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We present analytic results for mean capture time and energy expended by a pack of deterministic
hounds actively chasing a randomly diffusing prey. Depending on the number of chasers, the mean capture
time as a function of the prey’s diffusion coefficient can be monotonically increasing, decreasing, or attain a
minimum at a finite value. Optimal speed and number of chasing hounds exist and depend on each chaser’s
baseline power consumption. The model can serve as an analytically tractable basis for further studies with
bearing on the growing field of smart microswimmers and autonomous robots.
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A classic textbook problem in differential calculus is
finding the trajectory of a dog that runs at a constant speed
in the direction of a hare moving in a straight trajectory.
Bouguer’s solution in 1732 is considered to mark the origin
of pursuit theory [1], and mathematical chase-and-escape
models have a long tradition in game theory, which has
typically focused on optimal evade or pursuit strategies
[2–8]. What if, however, the hare’s motion is stochastic?
Erratic motion could serve as an evasion tactic or, in the
microscopic world, it would naturally arise from stochastic
interactions with the environment, a case that is particularly
interesting since progress in nanotechnology foreshadows
the realization of self-propelled particles capable of target
pursuit [9–17].
Stochastic elements have been included in optimal-

search models on graphs or abstract sets [18–21]; some-
what more realistic yet parsimonious dynamical models
that mimic interactions between hunter packs and prey
flocks have been proposed [22–29]. Although some of
these models include noise terms, they can be studied only
through numerical simulations. Considerable analytic
efforts were recently devoted to the problem of searching
for a fixed target by using stochastic agents or with
stochastic resetting [30–43]. Some analytic results exist
for models in which a prey that is randomly diffusing on a
line [44–46], on grids [47], along graphs [48], or one that
adopts a minimal escape strategy [49,50] can bump into
random walkers (the “predators”). However, an analytically
tractable model in which the predators are actually chasing
a target that moves randomly in space is missing.
Here, we consider a pack of hounds that pursue a

Brownian prey in a d-dimensional space. We first obtain
exact solutions for the mean capture time in special cases,

which we leverage to derive an analytic approximation that
captures the full system’s behavior for d ¼ 2. In particular,
we show that increasing the randomness (the diffusion
constant) of the target’s trajectory is not necessarily
beneficial to escape, unless only one hound is chasing.
Furthermore, we find the energetically optimal speed and
number of chasers that the hunter should employ:
Depending on each chaser’s baseline power consumption,
the most favorable combination shifts from many slow
hounds to fewer and faster hounds.
Model.—The N deterministic hounds move with con-

stant velocity v0 directly pointing toward the hare, which
follows Brownian diffusion. The system obeys

dX
dt

¼
ffiffiffiffiffiffiffi
2D

p
ξðtÞ; dYn

dt
¼ v0

X − Yn

kX − Ynk
; ð1Þ

where XðtÞ and YnðtÞ indicate the positions of the hare and
the nth hound, respectively (n ¼ 1;…; N), D sets the
diffusion coefficient of the prey, and k·k is the Euclidean
distance. The d components of the noise vector ξðtÞ are
Gaussian white noise processes ξi with

hξii ¼ 0; hξiðtÞξjðt0Þi ¼ δijδðt − t0Þ; ð2Þ

where angular brackets indicate averaging, δij is a
Kronecker delta, and δðt − t0Þ is a Dirac delta function.
At t ¼ 0, the hounds are equidistant from each other and
kXð0Þ − Ynð0Þk ¼ l. The hunt terminates whenever any
hound comes closer than a prescribed distance Rl to the
target. The capture time (CT) Td;N is a stochastic variable
that depends on d and N; it is defined as
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Td;N ¼ minftj min
n¼1;…;N

fkXðtÞ − YnðtÞkg ≤ Rlg: ð3Þ

We rescale space and time as follows: xðtÞ ¼ XðtÞ=l,
ynðtÞ ¼ YnðtÞ=l, and τ ¼ v0t=l. By doing so, Eq. (1)
becomes [note that ξðtÞ ¼ ffiffiffiffiffiffiffiffiffiffi

v0=l
p

ξðτÞ]

