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Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their
functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a
prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus
in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing
with intermediate firing rates (20–40 Hz) the reliability in evoking the prescribed spike train is close to its
theoretical maximum that is mainly determined by the level of intrinsic noise.
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I. INTRODUCTION

The information transfer that is necessary for the perception
and the complex behavior of animals is mediated by excitable
neurons, the basic unit of information processing in the nervous
system. It is likely that this transmission of information does
not only rely on the mean activity of populations of neurons,
but in some situations depends on the precise timing of
action potentials (APs) of the individual neurons [1,2]. How
important AP timing is compared to simple population (or
rate) coding has been debated since the 1990s [3–5] but must
be still regarded as an open problem (see, e.g., [6–8] for more
recent contributions to the topic).

The importance of single spikes has been underlined over
the past decade in a series of experiments that have shown
that a few spikes evoked in single cortical neurons may
affect the animals’ behavior or brain state [9–12]; for a
recent theoretical approach for this problem, see [13]. In
these “reverse physiology” experiments the control about the
neuronal dynamic is a limiting factor to further investigate the
role of single neurons and AP timing. Thus new experimental
methods that provide the ability to reliably manipulate the
firing of individual neurons in vivo are needed to gain deeper
insights into the role of AP timing of single neurons. In a
recent publication by Doose et al. [14] it was shown that
for individual neurons from rat sensory and motor cortex the
timing of APs could be reliably controlled by juxtacellular
stimulation with fluctuating Gaussian currents (frozen noise).
Using the neuron’s linear response function, stimuli could be
computed that evoked a previously defined spike train with
high reliability and temporal precision (see Fig. 1 for examples
studied here in this paper).

In the present work, we explore this method in more
detail using two computational models. We recall that certain
constraints arising from experimental issues are characteristic
for the method: We want to find a stimulus evoking a prescribed
spike train under the following conditions: (1) The stimulus
has a finite cutoff-frequency fc. (2) The stimulus has Gaussian
statistics with a prescribed mean μ and variance σ 2.

The limitation to a hard cutoff frequency (zero power for
f > fc) is needed to enable spike detection under juxtacellular
current stimulation [14]: in the recorded voltage trace the noisy
input signal and the spikes of the cell are superposed and the
comparatively small spikes can be only extracted by filtering—

which requires that the stimulus does not have any power in
the high frequency band that is characteristic for the spike
shape (typically for f > 100 Hz). The constraint of a Gaussian
statistics with mean μ and variance σ 2 is motivated by the
observation that these stimuli are well tolerated by the cells
and that their statistics is similar to the natural input statistics
of superpositions of many input spike trains. Both constraints
prevent the obvious (unconstrained) solution of our problem,
namely, to drive the cell with a sequence of strong excitatory
input spikes positioned at the prescribed spiking times. The
latter method is not unreasonable and has recently been shown
to work in cortical cells [15].

Note that our objective is very different from that of
approaches that mainly aim at the determination of stimulus
parameters to reproduce certain interspike-interval (ISI) statis-
tics in stochastic neuron models (reviewed in Ref. [16]). There,
the neural dynamics is assumed to be subject to white-noise
input for which the parameters (mean and noise intensity)
are estimated. In contrast to these approaches, we do not aim
at reproducing ISI statistics but want to estimate a stimulus
that evokes exact spike times. To this end, we allow the input
stimulus to have temporal correlations, i.e., we deal with a
so-called colored noise [17].

It is plausible that the procedure works if the prescribed
spike train has a similar spike statistics as a spike train of this
neuron under a white-Gaussian-noise stimulus. This was the
scenario that was studied in Ref. [14]. However, it is less clear
if the procedure can still function if we require deviations in
mean activity (firing rate) and variability (quantified by the
coefficient of variation [CV ] of the interspike interval) from
this reference firing statistics. Here, we extend the approach
developed in Ref. [14] to evoke spike trains that can vary
in their mean firing rate r and CV over a physiologically
relevant interval (see also Fig. 1 for a first impression that
this method works for different parameter choices). We study
this for the two-compartment model used in Ref. [14] and
for a one-compartment model with parameters estimated from
experiments on cortical cells [18].

In the following we first introduce the neuron models and
recall basic statistic quantities that are used in this work. We
then propose how we define the prescribed spike train and
explain the computational method for the stimulus generation.
Finally, we systematically compare prescribed and evoked
spike-train statistics and analyze the generated stimuli in terms
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FIG. 1. Three raster plots are given for different values of the
prescribed rate r† and coefficient of variation CV †. The prescribed
spike times are marked above and below the respective raster plot
(thick, red). The upper panel shows the raster plot for reference statis-
tics r† = 32.7 Hz = r0 and CV † = 0.68 = C0

V , yielding a coincidence
between evoked and prescribed spike trains of �sd = 0.66 [for this
measure of similarity of spike trains, see Eq. (24)]. The middle panel is
for r† = 19.6 Hz < r0 and CV † = 0.24 < C0

V and yields �sd = 0.62.
The lowest panel is for increased r† = 45.8 Hz > r0 and increased
CV † = 1.15 > C0

V and has �sd = 0.55.

of their power spectra. We conclude with a short summary of
our results and an outlook for future extensions of the method.

