

Learned Feedback Control Mechanisms for a Quantum System

Alexander Hentschel

12 August 2008

Content

- Introduction to Quantum Information
 - Quantum Bits (Qubits)
 - Quantum Operations
- 2 Learning about Quantum Systems
 - Application: Gravitational Wave Detection
- Comparison and Conclusions

Quantum Computation & Information

study of information processing tasks that can be accomplished using quantum mechanical systems

Quantum mechanical system: (usually) system containing only few particles

Possible encodings of information

- energy level of electrons
- electron spin
- polarization of light

Quantum Computation & Information

study of information processing tasks that can be accomplished using quantum mechanical systems

Quantum mechanical system: (usually) system containing only few particles

Possible encodings of information:

- energy level of electrons
- electron spin
- polarization of light

Quantum Computation & Information

study of information processing tasks that can be accomplished using quantum mechanical systems

Quantum mechanical system: (usually) system containing only few particles

Possible encodings of information:

- energy level of electrons
- electron spin
- polarization of light

Quantum Computation & Information

study of information processing tasks that can be accomplished using quantum mechanical systems

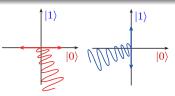
Quantum mechanical system: (usually) system containing only few particles

Possible encodings of information:

- energy level of electrons
- electron spin
- polarization of light

Encoding in polarization of light:

- logical 1: (vertical polarization)



Superpositio

Probabilistic interpretation: (Bohr & Heisenberg, 1927)

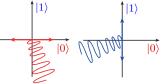
Probability to measure qubit $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$ in

• state
$$|0\rangle$$
: $P(|0\rangle) = |\alpha|^2$
state $|1\rangle$: $P(|1\rangle) = |\beta|^2$

State $\ket{\widetilde{\Psi}}$ after measurement with

- ullet outcome $|0\rangle\colon |\widetilde{\Psi}\rangle = |0\rangle$
- outcome $|1\rangle$: $|\widetilde{\Psi}\rangle = |1\rangle$

Encoding in polarization of light:



Superposition

mixture of
$$|0\rangle$$
 and $|1\rangle$:

example:
$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

$$|1\rangle |\Psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

Probabilistic interpretation: (Bohr & Heisenberg, 1927)

Probability to measure qubit $|\Psi\rangle=lpha|0
angle+eta|1
angle$ in

• state
$$|0\rangle$$
: $P(|0\rangle) = |\alpha|^2$
state $|1\rangle$: $P(|1\rangle) = |\beta|^2$

State $\ket{\widetilde{\Psi}}$ after measurement with

- outcome $|0\rangle$: $|\widetilde{\Psi}\rangle = |0\rangle$
- outcome $|1\rangle$: $|\Psi\rangle = |1\rangle$

Encoding in polarization of light:

- logical 1: \uparrow (vertical polarization)

Superposition

general state of a Qubit:
$$|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$$

with $\alpha, \beta \in \mathbb{C}$, $|\alpha|^2 + |\beta|^2 = 1$

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

Probabilistic interpretation: (Bohr & Heisenberg, 1927)

Probability to measure qubit $|\Psi\rangle=lpha|0
angle+eta|1
angle$ in

• state
$$|0\rangle$$
: $P(|0\rangle) = |\alpha|^2$
state $|1\rangle$: $P(|1\rangle) = |\beta|^2$

State $\ket{\widetilde{\Psi}}$ after measurement with

- ullet outcome $|0\rangle\colon |\widetilde{\Psi}\rangle = |0\rangle$
- outcome $|1\rangle$: $|\widetilde{\Psi}\rangle = |1\rangle$

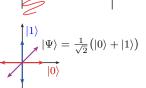
Encoding in polarization of light:

- logical 1: \uparrow (vertical polarization)

Superposition

general state of a Qubit:
$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

with
$$\alpha, \beta \in \mathbb{C}$$
, $|\alpha|^2 + |\beta|^2 = 1$



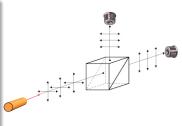
Probabilistic interpretation: (Bohr & Heisenberg, 1927)

Probability to measure qubit $|\Psi\rangle=lpha|0
angle+eta|1
angle$ in

• state
$$|0\rangle$$
: $P(|0\rangle) = |\alpha|^2$
state $|1\rangle$: $P(|1\rangle) = |\beta|^2$

State $|\widetilde{\Psi}\rangle$ after measurement with

- outcome $|0\rangle$: $|\widetilde{\Psi}\rangle = |0\rangle$
- outcome $|1\rangle$: $|\widetilde{\Psi}\rangle = |1\rangle$



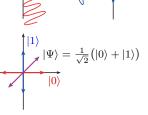
Encoding in polarization of light:

- logical 1: \uparrow (vertical polarization)

Superposition

general state of a Qubit:
$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

with
$$\alpha, \beta \in \mathbb{C}$$
, $|\alpha|^2 + |\beta|^2 = 1$



Probabilistic interpretation: (Bohr & Heisenberg, 1927)

