Quanteninformatik MATHEMATISCHE GRUNDLAGEN UND Q-BITS

Seminararbeit

Alexander Hentschel hentsche@informatik.hu-berlin.de

Institut für Informatik, Humboldt Universität Berlin Wintersemester 2004

mathematische Grundlagen

Wiederholung

komplexe Zahlen

Motivation:

Lösung für

$$x^2 = -1$$

Einführung von imaginäre Einheit:

$$i := \sqrt{-1}$$

Karthesischen Darstellung:

 $z = x + iy \text{ mit } x, y \in \mathbb{R}$

Definition:

$$Re(z) := x$$

$$Im(z) := y$$
komplex konjugierte Zahl : $\overline{z} := \overline{x + iy} = x - iy$ zu $z = x + iy$

Deutung: z = x + iy als Punkt in der Ebene mit karthesischen Koordinaten (x,y):

Betrag: Länge des Zugehörigen Vektors

$$|z| := \sqrt{x^2 + x^2}$$

Korollar: wegen $z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2$ $|z|^2 = z \cdot \overline{z}$

Rechenregeln:

wie üblich, unter Beachtung von $i^2 = -1$

● (a+ib) + (x+iy) = (a+x) + i(b+y)

$$(a+ib) \cdot (x+iy) = a \cdot x + i^2 b \cdot y + i \cdot b \cdot x + a \cdot iy = (ax - by) + i(ay + bx)$$

Euler-Darstellung komplexer Zahlen

 e^z -Funktion über unendliche Reihe definiert. Daraus folgt für z = iy mit $y \in \mathbb{R}$:

$$e^{iy} = \cos(y) + i\sin(y)$$

nach Pythagoras gilt:

$$|e^{iy}| = \sqrt{\cos^2(y) + \sin^2(y)} = \sqrt{1} = 1$$

für z = x + iy gilt wegen $e^z = e^{x+iy} = e^x e^{iy}$:

$$e^{x+iy} = e^x(\cos y + i\sin y)$$

Euler-Darstellung komplexer Zahlen

In *Zylinderkoordinaten* (Abbildung rechts):

$$z = r(\cos\varphi + i\sin\varphi)$$

$$\varphi$$
 – Winkel des Vektors z mit x-Achse

r- Länge des Vektors z

Euler-Darstellung komplexer Zahlen

$$z = r(\cos \varphi + i \sin \varphi) \operatorname{mit}$$

$$\tan(\varphi) = \frac{y}{x} = \frac{lm(z)}{Re(z)}$$

$$\Rightarrow \varphi = \arctan(\frac{lm(z)}{Re(z)})$$

$$|z| = \sqrt{z \cdot \overline{z}} = r\sqrt{\cos^2 y + \sin^2 y} = r$$

$$\operatorname{mit} e^{i\varphi} = \cos(\varphi) + i \sin(\phi)$$

$$z = r(\cos \varphi + i \sin \varphi) = r \cdot e^{i\varphi}$$

Zusammenfassung: komplexe Zahlen

Darstellungen:

karthesisch:
$$z = x + iy$$
 mit $x, y \in \mathbb{R}$ (1)
eulersch: $z = r \cdot e^{i\varphi}$ mit $r = |z|$ und $\varphi = \arctan(\frac{y}{x})$ (2)

$$Re(z) := x$$
$$Im(z) := y$$
$$\overline{z} := \overline{x + iy} = x - iy$$

In **Physik**: zu z = x + iy **komplex konjugierte Zahl** bezeichnet mit z^* :

$$z^* = \overline{z} = x - iy$$

mathematische Grundlagen

Wiederholung

endliche Vektorräume

Definition: linearer Raum (Vektorraum) Eine Menge M heißt *linearer Raum* oder *Vektorraum* über \mathbb{C} , falls:

