# $\label{eq:constraint} \begin{array}{l} \mbox{Eigenschaften und elektronische Struktur von} \\ \mbox{Cd}_x \mbox{Hg}_{1-x} \mbox{Te mit 0.07} < x < 0.4 \end{array}$

Matthias Kreier

Humboldt Universität zu Berlin Arbeitsgruppe Elektronische Eigenschaften und Supraleitung

20. 3. 2008



# Überblick

#### Motivation

- Eigenschaften von CdHgTe, Charakterisierung der Proben
  - Grundlegende Eigenschaften
  - Untersuchung der Zusammensetzung und Qualität

#### 3 Präparation der (110)-Oberfläche

- Allgemeines zum Aufbau
- Überprüfung der Oberflächenqualität

#### 4 Ergebnisse der Photoemission

- Details und Besonderheiten der winkelaufgelösten Photoemission
- Kernniveaus von CdHgTe
- Die Valenzbandstruktur

### Zusammenfassung



Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Wofür wird CdHgTe verwendet?

#### Infrarotdetektor

Seit den 40er Jahren war man auf der Suche nach einem Halbleiter für den langwelligen Infrarotbereich (LWIR, 8-14  $\mu$ m). Lawson et. al. synthetisierten CdHgTe im Jahre 1958. Die Bedeutung ihrer Arbeit wurde schon früh erkannt, doch aufgrund des militärischen Hintergrundes bis in die späten 60er Jahre wenig veröffentlicht.

## Infrarot-Astronomie

CdHgTe-Detektoren finden sich u. a. in den Experimenten NICMOS (Hubble 1997), Very Large Telescope der ESO in Chile (SINFONI 2005) oder WISE (NASA 2009).



Rockwell 2x2 2Kx2K IR-Array Hawaii-2RG Für 6,5m James Webb Space Telescope



Ergebnisse der Photoemission

Zusammenfassung

# Bisherige Untersuchungen an CdTe und HgTe

#### Dr. C. Janowitz: CdTe

C. Janowitz, L. Kipp, R. Manzke: *Experimental surface band structure of CdTe(110)* Surface Science 231 (1990) 25-31.

#### Dr. N. Orlowski: HgTe

N. Orlowski:

Untersuchung der elektronischen Struktur von HgSe und HgTe mittels winkelaufgelöster Photoemission Diplomarbeit, AG EES, (2000).



| Motivation   | Das Material CdHgTe, Charakterisierung | Präparation der (110)-Oberfläche | Ergebnisse der Photoemission | Zusammenfassung |
|--------------|----------------------------------------|----------------------------------|------------------------------|-----------------|
|              | 0000000                                |                                  |                              |                 |
| Grundlegende | Eigenschaften                          |                                  |                              |                 |
| Das I        | Material                               |                                  |                              |                 |

- Eigenschaften von CdHgTe, Charakterisierung der Proben
  - Grundlegende Eigenschaften
  - Untersuchung der Zusammensetzung und Qualität

#### Präparation der (110)-Oberfläche

- Allgemeines zum Aufbau
- Überprüfung der Oberflächenqualität

#### 4 Ergebnisse der Photoemission

- Details und Besonderheiten der winkelaufgelösten Photoemission
- Kernniveaus von CdHgTe
- Die Valenzbandstruktur

#### 5 Zusammenfassung

Ergebnisse der Photoemission 0000000000 Zusammenfassung

Grundlegende Eigenschaften

# Eigenschaften von CdHgTe: ideal für IR-Detektoren

- Einstellbare Bandlücke von 0,7 bis 25 μm
- Direkte Bandlücke
- Hoher Absorptionskoeffizient
- Moderate Dielektrizitätskonstante und Brechungsindex
- Geringer thermischer Ausdehnungskoeffizient
- Passende Substrate f
  ür epitaktisches Wachstum 
  über einen großen Wellenl
  ängenbereich (Cd<sub>0.96</sub>Zn<sub>0.04</sub>Te)





Das Material CdHgTe, Charakterisierung

Präparation der (110)-Oberfläche 0000000

rgebnisse der Photoemission

Zusammenfassung

Grundlegende Eigenschaften

# Gitterstruktur und -parameter



| Gitterkonstanten     |       |  |
|----------------------|-------|--|
| Substanz             | a/Å   |  |
| HgTe                 | 6,445 |  |
| $Cd_{0.2}Hg_{0.8}Te$ | 6,464 |  |
| CdTe                 | 6,488 |  |

CdTe, HgTe sowie die ternäre Mischung CdHgTe kristallisieren in Zinkblende-Struktur.



Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission

Zusammenfassung

Grundlegende Eigenschaften

# Abhängigkeit der fundamentalen Lücke von Komposition



Das Material CdHgTe, Charakterisierung

Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 0000000000 Zusammenfassung

Grundlegende Eigenschaften

# Ubersicht der untersuchten Proben

| $Cd_{x}Hg_{1-x}Te$ | I     | 11    | 111   | IV    | V      | VI     |
|--------------------|-------|-------|-------|-------|--------|--------|
| Wert für x         | 0.07  | 0.4   | 0.2   | 0.183 | 0.1955 | 0.1045 |
| Gewicht (mg)       | 186.3 | 130.3 | 158.5 | 129.2 | 248.5  | 108.9  |
| Orientierung       | [111] |       | [110] | [110] | [110]  | [110]  |





Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 0000000000 Zusammenfassung

Untersuchung der Zusammensetzung und Qualität

#### Untersuchung mittels energiedissipativer Röntgenstrahlung

| Probe | Referenz | Anteil Cd                         | Anteil Hg       | Anteil Te                           | #  |
|-------|----------|-----------------------------------|-----------------|-------------------------------------|----|
| I     | 0.07     | $0,063\pm0,003$                   | $1,031\pm0,007$ | $0,907\pm0,005$                     | 15 |
| П     | 0.4      | $0,390\pm0,005$                   | $0,650\pm0,005$ | $0,957\pm0,007$                     | 6  |
| 111   | 0.2      |                                   |                 |                                     | 0  |
| IV    | 0.183    | $0,163\pm0,015$                   | $0,92\pm0,01$   | $0,920\pm0,005$                     | 3  |
| V     | 0.1955   | $0,160\pm0,006$                   | $0,92\pm0,01$   | $0,920\pm0,005$                     | 12 |
| VI    | 0.1045   | $\textbf{0,110}\pm\textbf{0,007}$ | $0,978\pm0,009$ | $\textbf{0,910} \pm \textbf{0,006}$ | 9  |

# - Anzahl der Messungen EDX (Energy Dispersive X-ray spectroscopy)

#### Abweichungen

EDX ist eine standardfreie Messmethode. Der angegebene Fehler betrifft die Streuung unterschiedlicher Messungen, aus der Methode selbst ergibt sich ca. 10% Abweichung. Ursachen sind u.a. struktureller Natur.



Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 0000000000 Zusammenfassung

Untersuchung der Zusammensetzung und Qualität

### Laue Transmissions-Aufnahme: kein Einkristall



#### Polykristalline Anteile im Beugungsbild

Korngrößen beim Blockwachstum: 50 - 500  $\mu$ m



Präparation der (110)-Oberfläche 0000000 rgebnisse der Photoemission

Zusammenfassung

Untersuchung der Zusammensetzung und Qualität

#### Orientierung mittels Laue-Reflektionsaufnahmen

Probe I (x=0,4)



Orientierung [110]

Probe V (x=0,1855)



Orientierung [110], 4° verkippt

Aufnahmeabstand 40 mm, 32 kV, 30 mA, 10 min



| Motivation      | Das Material CdHgTe, Charakterisierung | Präparation der (110)-Oberfläche | Ergebnisse der Photoemission | Zusammenfassung |
|-----------------|----------------------------------------|----------------------------------|------------------------------|-----------------|
|                 |                                        | • <b>000</b> 000                 |                              |                 |
| Allgemeines zur | n Aufbau                               |                                  |                              |                 |