Probability to measure qubit $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$ in

• state $|0\rangle$: $P(|0\rangle) = |\alpha|^2$ state $|1\rangle$: $P(|1\rangle) = |\beta|^2$

State $|\widetilde{\Psi}\rangle$ after measurement with

- outcome $|0\rangle$: $|\widetilde{\Psi}\rangle = |0\rangle$
- outcome $|1\rangle$: $|\widetilde{\Psi}\rangle = |1\rangle$



Quantum Register $|\Psi\rangle$

with N qubits: 2^N classical states

ullet $|\Psi\rangle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \cdots + \alpha_{2^N-1}|2^N-1\rangle$$

Quantum Operations

- Quantum Parallelism:

 Operations act on all basis states of 10
- in microsystem (usually) all processes reversible
- Quantum operations = linear & invertible functions (unitary matrices)

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

$$\downarrow \downarrow$$

$$\frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2} |0\rangle + \frac{1}{2} |1\rangle \right)$$

$$-\frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle$$

Quantum Register $|\Psi\rangle$

with N qubits: 2^N classical states

ullet $|\Psi
angle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{2^N-1}|2^N-1\rangle$$

Quantum Operations

- Quantum Parallelism: Operations act on *all* basis states of $|\Psi\rangle$
- in microsystem (usually) all processes reversible
- Quantum operations = linear & invertible functions (unitary matrices)

$$\begin{split} |\Psi\rangle &= \frac{1}{\sqrt{2}} \Big(|0\rangle + |1\rangle \Big) \\ & \psi \\ &\frac{1}{\sqrt{2}} \Big(\frac{\sqrt{3}}{2} |0\rangle + \frac{1}{2} |1\rangle \\ &- \frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle \Big) \end{split}$$

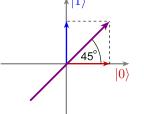
Quantum Register $|\Psi\rangle$

with N qubits: 2^N classical states

• $|\Psi\rangle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{2^N-1}|2^N-1\rangle$$

rotates polarization by fixed angle



$$|\Psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + |1\rangle \Big)$$

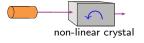
$$\frac{1}{\sqrt{2}} \left(\begin{array}{c} \sqrt{3} \\ 2 \end{array} | 0 \right) + \frac{1}{2} | 1 \rangle$$

Quantum Register $|\Psi\rangle$

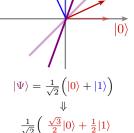
with N qubits: 2^N classical states

• $|\Psi\rangle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{2^N-1}|2^N-1\rangle$$



rotates polarization by fixed angle



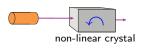
 $-\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$

Quantum Register $|\Psi\rangle$

with N qubits: 2^N classical states

ullet $|\Psi
angle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{2^N-1}|2^N - 1\rangle$$



rotates polarization by fixed angle

Quantum Operations

- Quantum Parallelism:
 - Operations act on all basis states of $|\Psi
 angle$
- Micro Reversibility:
 in microsystem (usually) all processes reversible
 Quantum operations = linear & invertible functions

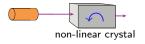
$$\begin{split} |\Psi\rangle &= \frac{1}{\sqrt{2}} \Big(|0\rangle + |1\rangle \Big) \\ &\downarrow \\ &\frac{1}{\sqrt{2}} \Big(\frac{\sqrt{3}}{2}|0\rangle + \frac{1}{2}|1\rangle \\ &- \frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle \Big) \end{split}$$

Quantum Register $|\Psi\rangle$

with N qubits: 2^N classical states

ullet $|\Psi\rangle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{2^N-1}|2^N-1\rangle$$

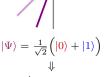


rotates polarization by fixed angle

Quantum Operations

- Quantum Parallelism: Operations act on all basis states of $|\Psi
 angle$
- Micro Reversibility: in microsystem (usually) all processes reversible

Quantum operations = linear & invertible functions (unitary matrices)



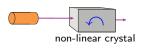
$$\frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2} |0\rangle + \frac{1}{2} |1\rangle - \frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle \right)$$

Quantum Register $|\Psi\rangle$

with N qubits: 2^N classical states

ullet $|\Psi\rangle$ can be in any superposition of 2^N classical states

$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_{2^N-1}|2^N-1\rangle$$

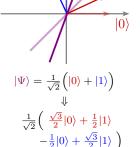


rotates polarization by fixed angle

Quantum Operations

- Quantum Parallelism:
 Operations act on all basis states of $|\Psi
 angle$
- Micro Reversibility: in microsystem (usually) all processes reversible

Quantum operations = linear & invertible functions (unitary matrices)



Quantum register:
$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \alpha_2|2\rangle + \cdots + \alpha_{2^N-1}|2^N-1\rangle$$

summary so far:

- \bullet reading out quantum register: random outcome $|i\rangle$ with probability according to weight α_i
- ullet after reading a quantum register: information in $|\Psi
 angle$ destroyed (after measurement $|\Psi
 angle=|i
 angle$)

Question: Can one copy the state $|\Psi\rangle$ of a quantum register?

