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Visual Abstract

Transformations between sensory representations are shaped by neural mechanisms at the cellular and the
circuit level. In the insect olfactory system, the encoding of odor information undergoes a transition from a
dense spatiotemporal population code in the antennal lobe to a sparse code in the mushroom body.
However, the exact mechanisms shaping odor representations and their role in sensory processing are in-
completely identified. Here, we investigate the transformation from dense to sparse odor representations in
a spiking model of the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike

Significance Statement

In trace conditioning experiments, insects, like vertebrates, are able to form an associative memory be-
tween an olfactory stimulus and a temporally separated reward. Forming this association requires a pro-
longed odor trace. However, spiking responses in the mushroom body, the principal site of olfactory
learning, are brief and bound to the odor onset (temporal sparseness). We implemented a spiking net-
work model that relies on spike frequency adaptation to reproduce temporally sparse responses. We
found that odor identity is reliably encoded in neuron adaptation levels, which are mediated by spike-
triggered calcium influx. Our results suggest that a prolonged odor trace is established in the calcium
levels of the relevant neuronal population. This prediction has found recent experimental support in the
fruit fly.
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frequency adaptation at the cellular level and lateral inhibition at the circuit level. We find that cellular adap-
tation is essential for sparse representations in time (temporal sparseness), while lateral inhibition regulates
sparseness in the neuronal space (population sparseness). The interplay of both mechanisms shapes spatio-
temporal odor representations, which are optimized for the discrimination of odors during stimulus onset
and offset. Response pattern correlation across different stimuli showed a nonmonotonic dependence on
the strength of lateral inhibition with an optimum at intermediate levels, which is explained by two counter-
acting mechanisms. In addition, we find that odor identity is stored on a prolonged timescale in the adapta-
tion levels but not in the spiking activity of the principal cells of the mushroom body, providing a testable
hypothesis for the location of the so-called odor trace.

Key words: efficient coding; lateral inhibition; odor trace; sensory processing; spike frequency adaptation; spik-
ing neural network

Introduction
How nervous systems process sensory information is a

key issue in systems neuroscience. Animals are required
to rapidly identify behaviorally relevant stimulus features
in a rich and dynamic sensory environment, and neural
computation in sensory pathways is tailored to this need.
Sparse stimulus encoding has been identified as an es-
sential feature of sensory processing in higher brain
areas in both invertebrate (Perez-Orive et al., 2002;
Szyszka et al., 2005; Ito et al., 2008; Turner et al., 2008;
Honegger et al., 2011) and vertebrate (Vinje and Gallant,
2000; Hromádka et al., 2008; Isaacson, 2010; Wolfe et
al., 2010) systems. Sparse representations provide an eco-
nomical means of neural information coding (Laughlin and
Sejnowski, 2003; Faisal et al., 2008) where information is rep-
resented by only a small fraction of all neurons (population
sparseness) and each activated neuron generates only few
action potentials (temporal sparseness) for a highly specific
stimulus configuration (lifetime sparseness; Kloppenburg
and Nawrot, 2014).
The nervous systems of insects have limited neuronal

resources and thus require particularly efficient coding
strategies. The insect olfactory system is analogue to the
vertebrate olfactory system and has become a popular
model system for the emergence of a sparse code. We
use a computational approach to study the transforma-
tion from a dense olfactory code in the sensory periphery
to a sparse code in the mushroom body (MB), a central

structure of the insect brain important for multimodal sen-
sory integration and memory formation. A number of re-
cent studies emphasized the role of sparse coding in the
MB. In locusts, sparse responses were shown to convey
temporal stimulus information (Gupta and Stopfer, 2012).
In Drosophila, sparse coding was found to reduce overlap
between odor representations and facilitate their discrimi-
nation (Lin et al., 2014). Consequently, sparse coding is an
essential feature of plasticity models for olfactory learning
in insects (Huerta and Nowotny, 2009; Wessnitzer et al.,
2012; Ardin et al., 2016; Peng and Chittka, 2016; Müller et
al., 2018), and theoretical work has emphasized the anal-
ogy of the transformation from a dense code in projection
neurons (PNs) to a sparse code in Kenyon cells (KCs) with
dimensionality expansion in machine learning methods
(Huerta and Nowotny, 2009; Mosqueiro and Huerta, 2014;
Schmuker et al., 2014).
Central to our modeling approach are two fundamental

mechanisms of neural computation that are ubiquitous in
the nervous systems of invertebrates and vertebrates.
Spike frequency adaptation (SFA) is a cellular mechanism
that has been suggested to support efficient and sparse
coding and to reduce the variability of sensory represen-
tation (Benda and Herz, 2003; Farkhooi et al., 2011,
2013). Lateral inhibition is a basic circuit design principle
that exists in different sensory systems, mediates contrast
enhancement, and facilitates stimulus discrimination
(Kuffler, 1953; Hartline et al., 1956; Fuchs and Brown,
1984; Oswald et al., 2006). Both mechanisms are evident
in the insect olfactory system. Responses of olfactory re-
ceptor neurons (ORNs), local interneurons (LNs), and PNs
in the antennal lobe (AL) show stimulus adaptation
(Bhandawat et al., 2007; Krofczik et al., 2009; Nagel and
Wilson, 2011), and strong adaptation currents have been
identified in KCs (Wüstenberg et al., 2004; Demmer and
Kloppenburg, 2009). Lateral inhibition in the AL is medi-
ated by inhibitory LNs (Wilson, 2013). It is crucial for es-
tablishing the population code at the level of PNs (Wilson
et al., 2004; Krofczik et al., 2009; Olsen et al., 2010), for
gain control (Stopfer et al., 2003; Olsen and Wilson,
2008), for decorrelation of odor representations (Wilson
and Laurent, 2005), and for mixture interactions (Krofczik
et al., 2009; Deisig et al., 2010; Capurro et al., 2012).
Together, we find that lateral inhibition and SFA

account for the transformation from a dense to
sparse coding, decorrelate odor representations, and
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facilitate precise temporal responses on short and
long timescales.

Materials and Methods
Spiking network model
A spiking network model with three layers (ORN,

AL, and MB; Fig. 1A) was simulated using Brian 1.4
(Goodman and Brette, 2009). The model includes 35 ORN
types, 284 ORNs per type, 35 PNs and LNs, and 1000
KCs. Each of the 35 LN–PN pairs constitutes a glomeru-
lus. Across insect species, the number of glomeruli varies
from a few tens to several hundred, and we based our
model on the lower end of this range. The ratio between
the numbers of PNs and KCs is approximately based on
the data available in Drosophila (Turner et al., 2008).
The connections between the three network layers

(ORNs, AL, MB) are feedforward and excitatory. Within
the AL, LNs provide lateral inhibition to PNs. ORNs

provide input to PNs and LNs. All ORNs of the same re-
ceptor type target the same single glomerulus. Every LN
has inhibitory connections with all PNs, mediating unspe-
cific lateral inhibition within the AL. Every KC receives 12
PN inputs on average (Szyszka et al., 2005; Turner et al.,
2008). Connections between PNs and KCs were randomly
drawn. Synaptic weights between all neurons are given in
Table 1 for four different simulation conditions.
Responses to a set of seven stimuli, 50 trials each, and

3000 ms trial duration were simulated. Stimuli had a dura-
tion of 1000ms and were presented at t = 1000 ms. All
neurons were initialized with membrane voltage set to the
leak potential and the adaptation current set to zero. To
achieve steady-state conditions, simulations were prerun
for 2000ms without recording the activity.