II. MODELS AND METHODS

We first describe the two neuron models studied in this
paper, recall then some spike-train statistics, and introduce
finally different stimuli and methods to generate spike trains
with prescribed statistics.

A. Neuron models

Many neural network studies employ one-compartment
models and thus it is vital to understand to which extent spike
timing can be controlled by a time-dependent stimulus in this
model class. However, there are situations in which a one-
compartment model is insufficient to reproduce quantitatively
the spike statistics of a neuron and in these situations at least
a two-compartment model is required [14,19]. Thus, in the
following we will inspect how well spike trains can be evoked
in one- and two-compartment models.

The one-compartment model is an exponential integrate-
and-fire (EIF) model [20], characterized by the evolution of a
single space-independent voltage variable, that describes the
dynamic of an effective spike-trigger zone which is usually
referred to as somatic voltage Vs(t):

Cs
dVs

dt
= −gsVs + gs�T e(Vs−VTh)/�T + Iin,s (1)

(for the fire-and-reset mechanism, see below). For this model
we used parameter values given by Harrison et al. [18] for
pyramidal neurons from layer 2/3 of the rat somatosensory
cortex (see Table 2 in Ref. [18]).

The two-compartment model consists of two coupled
compartments that represent the soma and the dendrite,
respectively, and its parameters are taken from fits to a
pyramidal neuron in rat motor cortex [14]. The model is similar
to the one used in Ref. [19] to describe the high-frequency
response of Purkinje cells. As for the one-compartment model
the somatic compartment (Vs) is equipped with an active
spiking mechanism, while the dendritic compartment (Vd) acts
purely passive. The voltage dynamic of the two-compartment
model is given by

Cs
dVs

dt
= −gsVs − gc(Vs − Vd) + gs�T e(Vs−VTh)/�T + Iin,s,

Cd
dVd

dt
= −gdVd + gc(Vs − Vd) + Iin,d. (2)

In these equations Cs (Cd) is the total capacitance of the
respective compartment, gs and gd are the somatic and
dendritic leak conductance and gc accounts for the electric
coupling between both compartments, �T is the spike-slope
factor that defines the sharpness of the spike onset, VTh

is the soft threshold which has to be overcome by Vs to
generate an exponential upstroke (AP). The current that enters
the compartments is given by Iin,s = s(t) + √

2Dsξs(t) for
the somatic and Iin,d = μd + √

2Ddξd (t) for the dendritic
compartment. Here ξs,d (t) are independent white Gaussian
noise processes with zero mean and unit variance that are
scaled by the noise intensities Ds and Dd . Together with the
constant μd these noise terms are supposed to account for
the input of the surrounding network and cause the intrinsic
variability. The stimulation current enters the dynamic in the
somatic compartment and is denoted by s(t). The dynamic
in the somatic compartment [first equation in Eq. (2)] is
completed by the fire-and-reset rule: Whenever Vs > 6 VTh,
we set Vs = 6 VTh, register a spike time, and perform a reset
in the somatic compartment Vs → 0 in the next time step. The
dendritic voltage during an action potential is only affected
due to the electrotonic coupling to the somatic compartment;
no reset or afterhyperpolarization is taken into account.

Both models are simulated with a stochastic Euler scheme
with a time step of dt = 0.2 ms for a time window of TW =
10 s.

B. Spike-train statistics

The spike times ti generated by the models define the
corresponding spike trains:

x(t) =
N∑

i=1

δ(t − ti). (3)

In this paper, we consider the stationary firing rate, obtained
by an average of the spike train and over stimuli

r = 〈x(t)〉, (4)

which is a simple measure for the intensity of spiking. The
coefficient of variation (CV) can be defined based on the
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interspike intervals (ISIs), Ti = ti − ti−1,

CV =
√〈(Ti − 〈Ti〉)2〉

〈Ti〉 , (5)

i.e., the relative standard deviation of the ISI, that attains values
of zero for a perfectly regular spike sequence and one for a
Poisson point process.

The spectral measures studied here are all defined in terms
of the Fourier transform of a general time series x(t) (here not
necessarily a spike train) and denoted by

x̃(f ) =
∫ T

0
e2πif tx(t) dt. (6)

In terms of the ensemble average 〈·〉 and the time window T ,
the power spectrum is defined by

Sxx(f ) = 1

T
〈x̃∗x̃〉, (7)

where ∗ denotes complex conjugation. In the following we omit
the usual limit T → ∞ of the precise mathematical definition
and assume that the time window TW = 10 s is sufficiently
large to resolve all spectral features of the process.