Answer: No!

No Cloning Theorem

There is no operation which can copy a quantum state $|\Psi\rangle$

$$\mathsf{Copy}\Big(|\Psi\rangle\otimes|\emptyset\rangle\Big) \;=\; |\Psi\rangle\otimes|\Psi\rangle$$

Quantum register:
$$|\Psi\rangle=\alpha_0|0\rangle+\alpha_1|1\rangle+\alpha_2|2\rangle+\cdots+\alpha_{2^N-1}|2^N-1\rangle$$

summary so far:

- \bullet reading out quantum register: random outcome $|i\rangle$ with probability according to weight α_i
- \bullet after reading a quantum register: information in $|\Psi\rangle$ destroyed (after measurement $|\Psi\rangle=|i\rangle)$

Question: Can one copy the state $|\Psi\rangle$ of a quantum register?

Answer: No!

No Cloning Theorem

There is no operation which can copy a quantum state $|\Psi\rangle$:

$$\mathsf{Copy}\Big(|\Psi\rangle\otimes|\emptyset\rangle\Big) \;=\; |\Psi\rangle\otimes|\Psi\rangle$$

Quantum register:
$$|\Psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + \alpha_2|2\rangle + \cdots + \alpha_{2^N-1}|2^N-1\rangle$$

summary so far:

- \bullet reading out quantum register: random outcome $|i\rangle$ with probability according to weight α_i
- after reading a quantum register: information in $|\Psi\rangle$ destroyed (after measurement $|\Psi\rangle=|i\rangle)$

Question: Can one copy the state $|\Psi\rangle$ of a quantum register?

Answer: No!

No Cloning Theorem

There is no operation which can copy a quantum state $|\Psi\rangle$:

$$\mathsf{Copy}\Big(|\Psi\rangle\otimes|\emptyset\rangle\Big) \;=\; |\Psi\rangle\otimes|\Psi\rangle$$

Quantum register:
$$|\Psi\rangle=\alpha_0|0\rangle+\alpha_1|1\rangle+\alpha_2|2\rangle+\cdots+\alpha_{2^N-1}|2^N-1\rangle$$

summary so far:

- \bullet reading out quantum register: random outcome $|i\rangle$ with probability according to weight α_i
- after reading a quantum register: information in $|\Psi\rangle$ destroyed (after measurement $|\Psi\rangle=|i\rangle)$

Question: Can one copy the state $|\Psi\rangle$ of a quantum register?

Answer: No!

No Cloning Theorem

There is no operation which can copy a quantum state $|\Psi\rangle$:

$$\mathsf{Copy}\Big(|\Psi\rangle\otimes|\emptyset\rangle\Big) \ = \ |\Psi\rangle\otimes|\Psi\rangle$$
 quantum state target register

Artificial Intelligence

methods for classical computation

- Bayesian Reasoning
- Neural Networks
- Evolutionary Algorithms

Quantum Information

provides extend computational model

- Superposition: general qubit state: $|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$
- quantum states cannot be copied
- output of computation probabilistic

Artificial Intelligence

methods for classical computation

- Bayesian Reasoning
- Neural Networks
- Evolutionary Algorithms

:

Quantum Information

provides extend computational model

- Superposition: general qubit state: $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- quantum states cannot be copied
- output of computation probabilistic

Extension to Quantum Information

Artificial Intelligence

methods for classical computation

- Bayesian Reasoning
- Neural Networks
- Evolutionary Algorithms

:

Quantum Information

provides extend computational model

- Superposition: general qubit state: $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- quantum states cannot be copied
- output of computation probabilistic
- How classical Al applies to quantum information?
- Make use of increased efficiency of quantum computing for machine intelligence?

Extension to Quantum Information

Artificial Intelligence

methods for classical computation

- Bayesian Reasoning
- Neural Networks
- Evolutionary Algorithms

Quantum Information

provides extend computational model

- Superposition: general qubit state: $|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- quantum states cannot be copied
- output of computation probabilistic
- How classical Al applies to quantum information?
- Make use of increased efficiency of quantum computing for machine intelligence?