- jedem geordneten Paar (u, v) mit $u, v \in M$ eindeutig ein durch u + v bezeichnetes Element aus M zugeordnet wird
- Jedem Paar (α, v) mit $\alpha \in \mathbb{C}$ und $u \in M$ eindeutig ein mit αu bezeichnetes Element aus M zugeordnet wird

so dass für alle $u, v, w \in M$ und alle $\alpha, \beta \in \mathbb{C}$ folgendes gilt:

Fortsetzung Definition: linearer Raum (Vektorraum) M heißt *linearer Raum* oder *Vektorraum* über \mathbb{C} , falls für alle $u, v, w \in M$ und alle $\alpha, \beta \in \mathbb{C}$ folgendes gilt:

- 1. u + v = v + u (Kommutativität)
- 2. (u+v) + w = u + (v+w) (Assoziativität)
- 3. $\exists ! o \in M : z + o = z$ für alle $z \in M$ (Existenz eines Nullelements)
- 4. Zu jedem $z \in M$ gibt es ein eindeutig bestimmtes Element in M, welches mit (-z) bezeichnet wird, so daß z + (-z) = o (inverses Element)
- **5.** $\alpha(u+v) = \alpha u + \alpha v$ (Distributivität)
- **6.** $(\alpha\beta)u = \alpha(\beta u)$

Definition: Skalarprodukt

Sei M ein linearer Raum über \mathbb{C} . Das *Skalarprodukt* ist eine Funktion die jedem Vektorpaar $u, v \in M$ eine Zahl $(u, v) \in \mathbb{C}$ zuordnet, so dass für alle $u, v, w \in M$ und alle $\alpha, \beta \in \mathbb{C}$ gilt:

1.
$$(u, u) \ge 0$$
 mit $(u, u) = 0$ genau dann, wenn $u = 0$

2.
$$(w, \alpha u + \beta v) = \alpha(w, u) + \beta(w, v)$$

3.
$$\overline{(u,v)} = (v,u)$$

Aus den letzten beiden Punkten der Definition ergibt sich sofort:

$$(\alpha u + \beta v, w) = \overline{\alpha}(u, w) + \overline{\beta}(u, w)$$

Definition des *Skalarprodukts* läßt die konkrete Festsetzung der Funktion offen

übliche komplexe Skalarprodukt $\langle \cdot | \cdot \rangle$ auf \mathbb{C}^n :

$$\langle x|y\rangle = \sum_{i=1}^{n} \overline{x_i} y_i \quad \text{ für } x, y \in \mathbb{C}^n$$

Beachte: linker Vektor wird komplex konjugiert.

Definition: Basis

Es sei M ein *linearer Raum (Vektorraum)*. Ein System $b_1, ..., b_n$ von Elementen des linearen Raumes M heißt genau dann eine Basis von M, wenn sich jedes $u \in M$ eindeutig in der Form

 $u = \alpha_1 b_1 + \dots + \alpha_n b_n$

darstellen läßt, wobei gilt: $\alpha_1, ..., \alpha_n \in \mathbb{R}$.

Man nennt *u* eine **Linearkombination** aus den Basisvektoren.

Besonders wichtig: orthonormale Basen

Definition Orthonormalität: Für bel. Basisvektoren b_n und b_m gilt:

$$\langle b_n | b_m \rangle = \delta_{n,m} = \begin{cases} 1 & \text{falls } n = m, \\ 0 & \text{falls } n \neq m. \end{cases}$$

 $|b_n| = 1$

Ist eine nicht orthonormale Basis bekannt, so läßt sich diese mittels Gram-Schmidt in eine orthonormale Basis überführen.

lineare Abbildungen:

Es sei: Matrix $A \in \mathbb{C}^{m \times n}$ Vektor $v \in \mathbb{C}^n$

$$\Rightarrow \quad Av \in \mathbb{C}^m$$

Somit: Matrizen sind Abbildungen zwischen linearen Räumen: $A: \mathbb{C}^n \longrightarrow \mathbb{C}^m$

- mathematische Modell der Quantenmechanik operiert in linearen Räumen
- physikalische Prozesse durch Abbildungen in linearen Räumen mittels Matrizen, genannt Operatoren modelliert