dx
dτ

¼
ffiffiffiffiffiffiffi
2D̂

p
ξðτÞ; dyn

dτ
¼ x − yn

kx − ynk
; ð4Þ

where D̂ ¼ D=ðlv0Þ, and kxð0Þ − ynð0Þk ¼ 1. In this way,
the system is determined by three parameters: the diffusion
constant D̂, the number of hounds N, and the rescaled
capture distance 0 < R < 1. The rescaled CT will be
indicated as T̂d;N . In the following, we set R ¼ 0.1 and
systematically vary D̂ and N. Simulation results rely on 105

realizations of Eq. (4) per condition using an Euler scheme
(time step Δτ ¼ 10−6).
One-dimensional case.—In the case d ¼ 1, the number

of hounds can be at most 2. When N ¼ 1, the CT is the
first-passage time of a diffusion process with drift across a
boundary, a classic problem [51]. In this case, the CT
distribution ρ1ðτÞ is the so-called inverse Gaussian [52]. If
N ¼ 2, the hounds are represented by two absorbing
boundaries closing in on the target [Fig. 1(a)]. The
distribution of the hare’s position can be constructed from
a combination of solutions to the free-diffusion equation,
chosen such that the moving absorbing boundary condi-
tions are fulfilled [53]. The CT density ρ2ðτÞ is the
probability flux through the boundaries [54].

The CT distributions ρ1 and ρ2 are shown in Fig. 1(b) for
weak noise intensity; ρ1 is nearly symmetric, whereas ρ2 is
asymmetric and sharply drops to zero at T̂1;2 ¼ 1 − R, the
time at which the distance between the two hounds falls
below 2R, and thus capture is certain. Increasing the noise
level shifts the maximum toward lower values in both cases
[Fig. 1(c)]. However, while for N ¼ 1 the spread increases,
for N ¼ 2 a larger noise decreases the spread and the
distribution takes on a peculiar tilted shape. For strong
noise [Fig. 1(d)], ρ1 is long tailed, while ρ2 becomes
sharply peaked around the maximum, which shifts toward
zero. The mean CT when N ¼ 1 does not depend on the
noise intensity hρ1i ¼ 1 − R [Fig. 1(e), black line and
circles], whereas averaging over ρ2 yields

hT̂1;2ðD̂Þi ¼ D̂

�� X∞
k¼−∞

ð−1ÞkB
�
1 − R

D̂
; k

��
− 1

�
;

Bðα; kÞ ¼ αð2k − 1Þ2 þ 1 − 2k
j2k − 1j eαk

2

erfcð ffiffiffi
α

p jkjÞ − 2

ffiffiffi
α

π

r
;

ð5Þ

which decreases from 1 − R (the deterministic limit) to zero
as D̂ → ∞ [Fig. 1(e), red line and squares]. The intuitive
picture behind these observations is that when N ¼ 1 a
stronger noise can drive the prey toward the hound or away
from it. When N ¼ 2, the noise can only move the prey
toward either chaser and, therefore, accelerate the capture.
Two-dimensional case.—Moving on to a 2D space, we

discuss first the case N ¼ 1, which can be solved exactly.
To this end, we center the reference frame onto the hound’s
position y1ðtÞ and switch to polar coordinates,

xðτÞ − y1ðτÞ ¼
�
rðτÞ cosϕðτÞ
rðτÞ sinϕðτÞ

�
: ð6Þ

In this way, the system’s description is determined by the
distance between hound and hare rðτÞ ¼ kxðτÞ − y1ðτÞk
and the polar angle ϕðτÞ. Combining Eqs. (4) and (6) with
Itô’s lemma yields the following Langevin equations:

dϕ
dτ

¼
ffiffiffiffiffiffiffi
2D̂

p
ξϕðτÞ;