Receptor input
ORNs were modeled as Poisson spike generators,

with evoked firing determined by a receptor response

Figure 1. Olfactory network model structure and odor response. A, Network structure resembles the insect olfactory pathway with
three main processing stages. In each glomerulus (dashed circles), a PN (blue) and a LN receive convergent ORN input (red) by one
receptor type (RT). Each LN provides unspecific lateral inhibition to all PNs. KCs (orange) receive on average 12 inputs from ran-
domly chosen PNs. B, Receptor response profile (red bars, AL input) depicts the evoked firing rate for each ORN type. Evoked PN
spike counts (dashed blue line, AL output) follow the ORN activation pattern. Raster plots depict single-trial responses of PNs (blue)
and KCs (orange). Presentation of an odor during 1000 ms is indicated by the shaded area. Population (Pop.) firing rates were ob-
tained by averaging over 50 trials. PN spikes display a temporal structure that includes evoked transient responses at stimulus
onset and offset, and a pronounced inhibitory postodor response. The PN population rate was averaged over PNs showing on re-
sponses (blue) and off responses (cyan). KC spikes were temporally sparse with the majority of the spikes occurring at the stimulus
onset. Extended Data Figure 1-1 and Extended Data Figure 1-2 show odor responses with adaptation disabled in the KC and PN
population, respectively.
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profile and a spontaneous baseline. In the absence of
stimulus, the spontaneous firing rate of all ORNs is set
to rBGO ¼ 20Hz. In the presence of a stimulus, the ORN
firing rate is given by the summation of the spontaneous
rate and an activation DrO, as follows:

rOðtÞ ¼ f rBGO 1DrO for tstart , t, tstop
rBGO else

: (1)

The intensity (amplitude) of ORN activation, DrO, is
given by the receptor response profile that depends on re-
ceptor type and stimulus identity. Receptor activation fol-
lows a sine profile over half a period (0:::p ), as follows:

DrO ¼ 40Hz f sinðxpÞ for 0, x,1
0 else

;

x ¼ ðkRT � kSÞmodNRT

NA11
;

where kS is the stimulus index, kRT is the receptor type
index, NRT = 35 is the total number of receptor types and
Na = 11 is the number of receptor types activated by a
stimulus. Given these parameters, 35 different odor re-
sponses can be simulated (kS ¼ 0 ::: 34). This profile en-
sures that odor responses are evenly distributed across
receptor types, while the choice of the sine shape was arbi-
trary. If the difference between the index of two stimuli Dks is
small, those two stimuli are called similar, because they elicit
largely overlapping responses. For Dks . 12, the responses
do not overlap, representing dissimilar stimuli.

Neuronmodel
PNs, LNs, and KCs were modeled as leaky integrate-

and-fire neurons with conductance-based synapses and
a spike-triggered adaptation (Treves, 1993) current IA. We
use the same set of cell parameters for all neuron types
(Table 2). This supports the generic character of our
model and ensures that effects reported in this study are
not a result of neuron type-specific parameters. The
membrane potential of the ith neuron from the PN, LN,
and KC populations obeys the following:

cm
d
dt

vPi ¼ gLðEL � vPi Þ þ gOP
i ðEE � vPi Þ1gLPðEI � vPi Þ � IAi ;

(2)

cm
d
dt

vLi ¼ gLðEL � vLi Þ1gOL
i ðEE � vLi Þ � IAi ; (3)

cm
d
dt

vKi ¼ gLðEL � vKi Þ1gPK
i ðEE � vKi Þ � IAi : (4)

Membrane potentials follow a fire-and-reset rule. The
fire-and-reset rule defines the spike trains of PNs, LNs,
and KCs denoted by xBi ¼

X
k

d ðt� tBikÞ for the ith neuron

of type B. The spike trains of the ORN neurons are gener-
ated by a Poisson process with spike times tOijk for the jth
receptor neuron of the kth receptor type:

xOi ðtÞ ¼
XNO=Nglu

j

XNglu

k

d ðt� tOijkÞ: (5)

Synaptic conductances gi obey the following:

tE
d
dt

gOP
i ¼ �gOP

i 1tEwOPxOi ðtÞ; (6)

tE
d
dt

gOL
i ¼ �gOL

i 1tEwOLxOi ðtÞ; (7)

t I
d
dt

gLP ¼ �gLP1t IwLP

XNGlu

j

xLj ðtÞ; (8)

tE
d
dt

gPK
i ¼ �gPK

i 1tE

XNGlu

j

WijxPi ðtÞ: (9)

Adaptation currents IAi obey the following:

tA
d
dt

IAi ¼ �IAi 1tADIAxiðtÞ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2tAs 2

I

q
j ðtÞ: (10)

where tA is the time constant and DIA is the spike-triggered
increase of the adaptation current. This phenomenological
model of spike-triggered adaptation is biologically moti-
vated by calcium-dependent outward potassium currents.
Each action potential leads to an influx of a fixed amount of
calcium, and intracellular calcium is removed only slowly, re-
sulting in an exponential decay of the intracellular calcium

Table 1: Synaptic weights for wOL (ORN-LN), wOP (ORN-PN),
wLP (LN-PN), and wPK (PN-KC) connections in different sim-
ulation conditions (i–iv)

i ii iii iv
wOL 1 nS 1 nS 1 nS 1 nS
wOP 1 nS 1.12 nS 1 nS 1.12 nS
wLP 0 nS 3 nS 0 nS 3 nS
wPK 5 nS 5 nS 5 nS 5 nS

Table 2: Parameters of the neuron model

Neuron parameters
Membrane capacitance cm 289.5 pF
Leak conductance gL 28.95 nS
Leak potential EL �70 mV
Reset potential VR �70 mV
Threshold potential VT �57 mV
Refractory time t ref 5 ms

Synaptic parameters
Base synaptic weight w0 1 nS
PN-KC synaptic weight wPK 5 nS
Excitatory synaptic potential EE 0 mV
Excitatory time constant tE 2 ms
Inhibitory synaptic potential EI �75 mV
Inhibitory time constant t I 10 ms

Adaptation parameters
Spike-triggered current DIA 0.132 nA
Adaptation time constant tA 389 ms
Adaptation current variance s2

I 87.1 pA2
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level. The last term reflects the diffusion approximation of
channel noise (Schwalger et al., 2010), where j ðtÞ repre-
sents Gaussian white noise. The variance of the adaptation
currents IAi is given by s2

I .

Simulation conditions
The following four different scenarios were simulated:

(i) without lateral inhibition and cellular adaptation, (ii)
with lateral inhibition, (iii) with cellular adaptation, and (iv)
with lateral inhibition and cellular adaptation. We quanti-
fied the strength of lateral inhibition with a multiplicative
factor, a, that sets the synaptic weight between LNs and
PNs (wLP) in units of the base synaptic weight (w0), as
follows:

wLP ¼ aw0: (11)

Lateral inhibition is a network effect, conveyed by syn-
aptic transmission, and was therefore compensated by
the scaling of synaptic weights. Weight scaling provides
compensation during spontaneous as well as evoked ac-
tivity. The scenario without lateral inhibition acts as a con-
trol condition, which deliberately does not include slow
inhibitory synaptic dynamics.
In scenarios without cellular adaptation (1 and 2 above),

the dynamic adaptation current was replaced by a com-
pensatory static current, IAi � I0 ¼ 0:38nA, in the PN and
LN populations, whereas in the KC population it was set
to zero, IAi � 0 nA. In scenarios without lateral inhibition (1
and 3 above) the inhibitory weights wLP were set to zero
by setting a = 0. The synaptic weight wOL was adjusted to
achieve a spontaneous LN firing rate of ;8Hz that is well
within the experimentally observed range (Perez-Orive et
al., 2002; Krofczik et al., 2009; Chou et al., 2010).
In all scenarios, the spontaneous firing rate of PNs was

set to;8Hz (Perez-Orive et al., 2002; Krofczik et al., 2009;
Chou et al., 2010; Meyer et al., 2013) by adjusting the syn-
aptic weights between the ORNs and the PNs (wOP).