Equivalently, the cross spectrum between two time series
x(t) and y(t) is given by

Sxy(f ) = 1

T
〈x̃∗ỹ〉. (8)

For all spike train statistics shown in this paper, we use at
least 150 realizations of the stimulus and for each stimulus
20 realizations of the intrinsic noise sources, such that the
ensemble comprises at least 3000 realizations in total.

C. White-noise stimuli

The stimulation current s(t) is injected in the somatic
compartment and different choices for its statistics are
possible. Often in experiments, a white bandpass-limited
Gaussian noise with sharp cutoff frequency fc, mean μ0, and
variance σ 2

0 , is used:

s0(t) = μ0 + σ0η(t). (9)

Here η(t) is a mean-zero Gaussian noise with uniform spectral
density for f < fc and a unit variance. Stimulating the neuron
models by a stimulus as in Eq. (9) will give us reference
values of rate and CV, r0 and CV,0, that can be achieved with
Gaussian noise with this mean value and variance.

We furthermore use the white-noise stimulus to estimate
two other important statistical measures: (i) the firing-rate-vs-
input current relation,

r0 = fμ

(
μ0,σ

2
0

)
, (10)

obtained by measuring the firing rate for a whole range of
values of μ0 (with a fixed σ 2

0 ); (ii) the dynamical susceptibility
at our reference point (μ0,σ

2
0 ) computed from the input-output

cross spectrum Ss0x(f ),

χ0(f ) = Ss0x(f )

Ss0s0 (f )
. (11)

Our parameter reference points in the following are μ0 =
σ0 = 300 nA for the one-compartment model [Eq. (1)] in

the suprathreshold regime, μ0 = 200 nA and σ0 = 300 nA in
the subthreshold regime and and μ0 = σ0 = 6000 nA for the
two-compartment model [Eq. (2)] also in the suprathreshold
regime.

D. Prescribed spike trains

The main focus here is not on the white-noise stimuli as
defined above but on Gaussian stimuli s†(t) that are designed
to evoke prescribed spike trains x†(t). Before we come to the
problem of how to construct these stimuli, we discuss briefly
how to construct prescribed spike trains.

There are different algorithms to generate spike trains with
prescribed statistics (see, e.g., [21–23]). Here we choose a
simple renewal spike train with an ISI distribution following an
inverse Gaussian. This distribution is completely determined
by only two parameters that we can prescribe: the firing rate
r†, characterizing the intensity of spiking, and the CV CV †,
quantifying the variability of firing.

In order to generate this renewal process, one could start
at a random initial time and draw subsequent ISIs from the
inverse Gaussian ISI distribution with the prescribed mean
and variance (determined by firing rate and CV). There is,
however, a simpler alternative method: it is known that a
perfect integrate-and-fire model driven by white Gaussian
noise generates exactly an inverse Gaussian ISI sequence
[24,25]. We choose this latter method to generate x†(t) by
simulating this model,

dV

dt
= α +

√
2Dξ (t), (12)

where ξ (t) is white Gaussian noise with 〈ξ 〉 = 0 and
〈ξ (t)ξ (t ′)〉 = δ(t − t ′) and the fire-and-reset rule that whenever
V > 1, we register a spike time and reset V → 0. Given
prescribed values of rate r† and CV CV †, the input parameters
of the model α and D are uniquely determined and read [26]

α = r†, D = r†C
2
V †

2
. (13)

Turning back to the original models [Eqs. (1) and (2)], we
can ask what kind of ISI statistics these models can generate.
By changing the stimulus statistics within our constraints, we
can certainly achieve different values of rate and CV. If we
use the simple bandpass-limited white Gaussian noise with a
sharp cutoff frequency, Eq. (9), we obtain the aforementioned
reference values of rate and CV, r0 and CV,0. It is clear, that
it will not be difficult to obtain similar values if we use a
more general kind of stimulus. One of our main questions
here, though, is to which extent spike trains can be evoked that
deviate in their statistics from r0 and CV,0.

E. Stimuli that evoke prescribed spike trains

In the following we outline how a Gaussian noise with sharp
cutoff frequency can be estimated that will (approximately)
evoke the prescribed spike train in the neuron model under
investigation (for a sketch of the procedure, see Fig. 2). The
main difference of this stimulus class to our reference stimulus
s0(t) is that the power spectrum of s†(t) is not uniform but can
have an arbitrary shape in the range (0,fc) (fluctuations with
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FIG. 2. Schematic representation of the procedure that generates prescribed spike trains by simulating a (one- or two-compartment) neuron
model with colored Gaussian noise with a given cutoff frequency fc. The green (dotted) lines indicate which parts of the procedure are
influenced by model-specific properties (listed in the dashed ellipse). For a pseudo code of the procedure, see Sec. II F.

a nonflat power spectrum are generally referred to as colored
noise [17]).