► Gravitational Wave Detection

Quantum state: $|\Psi\rangle=\alpha_0|\psi_0\rangle+\cdots+\alpha_{2^N-1}|\psi_{2^N-1}\rangle$

Full control over quantum system

 $|\Psi\rangle$

Can prepare and measure $|\Psi angle$ repeatedly

- apply quantum tomography $|\Psi\rangle$: similar to classical case, all system
- \bullet but: exponentially runtime in N

ΑI

Partial control over quantum system

Measurement perturbs $|\Psi\rangle$

- evolution of system is primarily driven by Al
- only partial information available

Implement learning on quantum level

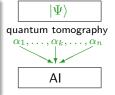
• quantum parallelism: apply Al-algorithm to every $|\psi_i\rangle$

Quantum state: $|\Psi\rangle = \alpha_0 |\psi_0\rangle + \cdots + \alpha_{2^N-1} |\psi_{2^N-1}\rangle$

Full control over quantum system

Can prepare and measure $|\Psi\rangle$ repeatedly

- apply quantum tomography $|\Psi\rangle$: similar to classical case, all system parameters known
- ullet but: exponentially runtime in N



Partial control over quantum system

Measurement perturbs $|\Psi\rangle$

- evolution of system is primarily driven by AI
- only partial information available

Implement learning on quantum level

• quantum parallelism: apply Al-algorithm to every $|\psi_i\rangle$

Quantum state: $|\Psi\rangle = \alpha_0 |\psi_0\rangle + \cdots + \alpha_{2^N-1} |\psi_{2^N-1}\rangle$

Full control over quantum system

Can prepare and measure $|\Psi
angle$ repeatedly

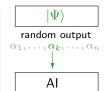
- apply quantum tomography $|\Psi\rangle$: similar to classical case, all system parameters known
- ullet but: exponentially runtime in N

$\begin{array}{c} |\Psi\rangle \\ \text{quantum tomography} \\ \alpha_1,\ldots,\alpha_k,\ldots,\alpha_n \\ \hline \\ \text{AI} \end{array}$

Partial control over quantum system

Measurement perturbs $|\Psi\rangle$

- evolution of system is primarily driven by AI
- only partial information available



Implement learning on quantum level

ullet quantum parallelism: apply Al-algorithm to every $|\psi_i
angle$

Quantum state: $|\Psi\rangle=\alpha_0|\psi_0\rangle+\cdots+\alpha_{2^N-1}|\psi_{2^N-1}\rangle$

Full control over quantum system

Can prepare and measure $|\Psi
angle$ repeatedly

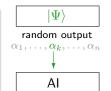
- apply quantum tomography $|\Psi\rangle$: similar to classical case, all system parameters known
- ullet but: exponentially runtime in N

quantum tomography $\alpha_1,\ldots,\alpha_k,\ldots,\alpha_n$

Partial control over quantum system

Measurement perturbs $|\Psi\rangle$

- evolution of system is primarily driven by AI
- only partial information available



Implement learning on quantum level

ullet quantum parallelism: apply Al-algorithm to every $|\psi_i
angle$

Quantum state: $|\Psi\rangle=\alpha_0|\psi_0\rangle+\cdots+\alpha_{2^N-1}|\psi_{2^N-1}\rangle$

Full control over quantum system

Can prepare and measure $|\Psi
angle$ repeatedly

- ullet apply quantum tomography $|\Psi\rangle$: similar to classical case, all system parameters known
- ullet but: exponentially runtime in N

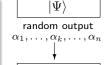
quantum tomography $\alpha_1,\dots,\alpha_k,\dots,\alpha_n$

 Ψ

Partial control over quantum system

Measurement perturbs $|\Psi
angle$

- evolution of system is primarily driven by AI
- only partial information available



ΑI

Implement learning on quantum level

• quantum parallelism: apply Al-algorithm to every $|\psi_i\rangle$

Quantum Al

 Ψ

Possible application:

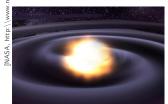
Detection of Gravitational Waves

- move with speed of light resource: time $\Leftrightarrow N$ pulses
- extremely weak: $\sim 10^{-20}$ valuable resource: sensitivity

LIGO, Washington, USA

Detection: Mach-Zehnder Interferometer





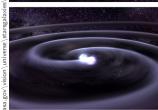
Possible application:

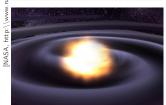
Detection of Gravitational Waves

- move with speed of light resource: time $\Leftrightarrow N$ pulses
- extremely weak: $\sim 10^{-20}$ valuable resource: sensitivity

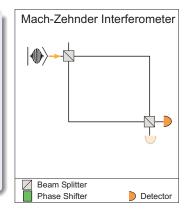
LIGO, Washington, USA

Detection: Mach-Zehnder Interferometer





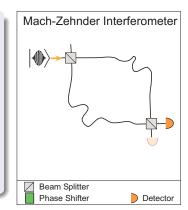
- gravitational wave deforms optical path length
- N photons: sensitivity $\Delta\Phi\sim {1\over \sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim \frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- ullet adjust arphi by feedback control mechanism

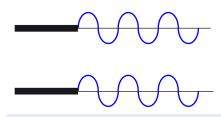


- gravitational wave deforms optical path length
 - \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim {1\over \sqrt{N}}$

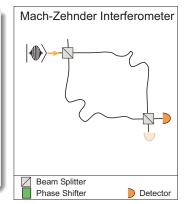
• special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible

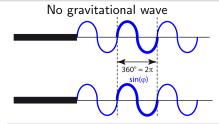
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- ullet adjust φ by feedback control mechanism