Code accessibility
Script files for model simulation are accessible at: https://

github.com/nawrotlab/SparseCodingInSpikingInsectModel.
Running the simulation requires Python 2.7, Brian 1.4,

and numpy 1.11. All code was run on a x86-64 Linux
machine.
run_IF.py, run_saIF.py - simulation scripts were used

to run the model in the absence and presence of SFA,
respectively. All parameters are contained within the re-
spective scripts. Running the script file will save simula-
tion results to file in the Python pickle format.
sim_code.py is the code of the neuron, input, and net-

work models.

Data analysis
Population firing rate
The spike count of the ith neuron, in the kth time bin

with size Dt is given by the following:

ni;k ¼
ðkDt

ðk�1ÞDt

dtxiðtÞ: (12)

Population firing rates were obtained from the spike count
in a small time bin (Dt=10ms), as follows:

r k ¼
1
Dt

hni;kii;

where h:ii indicates the population average. In addi-
tion, population firing rates were averaged over 50
trials.

Sparseness measure
The sparseness of evoked KC responses was quan-

tified by the widely used modified Treves–Rolls mea-
sure (Treves and Rolls, 1991; Willmore and Tolhurst,
2001):

s ¼ 1�

1
N

XN
i¼1

ai

 !2

1
N

XN
i¼1

a2
i

;

where ai indicates either the distribution of KC spike
counts (population sparseness, for i between 1 and
1000), or binned KC population firing rate (temporal
sparseness, Dt = 50 ms, for i between 1 and 20). The
sparseness measure takes values between 0 and 1, and
high values indicate sparse responses. Both measures
were averaged over 50 trials.

Pattern overlap
We define the activation pattern for a given odor by a

vector containing the evoked spike count for every neu-
ron in a population. Pattern overlap between two similar
odors, A and B, was calculated using an expression for-
mally equivalent to Pearson’s correlation coefficient, as
follows:

ϱAB;k ¼
Npop

X
i

nikmik�
X

i

nik

X
j

mik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npop

X
i

n2
ik�

X
i

nik

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Npop

X
i

m2
ik�

X
i

mik

� �2
s ;

(13)

where nik and mik are the spike counts of the ith neuron,
kth trial, in response to odor A and odor B (DkS = 2) re-
spectively, and Npop is the number of neurons in the pop-
ulation. The correlation coefficient was calculated both for
the PN and the KC population, and was averaged over 50
trials and five network realizations with randomly drawn
PN–KC connectivity.
In addition, we consider trial-averaged activation pat-

terns n̂i ¼ 1
Ntrial

X
k

nik and m̂i ¼ 1
Ntrial

X
k

mik. Based on these

trial-averaged patterns, the overlap between those pat-
terns is given by the following expression:
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~ϱAB ¼
Npop

X
i

n̂ im̂i �
X

i

n̂ i

X
j

n̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npop

X
i

n̂2
i �

X
i

n̂ i

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Npop

X
i

m̂2
i �

X
i

m̂i

� �2
s :

(14)

The overlap between the trial-averaged patterns was
calculated both for the PN and the KC population, and
averaged over five network realizations with randomly
drawn PN–KC connectivity.

Lateral inhibition scaling with parameter a
To test whether the decrease of overlap was robust for

different strengths of lateral inhibition, the synaptic weight
wOP was adjusted as follows:

wOP ¼ w0ð11abÞ; (15)

where b was estimated from simulations under the con-
dition that for a range of lateral inhibition strengths
(a 2 ½0;9�) the spontaneous PN firing rate was close to
8Hz.

Decoding analysis
Odor identity was recovered from odor representations

by Gaussian naive Bayes classification (Rish, 2000), using
the scikit-learn package (Pedregosa et al., 2012). Training
and testing data consisted of simulated odor representa-
tions for a set of seven stimuli (kS ¼ 0;2; : : : ;12), 50 trials
each. Classification was repeated for every time bin (Dt =
50ms, 60 bins total) for PN spike counts, KC spike
counts, or amplitudes of KC adaptations currents. Data
were divided into a training and testing set using a three-
fold cross-validation procedure. Decoding accuracy was
estimated by the maximum a posteriori method and is
given by the fraction of successful classification trials di-
vided by the total number of test trials.

Results
Spiking network model of the olfactory pathway with
lateral inhibition and spike frequency adaptation
We designed a spiking network model that reduces the

complexity of the insect olfactory processing pathway to
a simplified three-layer network (Fig. 1A) that expresses
the structural commonality across different insect spe-
cies, as follows: an input layer of ORNs, subdivided into
different receptor types, the AL, a first-order olfactory
processing center, and the MB. Furthermore, the model
combines the following two essential computational ele-
ments: (1) lateral inhibition in the AL, and (2) spike fre-
quency adaptation in the AL and the MB.
The processing between the layers is based on excita-

tory feedforward connections. Converging receptor input
from all ORNs of one type is received by spatially confined
subunits of the AL called glomeruli. In our model, glomer-
uli are represented by a single uniglomerular PN and a sin-
gle inhibitory LN. In the MB, each KC receives, on
average, 12 PN inputs (Szyszka et al., 2005), based on a
random connectivity between the AL and the MB (Caron

et al., 2013). All neurons in the AL and the MB were mod-
eled as leaky integrate-and-fire neurons with spike-trig-
gered adaptation. Based on evidence from theoretical
studies (Schwalger et al., 2010) and experimental studies
(Fisch et al., 2012), adaptation channels cause slow fluc-
tuations. We accounted for this fact by simulating channel
noise in the slow adaptation currents (Materials and
Methods).
We simulated ORN responses to different odor stimuli.

Single ORN responses were modeled in the form of
Poisson spike trains with firing rates dependent on the re-
ceptor type and stimulus identity. The relationship is set
by a receptor response profile (Fig. 1B, left) that deter-
mines ORN firing rates of all receptor types for a given
stimulus. Responses to different stimuli are generated by
shifting the response profile along the receptor space.
The offset between any two stimuli reflects their dissimi-
larity: similar stimuli activate overlapping sets of olfactory
receptors, whereas dissimilar stimuli activate largely dis-
joint sets of receptors. Stimuli were presented for 1 s, re-
flected by a step-like increase of ORN firing rate.
In the absence of stimuli, ORNs fired with a rate of

20Hz reflecting their spontaneous activation (Nagel and
Wilson, 2011). Both LNs and PNs receive direct ORN
input. We tuned synaptic weights of the model to match
physiologically observed firing rates of PNs and LNs,
which are both ;8Hz (Perez-Orive et al., 2002; Krofczik
et al., 2009; Chou et al., 2010; Meyer et al., 2013; for de-
tails, see Materials and Methods). Lateral inhibition and
SFA, the neural mechanisms under investigation, both
provide an inhibitory contribution to the total input of a
neuron. In our model, SFA is a cellular mechanism medi-
ated by a slow, spike-triggered, hyperpolarizing current in
LNs, PNs, and KCs, whereas a global lateral inhibition in
the AL is mediated by LNs with fast synapses that receive
input from a single ORN type and inhibit all PNs in a uni-
form fashion.