Spezielle Operatoren (Matrizen):

adjungierter Operator:

ist $A: M \to M$ ein linearer Operator, dann wird ihm auf eindeutige Weise ein linearer Operator $A^+: M \to M$ zugeordnet, welcher folgender Relation genügt:

$$\langle u|Av\rangle = \langle A^+u|v\rangle$$
 für alle $u, v \in M$

Für *übliche komplexe Skalarprodukt* auf \mathbb{C}^n : A^+ ist transponierte Matrix (Vertauschen von Zeilen und Spalten) mit komplex konjugierten Werten

Spezielle Operatoren (Matrizen):

unitärer Operatoren: adjungierter Operator für den gilt:

 $AA^+ = \hat{1}$

 $(\widehat{1} \text{ ist die Einheitsmatrix})$

Der Hilbertraum

ist Erweiterung eines *endlichen linearen Raumes* auf die Dimension abzählbar unendlich

Quantenmechanik operiert im Hilbertraum

bei Quanteninformatik nur Systeme mit endlich vielen Zuständen: Hilbertraum \rightarrow linearen Raum

Nomenklatur im Hilbertraum:

Elemente aus \mathcal{H} mit $|f\rangle$ bezeichnet (Schreibweise nach Dirac in Anlehnung an Skalarproduktes: $\langle g|f\rangle$)

analog zum linearen Raum gilt:

$$\langle g | (\alpha | f_1 \rangle + \beta | f_2 \rangle) = \alpha \langle g | f_1 \rangle + \beta \langle g | f_2 \rangle$$

$$\langle g | f \rangle = \langle f | g \rangle^*$$

Hilbertraum hat eine orthnormale Basis $\{|u_n\rangle\}$ (unendlicher Dimension):

$$\langle u_m | u_n \rangle = \delta_{m,n} = \begin{cases} 1 & \text{für } m = n, \\ 0 & \text{für } m \neq n. \end{cases}$$

Nomenklatur im Hilbertraum (Fortsetzung):

wie bei Skalarprodukt:
linker Vektor $\langle f |$ von $\langle g | f \rangle$ komplex konjugiert.

Bezeichnung: $\langle g |$ mit Bra-Vektor $|f \rangle$ als Ket-Vekrot (von Bra-c-Ket)

Grundlagen der Quantenmechanik

Einleitung

klassischen Physik:

Teilchen (Elektronen, Protonen, Atome, Ionen, Moleküle) wie Billardkugeln beschrieben

Jedoch Experiment:

a) Röntgenbeugung b) Elektronenbeugung an dünner Folie

klassischen Physik:

Teilchen (Elektronen, Protonen, Atome, Ionen, Moleküle) wie Billardkugeln beschrieben

Quantenmechanik: in mikroskopischen Größenordnungen haben Teilchen Welleneigeneigenschaften

Quantenmechanisches Kastenpotential:

Teilchenwelle muß stehende Welle im Potentialtopf sein

 $\Rightarrow n\lambda = 2a$

deBroglie-Wellenlänge λ eines Teilchens: $\lambda = \frac{h}{p} \Leftrightarrow p = \frac{h}{\lambda} = \frac{hn}{2a}$

$$\Rightarrow E_{kin} = \frac{p^2}{2m} = \frac{h}{8ma^2}n^2$$

Energie ist quantisiert!

Teilchen im Potentialtopf kann unendlich viele diskrete Eneriewerte annehmen

Jeder Energie E(n) entspricht eine Wellenfunktionen Ψ_n .

Postulat der Quantenmechanik: Ein Quantensystem kann sich in einer Überlagerung genannt Superposition - von beliebig vielen seiner diskreten Quantenzustände befinden.