Die Vorbereitung

- 2 Eigenschaften von CdHgTe, Charakterisierung der Proben
  - Grundlegende Eigenschaften
  - Untersuchung der Zusammensetzung und Qualität

#### Präparation der (110)-Oberfläche

- Allgemeines zum Aufbau
- Überprüfung der Oberflächenqualität

#### Ergebnisse der Photoemission

- Details und Besonderheiten der winkelaufgelösten Photoemission
- Kernniveaus von CdHgTe
- Die Valenzbandstruktur

#### 5 Zusammenfassung



Ergebnisse der Photoemission 0000000000 Zusammenfassung

Allgemeines zum Aufbau

# Vorbereitung der Probe zur Messung

#### Anforderungen der Photoelektronenspektroskopie

- Methode sehr oberflächensensitiv (wenige Å)
- $\bullet\,$  Messungen erfordern Ultrahochvakuum (p  $< 10^{-7}$  mbar)
- Oberflächen frei von Adsorbaten und Verunreinigungen

#### Präparation der Proben

- Sputtern und Annealen bei CdHgTe nicht möglich
- Kraft zum Spalten groß aufgrund kovalenter Bindungen
- Natürliche Spaltfläche der II/VI-Halbleiter ist (110)
- (110)-Oberfläche ist unpolar



s Material CdHgTe, Charakterisierun; 0000000 Präparation der (110)-Oberfläche

Ergebnisse der Photoemission 0000000000 Zusammenfassung

Allgemeines zum Aufbau

#### Präparation der Oberfläche - Aufbau einer Spaltkammer



Norbert Orlowski 2000



#### Matthias Kreier 2006



Präparation der (110)-Oberfläche

Ergebnisse der Photoemission 000000000 Zusammenfassung

Allgemeines zum Aufbau

# Spalten der Proben im Probenhalter



Spaltkammer von innen







Präparation der (110)-Oberfläche

Ergebnisse der Photoemission 0000000000 Zusammenfassung

Überprüfung der Oberflächenqualität

# Kontrolle der Oberfläche mit Rasterelektronenmikroskop



#### Ergebnisse des SEM/REM

Deutlich ist die Sollbruchstelle in Form eines Grabens von 100  $\mu$ m Tiefe im Vordergrund erkennbar. Ebenso wird eine gestufte Struktur der (110)-Oberfläche sichtbar.

#### LEED nicht erfolgreich

Ein Beugungsbild konnte erst nach einer gekühlten Spaltung bei 100 K erzeugt werden.



Präparation der (110)-Oberfläche

rgebnisse der Photoemission

Zusammenfassung

Überprüfung der Oberflächenqualität

# Ergebnisse der Spaltungen

#### Erfolgreiche Spaltung



### Misslungene Spaltung



Präparation der (110)-Oberfläche

Ergebnisse der Photoemission 0000000000 Zusammenfassung

Überprüfung der Oberflächenqualität

# Kontrolle der Oberflächenqualität mittels LEED

#### Beugung langsamer Elektronen

Beugungsbild zeigt:

- kristalline Struktur
- keine Überstruktur

Relation Oberflächenperiodizität:

$$b_1 = \frac{1}{2}a \qquad b_2 = \frac{1}{\sqrt{8}}a$$

Ergebnis aus LEED-Geometrie und 156 eV Anregungsenergie:

$$b_1 = (3, 5 \pm 0, 2)$$
Å  $b_2 = (2, 4 \pm 0, 2)$ Å





Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission

Zusammenfassung

Details und Besonderheiten der winkelaufgelösten Photoemission

# Die Photoelektronspektroskopie

#### 1 Motivation

- 2) Eigenschaften von CdHgTe, Charakterisierung der Proben
  - Grundlegende Eigenschaften
  - Untersuchung der Zusammensetzung und Qualität
- Präparation der (110)-Oberfläche
  - Allgemeines zum Aufbau
  - Überprüfung der Oberflächenqualität

#### 4 Ergebnisse der Photoemission

- Details und Besonderheiten der winkelaufgelösten Photoemission
- Kernniveaus von CdHgTe
- Die Valenzbandstruktur