For a linear system output x(t) and input s(t) are related via

x(t) = K ∗ s(t). (14)

Here K(t) is the linear response function that completely
defines the system and ∗ denotes convolution. In the frequency
domain the convolution simplifies to a multiplication

x̃(f ) = χ (f )s̃(f ), (15)

where the Fourier-transform of K(t) is the susceptibility
χ (f ). This linear description must be regarded as a rough
approximation of the full system because the neuron converts
a continuous input signal into a series of action potentials (a
point process) and therefore acts highly nonlinearly.

In the following we use exclusively the susceptibility
χ0(f ) from Eq. (11) measured with white-noise stimuli at
the respective reference point μ0,σ

2
0 . Besides the assumed

linearity, this constitutes another approximation because the
susceptibility depends both on μ0 and σ 2

0 as well as on the color
of the noise (for a simple example of the latter dependence,
see [20]). With the knowledge of the susceptibility we can use
Eq. (15) to calculate the stimulus s̃†(f ) that evokes the output
x̃†(f ):

s̃†(f ) = x̃†(f )

χ0(f )
, (16)

and use the inverse Fourier transform to determine the
corresponding time series s†(t). However, s†(t) does in general
not satisfy our constraints: (i) a certain variance and mean,
(ii) Gaussianity, and (iii) a sharp cutoff frequency fc. To
impose these restrictions, we proceed as follows.

In a first step we apply a static nonlinearity F (s) to the
stimulus in the time domain:

s†,G(t) = F (s†(t),μ,σ 2). (17)

We choose the nonlinearity F such that the transformed
stimulus possesses Gaussian statistics with mean value μ and
variance σ 2 (for how μ and σ 2 are specified, see below). The
nonlinearity F can be expressed by the cumulative probability
density of the actual stimulus P† and the inverse cumulative
probability distribution of a Gaussian signal P −1

G (the inverse
of the prescribed probability distribution):

F (x,μ,σ 2) = P −1
G (P†(x),μ,σ 2). (18)

Although the stimulus s†,G(t) is Gaussian, it does not obey
the constraint of a sharp cutoff frequency. This can be
achieved by Fourier transformation of s†,G(t), setting all
Fourier-components above fc to zero,

s̃†,fc
(f ) = s̃†,G(f )�(fc − f ), (19)

and, subsequently, transforming s̃†,fc
(f ) back to the time

domain. This second (temporal) transformation can change
the stimulus’ statistics to having a non-Gaussian probability
density again. To obtain a stimulus that fulfills all constraints
at the same time, we iteratively apply Eqs. (17) and (19) (for
similar iterative schemes, see [27]).

To quantify the convergence of the iterative process we
define a measure for the similarity between two cumulative
probability distributions:

� =
∫ ∞
−∞

∣∣P†,fc
(s) − PG(s)

∣∣ ds∫ ∞
−∞ |PG′(s) − PG(s)| ds

. (20)

Here PG(s) and PG′ (s) are cumulative probability distributions
of two Gaussian variables that have the same mean value but
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slightly different standard deviations σ and σ ′ = 1.01σ . Thus,
the difference between these distributions (denominator) is
used as a reference value for the difference between the actual
probability distribution and the prescribed one (numerator).
We use � < 0.1 as the termination criterion for the iteration,
i.e., the cumulative distribution of s†,G,fc

(t) should differ from
the associated Gaussian by less than 10% of what would
be the deviation between two Gaussians that differ in their
standard deviations by 1% . Typically after 10–20 iterations
this criterion is fulfilled and the procedure provides a stimulus
s†,G,fc

(t) that satisfies approximately all constraints. In the
following, we will write s†(t) instead of s†,G,fc

(t) to ease the
notation.

How should we choose μ and σ 2 in Eq. (17)? As an
experimental constraint we adopt a fixed value of the stimulus
variance σ 2 = σ 2

0 because the total power injected in the cell
should be limited (these values need to be tolerated by the
cell without causing damage). Because the firing rate depends
strongly on the mean input current, we do not keep the mean
value μ fixed but let it depend on the prescribed firing rate
r† via the inverse firing-rate-vs-input-current relation for the
white-noise driven IF model, i.e., the inverse of Eq. (10):

μ = f −1
μ (r†). (21)

This is certainly an approximation because s†(t) is not a
bandpass-limited white but a colored Gaussian noise and the
noise color can affect the firing rate [28]. However, as we will
see below, the deviations due to this approximations are small.