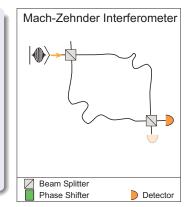


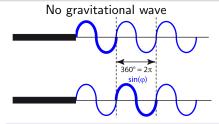
- gravitational wave deforms optical path length
 - \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim rac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim \frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)]
- adjust φ by feedback control mechanism



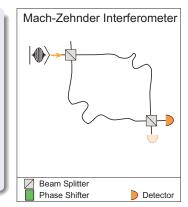


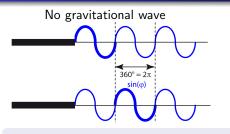
- gravitational wave deforms optical path length
 - \Leftrightarrow phase shift Φ
- N photons: sensitivity $\Delta \Phi \sim \frac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)]
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)]
- ullet adjust φ by feedback control mechanism

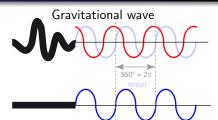




- gravitational wave deforms optical path length
 - \Leftrightarrow phase shift Φ
- N photons: sensitivity $\Delta\Phi\sim \frac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- ullet adjust φ by feedback control mechanism

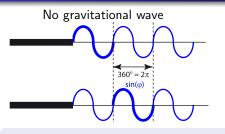


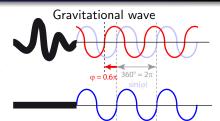




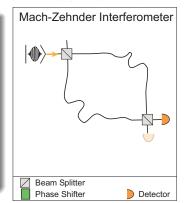
- gravitational wave deforms optical path length
- ullet N photons: sensitivity $\Delta\Phi\sim rac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- ullet adjust arphi by feedback control mechanism

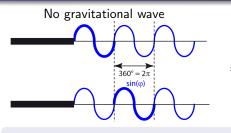
Mach-Zehnder Interferometer Beam Splitter Phase Shifter Detector

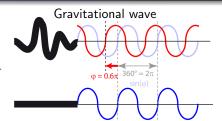




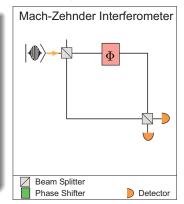
- gravitational wave deforms optical path length
- N photons: sensitivity $\Delta\Phi\sim {1\over \sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- ullet adjust arphi by feedback control mechanism

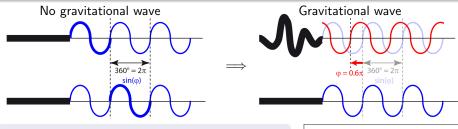




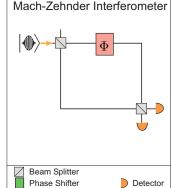


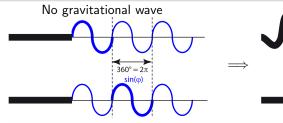
- gravitational wave deforms optical path length
 - \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim rac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim \frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- \bullet adjust φ by feedback control mechanism

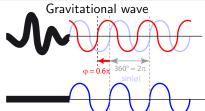




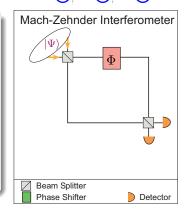
- gravitational wave deforms optical path length \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim {1\over \sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milbum, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- ullet adjust arphi by feedback control mechanism

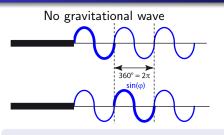


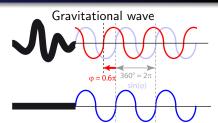




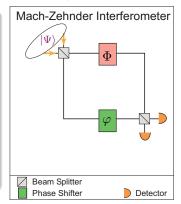
- gravitational wave deforms optical path length \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim {1\over \sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim \frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter φ
- \bullet adjust φ by feedback control mechanism

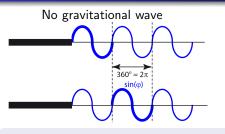


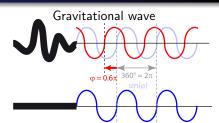




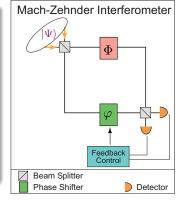
- gravitational wave deforms optical path length \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim rac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim\frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)]
- but: experimentally (almost) impossible • increase sensitivity by compensating for Φ
- [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)] include controllable phase shifter arphi
- \bullet adjust φ by feedback control mechanism







- gravitational wave deforms optical path length \Leftrightarrow phase shift Φ
- ullet N photons: sensitivity $\Delta\Phi\sim rac{1}{\sqrt{N}}$
- special quantum state $|\Psi\rangle$: $\Delta\Phi\sim \frac{1}{N}$ [B. Sanders, G. Milburn, Z. Zhang, J. Mod. Opt. 44, 1309 (1997)] but: experimentally (almost) impossible
- ullet increase sensitivity by compensating for Φ [D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)]
- include controllable phase shifter φ
- \bullet adjust φ by feedback control mechanism



