x_{j}, \bar{g}(\lambda), \mu\right) \exp \left(n \int_{g}^{\bar{g}(\lambda)} \frac{\gamma\left(g^{\prime}\right)}{\beta\left(g^{\prime}\right)} d g^{\prime}\right)
$$

with $\lambda \frac{d \bar{g}(\lambda)}{d \lambda}=-\beta(\bar{g}(\lambda)), \quad \bar{g}(1)=g$ solves the differential equation

$$
\left(\beta(g) \frac{\partial}{\partial g}+\lambda \frac{d}{d \lambda}+n\left(d_{c l}+\gamma(g)\right)\right) G_{n}\left(\lambda x_{j}, g, \mu\right)=0 .
$$

13. In a CFT the two point function for two scalar quasi-primaries φ_{1}, φ_{2} with scaling dimensions d_{1}, d_{2} has the form

$$
\left\langle\varphi_{1}(x) \varphi_{2}(y)\right\rangle=\frac{c_{12}}{\left((x-y)^{2}\right)^{\frac{d_{1}+d_{2}}{2}}}, \quad \text { with } \quad c_{12}=0 \quad \text { if } d_{1} \neq d_{2}
$$

Prove this statement using Poincare invariance and the differential equation of the special conformal Ward identity.
14. Show that for special conformal transformations in $\mathbb{R}^{(1, N-1)}$

$$
x_{\mu}^{\prime}=\frac{x_{\mu}+c_{\mu} x^{2}}{1+2 c x+c^{2} x^{2}}
$$

the determinant is given by

$$
\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right)=\left(1+2 c x+c^{2} x^{2}\right)^{-N}
$$

15. Show that
a) For correlation functions of n quasiprimaries $\varphi_{1}, \ldots, \varphi_{n}$ in $\mathbb{R}^{1, N-1}$ with the scaling dimensions d_{1}, \ldots, d_{n} one has due to dilatation invariance

$$
\left\langle\varphi_{1}\left(\lambda x_{1}\right) \ldots \varphi_{n}\left(\lambda x_{n}\right)\right\rangle=\lambda^{-\sum_{j} d_{j}}\left\langle\varphi_{1}\left(x_{1}\right) \ldots \varphi_{n}\left(x_{n}\right)\right\rangle
$$

b) This implies for the Fourier transform defined by ${ }^{1}\left\langle\varphi_{1}\left(x_{1}\right) \ldots \varphi_{n}\left(x_{n}\right)\right\rangle=\int \frac{d^{N} k_{1}}{(2 \pi)^{N}} \ldots \frac{d^{N} k_{n-1}}{(2 \pi)^{N}} \Gamma_{n}\left(k_{1},\right.$.

$$
\Gamma_{n}\left(\lambda k_{1}, \ldots, \lambda k_{n}\right)=\lambda^{-(n-1) N+\sum_{j} d_{j}} \Gamma_{n}\left(k_{1}, \ldots, k_{n}\right)
$$

c) In particular for the two-point function this means

$$
\Gamma_{2}(k,-k)=\frac{c_{12}}{\left(k^{2}\right)^{\frac{N-\sum_{j} d_{j}}{2}}} .
$$

16.
17.
18.
[^0]
[^0]: ${ }^{1}$ Keep in mind that due to translation invariance $\sum_{j=1}^{n} k_{j}=0$ and therefore integration is over $(n-1)$ momenta only.