Odor responses at the AL and theMB level of the
spiking network model
Figure 1B illustrates PN and KC responses to one odor.

PNs driven by the stimulus showed a strong transient re-
sponse at the stimulus onset, a pronounced adaptation
during the stimulus, and a period of silence after stimulus
offset due to the slow decay of the strong adaptation cur-
rent. This resembles the typical phasic–tonic response
patterns of PNs (Bhandawat et al., 2007; Nawrot, 2012;
Meyer et al., 2013).
PNs receiving direct input from ORNs activated by the

stimulus showed a strong response at the stimulus
onset. Interestingly, the population firing rate over these
PNs revealed that the “on” response follows a biphasic
profile with an early and a late component. In addition,
PNs with no direct input from stimulated ORNs showed
an “off” response at the stimulus offset. Nondriven PNs
were suppressed during a short period after stimulus
onset and showed reduced firing during the tonic re-
sponse. The PN population response consisted of com-
plex activations of individual PNs with phases of
excitation and inhibition. Hence, in the AL, odors were
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represented as spatiotemporal spike patterns across the
PN population.
At the level of the MB, KCs typically show none or very

little spiking during spontaneous activity and respond to
odors with only a few spikes in a temporally sparse man-
ner (Perez-Orive et al., 2002; Ito et al., 2008; Turner et al.,
2008). In our model, synaptic weights between PNs and
KCs were tuned to match the very low probability of
spontaneous firing. The resulting KC responses were
temporally sparse. Because of the negative feedback
mediated by strong spike frequency adaptation, most
KC spikes were confined to stimulus onset. Notably, we
also found that KCs sometimes exhibited off responses.
These KC off spikes occurred very rarely, because they
are driven by the PN off response, which is much weaker
compared with the PN on response. The timing and am-
plitude of temporally sparse responses are in good
quantitative agreement with in vivo KC recordings (Ito et
al., 2008).

Dense and dynamic odor representations in the AL
To explore the effects of lateral inhibition and cellular

adaptation on stimulus representations, we simulated
odor responses in conditions in which we separately de-
activated one or both mechanisms. Lateral inhibition was
deactivated by setting the inhibitory synaptic weight be-
tween LNs and PNs to zero and simultaneously reducing
the value of the excitatory synaptic weight between ORNs
and PNs, such that the spontaneous firing rate of 8Hz
was kept. Adaptation was deactivated by replacing the

dynamic adaptation current by a constant current with an
amplitude that maintained the average spontaneous firing
rate.
Figure 2 illustrates the separate effects of lateral inhibi-

tion and adaptation on odor responses in the PN popula-
tion. In all conditions, PNs fired spontaneously before
stimulation due to spontaneous ORN activation. PNs
driven by stimulation receive input from ORNs that were
activated by the presented odor. In the absence of adap-
tation and lateral inhibition (Fig. 2Ai,Bi), the stimulus re-
sponse followed the step-like stimulation and showed no
further temporal structure. In the presence of lateral inhi-
bition (Fig. 2Aii,Bii), PNs not driven by the stimulus were
strongly suppressed. Adaptation alone (Fig. 2Aiii,Biii) re-
sulted in a phasic–tonic response profile with a high pha-
sic peak amplitude immediately after stimulus onset. In
the presence of both mechanisms (Fig. 2Aiv,Biv), we ob-
served the characteristic phasic–tonic PN response. The
transient response was reduced in peak amplitude, and,
interestingly, followed a biphasic profile with an early and
a late component.
In our model, the interaction of lateral inhibition and the

intrinsic adaptation currents in LNs and PNs account for
biphasic PN responses. Because LNs are adapting, lateral
inhibition is strongest at stimulus onset. Most PNs were
initially suppressed and showed a slightly delayed re-
sponse, whereas the initial response of PNs with strong
input (early component) was not affected. Fast and de-
layed PN responses have also been found experimentally
in the honeybee (Strube-Bloss et al., 2012). Model evi-
dence for the interplay of cellular and network

Figure 2. Lateral inhibition and cellular adaptation shape PN odor response dynamics. A, Single-trial PN spiking responses
simulated with (right column) and without (left column) lateral inhibition, and with (bottom row) and without (top row) adapta-
tion. Presentation of a single odor during 1000 ms is indicated by the shaded area. With adaptation, PNs display a temporal
structure that includes a transient and a tonic response, and a pronounced inhibitory postodor response. B, Trial-averaged
population firing rate: PNs driven by stimulation (blue) and remaining PNs (cyan). Bi–iv indicate the presence and absence of
lateral inhibition and adaptation, as in A. In the presence of lateral inhibition, firing rates during stimulation are reduced. In
the presence of lateral inhibition and adaptation (Aiv, Biv) PNs show either transient on responses (blue) or off responses
(cyan). Aiv and Biv are reproduced in Figure 1B. Extended Data Figure 2-1 shows PN tuning profiles and input–output
relation.
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mechanisms behind biphasic PN responses was found in
the pheromone system of the moth (Belmabrouk et al.,
2011).

Spike frequency adaptation supports temporal
sparseness in the MB
To isolate the contributions of adaptation and lateral in-

hibition (the latter was present only at the AL level) to odor
responses at the MB level, we again tested the four condi-
tions by deactivating one or both mechanisms. In all four
conditions, KCs were almost silent and spiked only spor-
adically during spontaneous activity, whereas the ampli-
tude and temporal profile of their odor response differed
across conditions (Fig. 3).
In the presence of adaptation, we observed temporally

sparse responses (Fig. 3Aiii,iv,Biii,iv). KCs typically re-
sponded with only one to three spikes (mean spikes per re-
sponding KCwere slightly above one; Fig. 3Biii,iv, compare
�x). Because of the negative feedback mediated by strong
SFA, most KC spikes were confined to stimulus onset.
In the absence of adaptation and regardless of the pres-

ence (Fig. 3Ai,Bi) or absence (Fig. 3Aii,Bii) of lateral inhibi-
tion, responding KCs fired throughout stimulation, because
they received persistently strong input from PNs. Such per-
sistent KC responses are in disagreement with experimental
observations (Perez-Orive et al., 2002; Ito et al., 2008;
Turner et al., 2008).
We quantified temporal sparseness of KC responses by

calculating a measure modified from (Treves and Rolls,
1991; Materials and Methods). Comparison of temporal
sparseness across the four conditions confirms that KC
responses were temporally sparse only in the presence of

adaptation, whereas lateral inhibition had no effect on
temporal sparseness (Fig. 4A). Selective absence of ad-
aptation in the KC population (Extended Data Fig. 1-1) did
not have an effect on KC temporal sparseness (Extended
Data Fig. 4-1A). This is due to a high KC spiking threshold
that requires strong input and ensures sparse responses.
Selective absence of adaptation in the PN population
(Extended Data Fig. 1-2) led to persistent tonic KC

Figure 3. Odor response dynamics of the KC population. Figure layout is as in Figure 2. A, Single-trial population spike raster re-
sponses. B, Trial-averaged KC population firing rate. Numbers to the right indicate the fraction of activated KCs (na) and the mean
number of spikes per activated KC during stimulation (�x). Without adaptation (Ai,ii, Bi,ii), KCs spike throughout stimulation because
PN drive is strong and persistent. The fraction of activated KCs drops in the presence of lateral inhibition (Aii,iv, Bii,iv). With adapta-
tion (Aiii,iv, Biii,iv), most of the KC spikes are confined to stimulus onset, indicating temporally sparse responses. We note that
spontaneous KC activity is extremely low (0.03 Hz), which is in accordance with previous experimental results (Ito et al., 2008). Aiv
and Biv are reproduced in Figure 1B.