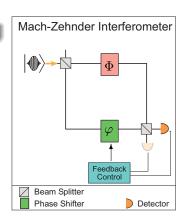
A simple feedback strategy

- input: N photons in horizontal arm
- tune φ until output:

Disadvantages: • bad sensitivity

$$\Delta\Phi\sim {1\over \sqrt{N}}$$

to achieve sufficient sensitivity:



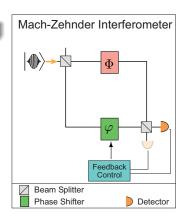
A simple feedback strategy

- ullet input: N photons in horizontal arm
- tune φ until output: only photons on horizontal arm

Disadvantages: • bad sensitivity

$$\Delta\Phi\sim\frac{1}{\sqrt{N}}$$

 to achieve sufficient sensitivity: many photons required
 measurement slow



Aim: feedback strategy with better sensitivity $\gtrsim \frac{1}{N}$

A simple feedback strategy

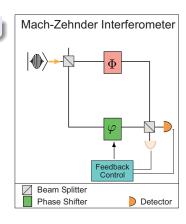
- input: N photons in horizontal arm
- ullet tune arphi until output: only photons on horizontal arm

Disadvantages:

bad sensitivity

$$\Delta\Phi\sim\frac{1}{\sqrt{N}}$$

- to achieve sufficient sensitivity: many photons required
 - ⇔ measurement slow



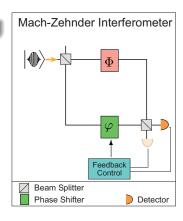
Aim: feedback strategy with better sensitivity $\gtrsim \frac{1}{N}$

A simple feedback strategy

- ullet input: N photons in horizontal arm
- • tune φ until output: only photons on horizontal arm

Disadvantages:

- bad sensitivity
 - $\Delta\Phi\simrac{1}{\sqrt{N}}$
- to achieve sufficient sensitivity: many photons required
 - \Leftrightarrow measurement slow



Aim: feedback strategy with better sensitivity $\gtrsim \frac{1}{N}$

A simple analogy of the learning problem

Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

unknown Φ

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game

- ullet unknown parameter: $\Phi \in [0,2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value

A simple analogy of the learning problem

Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

unknown Φ

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game

- unknown parameter: $\Phi \in [0, 2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value

A simple analogy of the learning problem

Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game

Gravitational Wave Detection

- unknown parameter: $\Phi \in [0, 2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value

unknown Φ

A simple analogy of the learning problem

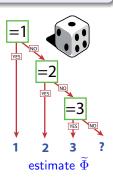
Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game

- unknown parameter: $\Phi \in [0, 2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value



A simple analogy of the learning problem

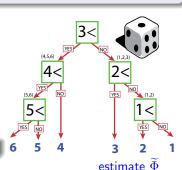
Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game

- unknown parameter: $\Phi \in [0, 2\pi]$
- ullet action: choose $arphi^{(i)} \in [0,2\pi]$
- response: binary value



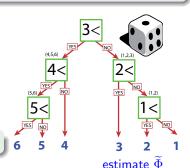
A simple analogy of the learning problem

Guessing the number $\boldsymbol{\Phi}$ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game



estillate 4

- ullet unknown parameter: $\Phi \in [0,2\pi]$
- ullet action: choose $arphi^{(i)} \in [0,2\pi]$
- response: binary value

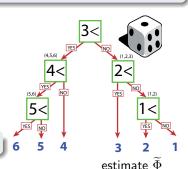
A simple analogy of the learning problem

Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game



- ullet unknown parameter: $\Phi \in [0,2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value

A simple analogy of the learning problem

Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game

- ullet unknown parameter: $\Phi \in [0,2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value

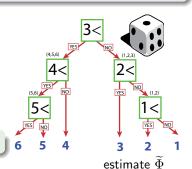
A simple analogy of the learning problem

Guessing the number Φ rolled on a dice

- ullet unknown parameter: Φ
- player can ask 3 questions $\varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)}$ response: binary value
- after all 3 questions have been answered: player gives estimate $\widetilde{\Phi}$ for number rolled

Learning phase: Φ revealed after game

- feedback strategy
- reward gained at end of game



- ullet unknown parameter: $\Phi \in [0,2\pi]$
- action: choose $\varphi^{(i)} \in [0, 2\pi]$
- response: binary value

A high sensitivity feedback strategy

• input: fixed state $|\Psi\rangle$ of N entangled photons

- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcom
- ullet final phase estimates $\widetilde{\Phi}$ determined by

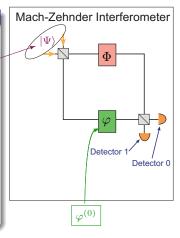
Mach-Zehnder Interferometer Detecto Detector 0

Decision Tree Learning

A high sensitivity feedback strategy

• input: fixed state $|\Psi\rangle$ of N entangled photons

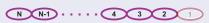
- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome
- final phase estimates Φ determined by measurements