dr
dτ

¼ −1þ D̂
r
þ

ffiffiffiffiffiffiffi
2D̂

p
ξrðτÞ; ð7Þ

in which the noise terms ξϕ and ξr obey Eq. (2). The linear
term in the equation for r is due to the hound’s motion,
while the nonlinear term is the Stratonovich drift. The
capture condition (3) reduces to r ¼ R, which is indepen-
dent of ϕ. Hence, the CT is the first-passage time through
the barrier r ¼ R of a particle starting at rð0Þ ¼ r̄ ¼ 1 and
diffusing in the potential UðrÞ ¼ r − D̂ lnðrÞ. The known
quadrature formula [55] yields the exact elementary sol-
ution for the mean CT
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FIG. 1. Hunting a stochastic target on a line. (a) Example
trajectories of target and hounds for weak (D̂ ¼ 0.1, blue lines)
and strong (D̂ ¼ 1.0, green) noise. (b)–(d) Capture time distri-
butions ρ1ðτÞ (black line, theory; gray histogram, simulations)
and ρ2ðτÞ (red line, theory; orange histograms, simulations) at
three noise levels: (b) D̂ ¼ 0.001, (c) D̂ ¼ 0.064, (d) D̂ ¼ 1.024.
(e) Mean CT vs D̂ (symbols, simulations; lines, theory).
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hT̂2;1ðr̄; D̂Þi ¼ 1

D̂

Z
r̄

R
dy

ey=D̂

y

Z
∞

y
dzze−z=D̂

¼ r̄ − Rþ D̂ ln
�
r̄
R

�
; ð8Þ

where a generic starting distance r̄ is kept for later
convenience. Figure 2(a) shows Eq. (8) with r̄ ¼ 1 (solid
black line) together with simulations (black circles).
Because the potential UðrÞ has a minimum at r ¼ D̂, only
the linear part matters if D̂ ≪ R. In this case, the CT
distribution is similar to the inverse Gaussian ρ1ðτÞ; indeed,
hT̂2;1ðD̂Þi is nearly constant in the left part of Fig. 2(a).
For larger noise (D̂ > R), the potential creates an
escape barrier ΔU ¼ D̂ lnðD̂=RÞ þ R − D̂, which is an
increasing function of D̂, thus causing hT̂2;1ðD̂Þi to
increase monotonically.
WhenN ≥ 2, the hounds start at evenly spaced angles on

the unit circle [dotted line in Figs. 2(b) and 2(c)]. During
the hunt, however, the target diffuses away from the origin
so that the circular symmetry is lost (the hounds are
effectively coupled through the target). In the weak-noise
limit, however, the hare’s typical displacement from the
origin is small when it is reached by the hounds, which act
as a tightening noose [Fig. 2(b)]. Hence, the mean CT
depends weakly on N for N ≥ 2 and small D̂, as simu-
lations demonstrate [circles and diamonds in Fig. 2(a),
close-up in the inset]. Considering the distance to the

nearest hound and neglecting the angular diffusion suggests
that hT̂2;N≥2ðD̂Þi ≈ hT̂1;2ðD̂Þi. Figure 2(a) shows that
Eq. (5), the theory for d ¼ 1, N ¼ 2 (orange dashed line),
is indeed close to simulations for small D̂.
In the strong-noise limit, the hare’s diffusive motion

rapidly covers much longer distances than the hounds,
which barely move from their starting position as the hare
typically reaches the unit circle for the first time. We
distinguish two cases: (i) “ensnared” trajectories, if the hare
hits a hound inside the unit circle [Fig. 2(c), blue trajectory]
and (ii) “escaped” trajectories, along which the hare slips
through and diffuses away [Fig. 2(c), red trajectory], chased
by the hounds [Fig. 2(c), orange trajectories]. If the
Stratonovich drift is ignored, the mean CT of the ensnared
ensemble can be approximated by Eq. (5). The actual mean
CT is slightly smaller because the neglected term drives the
prey mostly toward the hounds. If the prey exits the ring,
the hounds tend to group together during the pursuit, and
we can argue that the closest hound matters the most.
Hence, we approximate the mean CT by using Eq. (8) with
initial distance r̄ ¼ rφ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2ð1þ RÞð1 − cosφÞ

p
, the

distance from a point on the circle of radius 1þ R to the
nearest hound, which depends on the hare’s exit angle φ
[Fig. 2(c)]. Because a large noise fluctuation can shove the
target toward a different hound, except for the closest upon
exit from the unit circle, this approximation tends to
overestimate the CT. Averaging over ensnared and escaped
trajectories yields

hT̂2;NðD̂Þi≈pN⟪T̂2;1ðrφ; D̂Þ⟫φþð1−pNÞhT̂1;2ðD̂Þi; ð9Þ

where pN is the fraction of escaped trajectories, and we
assume a uniform distribution in the interval ð0; π=NÞ to
average over φ [56]. To estimate pN , we first note that in the
limit D̂ → ∞ the hounds do not move, and that pN is the
fraction of trajectories that start from the origin and reach
the ring of radius 1þ R without hitting one of the
motionless hounds beforehand. Suppose p1 is known. If
the N hounds are sufficiently spaced, we make the rough
approximation that the probability of going from one
hound to another one before hitting the exit boundary is
1 − p1, which leads to pN ≈ pN