Darstellung von Superpositionszuständen: Wellenfunktionen Ψ_n als Basisvektoren des Hilbertraumes:

Basis: $\{|\Psi_n\rangle\}$

Überlagerung durch Linearkombination aus Basis: resultierenden Zustandsvektor

 $|\psi\rangle = \alpha |\Psi_1\rangle + \beta |\Psi_2\rangle \quad \text{mit } \alpha, \beta \in \mathbb{C}$

Zustandsvektor:

$$|\psi\rangle = \alpha |\Psi_1\rangle + \beta |\Psi_2\rangle \quad \text{mit } \alpha, \beta \in \mathbb{C}$$

Born'sche Wahrscheinlichkeitsinterpretation:

Die Wahrscheinlichkeit ein Teilchen mit der Wellenfunktion $|\psi\rangle = ... + \alpha |\Psi_i\rangle + ...$ im Zustand $|\Psi_i\rangle$ zu finden (messen) ist $|\alpha|^2 = ||\langle \Psi_i |\psi\rangle ||^2$.

Folgen der Born'schen Deutung: Sei System ausschließlich im ersten Energieniveau: $|\psi\rangle = |\Psi_1\rangle$

- Wahrscheinlichkeit es im dritten Energieniveau |\Psi_3 > zu messen ist null
 Mathematisch: || \lapha \Psi_3 |\psi \rangle ||^2 = || \lapha \Psi_3 |\Psi_1 \rangle ||^2 = 0 !
- jede Messung des Energiezustandes liefert Ergebnis Zustand 1:

 $\Rightarrow \| \langle \Psi_1 | \psi \rangle \|^2 = \| \langle \Psi_1 | \Psi_1 \rangle \|^2 = 1$

• also
$$\langle \Psi_m | \Psi_n \rangle = \delta_{m,n} = \begin{cases} 1 & \text{für } m = n, \\ 0 & \text{für } m \neq n. \end{cases}$$

Messung eines Quantenzustandes:

Wie bei Teilchen im Potentialtopf: für Quantensystem nur diskrete Energiewerte zugelassen, also messbar

Messung eines Systems im Superpositionszustand: Durch Messung wird Systems auf einen konkreten (an der Superposition beteiligten!) Eigenzustand festgelegt.

System unmittelbar vor der Messung im Zustand $|\psi\rangle = \alpha |\Psi_1\rangle + \beta |\Psi_2\rangle$ Messung liefert mit Wahrscheinlichkeit $|\alpha|^2$ den Eigenwert von $|\Psi_1\rangle$. System befindet nach Messung im Zustand $|\Psi_1\rangle$.

– p. 33/60

System vor Messung im Zustand $|\psi\rangle = \alpha |\Psi_1\rangle + \beta |\Psi_2\rangle$ System nach Messung im Zustand $|\Psi_1\rangle$

Superpositionszustand wird durch die Messung zerstört

oder auch

Man nennt diesen Effekt:

Reduktion des Zustandes Informationskollaps

(da fast sämtliche im Quantensystem gespeicherte Information verloren geht)

Quanten-Bits

Systeme mit einem Q-Bit

Quantensysteme mit zwei diskreten Zuständen:

- Polarisation eines Photons
- Elektronenspin
- Ausrichtung eines Kernspins im Magnetfeld
- zwei unterschiedliche Anregunsgzustände eines Atoms

Grundzustand meist mit $|0\rangle$ bezeichnet erste angeregte Niveau mit $|1\rangle$

Forderung: System nun in diesen Zuständen (und deren Superposition)

Definition:

Standard-Basis:
$$\mathcal{B} = \{|0\rangle, |1\rangle\}$$
 mit $|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$ und $|1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

Wellenfunktion des Bits (in Standardbasis):

$$|\psi
angle=lpha|0
angle+eta|1
angle$$
 mit $lpha,eta\in\mathbb{C}$

Wellenfunktion des Bits (in Standardbasis): $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \text{ mit } \alpha, \beta \in \mathbb{C}$