F. Pseudoalgorithm

For a better understanding of the procedure, in the following
we present a pseudoalgorithm that illustrates the computation
of the stimulus s†(t).

procedure CALCULATE STIMULUS

define neuron model � Eqs. (1), (2)
set μ0 and σ0 to suitable values
� determination of the reference statistics
for η in reasonable set of realizations do

s0(t) = μ0 + σ0η(t) � Eq. (9)
stimulate neuron with s0(t)
measure output spike trains
estimate r0, CV,0, χ0(f ) � Eqs. (4), (5), (11)

end for
� estimate firing-rate vs input-current relation
for μ in plausible range around μ0 do

for s0 in reasonable set of realizations do
stimulate neuron with s0(t) − μ0 + μ

measure output firing-rate fμ(μ,σ 2)
end for

end for
set r† and CV † in a range around r0 and CV,0

α = r† � Eq. (13)

D = r†C2
V †

2 � Eq. (13)
stimulate PIF with α + √

2Dξ (t) � Eq. (12)

→ x†(t)
x̃†(f ) = F(x†) � Fourier transform
s̃†(f ) = x̃†/χ0 � Eq. (16)
s†(t) = F−1(s̃†(f )) � Inverse Fourier transform
μ† = f −1

μ (r†,σ0) � Eq. (21)
while � > 0.1 do

s†(t) → P†(s†) � estimating cumulative prob.
s†,G(t) = P −1

G (P†(s†(t)),μ†,σ
2
0 ) � Eq. (17)

s̃†,fc
(f ) = F(s†,G(t))�(fc − f ) � Eq. (19)

s†(t) = F−1(s̃†,fc
(f ))

calculate �(s†(t)) � Eq. (20)
end while
return s†(t)

end procedure

G. Measures of spike-train similarity

Because a coarse approximation [Eq. (14)] and some ad
hoc transformations [Eqs. (17) and (19)] are used to calculate
our stimulus s†(t), we need to test the performance of the
computed stimulus to evoke the prescribed spike train x†(t).
To this end, we use a coincidence measure that defines the
similarity between two spike trains a and b with counts Na

and Nb within a time window T as [29]

�a,b = 1

1 − 2�Na/T

Ncoin − Nchance
1
2 (Na + Nb)

. (22)

In this formula the count of coincident spikes (determined
with a temporal precision of ±�) is referred to as Ncoin,
the chance level for two independent spike trains is given
by Nchance = 2�NaNb/T , and the normalization prefactor in
Eq. (22) ensures that �a,b is bound by 1. Specifically, �a,b is 0
for independent and is 1 for identical spike trains, respectively.
Throughout, we will use � = 2.5 ms as the temporal precision
for coincident spikes.

Generally, the measure �a,b [Eq. (22)] is asymmetric in Na

and Nb and therefore, if the spike trains a and b have different
firing rates, �a,b is affected by the order of a and b [30].
However, in the following we ensure that all spike trains that
are compared by this measure have a similar firing rate such
that this asymmetry can be neglected.

In the following we will apply the coincidence measure to
two output spike trains that are evoked by the same stimulus,

�ss = 〈�a,b〉a 	=b, (23)

where the average runs over all combinations of distinct spike
trains, labeled by indices a and b [all supposed to evoke
the same prescribed spike train x†(t)] and over all stimulus
realizations. We can, however, also ask how similar the output
spike train x(t), labeled by the index a, is to the prescribed
spike train x†(t), labeled by the index d, which is quantified by

�sd = 〈�a,d〉a,d . (24)

Here the second spike train (d) is simply x†(t) and we average
over all spike trains a that are evoked by the prescribed
stimulus s†(t) [which has been computed from x†(t)]and over
all different realizations of prescribed spike trains d.
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In summary, �ss quantifies the intrinsic reliability of a
simulated dataset while �sd measures the similarity between
simulated and prescribed spike trains.

III. RESULTS

The method described above can be applied to a real
neuron (as was done in Ref. [14]) or to neuron models
of varying complexity. Here we want to test the method
with the two neuron models given in Eqs. (1) and (2).
For the one-compartment model we make the distinction
between the suprathreshold and subthreshold regime, while
results for the two-compartment model are only given for the
suprathreshold regime. We choose these two models because
they have been used to describe the statistics of distinct cell
types and because they differ in their complexity and also in
their susceptibility. Hence, the comparison of the method’s
performance for the two models should give us an impression
of its robustness. In particular the difference in the susceptibil-
ity (an important model characteristics) is remarkable: while
the one-compartment model shows a monotonic decrease with
frequency in our specific parameter setting and can in general
also show resonances at intermediate frequencies (see, e.g.,
[20,31]), the susceptibility of the two-compartment model can
increase monotonically with frequency [14,19].