1 . Computing p1 exactly is
hard due to the lack of circular symmetry. If, however, the
exit boundary is replaced by a circle of radius 2þ R
centered on the static hound, the exact solution plb ¼
lnðRÞ= ln½R=ð2þ RÞ� is known [57]. Since the new boun-
dary encompasses the original one, plb is a lower bound for
p1. Taking p1 ≈ plb and combining with the above argu-
ment gives pN ≈ flnðRÞ= ln½R=ð2þ RÞ�gN . We remark
that this approximation is only valid for strong noise,
and it also fails when N becomes large. In particular, when
N approaches the value Nmax ¼ ⌈π= arcsin R⌉, the spacing
between the hounds’ starting positions is so small that the
ring is effectively inescapable (pN≥Nmax

¼ 0). As a way to
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FIG. 2. Hunting a stochastic target in 2D, seen from the target’s
perspective. (a) Mean CTas a function of D̂ for different values of
N [symbols, simulations as in the legend; black solid line, theory
(8); orange dashed line, theory (5); dash-dotted lines, theory (9)
with Eq. (5) as lower bound, see text]. Inset: close-up of
small D̂ range. (b) Two realizations for N ¼ 3 and weak noise
(D̂ ¼ 0.01). (c) Same for strong noise (D̂ ¼ 1). Exit angle φ and
initial pursuit distance rφ of the escaped trajectory are indicated.
For this trajectory, capture occurs outside the shown area.
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make Eq. (9) work also for the weak-noise range, we set
pN ¼ 0 whenever the right-hand side of Eq. (9) falls below
hT̂1;2ðD̂Þi. Note that when pN ¼ 0, Eq. (9) reduces to the
weak-noise approximation (5). With this choice, the quali-
tative picture is well captured by the theory over the entire
range of D̂, and even the quantitative agreement is
satisfactory, as seen in Fig. 2(a).
Remarkably, the mean CT attains a minimum at a finite

D̂ for every N except N ¼ 1 and N ¼ Nmax ¼ 32.
Therefore, increasing the prey’s diffusion constant is, on
average, beneficial to escape only above some “critical”
noise level. When N ¼ 1 or N ¼ Nmax, a stronger noise
always delays or accelerates the capture, respectively.
These two monotonic courses, which are analogous to
escaped and ensnared trajectories, respectively, are
weighted according to Eq. (9) when 1 < N < Nmax.
Hence, a minimum comes about. Adding more chasers
changes the weighting factor pN and thus shifts the
minimum’s position toward higher D̂.
The hunter’s perspective.—We now switch the view-

point, reintroduce the hounds’ speed v0, and revert to the
original time units t ¼ τlv−10 . The mean CTas a function of
v0 is hT2;Nðv0Þi¼lv−10 hT̂2;N ½D=ðlv0Þ�i, shown in Fig. 3(a)
(here,D ¼ l ¼ 1). Intuitively, the mean CT is a decreasing
function of v0 for all N—faster hounds capture the target
more rapidly. At large v0, all curves converge to the
deterministic limit hT2;Ni ∼ lð1 − RÞ=v0. When v0 → 0,
only trapped trajectories give a finite contribution to the
mean CT; the mean CTof escaped trajectories is infinite, so
that the mean CT always diverges, except for N ¼ Nmax.
From the hunter’s perspective, possibly more relevant

than the mean CT is the energy spent by the hounds to
capture the prey. Assuming that dissipation is due to a drag
force F ¼ −γdYn=dt, the expended energy is

hENi ¼
	XN

n¼1

Z
dYn · γ

dYn

dt



¼ Nγv20hT2;Ni; ð10Þ

which is shown in Fig. 3(b) (here γ ¼ 1). For all values of
N, hENi is an increasing function of v0. Remarkably, all
curves roughly intersect at v0 ≈D ¼ 1, which means that
the expended energy is essentially independent of the
number of employed hounds (although capture is faster
for larger N). At greater v0, hENi grows with the number of
hounds and for v0 → ∞ it is proportional to the speed and
number of hounds hENi ∼ Nlv0ð1 − RÞ; because the mean
CT does not depend much on N, it is more efficient to
employ one hound. The situation is reversed when hounds
are slow. In the limit v0 → 0, the consumed energy is
hE1i → D lnð1=RÞ for a single hound. For 2 ≤ N < Nmax,
hENi ∼ NpN