System soll sich nur in Zuständen $|0\rangle$ und $|1\rangle$ befinden: $|\alpha|^2+|\beta|^2=1$

mit Eulerformel:

$$|\psi\rangle = (\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle)$$

Jedem Winkelpaar (θ, φ) ist eindeutig umkehrbar ein Punkt auf der Einheitskugel zugeordnet

$$|\psi\rangle = (\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle)$$

Anschauliches Modell: Bloch Sphere

andere Basis:

$$\begin{split} |\nearrow\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} \quad \text{(normiert)} \\ |\searrow\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix} \quad \text{(normiert)} \\ \Rightarrow \\ |0\rangle &= \frac{1}{\sqrt{2}} \left(|\nearrow\rangle + |\searrow\rangle \right) \quad \text{und} \quad |1\rangle &= \frac{1}{\sqrt{2}} \left(|\nearrow\rangle - |\searrow\rangle \right) \end{split}$$

Für Superpositionszustand:

$$|\psi\rangle = \frac{\alpha + \beta}{\sqrt{2}}|\nearrow\rangle + \frac{\alpha - \beta}{\sqrt{2}}|\searrow\rangle$$

$$|\psi\rangle = \frac{\alpha + \beta}{\sqrt{2}}|\nearrow\rangle + \frac{\alpha - \beta}{\sqrt{2}}|\searrow\rangle$$

Für Q-Bit im Zustand $|\psi\rangle = |0\rangle$: $\alpha = 1$ und $\beta = 0$

Messung in Basis $\{| \nearrow \rangle, | \searrow \rangle\}$: Wahrscheinlichkeit $\frac{1}{2}$ für beide Zustände

Mit einem Quantencomputer ist die Erzeugung echter Zufallszahlen möglich !

Zustand
$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 durch Operation A verändern:

$$A: \mathcal{H}_2 \longrightarrow \mathcal{H}_2 \qquad \text{mit } A: |\psi\rangle \mapsto |\phi\rangle$$

muss wieder gelten: $\| \left| \phi \right\rangle \| = 1$

Per Postulat sind Operatoren unitär

Hadamard Gatter H und Paulimatrizen σ_x, σ_y und σ_z :

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix},$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Systeme von Q-Bit

System aus zwei Q-Bits klassisch in 4 Zuständen möglich:

$$|0\rangle := |00\rangle := \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}, \quad |1\rangle := |01\rangle := \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix}, |2\rangle := |10\rangle := \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad |3\rangle := |11\rangle := \begin{pmatrix} 0\\0\\0\\1\\1 \end{pmatrix},$$

$$\begin{aligned} \operatorname{\mathsf{Sei}} |\varphi\rangle &= a|0\rangle + b|1\rangle \operatorname{\mathsf{und}} |\phi\rangle = c|0\rangle + d|1\rangle \\ |\psi\rangle &:= |\varphi\phi\rangle := |\varphi\rangle|\phi\rangle = (a|0\rangle + b|1\rangle)(c|0\rangle + d|1\rangle) \\ &= ac|0\rangle|0\rangle + ad|0\rangle|1\rangle + bc|1\rangle|0\rangle + bd|1\rangle|1\rangle \\ &= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle \end{aligned}$$

Nach der Born'schen Deutung: System mit der Wahrscheinlichkeit:

- $|ac|^2$ im Zustand $|00\rangle$
- $|ad|^2$ in $|01\rangle$

$$|\psi\rangle = ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle$$

Erste Bit hat mit Wahrscheinlichkeit $|ac|^2 + |ad|^2$ Wert 0.

Nach Messung des Ersten Bits: zwei-Bit Quantenregister im Superpositionszustand aus $ac|00\rangle$ und $ad|01\rangle$

Post-Messungs-Zustand:

$$|\psi'\rangle = \frac{ac|00\rangle + ad|01\rangle}{\sqrt{|ac|^2 + |ad|^2}}$$

Normierungsfaktor:
$$\sqrt{|ac|^2 + |ad|^2}$$

Register aus N Q-Bits in Basisraum mit 2^N Dimensionen:

 $\mathcal{B}^N := \{ |i\rangle \ |i \in \{0,1\}^N \}$

verkürzte Schreibweise: Binärcode ersetzt durch Dezimalzahl Bsp: $|101\rangle \equiv |5\rangle$