Decision Tree Learning

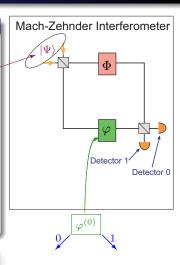
A high sensitivity feedback strategy

• input: fixed state $|\Psi\rangle$ of N entangled photons



- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome
- final phase estimates $\widetilde{\Phi}$ determined by measurements

Decision Tree Learning

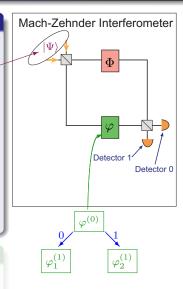


A high sensitivity feedback strategy

• input: fixed state $|\Psi\rangle$ of N entangled photons

- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome
- final phase estimates $\widetilde{\Phi}$ determined by

Decision Tree Learning

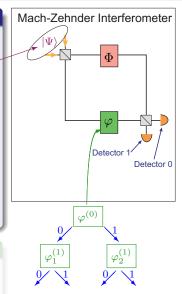


A high sensitivity feedback strategy

• input: fixed state $|\Psi\rangle$ of N entangled photons

- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome .
- final phase estimates $\widetilde{\Phi}$ determined by

Decision Tree Learning



A high sensitivity feedback strategy

- \bullet input: fixed state $|\Psi\rangle$ of N entangled photons
 - N N-1 - 4 3 2 1 -
- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome :
- final phase estimates determined by measurements

Decision Tree Learning

evaluate fitness of decision tree with Bayes Theorem

mined by $\varphi^{(0)}$ th Bayes Theorem by algorithm $\varphi^{(1)}_1 \qquad \varphi^{(1)}_2 \qquad$

Mach-Zehnder Interferometer

Detecto

Detector 0

A high sensitivity feedback strategy

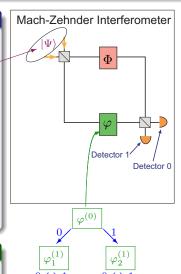
• input: fixed state $|\Psi\rangle$ of N entangled photons

- no prior information about Φ: select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome
- final phase estimates Φ determined by measurements

Decision Tree Learning

evaluate fitness of decision tree with Bayes Theorem

final phase estimates $\widetilde{\Phi}$:



A high sensitivity feedback strategy

- no prior information about Φ : select first phase $\varphi^{(0)}$ at random
- adjust phase $\varphi^{(0)} \to \varphi^{(1)}$ according to measurement outcome :
- final phase estimates $\widetilde{\Phi}$ determined by measurements

Decision Tree Learning

evaluate fitness of decision tree with Bayes Theorem vary decision tree using evolutionary algorithm

Detecto Detector 0 $\varphi^{(0)}$

Mach-Zehnder Interferometer

Comments:

ullet tree size exponential in number of photons N

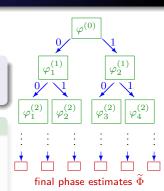
highest possible sensitivity $\sim \frac{1}{N}$

ullet only $\mathcal{P}(N)$ many paths for each $\widetilde{\Phi}$ necessary

Advantages of Learning Scheme

- noise tolerant
- without knowledge of specific noise process
- ullet works for any prior distribution of phase Φ
- ullet different input states $|\Psi\rangle$ possible
- potential to do better than other measurement schemes (depending on training)
- experimentally feasible

Future work



Comments:

ullet tree size exponential in number of photons N

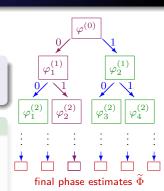
highest possible sensitivity $\sim \frac{1}{N}$

ullet only $\mathcal{P}(N)$ many paths for each $\widetilde{\Phi}$ necessary

Advantages of Learning Scheme

- noise tolerant
- without knowledge of specific noise process
- ullet works for any prior distribution of phase Φ
- ullet different input states $|\Psi\rangle$ possible
- potential to do better than other measurement schemes (depending on training)
- experimentally feasible

Future work



Comments:

ullet tree size exponential in number of photons N

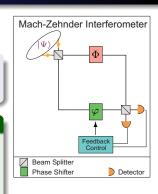
highest possible sensitivity $\sim \frac{1}{N}$

 \bullet only $\mathcal{P}(N)$ many paths for each $\widetilde{\Phi}$ necessary

Advantages of Learning Scheme

- noise tolerant without knowledge of specific noise process
- ullet works for any prior distribution of phase Φ
- \bullet different input states $|\Psi\rangle$ possible
- potential to do better than other measurement schemes (depending on training)
- experimentally feasible

Future work



Comments:

ullet tree size exponential in number of photons N

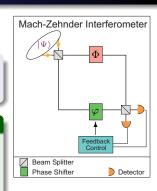
highest possible sensitivity $\sim \frac{1}{N}$

 \bullet only $\mathcal{P}(N)$ many paths for each $\widetilde{\Phi}$ necessary

Advantages of Learning Scheme

- noise tolerant without knowledge of specific noise process
- ullet works for any prior distribution of phase Φ
- ullet different input states $|\Psi\rangle$ possible
- potential to do better than other measurement schemes (depending on training)
- experimentally feasible