1 Dhlnðrφ=RÞiφ, which is a decreasing function
of N (note that the average over φ drops with N).
Finally, ENmax

ðv0 → 0Þ → 0.

Altogether, Fig. 3(b) suggests that the most energy
efficient way is to employ many slow hounds. Except
for the somewhat forced case of N ¼ Nmax, however, the
mean CT diverges for v0 → 0, which makes this limit
theoretically curious, but of little practical relevance. It is
natural to introduce a constant power consumption β that is
independent of the hound’s motion and that models the
baseline metabolism or power drain necessary to keep each
hound functional. With this additional term, Eq. (10)
becomes

hENi ¼ Nðγv20 þ βÞhT2;Ni: ð11Þ

Figure 3(c) shows how the results of Fig. 3(b) are
changed by the additional term (here β ¼ 0.2). The
energetic cost of a slow CT is increased, so that for each
N a minimum (an optimal v0) appears. Furthermore, the
global minimum is now at a finite value of v0. The optimal
v0 and N depend on β (increasing β shifts v0 toward larger
values and pushes N toward smaller numbers).
Conclusion.—In this Letter, we proposed a stochastic

extension of the problem that originated pursuit theory.
This model is simple enough to make an analytic charac-
terization possible, but shows a rich collection of phenom-
ena. For instance, the behavior of the mean CTas a function
of the prey’s diffusivity can be, depending on the number of
chasers, strictly increasing, decreasing, or nonmonotonic.
In this last case, a critical noise level could be defined,
above which the mean CT becomes larger than in the
deterministic case. From the hunter’s perspective, we found
how the most efficient speed and number of hounds
depends on each hound’s “baseline metabolism.”
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FIG. 3. Hunter’s perspective. (a) Mean CT as a function of v0
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Concerning the only parameter that was not systemati-
cally varied, the system’s behavior for other values of R is
qualitatively similar, provided that D̂ and N are scaled
accordingly (not shown). Equation (9) still applies,
although the approximation for pN discussed above
becomes less accurate for values of R that are close to
either 0 or 1, which describe the less interesting situation of
exceedingly small or large targets.
The pursuit model analyzed here is idealized, but it could

portray, for instance, a situation in which a randomly
moving target is chased by autonomous or remote-con-
trolled robots [58–62]. A further scenario the model could
represent is that of microswimmers that exhibit chemo-
tacticlike behavior [63–66], if chemical signals travel fast
and chasers are subject to a much weaker noise than the
target. We envision many possible model variations that
should describe more elaborate situations, while preserving
mathematical tractability, such as a random starting posi-
tion for the chasers, the case d ¼ 3, an external field, a drift
term for the prey, or a stochastic term for the chasers’
velocity.
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do not always optimize random blind search for sparse
targets, Proc. Natl. Acad. Sci. U.S.A. 111, 2931 (2014).

[36] A. Pal and S. Reuveni, First Passage under Restart, Phys.
Rev. Lett. 118, 030603 (2017).

[37] A. Falcón-Cortés, D. Boyer, L. Giuggioli, and S. N.
Majumdar, Localization Transition Induced by Learning
in Random Searches, Phys. Rev. Lett. 119, 140603 (2017).

[38] A. Pezzotta, M. Adorisio, and A. Celani, Chemotaxis
emerges as the optimal solution to cooperative search
games, Phys. Rev. E 98, 042401 (2018).

[39] J.Noetel, V. L. S. Freitas, E. E. N.Macau, andL. Schimansky-
Geier, Optimal noise in a stochastic model for local search,
Phys. Rev. E 98, 022128 (2018).