Zustand eines $|\psi\rangle$ des N-Q-Bit-Registers:

$$|\psi\rangle = \sum_{i \in \{0,1\}^N} \alpha_i |i\rangle, \qquad \text{mit } \sum_{i \in \{0,1\}^N} |\alpha_i|^2 = 1$$

Postulat der Quantenmechanik: zeitliche Entwicklung eines Quantensystems durch einen *unitären* Operator \hat{U} (eine Matrix) beschrieben

Für unitäre Operatoren galt: $\exists \widehat{U} \quad \text{mit } \widehat{U}\widehat{U}^{-1} = \widehat{1}$

jeder Physikalische Prozess umkehrbar: **Mikroreversibilität** \Rightarrow jede logische Operation muss

umkehrbar sein

Betrachten: zwei Q-Bit-Register mathematische Operation R_2 , die nur auf das zweite Bits wirkt

Register im Zustand: $|\psi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$

$$R_2|\psi\rangle = a|0R(0)\rangle + b|0R(1)\rangle + c|1R(0)\rangle + d|1R(1)\rangle$$

einzelne Q-Bit-Operation wirkt *gleichzeitig* auf *alle* 2^N *Zustände* des Systems: **Quantenparallität**

Quantencomputer und Information

Quantenregister aus N Q-Bits: Überlagerungszustand aus 2^N Basiszuständen möglich

$$|\psi\rangle = \alpha_1|0\rangle + \alpha_2|1\rangle + \alpha_{2^N}|2^N - 1\rangle \qquad \text{mit } \alpha_1, \dots \alpha_{2^N} \in \mathbb{C}$$

 2^N komplexe Zahlen (beliebiger Genauigkeit) speicherbar

Problem: nur eine Messung um Ergebnis auszulesen, denn

- Information wird durch Messen zerstört
- Rechnung nicht (mit gleichem Ergebnis) wiederholbar, da Quantencomputer nur probabilistische Resultate liefert
- Ergebnis nicht kopierbar

Problem: nur eine Messung um Ergebnis auszulesen, denn

- Information wird durch Messen zerstört
- Rechnung nicht (mit gleichem Ergebnis) wiederholbar, da Quantencomputer nur probabilistische Resultate liefert
- Ergebnis nicht kopierbar

No-Clonig-Theorem:

Es gibt keine unitäre Transformation \widehat{U} , die ein Q-Bit kopieren kann.

Anforderungen an einen Quantencomputer (nach David DiVincenzo):

- Jedes Q-Bit gut charakterisiert (eindeutig ansprechbar)
- Erweiterbarkeit des Systems auf viele Q-Bits (Skalierbarkeit)
- Alle Q-Bits müssen in einem wohl definierten Anfangszustand präparierbar sein, z.B. in $|000..0\rangle$.
- Die möglichen Operationen auf dem System müssen einen universellen Satz von Quantenoperationen enthalten.

Anforderungen an einen Quantencomputer (Fortsetzung):

- Überlagerungszustände der Q-Bits dürfen nur in Zeitskalen zerfallen, die viel länger als die Zeit einer elementaren Gatteroperation sind.
- Es muss eine Möglichkeit geben, den Zustand der Q-Bits zu messen un in eine klassische Anzeige auszulesen.

Literaturverzeichnis

Literatur

[1]

[2]

Teubner - Taschenbuch der Mathematik

von: I.N.Bronstein und K.A. Semendjajew

Verlag: B.G. Teubner Verlagsgesellschaft Leipzig

Quantum Computation and Quantum Information

von: Michael A. Nielsen & Isaac L. Chuang

Verlag: Cambridge University Press

Literaturverzeichnis

Literatur

[3]

[4]

Fundamentals of Quantum Information von: Dieter Heiss Verlag: B.Springer-Verlag Physik Journal Januar 2004 Artikel: *Ein Atomarer Abakus* von: D. Leibfried & T. Schätz Verlag: Wiley-VCH Verlag

Ende