A. Results for the one-compartment model

When attempting to evoke spike trains with specific statis-
tics, it is plausible that the success depends on the similarity
between the statistics we try to evoke and the reference
statistics of the neuron under white-noise stimulation. It may
also depend on in which firing regime (either suprathreshold,
i.e., mean driven, or subthreshold, i.e., fluctuation driven)
the stimulated cell operates. In the following, we study
systematically the performance of the method, first for the
suprathreshold and then for the subthreshold regimes.

Suprathreshold regime. In Fig. 1 three raster plots illustrate
the model response to the calculated stimulus for prescribed
spike trains x†(t) (shown by red, thick markers above and
below the trials) of different intensity and variability.

For the top raster plot [Fig. 1(a)] the prescribed spike train
statistics agrees with the reference statistics (r† = 32.7 Hz =
r0, CV † = 0.68 = CV,0). This is the case that has been
investigated experimentally by Doose et al. [14]. As we can
expect from this previous study, the method seems to work
well and the generated spike times coincide reliably with the
prescribed spike times.

Figure 1(b) displays a raster plot for which the prescribed
rate and CV are lower than the reference statistics: r† =
19.6 Hz < r0, CV † = 0.24 < CV,0. Such a more regular spike
train with a lower rate can also be reliably evoked with our
scheme. This is somewhat in contrast to the opposite case of
a prescribed spike train with increased rate r† = 45.8 Hz > r0

and increased variability CV † = 1.15 > CV,0 [Fig. 1(c)]. In
this case, the evoked and the prescribed spike trains are less
similar than for the other cases. In particular, the long ISIs
that were present in the prescribed spike train are not reliably
reproduced by the evoked spike trains.

(a) (b)

(c) (d)

FIG. 3. One-compartment model, Eq. (1). Performance of the
method in reproducing the prescribed statistics and spike times: (a)
evoked rate r over the prescribed rate r†; (b) evoked CV over the
prescribed CV †; (c) intrinsic reliability, �ss (middle, dashed curve),
the similarity between evoked and prescribed spike trains, �sd (lower
curve), and the ratio of both (upper curve) as functions of the
prescribed firing rate r†; (d) same as in (c) but vs prescribed CV †.

To investigate more systematically how under the imposed
constraints rate and CV of the prescribed spike train can be
matched by the evoked spike train, we compare in Fig. 3
the evoked rate r and CV with the prescribed rate r† and
CV †. Deviations from the dashed diagonal lines (identity
between evoked and prescribed statistics) quantify the failure
in reproducing the basic statistics (dotted lines indicate the
reference statistics r0 and CV,0). Figure 3(a) illustrates that
the evoked rate successfully reproduces the prescribed rate
(the resulting rate is very close to the diagonal). This is not
so surprising because we use for the mean input Eq. (21), i.e.,
the value of μ that evokes the prescribed firing rate in an IF
model with bandpass-limited white noise. Deviations could be
possible because the noise is not white anymore but colored.
However, the small deviations indicate that the effect of the
noise color on the mean rate is minor.

The variability of firing as quantified by the CV [Fig. 3(b)]
is close to the prescribed value only for values smaller or
equal to CV,0 (here the mean input and the firing rate is fixed).
Apparently, by changing the color of the noise, it is possible
to reduce the variability of firing but it seems to be more
difficult to increase the variability (at least, with our method
and compared to the case of bandpass-limited white noise).
These observations are in line with our discussion of the raster
plots in Fig. 1. We expect that the prescribed CV may be
reproducible over the entire range if the constraint of a fixed
variance σ 2 would be relaxed.

For spike trains with comparable rates it is reasonable to
calculate spike train similarity in terms of the coincidence
factor between output spike trains, Eq. (23), and between
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FIG. 4. One-compartment model, Eq. (1), suprathreshold (mean driven) firing regime. Comparison between prescribed and evoked rate
and coefficient of variation (a),(b) and between prescribed and evoked spike times (c),(d); power spectra of designed Gaussian stimuli (e)–(g).
Thick lines within the surfaces indicate either r† = r0 or CV † = CV,0 and the intersection corresponds to the reference statistics r0, CV,0 in
Fig. 1(a). (a) The evoked firing rate in the plane of prescribed rate r† and CV †. (b) Same as (a) but with evoked CV on the z axis. (c) Same as
(a) but with the similarity between prescribed and evoked spike trains �sd on the z axis. (d) Same as (a) but the ratio of similarity and intrinsic
reliability �sd/�ss on the z axis. (e)–(g) Power spectra of the evoked stimuli for different values of r† and CV † as indicated. Different rates are
color-coded and marked by the vertical dashed lines at the respective frequency values; peak frequencies in (e), (f) increase with and appear
close to the firing rate.

output and prescribed spike trains, Eq. (24). In Figs. 3(c) and
3(d) we show the coincidence factor between simulated spike
trains �ss (quantifying the intrinsic reliability), the similarity
between simulated and prescribed spike trains �sd , and the
ratio of both coincidence factors �sd/�ss vs the values of the
prescribed rate [Fig. 3(c)] or CV [Fig. 3(d)].