Figure 4. Quantification of temporal and population sparseness
in the KC population. Sparseness was measured in the absence
(a = 0) and presence (a = 3) of lateral inhibition, and the pres-
ence (black bars) and absence (gray bars) of SFA. The sparse-
ness measure was averaged over 50 trials. Error bars indicate
SD. A value of 1 corresponds to maximally sparse responses.
A, Adaptation promotes temporal sparseness. B, Lateral inhibi-
tion in the AL promotes KC population sparseness. Extended
Data Figure 4-1 shows temporal sparseness when SFA was dis-
abled in the PN or KC population, and population sparseness
for different numbers of PN inputs per KC.
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responses, in addition to the onset KC responses. This is
due to strong tonic PN input leading to reduced KC tem-
poral sparseness.

Lateral inhibition supports population sparseness in
the MB
We observed that the fraction of responding KCs was

considerably lower in the presence of lateral inhibition
(Fig. 3B, compare na across panels). We recall that lateral
inhibition in our model is acting on PNs. The transient PN
population rate response showed a biphasic peak in the
presence of lateral inhibition. Effectively, the transient PN
response was broadened in time and its amplitude was
reduced (Fig. 2B, compare iii, iv). As a result, KCs re-
ceived lower peak input from PNs. How does this affect
KC responses on a population level?
We visualized MB odor representations with activa-

tion patterns obtained by arranging KC spike counts
evoked by two similar odors on a 30 � 30 grid in arbi-
trary order (Fig. 5A). In the absence of lateral inhibition
(Fig. 5A, top), a majority of the KC population was acti-
vated by both tested odors Each of the 1000 KCs re-
ceives input from, on average, 12 PNs and thus from
approximately one-third of the total PN population. KCs
are readily activated by the strong PN input within a
short time window following stimulus onset. Matching
experimental results, KCs responded with one to three
spikes. Turner et al. (2008) counted 2.2–4.9 KC re-
sponse spikes in Drosophila in vivo intracellular record-
ings. Using extracellular single unit recordings, Ito et al.
(2008) reported that moth KCs typically respond with a
single spike and a maximum of five spikes. These

numbers correspond to the apparent KC responses in
the locust displayed in Broome et al. (2006).
In the presence of lateral inhibition (Fig. 5A, bottom), the

fraction of activated KCs was reduced substantially (KCs
activated; trial averaged, 9%; SD, 3%). Again, this matches
well the experimentally reported fraction of stimulus acti-
vated KCs in the range of 5–10%, as measured in
Drosophila (Turner et al., 2008; Honegger et al., 2011) and
6–11% in the locust (Perez-Orive et al., 2002; Broome et
al., 2006). In our model, due to the lower peak input from
PNs, only KCs with large numbers of PN inputs are likely to
be activated. Therefore, the KC population responds more
selectively. The range of individual KC responses (one to
three spikes) was not affected. These activation patterns
demonstrate that the MB odor representations are sparse
on a population level, as each odor is represented by the
activity of a small fraction of the KC population.
To quantify the population sparseness of odor repre-

sentations in the MB, we again calculated a sparseness
measure (see Materials and Methods). Population sparse-
ness increased in the presence of lateral inhibition, inde-
pendent of SFA (Fig. 4B). In the presence of lateral
inhibition and SFA, both population and temporal sparse-
ness were in qualitative and quantitative agreement with
experimental findings (Perez-Orive et al., 2002; Szyszka
et al., 2005; Ito et al., 2008; Turner et al., 2008). We note
that population sparseness also depends on the connec-
tivity parameters of the model (see Discussion). In particu-
lar, increasing the average number of PN inputs per KC
decreased population sparseness, whereas reducing this
number resulted in an increase of population sparseness
(Extended Data Fig. 4-1). However, lateral inhibition has a
dominant effect on population sparseness, irrespective of

Figure 5. Lateral inhibition in the AL facilitates population sparseness and reduces pattern correlation in the MB. Spike counts (sin-
gle trial) of 900 randomly selected KCs in response to two similar odors (“Odor A” and “Odor B”) arranged on a 30 � 30 grid in the
absence (top row) and in the presence (bottom row) of lateral inhibition. Inactive KCs are shown in black. A, In the absence of lateral
inhibition, KCs readily responded to both odors, resulting in an activation pattern where most KCs are active. In the presence of lat-
eral inhibition both odors evoked sparse KC activation patterns. B, Superposition of responses to the two odors. KCs that were acti-
vated by both odors are indicated by hot colors (color bar denotes the spike count of the stronger response). KCs that were
activated exclusively by one of the two odors are indicated in gray. The fraction of KCs that show overlapping responses is reduced
in the presence of lateral inhibition. C, Pattern correlation between the single-trial responses in A to the two odors obtained for PN
(blue) and KC (orange) spikes counts, in the absence (a = 0) and presence (a = 3) of lateral inhibition. Dashed line indicates pattern
correlation of the input (ORNs). Pattern correlation was retained at the AL and was reduced at the MB level. Lateral inhibition in the
AL reduced pattern correlation in KCs, but not in PNs.
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the PN–KC connectivity (Extended Data Fig. 4-1).
Together, odor representations at the MB level were char-
acterized by a small fraction of the KC population re-
sponding with a small number of spikes.

Decorrelation of odor representations between AL
andMB
In our model, lateral inhibition in the AL increased popu-

lation sparseness of MB odor representations. Does an in-
creased KC population sparseness lead to less overlap
between MB odor representations? We visualized the
overlap between odor representations in the MB by over-
laying KC activation patterns in response to two similar
odors (Fig. 5B): KCs responding exclusively to odor A or
odor B are shown in gray, whereas KCs responding to

both odors are color coded. With lateral inhibition (Fig.
5B, bottom), most of the KC responses were unique to
odor A or odor B, and only a few KCs were activated by
both odors. In contrast, with lateral inhibition deactivated
(Fig. 5B, top), the ratio of KCs with unique responses to
the total number of activated cells was low, indicating
highly overlapping responses. We quantified the overlap
between odor representations evoked by two similar odors
in the PN and the KC populations. To this end, we calcu-
lated an overlap measure (formally equivalent to Pearson’s
correlation coefficient; see Materials and Methods) be-
tween spike count patterns evoked by odors A and B (Fig.
5C). Interestingly, PNs retained the overlap of the input, in-
dependent of lateral inhibition. In contrast, KC representa-
tions showed a reduced overlap that decreased even
further in the presence of lateral inhibition.
We tested how scaling of the lateral inhibition strength