#### 5 Zusammenfassung



Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission

Zusammenfassung

Details und Besonderheiten der winkelaufgelösten Photoemission

# Allgemeiner Aufbau



Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission

Zusammenfassung

Details und Besonderheiten der winkelaufgelösten Photoemission

# Das Drei-Stufen-Modell der Photoemission



#### 1. Anregung des Elektrons

$$E_f = E_i + \hbar \omega$$
  $\vec{k_f} = \bar{k}$ 

### 2. Transport zur Oberfläche

- Sekundärelektronen
- mittlere freie Weglänge

#### 3. Oberflächendurchtritt

$$ec{k}_{i_{\parallel}}=ec{k}_{f_{\parallel}}=ec{K}_{\parallel}=\sqrt{rac{2m}{\hbar}E_{kin}}\sinartheta$$

$$k_{f_\perp} = \sqrt{rac{2m}{\hbar^2}(E_{kin}+|V_0|)-ec{G}_\parallel^2}-G_\perp$$



Ergebnisse der Photoemission

Zusammenfassung

Kernniveaus von CdHgTe

# Ubersichtsspektrum bei BESSY am BUS, $\hbar\omega = 125$ eV



Präparation der (110)-Oberfläche

Ergebnisse der Photoemission

Zusammenfassung

Kernniveaus von CdHgTe

# Kernniveaus von Te, Cd und Hg



Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission

Zusammenfassung

#### Die Valenzbandstruktur

# Negative Bandlücke: $E_G = E(\Gamma_6) - E(\Gamma_8)$





Präparation der (110)-Oberfläche

Ergebnisse der Photoemission

Zusammenfassung

Die Valenzbandstruktur

#### Theoretisch berechnete Bandstruktur



Matthias Kreier (HU Berlin, AG EES)

K,U X

Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission

Zusammenfassung

#### Die Valenzbandstruktur

# Ergebnis der winkelaufgelösten Messung



Präparation der (110)-Oberfläche

Ergebnisse der Photoemission

Zusammenfassung

Die Valenzbandstruktur

# Messung in normaler Emission: x=0.16 und x=0.07







Ergebnisse der Photoemission

Die Valenzbandstruktur

# Dispersion des Maximums und Bandstrukturrechnung



Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Vorbereiten der Messungen

#### Charakterisierung der Proben

- Zusammensetzung mittels EDX verifiziert
- Proben sind polykristallin (Laue Transmission)
- Orientierung der Seitenflächen ist [110]

# Präparation der (110)-Oberfläche

- Methode: Spalten, im Probenhalter möglich
- Sollbruchstelle verbessert Spalterfolg
- Gekühlte Spaltung notwendig (LEED)
- Nach Photoemissionsmessung muss Oberflächenqualität nochmals überprüft werden





Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Elektronische Eigenschaften von CdHgTe



#### Ergebnisse der Photoelektronspektroskopie

- Winkelaufgelöste Messungen erfordern gute Oberflächen
- Feinere Winkelrasterung nötig (z. B. Scienta an BEST)
- Offene Frage: Zustandsdichte an Fermi-Kante
- Dispersion in k<sub>⊥</sub> gut sichtbar, eindeutig der Volumen-Brillouin-Zone zuzuordnen



| Motivation | Das Material CdHgTe, Charakterisierung | Präparation der (11 |
|------------|----------------------------------------|---------------------|
|            | 0000000                                | 0000000             |

L0)-Oberfläche

# Vielen Dank für die Aufmerksamkeit



s Material CdHgTe, Charakterisierung

Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Automatische Stickstoff-Nachfüllanlage