[40] A. Chechkin and I. M. Sokolov, Random Search with
Resetting: A Unified Renewal Approach, Phys. Rev. Lett.
121, 050601 (2018).

[41] G. Mercado-Vásquez and D. Boyer, First Hitting Times to
Intermittent Targets, Phys. Rev. Lett. 123, 250603 (2019).

[42] M. R. Shaebani, R. Jose, L. Santen, L. Stankevicins, and F.
Lautenschläger, Persistence-Speed Coupling Enhances the
Search Efficiency of Migrating Immune Cells, Phys. Rev.
Lett. 125, 268102 (2020).

[43] M. Dahlenburg, A. V. Chechkin, R. Schumer, and R.
Metzler, Stochastic resetting by a random amplitude, Phys.
Rev. E 103, 052123 (2021).

[44] P. L. Krapivsky and S. Redner, Kinetics of a diffusive
capture process: Lamb besieged by a pride of lions, J. Phys.
A 29, 5347 (1996).

[45] K. Winkler and A. J. Bray, Drowsy cheetah hunting ante-
lopes: A diffusing predator seeking fleeing prey, J. Stat.
Mech. (2005) P02005.

[46] A. Gabel, S. N. Majumdar, N. K. Panduranga, and S.
Redner, Can a lamb reach a haven before being eaten by
diffusing lions?, J. Stat. Mech. (2012) P05011.

[47] J. Peng and E. Agliari, First encounters on combs, Phys.
Rev. E 100, 062310 (2019).

[48] T. Weng, J. Zhang, M. Small, and P. Hui, Hunting for a
moving target on a complex network, Europhys. Lett. 119,
48006 (2017).

[49] G. Oshanin, O. Vasilyev, P. L. Krapivsky, and J. Klafter,
Survival of an evasive prey, Proc. Natl. Acad. Sci. U.S.A.
106, 13696 (2009).

[50] M. Schwarzl, A. Godec, G. Oshanin, and R. Metzler, A
single predator charging a herd of prey: Effects of self
volume and predator–prey decision-making, J. Phys. A 49,
225601 (2016).

[51] E. Schrödinger, Zur Theorie der Fall- und Steigversuche an
Teilchen mit Brownscher Bewegung, Phys. Z. 16, 289
(1915).

[52] The inverse Gaussian distribution is ρ1ðτÞ ¼
exp½−ð1 − R − τÞ2=ð4τÞ�=

ffiffiffiffiffiffiffiffiffi
4πτ3

p
.

[53] The distribution of the hare’s position P2ðx; τÞ must satisfy
the diffusion equation with absorbing boundary conditions
at the hounds’ positions a�ðτÞ ¼ �ðxc − τÞ, where xc ¼
1 − R. We make the ansatz P2ðx; τÞ ¼ P2;0ðx; τÞþP∞

k¼1ð−1Þk½Pþ
2;kðx; τÞ þ P−

2;kðx; τÞ�, where P�
2;kðx; τÞ ¼

exp½xcλk=D̂ − ðx ∓ κkxcÞ2=ð4D̂τÞ�=
ffiffiffiffiffiffiffiffiffiffiffi
4πD̂τ

p
solves the

free-diffusion equation, and κk and λk are integers such
that P�

2;kþ1ða�ðτÞ; τÞ ¼ P∓
2;kða�ðτÞ; τÞ. Imposing this con-

dition leads to the recursion relations κ0 ¼ λ0 ¼ 0;
κkþ1 ¼ κk þ 2; λkþ1 ¼ λk þ κk þ 1, which are solved by
κk ¼ 2k; λk ¼ k2. With this choice, the boundary conditions
are fulfilled, i.e., P2ða�ðτÞ; τÞ ¼ 0.

[54] For symmetry, the total probability flux is twice the flux
through either boundary −2D̂∂=∂xP2ðx; τÞjx¼aþðτÞ, from
which one finds ρ2ðτÞ¼

P∞
k¼0ð2−δ0kÞð−1Þk=ð16πD̂τ3Þ1=2×

expðxck2=D̂Þ½Gð−kÞþGðkÞ�, where GðkÞ¼½xcð1þ2kÞ−τ�×
exp½−½xcð1þ2kÞ−τ�2=ð4D̂τÞ�.

[55] C. W. Gardiner,Handbook of Stochastic Methods (Springer-
Verlag, Berlin, 1985).