affected the pattern overlap in PN and KC odor representa-
tions. To this end, we varied the strength of lateral inhibition
(a) in the AL by increasing the strength of inhibitory synap-
ses and adjusting feedforward weights (see Materials and
Methods). In addition, we calculated pattern correlations in
the absence of adaptation. As before, pattern correlation
was calculated for two similar odors that activated an over-
lapping set of receptors. In the absence of adaptation, lat-
eral inhibition decorrelated odor representations in both
populations (Fig. 6B). However, for increasing strength of
lateral inhibition this leads to an unphysiological regime
with an unrealistic low fraction of KCs that show a re-
sponse (Extended Data Fig. 6-1B). In the presence of ad-
aptation, increasing lateral inhibition had different effects
on the PN and KC populations (Fig. 6A). In PNs, the corre-
lation of the input was retained for all tested values of lat-
eral inhibition. In KCs, pattern correlation first decreased
for weak to moderate lateral inhibition strength but then in-
creased for strong lateral inhibition. For an intermediate
strength of the inhibitory weights, the pattern correlation
between KC responses to similar odors attained a minimal
value. For comparison, the bottom panels of Figure 6 show
the overlap ~ϱ between the trial-averaged activation pat-
terns, both in the presence (Fig. 6C) and absence (Fig. 6D)
of adaptation. For PN representations, both measures (ϱ
and ~ϱ), indicate the same overlap (Fig. 6A,B and C,D, com-
pare blue lines). For KC representations, the measure
based on averaged spike counts (~ϱ) is generally higher,
whereas the minimum for intermediate strength of lateral
inhibition is shallower (Fig. 6C, orange line). Overlap based
on spike count patterns recorded in single trials decreases
when responses are subject to trial-to-trial variability. In
contrast, by averaging the patterns first, the effect of trial-
to-trial variability is reduced. The comparison of both over-
lap measures indicates that in our model KC representa-
tions are more variable across trials compared with PN
representations.
What is the explanation for the observed minimum in

pattern overlap? The minimum of pattern overlap for a =
3 coincides with the minimum of the fraction of activated
KCs (Extended Data Fig. 6-1). A lower fraction of re-
sponding KCs can be understood as an increased selec-
tivity of KC responses. Both can be linked to changes of

Figure 6. Pattern correlation in the antennal lobe and the mush-
room body depend on lateral inhibition strength a. The correlation
coefficient rAB between the response patterns to two similar
odors was calculated and averaged over 50 trials and five network
realizations for PNs (blue) and KCs (orange). Error bars indicate
SD over trials and network realizations. Pattern correlation of the
input is indicated by the dashed line. Input correlation is high be-
cause similar odors activate largely overlapping set of receptors.
A, In the presence of adaptation, pattern correlation in PNs (blue)
stays close to the input correlation for all values of lateral inhibition
strength. In KCs (orange), the correlation decreases for small val-
ues of lateral inhibition strength and increases for large values of
lateral inhibition strength. Pattern correlation in KCs is minimal for
a = 3. B, In the absence of adaptation, pattern correlation de-
creases with the lateral inhibition strength both in PNs and KCs.
The decrease is stronger in KCs. C, D, Pattern correlation ~ϱAB
was calculated based on evoked, trial-averaged spike counts in
the presence (C) and absence (D) of lateral inhibition. The correla-
tion coefficient between the trial-averaged response patterns to
two similar odors was calculated and averaged over five network
realizations. Error bars indicate SD over network realizations. In
the presence of adaptation (C), the overlap between trial-averaged
KC representations of two similar odors (orange) shows a mini-
mum for intermediate strengths of lateral inhibition (1 � a � 3Þ. At
the minimum, the KC overlap is below the overlap between trial-
averaged PN representations. In the absence of adaptation, the
overlap between trial-averaged KC representations is generally
lower than the overlap between trial-averaged PN representations
for all strengths of lateral inhibition. Extended Data Figure 6-1 and
Extended Data Figure 6-2 show the mean fraction of activated
KCs and the mean pairwise KC cross-correlation, respectively.
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the PN input with two counteracting effects. For low
strengths of lateral inhibition, the amplitude of transient
PN input decreases with lateral inhibition due to tempo-
ral dispersion of response spikes across the PN popula-
tion (Fig. 2Biv). KC selectivity increases, whereas pattern
overlap decreases.
The increase of pattern overlap for a � 4 is caused by

common noise in KCs. The reason for the common
noise is the cross-correlation of PN output spike trains.
Their mean pairwise cross-correlation is zero in the ab-
sence of inhibition and increases with the a value
(Extended Data Fig. 6-2). Because of the increased
cross-correlation of their inputs, KCs are more easily
activated. However, for a � 4, KC responses are in-
creasingly stimulus unspecific due to common noise
and overlapping inputs. Together, for weak to interme-
diate lateral inhibition KC selectivity increases, re-
sponses remain stimulus specific and become more
sparse. For strong lateral inhibition (a � 4), the fraction
of activated KCs increases as KC responses become
more unspecific, driven by common noise.
In general, a reduction of pattern correlation from PN to

KC representations is characteristic for the insect MB
(Laurent, 2002). Furthermore, low overlap between KC
representations has been found to facilitate the discrimi-
nation of odors (Campbell et al., 2013). We therefore
choose the intermediate strength of the inhibitory weights
(a = 3) as a reference point in our model.

Odor encoding on short and long timescales
Next, we tested whether in our model the information

about stimulus identity is contained in AL and MB odor
representations by performing a decoding analysis in

subsequent time bins of 50ms (see Materials and
Methods). In PNs, decoding accuracy peaked during
stimulus onset and offset (Fig. 7A). Both peaks coincide
with a state of transient network activity caused by the
odor onset or offset. The on and the off responsive PNs
establish odor representations optimized for discrimina-
tion. After stimulus onset, decoding accuracy dropped
but remained on a plateau well above chance level.
Remarkably, after stimulus offset, odor identity could be
decoded for an extended time period (several hundreds
of milliseconds), albeit with a reduced accuracy. Such
odor aftereffects have been demonstrated previously in
experiments (Szyszka et al., 2011; see Discussion).
In KCs, decoding accuracy was above chance level only

in the first two to three time bins (;100ms) after stimulus
onset (Fig. 7B). In all other time bins, decoding accuracy re-
mained at chance level. Because the spiking activity in the
KC population is temporally sparse, the continuous infor-
mation at the AL output is lost in the MB spike count repre-
sentation. This raises the question of whether and if so,
then how the information could be preserved in the MB
throughout the stimulus. The intrinsic timescale of the ad-
aptation currents might potentially support prolonged odor
representations (Fig. 7C). We therefore repeated the de-
coding analysis on the adaptation currents measured in
KCs (Fig. 7D). Indeed, the stimulus identity could reliably
be decoded based on the intensity of the adaptation cur-
rents in subsequent time bins of 50ms. Decoding accuracy
peaked after stimulus onset and then slowly decreased.
Remarkably, the timescale of the decay is comparable dur-
ing and after stimulation. Because KCs show very little
spontaneous activity, the decoding accuracy after stimula-
tion decays with the adaptation time constant. This is due
to the exponential decay of the adaptation currents evoked

Figure 7. Decoding of odor identity indicates a prolonged and reliable odor information in KC adaptation currents. A, B, D,
Decoding accuracy was calculated for nonoverlapping 50 ms time bins, based on a set of seven stimuli (chance level, ;0.14) pre-
sented for 1 s (shaded area). Blue shading indicates SD obtained from a cross-validation procedure (see Materials and Methods). A,
Decoding of odor identity from PN spike counts. Decoding accuracy peaks at odor onset and offset, and remains high after stimula-
tion. B, Decoding of odor identity from KC spike counts. Decoding accuracy is above chance only in the first three bins following
stimulus onset. C, Adaptation current amplitudes (single trial, hot colors in arbitrary units) of 100 selected KCs in response to “odor
A” (top) and “odor B” (bottom). D, Decoding of odor identity from KC adaptation currents. Decoding accuracy peaks 150 ms after
odor onset then drops during stimulation, but remains high and is sustained after odor offset.
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by stimulation and the stochastic adaptation current fluctu-
ations in the background due to channel noise.