Over the whole range of firing rates [Fig. 3(c)] both
measures reveal with �ss > �sd > 0.6 a large similarity
between evoked and prescribed spike times. Furthermore,
the two factors are almost constant and close to each other
(�sd/�ss close to 1), i.e., the output spike trains are roughly
as similar to the prescribed spike train as they are similar to
each other. Hence, our method appears to work equally well

for a whole range of firing rates and we can reproduce the
prescribed spike times with a high reliability.

The similarity measures display a weak dependence on the
variability of the prescribed spike train CV † [Fig. 3(d)]. As
can be expected from the above considerations, the similarity
is smaller for a prescribed spike train with higher variability.
We note in addition that although we found in Fig. 3 that
�sd < �ss , this is not the case for all parameter values (for
counter examples, see below).

In Fig. 3 we have only varied one parameter of the
prescribed spike train at a time, either r† or CV †, while the
respective other parameter was kept at its reference value.
In Fig. 4 output rate and CV and the similarity measures
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FIG. 5. One-compartment model, Eq. (1), subthreshold (fluctuations driven) firing regime. Comparison between prescribed and evoked
rate and coefficient of variation (a),(b) and between prescribed and evoked spike times (c),(d); power spectra of designed Gaussian stimuli
(e)–(g). Thick lines within the surfaces indicate either r† = r0 or CV † = CV,0 and the intersection corresponds to the reference statistics r0, CV,0

in Fig. 1(a). (a) The evoked firing rate in the plane of prescribed rate r† and CV †. (b) Same as (a) but with evoked CV on the z axis. (c) Same as
(a) but with the similarity between prescribed and evoked spike trains �sd on the z axis. (d) Same as (a) but the ratio of similarity and intrinsic
reliability �sd/�ss on the z axis. (e)–(g) Power spectra of the evoked stimuli for different values of r† and CV † as indicated. Different rates are
color coded and marked by the vertical dashed lines at the respective frequency values; peak frequencies in (e) increase with and appear close
to the firing rate.

are shown as functions of both r† and CV †, which is the
result of extensive numerical simulations: at 920 parameter
values we simulated 150 realizations of prescribed spike trains
and applied the iterative scheme to each of those yielding in
total 138 000 stimuli s†(t). For each stimulus, we use then
20 realizations of the intrinsic noise to obtain the statistics of
interest (output rate, CV, and similarity measures depending
on the prescribed values r†,CV,†).

We find that the prescribed rate is well matched by the
simulations [Fig. 4(a)], independent of the prescribed CV †. The
output variability [Fig. 4(b)], however, can be matched only for
CVs close to or smaller than CV,0. For larger prescribed values,

CV † > CV,0 we observe distinct deviations from the prescribed
values and these deviations are larger for large values of the
prescribed firing rate.

In Figs. 4(c) and 4(d) the similarity between evoked and
prescribed spike trains and the ratio of similarity and intrinsic
reliability are plotted. The overall performance is quite good
with �sd > 0.5 for all regions in which the prescribed CV †
was successfully generated. For larger prescribed CV † and
r† the similarity between evoked and prescribed spike trains
decreases. The ratio of similarity and intrinsic reliability
�sd/�ss attains values close to 1 for the whole region under
investigation.
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Besides the aspect of reproducing the prescribed spike
trains it is also of interest to see what the statistics of
the respective stimulus look like. We emphasize that this
reverses the situation commonly studied, namely, how a
neuron responds to stochastic stimuli of a certain statistics.
In contrast, here we fix the output statistics and compute the
corresponding input statistics—within the framework of the
imposed constraints, of course, that imply a constant area
under the power spectrum (yielding the fixed variance) and
vanishing power for f > fc.

In Figs. 4(e)–4(g) power spectra Ss†s† (f ) for stimuli that
correspond to different prescribed rates r† and CV † are
displayed. Typically, for neurons that fire more regularly (i.e.,
with a low CV), the power spectrum is sharply peaked around
the respective firing rate [Fig. 4(e)]. With increasing CV
[Figs. 4(f) and 4(g)], the stimulus power spectrum broadens
and, interestingly, the power spectra for different prescribed
values of the rate become more and more similar. In all panels,
spectra are only shown for cases in which the prescribed CV,
CV,†, could be well matched by the CV of the output spike
train.