[56] Angular diffusion and absorbing boundary make this
approximation not so accurate, especially for large N.

[57] J. G. Wendel, Hitting spheres with Brownian motion, Ann.
Probab. 8, 164 (1980).

[58] C. Stefanini, S. Orofino, L. Manfredi, S. Mintchev, S.
Marrazza, T. Assaf, L. Capantini, E. Sinibaldi, S.
Grillner, P. Wallén, and P. Dario, A novel autonomous,
bioinspired swimming robot developed by neuroscientists
and bioengineers, Bioinspiration Biomimetics 7, 025001
(2012).

[59] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo,
Swarm robotics: A review from the swarm engineering
perspective, Swarm Intell. 7, 1 (2013).

[60] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M.
Oliveira, and A. L. Christensen, Evolution of collective
behaviors for a real swarm of aquatic surface robots, PLoS
One 11, 1 (2016).

[61] M. Karásek, F. T. Muijres, C. D. Wagter, B. D. W. Remes,
and G. C. H. E. de Croon, A tailless aerial robotic flapper
reveals that flies use torque coupling in rapid banked turns,
Science 361, 1089 (2018).

[62] G. Wang, T. V. Phan, S. Li, M. Wombacher, J. Qu, Y. Peng,
G. Chen, D. I. Goldman, S. A. Levin, R. H. Austin, and L.
Liu, Emergent Field-Driven Robot Swarm States, Phys.
Rev. Lett. 126, 108002 (2021).

[63] B. M. Friedrich and F. Jülicher, Chemotaxis of sperm cells,
Proc. Natl. Acad. Sci. U.S.A. 104, 13256 (2007).

[64] B. M. Friedrich and F. Jülicher, Steering Chiral Swimmers
along Noisy Helical Paths, Phys. Rev. Lett. 103, 068102
(2009).

[65] P. K. Ghosh, Y. Li, F. Marchesoni, and F. Nori, Pseudo-
chemotactic drifts of artificial microswimmers, Phys. Rev. E
92, 012114 (2015).

[66] H. D. Vuijk, H. Merlitz, M. Lang, A. Sharma, and J.-U.
Sommer, Chemotaxis of Cargo-Carrying Self-Propelled
Particles, Phys. Rev. Lett. 126, 208102 (2021).

PHYSICAL REVIEW LETTERS 128, 040601 (2022)

040601-6

https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1742-5468/2011/06/p06022
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevE.98.042401
https://doi.org/10.1103/PhysRevE.98.022128
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.123.250603
https://doi.org/10.1103/PhysRevLett.125.268102
https://doi.org/10.1103/PhysRevLett.125.268102
https://doi.org/10.1103/PhysRevE.103.052123
https://doi.org/10.1103/PhysRevE.103.052123
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1088/0305-4470/29/17/011
https://doi.org/10.1088/1742-5468/2005/02/p02005
https://doi.org/10.1088/1742-5468/2005/02/p02005
https://doi.org/10.1088/1742-5468/2012/05/p05011
https://doi.org/10.1103/PhysRevE.100.062310
https://doi.org/10.1103/PhysRevE.100.062310
https://doi.org/10.1209/0295-5075/119/48006
https://doi.org/10.1209/0295-5075/119/48006
https://doi.org/10.1073/pnas.0904354106
https://doi.org/10.1073/pnas.0904354106
https://doi.org/10.1088/1751-8113/49/22/225601
https://doi.org/10.1088/1751-8113/49/22/225601
https://doi.org/10.1214/aop/1176994833
https://doi.org/10.1214/aop/1176994833
https://doi.org/10.1088/1748-3182/7/2/025001
https://doi.org/10.1088/1748-3182/7/2/025001
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.1126/science.aat0350
https://doi.org/10.1103/PhysRevLett.126.108002
https://doi.org/10.1103/PhysRevLett.126.108002
https://doi.org/10.1073/pnas.0703530104
https://doi.org/10.1103/PhysRevLett.103.068102
https://doi.org/10.1103/PhysRevLett.103.068102
https://doi.org/10.1103/PhysRevE.92.012114
https://doi.org/10.1103/PhysRevE.92.012114
https://doi.org/10.1103/PhysRevLett.126.208102