Discussion
We investigated the transformation between dense AL

and sparse MB odor representations in a spiking network
model of the insect olfactory system. Our generic model
demonstrates lateral inhibition and spike frequency adap-
tation as sufficient mechanisms underlying dynamic and
combinatorial responses in the AL that are transformed
into sparse MB representations. To simulate responses to
different odors, we incorporated simple ORN tuning and
glomerular structure in our model. This approach allows us
to investigate how different odors are represented in the
AL and MB population activity and to assess information
about odor identity contained in respective odor represen-
tations. We inspected overlap between odor representa-
tions in both populations. Sparse coding reduces overlap
between representations, as has been predicted on theo-
retical grounds (Marr, 1969; Albus, 1971; Kanerva, 1988)
and has been shown for MB odor representations (Szyszka
et al., 2005; Turner et al., 2008; Lin et al., 2014). Similarly,
our model shows pattern decorrelation in the MB but not in
the AL.

Postodor responses
In our model, we found on and off responsive PNs. At

the stimulus offset, the off responsive PNs transiently in-
crease, whereas the on responsive PNs transiently de-
crease their firing rate (Fig. 2). On responsive PNs remain
adapted beyond stimulus offset. Their excitability thus
stays reduced until the slow adaptation current has de-
cayed. In contrast, in off responsive PNs increased lateral
inhibition during stimulation causes a below-baseline ad-
aptation level throughout the stimulus and thus an in-
creased excitability. In effect, the odor-evoked and the
postodor PN activation patterns are reversed (i.e., anti-
correlated; data not shown). This result matches well the
experimental observations in the honeybee (Szyszka et
al., 2011; Nawrot, 2012; Stierle et al., 2013) and
Drosophila (Galili et al., 2011) PNs. Those results show
highly correlated response patterns throughout stimula-
tion and stable, but anti-correlated, postodor response
patterns.

Differential mechanism underlying temporal and
population sparseness in KCs
In our model, the two mechanisms underlying temporal

sparseness and population sparseness act independently.
Temporal sparseness of KC responses in our model

compares well to the experimentally recorded spiking re-
sponses in Drosophila, locust, and moth (Perez-Orive et
al., 2002; Ito et al., 2008; Turner et al., 2008), and to cal-
cium imaging experiments in the honeybee (Szyszka et
al., 2005). The model proposed here solely relies on spike
frequency adaptation for temporally sparse responses.
On a cellular level, strong adaptation currents in KCs,
which are suitable for the generation of sparse responses,
have been found in the honeybee (Wüstenberg et al.,

2004) and cockroach (Demmer and Kloppenburg, 2009).
In the model, temporal sparseness is not affected by the
deactivation of lateral inhibition, a finding supported by a
previous study by Farkhooi et al. (2013).
Several studies have suggested that either feedforward

inhibition (Assisi et al., 2007) or feedback inhibition (Szyszka
et al., 2005; Papadopoulou et al., 2011; Gupta and Stopfer,
2012; Lei et al., 2013; Kee et al., 2015) causes temporally
sparse responses. The existence of inhibitory feedback neu-
rons in theMB has been demonstrated experimentally in dif-
ferent insect species (cockroach: Takahashi et al., 2017;
Drosophila: Liu and Davis, 2009; honeybee: Grünewald,
1999; locust: Papadopoulou et al., 2011), whereas evidence
for feedforward inhibition to the MB is lacking (Gupta and
Stopfer, 2012). Our model demonstrates that temporally
sparse responses can be obtained without an inhibitory
circuit motive. There is further evidence for a GABA-inde-
pendent mechanism for the temporal shortening of KC re-
sponses. Calcium imaging studies in Drosophila (Lei et al.,
2013; Lin et al., 2014) and in the honeybee (Farkhooi et al.,
2013; Froese et al., 2014) showed that the temporal profile
of the fast response dynamics of KCs is preserved even if
GABAergic inhibition is blocked.
What could be the benefit of temporally sparse re-

sponses in KCs? We hypothesize that temporal sparse-
ness is an important strategy for the system to follow fast
transient inputs rather than representing static input. The
typical laboratory experiment uses controlled odor stimuli
that are presented with static intensity for up to several
seconds. However, in a natural setting, olfactory inputs
are highly dynamic (Vickers et al., 2001). Natural odor
plumes do not represent a gradient intensity due to diffu-
sion. Rather, odors distribute in space and time in a fila-
mentous structure (Vickers, 2000; Celani et al., 2014), and
filaments from different odors do not mix perfectly
(Szyszka et al., 2012). Because of wind and animal move-
ment, particularly relevant for flying insects, the olfactory
input will generally be highly dynamic in time, resulting in
fast and steep changes of odor concentration whenever
the animal encounters an odor filament. In such an on–off
scenario, temporally sparse responses in KCs might ena-
ble the processing of rapid odor filament encounters. We
hypothesize that the KC population provides a temporally
sparse representation of the odor identity of each filament
with a single spike or a few spikes in each KC. The system
is thus able to track individual odor filament encounters
over time, and the animal can adapt its behavior accord-
ingly (e.g., during odor source location in foraging flights;
Budick, 2006; Van Breugel and Dickinson, 2014; Egea-
Weiss et al., 2018). At the periphery, it has been shown
that the olfactory receptor neurons in various insect spe-
cies are able to follow fast repeating olfactory input pulses
even for high pulse frequencies (Vickers et al., 2001;
Szyszka et al., 2014). Our results show that the mechanism
of spike frequency adaptation is able to generate tempo-
rally sparse responses to the onset of an odor and thus to
detect temporal changes in the olfactory input rather than
encoding the persistence of a stimulus. Adaptation has
previously been implicated as a means to compute the
temporal derivative of sensory input (Lundstrom et al.,
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2008; Tripp and Eliasmith, 2010; Farkhooi et al., 2013). A
second advantageous property of spike frequency adapta-
tion is that it facilitates the reliability of individual responses
and significantly reduces the variability in the number of re-
sponse spikes across repeated stimulus representation
(Farkhooi et al., 2011, 2013). Temporal sparseness is not
limited to the insect MB and has been discovered in di-
verse sensory systems, notably in mammalian sensory cor-
tices (Vinje and Gallant, 2000; Hromádka et al., 2008;
Isaacson, 2010; Wolfe et al., 2010), where it has also been
linked to the encoding of temporally dynamic input in natu-
ral sciences (Haider et al., 2010; Yen et al., 2010). We sug-
gest that SFA is a general mechanism across sensory
systems and taxa supporting reliable temporally sparse re-
sponses under natural sensory input conditions.
The KC population sparseness in our model matches

qualitatively and quantitatively with experimental esti-
mates from electrophysiological responses in locust and
Drosophila (Perez-Orive et al., 2002; Turner et al., 2008)
and from calcium imaging in Drosophila (Honegger et al.,
2011). Our model shows sparse KC responses on a popu-
lation level in the presence of, but not in the absence of,
lateral inhibition. Calcium imaging experiments in the hon-
eybee (Froese et al., 2014) have shown that inactivating
GABA transmission disrupts population sparseness,
which is in line with our modeling results. In Drosophila,
feedback inhibition contributes to the population sparse-
ness of KCs, as blocking of feedback inhibition reduced
population sparseness and undermined the learned dis-
crimination of similar odors (Lei et al., 2013; Lin et al.,
2014). In addition, a cellular mechanism such as a high
threshold for KC activation in Drosophila (Turner et al.,
2008) and active KC subthreshold properties in locust
(Perez-Orive et al., 2002; Jortner et al., 2007) have been
shown to support population sparseness. Moreover, the
plasticity of inhibitory feedback changing response pat-
terns in the KC population might be crucial for associative
learning (Liu and Davis, 2009; Haehnel and Menzel, 2010;
Filla and Menzel, 2015; Haenicke et al., 2018). We suggest
that different neurophysiological mechanisms of sparse-
ness are not mutually exclusive but rather act in concert.
Both lateral inhibition in the AL and feedback inhibition in
the MB are likely to be necessary for sparse KC popula-
tion responses.
Evidently, the sparse connectivity scheme between the