Future work



Comments:

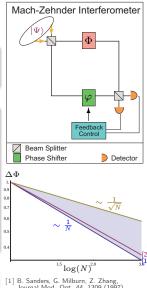
ullet tree size exponential in number of photons N

highest possible sensitivity $\sim \frac{1}{N}$

ullet only $\mathcal{P}(N)$ many paths for each Φ necessary

Advantages of Learning Scheme

- noise tolerant without knowledge of specific noise process
- \bullet works for any prior distribution of phase Φ
- different input states $|\Psi\rangle$ possible
- potential to do better than other measurement schemes (depending on training)
- experimentally feasible



- Journal Mod. Opt. 44, 1309 (1997)
- [2] D. Berry, H. Wiseman, J. Breslin, Phys. Rev. A 63, 53804 (2001)

Comments:

ullet tree size exponential in number of photons N

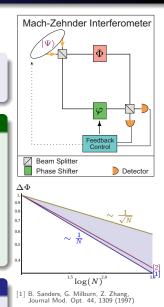
highest possible sensitivity $\sim \frac{1}{N}$

 \bullet only $\mathcal{P}(N)$ many paths for each $\widetilde{\Phi}$ necessary

Advantages of Learning Scheme

- noise tolerant without knowledge of specific noise process
- \bullet works for any prior distribution of phase Φ
- \bullet different input states $|\Psi\rangle$ possible
- potential to do better than other measurement schemes (depending on training)
- experimentally feasible

Future work:



Quantum Algorithm

- Efficient factorization of numbers into prime factors [Algorithm by Peter Shor, 1994]
- Searching an unsorted list of length N with $\mathcal{O}(\sqrt{N})$ queries [Algorithm by Lov Grover, 1996]
- Simulation of quantum system with N particles: often $\mathcal{P}(N)$

Duilding a Augustum Commutan

- far from possible:
 quantum systems much too fragile
- state of the art: 28-qubit system [D-Wayes, Nov. 2007]

- No efficient algorithm for factorization known
- Search for element in unstructured database: $\mathcal{O}(N)$ queries
- ullet almost always in $\mathcal{E}_{\mathcal{XP}}(N)$

Quantum Algorithm

- Efficient factorization of numbers into prime factors [Algorithm by Peter Shor, 1994]
- Searching an unsorted list of length N with $\mathcal{O}(\sqrt{N})$ queries [Algorithm by Lov Grover, 1996]
- Simulation of quantum system with N particles: often $\mathcal{P}(N)$

Building a Quantum Computer

- far from possible: quantum systems much too fragile
- state of the art: 28-qubit system [D-Wayes, Nov. 2007]

- No efficient algorithm for factorization known
- Search for element in unstructured database: $\mathcal{O}(N)$ queries
- almost always in $\mathcal{E}_{\mathcal{XP}}(N)$

Quantum Algorithm

- Efficient factorization of numbers into prime factors [Algorithm by Peter Shor, 1994]
- Searching an unsorted list of length N with $\mathcal{O}(\sqrt{N})$ queries [Algorithm by Lov Grover, 1996]
- Simulation of quantum system with N particles: often $\mathcal{P}(N)$

Building a Quantum Computer

- far from possible: quantum systems much too fragile
- state of the art: 28-qubit system [D-Wayes, Nov. 2007]

- No efficient algorithm for factorization known
- Search for element in unstructured database: $\mathcal{O}(N)$ queries
- ullet almost always in $\mathcal{E}_{\mathcal{XP}}(N)$

Quantum Algorithm

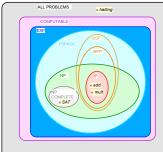
- Efficient factorization of numbers into prime factors [Algorithm by Peter Shor, 1994]
- Searching an unsorted list of length N with $\mathcal{O}(\sqrt{N})$ queries [Algorithm by Lov Grover, 1996]
- Simulation of quantum system with N particles: often $\mathcal{P}(N)$

Building a Quantum Computer

- far from possible: quantum systems much too fragile
- state of the art: 28-qubit system [D-Waves, Nov. 2007]

Classical Algorithm

- No efficient algorithm for factorization known
- Search for element in unstructured database: $\mathcal{O}(N)$ queries



[John Samson, Loughborough University]

Quantum Algorithm

- Efficient factorization of numbers into prime factors [Algorithm by Peter Shor, 1994]
- Searching an unsorted list of length N with $\mathcal{O}(\sqrt{N})$ queries [Algorithm by Lov Grover, 1996]
- Simulation of quantum system with N particles: often $\mathcal{P}(N)$

Building a Quantum Computer

- far from possible: quantum systems much too fragile
- state of the art: 28-qubit system [D-Waves, Nov. 2007]

- No efficient algorithm for factorization known
- Search for element in unstructured database: $\mathcal{O}(N)$ queries