Zusammenfassung

# Technik der Nachfüllanlage

Widerstand der Gesamtschaltung aus PT1000, R<sub>1</sub> und R<sub>2</sub>

$$rac{1}{R_{\it parallel}}=rac{1}{R_1+R_2}+rac{1}{R_{
m PT1000}}$$

Temperaturabhängiger Widerstandswert eines PT100 nach IEC 751 / DIN EN 60751

$$\begin{aligned} R(T) &= R_0 (1 + aT + bT^2 + c(T - 100^\circ \text{C})\text{T}^3) \\ a &= 3,9083 \cdot 10^{-3} \text{C}^{-1} \\ b &= -5,755 \cdot 10^{-7} \text{C}^{-2} \\ c &= -4,183 \cdot 10^{-12} \text{C}^{-4} \end{aligned}$$





=

Ergebnisse der Photoemission 0000000000

# Sputtern und Annealen



Ein Bereich der Proben wurde nach dem Erwärmen gesputtert. Dieser Bereich ist auf den beiden obigen Bildern in der jeweils linken Hälfte zu erkennen. Dort besteht wieder das ursprüngliche Verhältnis zwischen Hg und Te.

Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Oberflächen-Relaxation von (110)-ZnS-Kristallen



#### Weitere Informationen:

 $http://people.physik.hu-berlin.de/{\sim}kreier/$ 



s Material CdHgTe, Charakterisierung 0000000 Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 000000000 Zusammenfassung

#### Brillouin-Zone von ZnS-Kristallen



Volumen-Brillouin-Zone des fcc-Gitters sowie Oberflächen-Brillouin-Zonen der idealen (001) und (110)-Oberflächen. Einige hochsymmetrische Punkte sind eingezeichnet. Die Richtungen  $\Delta$ ,  $\Sigma$  und  $\Lambda$ entsprechen jeweils der Richtung [001], [110] und [111].



Präparation der (110)-Oberfläche 0000000

Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Ergebnisse von EPR in Moskau





as Material CdHgTe, Charakterisierung 0000000 Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Ergebnisse von SQUID, ebenfalls Moskau





#### Inkohärente Ergebnisse

Die ortsaufgelösten Magnetfelduntersuchungen lieferten leider keine Erklärung der g-Faktoren, die mit EPR bestimmt worden waren (2,4 und 5,8). Benutzte Methode: SQUID (Superconducting QUantum Interference Device).

Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Fokussierung und Retardierung



#### Retardierungsoptik

Die Elektronen passieren den Analysator mit einer fest definierten Energie. Dazu werden die Elektronen abgebremst, ohne ihre relative Energieverteilung zu ändern. Gemessene kinetische Energie:

$$E_{kin,A} = E_{pass} - U_{ret}$$

#### Negative kinetische Energie

| E <sub>kin,S</sub> | = | 0.2 eV  |
|--------------------|---|---------|
| U <sub>ret</sub>   | = | 10.2 eV |
| U <sub>K</sub>     | = | -0.4 eV |
| E <sub>pass</sub>  | = | 10 eV   |
| E <sub>kin.A</sub> | = | -0.2 eV |

s Material CdHgTe, Charakterisierung

Präparation der (110)-Oberfläche 0000000

Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Energiedispersion innerhalb des Kugelkondensators



Ergebnisse der Photoemission 0000000000 Zusammenfassung

# Winkelaufgelöste Messungen mit einem Scienta



s Material CdHgTe, Charakterisierung 0000000 Präparation der (110)-Oberfläche 0000000 Ergebnisse der Photoemission 000000000 Zusammenfassung

# Uberprüfung der Oberfläche mit AFM

AFM - Atomic Force Microscope (Atomkraftmikroskop)



Ergebnisse der Photoemission 000000000 Zusammenfassung

# Darstellung der AFM-Messung in 3D

Die gemessene Höhe ist um den Faktor 20 verstärkt dargestellt.



s Material CdHgTe, Charakterisierung

Präparation der (110)-Oberfläche 0000000

Ergebnisse der Photoemission 0000000000 Zusammenfassung

# AFM-Bild der Oberfläche von Probe III (x=0.2)



Ergebnisse der Photoemission 0000000000 Zusammenfassung

# AFM-Bild der Oberfläche von Probe V (x=0.1955)



rgebnisse der Photoemission

Zusammenfassung

# Herstellung von CdHgTe







Zusammenfassung

# SEM Probe I (x=0.07) - PES in normaler Emission