PN and KC populations is the anatomic basis for popula-
tion sparse response patterns in the KC layer (Nowotny et
al., 2005; Jortner et al., 2007; Huerta and Nowotny, 2009).
This connectivity is divergent-convergent with an appa-
rent high degree of randomness (Caron et al., 2013). In
our model, connectivity is parametrized by the average
number of inputs k per KC and by the synaptic weight of
PN-KC (wPK). Experimental estimates indicate a small
number of inputs per KC. Anatomical data in Drosophila
provided estimates of k; 13 (Turner et al., 2008) and
k � 5� 7 (Leiss et al., 2009). Szyszka et al. (2005) esti-
mated k ; 10 inputs per KC for the honeybee. For our
model, we chose k = 12. Increasing or decreasing this num-
ber resulted in a decrease or increase of population sparse-
ness, respectively (Extended Data Fig. 4-1). Importantly,

with respect to population sparseness, the physiological
mechanism of lateral inhibition and anatomic connectivity
parameters represent conceptually distinct factors. Neuro-
modulation can affect lateral inhibition on short (tens to hun-
dreds of milliseconds) timescales (Lizbinski and Dacks,
2018). Our results indicate that this modulation could have a
drastic effect on population sparseness in theMB. The num-
ber of connections, in contrast, can be considered stable on
short timescales. However, on a long timescale (days) expe-
rience-dependent structural plasticity has been demon-
strated within the synaptic densities of DrosophilaMB calyx,
where KCs connect to presynpatic PN boutons (Kremer et
al., 2010).

Decorrelation of odor representations between AL
andMB
Decorrelation of stimulus representations has been

postulated to be a fundamental principle underlying sen-
sory processing (Barlow, 1961, 2001). In particular, in the
olfactory system odor representations are transformed to
decorrelate activity patterns evoked by similar odors,
making them more distinct (Uchida et al., 2013; Friedrich
and Wiechert, 2014; Galizia, 2014). Transformations de-
creasing the overlap between representations are termed
pattern decorrelation. Less overlapping representations
increase memory capacity (Treves and Rolls, 1991) and
make the discrimination of odors easier (Campbell et al.,
2013). In our model, we found that AL odor representa-
tions preserved the similarity of the input, whereas repre-
sentations of similar odors at the periphery became
decorrelated in the MB.
We quantified the effects of lateral inhibition and adap-

tation on pattern correlations. We found that decorrelation
of activity patterns in the AL occurred only in the absence
of adaptation. Moreover, the amount of decorrelation de-
pended on lateral inhibition strength. Considering decor-
relation of odor representations, the difference between
lateral inhibition and adaptation is substantial. In our
model, lateral inhibition alone sharpens PN responses,
whereas adaptation leads to linearization of the input–out-
put relation between the input from ORNs and the PN out-
put (Extended Data Fig. 2-1). In computational studies,
lateral inhibition was previously shown to decorrelate
odor representations (Luo et al., 2010; Schmuker et al.,
2011). In a Drosophila study using single sensillum re-
cordings from ORNs and whole-cell recordings from PNs,
lateral connection in the AL were found not to affect corre-
lations between glomerular channels (Bhandawat et al.,
2007), but there is also evidence for decorrelation of AL
representations (Olsen et al., 2010). In our model, pattern
correlation between representations of similar odors was
preserved at the level of the AL but was reduced in the
MB. The observed counteracting effect of adaptation on
pattern decorrelation by lateral inhibition in the AL is gen-
erally valid for strong adaptation. Strong adaptation cur-
rents provide slow, negative feedback that has a
linearizing effect on the input–output relation (Ermentrout,
1998). As a consequence of strongly adapting PNs in our
model, the pattern correlation of AL odor representations
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is equal to the pattern correlation given by the tuning pro-
file of the ORN input (Fig. 6).

Odor representation in adaptation currents
Early investigations of dynamical odor representations

have shown that odor identity can be reliably decoded
from PN spike counts in 50ms time bins (Stopfer et al.,
2003; Mazor and Laurent, 2005; Krofczik et al., 2009). We
used this approach to show that odor representations
were specific and reliable in our model, including both AL
and MB odor representations. We found that odor repre-
sentations were optimized for discrimination during odor
onset (Fig. 7B,C). Optimal decoding during stimulus onset
is in agreement with electrophysiological evidence from
locust and honeybee PNs (Mazor and Laurent, 2005;
Krofczik et al., 2009). In the auditory system, Hildebrandt
et al. (2015) found that grasshoppers use the onset of a
sound pattern as the most reliable information for sound
localization. Their study provides behavioral evidence
that, in the presence of adaptation, the onset response
preserves absolute stimulus levels. Our model shows that
at the MB level, stimulus identity could be decoded from
KC spike counts only during a short time window after
stimulus onset (up to ;150 ms; Fig. 7B). This is a conse-
quence of the temporally sparse KC responses.
Moreover, we found that KC adaptation currents retain

a representation of stimulus identity, resembling a pro-
longed odor trace (Perisse and Waddell, 2011; Dylla et al.,
2013). In our model, an odor trace present in adaptation
levels extends well beyond the brief spiking responses.
Adaptation currents constitute an internal dynamical state
of the olfactory network that is not directly accessible to
downstream neurons: a “hidden state” (Buonomano and
Maass, 2009). However, adaptation levels influence the
responses to (subsequent) stimuli (Farkhooi et al., 2013)
and may also affect downstream processing through an
indirect pathway.
Our results suggest that odor representations are not

exclusively found in the spiking activity. The phenome-
nological model of spike-triggered adaptation used in
this study (see Materials and Methods; for review, see
Benda and Herz, 2003) is motivated by calcium-acti-
vated outward potassium currents. Those currents are
activated by spike-triggered calcium influx, which is only
slowly removed. We propose that information carried by
temporally sparse KC spikes is stored on prolonged
timescales by the slowly decaying calcium concentra-
tion. We predict long-lasting levels of calcium in the KC
population that retain odor information and provide a
potential substrate for a short-term sensory memory.
Therefore, classification of calcium levels recorded in
the MB should reveal odor identity on a timescale deter-
mined by the decay of the intracellular calcium level.
Indeed, a recent study by Lüdke et al. (2018) showed
that prolonged calcium activity in KCs encoded odor in-
formation and could be related to behavioral odor rec-
ognition performance in trace conditioning experiments
where a conditioned odor stimulus is followed by a tem-
porally delayed reinforcement stimulus.
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