Subthreshold regime. The results for the one-compartment
model in the subthreshold firing regime are shown in Fig. 5
and are similar to that for the suprathreshold regime. For
these simulations the reference mean input has been reduced
(μ0 = 200 nA) while all other parameters are unchanged.
Lowering the mean input also changes the reference value for
the firing rate and CV (r0 = 17.6, CV,0 = 0.8). In Fig. 5(a),
we observe that the prescribed firing rate is well reproduced
in the whole range of investigated firing parameters, while the
prescribed CV [Fig. 5(b)] can only be roughly matched for
values smaller than CV,0 and this discrepancy is particularly
pronounced for larger values of CV †, similar to the behavior in
the suprathreshold regime.

In terms of the coincidence measures [Figs. 5(c) and 5(d)],
the method works reasonably well but shows decreased perfor-
mance for more regular spike trains (lower CV †). The stimulus
power spectra [Figs. 5(e)–5(g)] qualitatively agree with that
for the suprathreshold case. For regular spiking, they show
pronounced peaks around the prescribed firing rate [Figs. 5(e)
and 5(f)] that are absent for larger values of CV † [Fig. 5(g)].

At low frequencies, the stimulus power spectra are more
strongly reduced than is the case in the suprathreshold regime.
One reason for this is the different shape of the susceptibility
(Fig. 6) that shows a more pronounced low-pass behavior for
the subthreshold case. The shape of the susceptibility certainly
strongly affects the power spectrum of our first guess for the
correct stimulus given in Eq. (16). In particular, because in
Eq. (16) we divide by χ0, i.e., a low-pass function, we amplify
the fluctuation amplitudes at higher frequencies in the stim-
ulus; this effect is more pronounced for stronger decreasing
χ0. However, this is certainly not a strict argument, because
the final stimulus, the power spectrum of which is shown in
Figs. 5(e)–5(g), has the spectrum of a nonlinearly transformed
variant of Eq. (16) due to the iterative steps that impose the
constraints of Gaussian statistics and finite-cutoff frequency.

In summary, the one-compartment EIF model can be
stimulated with a Gaussian noise to obtain a prescribed spike
train with firing rate and CV that vary over the physiological
range.

Two-compartment model (suprathreshold)
One-compartment model (suprathreshold)
One-compartment model (subthreshold)

FIG. 6. Susceptibility (absolute value) of the neuron models for
the cases: One-compartment model in subthreshold regime (yellow,
bottom line), One-compartment model in the suprathreshold regime
(red, middle line), two-compartment model in the suprathreshold
regime (blue, upper line).

B. Two-compartment model

We now turn to the two-compartment model, for which
the results are summarized in Fig. 7. Because (i) the neuron
model possesses two compartments, (ii) the parameters of
the model are quite different than for the one-compartment
model, and (iii) the stimulus is stronger in this case, we find
quantitative differences in all statistical measures. However,
the qualitative overall appearance is not so different from the
one-compartment model and reveals also for this model class
a good agreement between prescribed and evoked spike trains
over a broad range of parameters.

For the basic spike train statistics we obtain as in the
one-compartment model that the prescribed firing rate is well
matched [Fig. 7(a)] while the CV can be matched within our
constraints only if it is smaller or equal to the reference value
[Fig. 7(b)]. For all parameter values for which a good match
in rate and CV can be achieved, we obtain also a significant
similarity between prescribed spike train and output spike train
[Fig. 7(c)], i.e., �sd > 0.5. The fraction �sd/�ss [Fig. 7(d)] is
close to 1 and in a broad parameter region even larger than
1. This means that on average the evoked spike train is more
similar to the prescribed spike train than it is to a spike train
evoked in another trial.

As for the one-compartment model, the power spectra of
the stimuli show pronounced peaks at the prescribed firing
rate for regular firing [small CV † in Fig. 7(e)]. With increasing
CV † [Figs. 7(f) and 7(g)] these peaks broaden and vanish and
the spectra become more similar for different r†. In contrast
to the one-compartment model, the power spectra do not
have a dip at low frequencies but continuously decrease with
increasing frequency. This seems to be related to the shape
of the susceptibility, which is high-pass for this model (see
Fig. 6); this is similar to the arguments that we used when
discussing the reduced low-frequency power of the stimulus
for the one-compartment model in the subthreshold regime:
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FIG. 7. The performance of the two-compartment EIF model plotted in the (r†, CV †) plane (a)–(d). A comparison between prescribed and
evoked rate and coefficient of variation (a),(b) and between prescribed and evoked spike times (c),(d). The lines on the ground denote contour
lines of equal height, the thick lines within the surfaces mark the cases where either r† = r0 or CV † = CV,0. (a) The evoked firing rate in the
plane of prescribed rate r† and CV †. (b) Same as (a) but with evoked CV on the z axis. (c) Same as (a) but with the similarity between prescribed
and evoked spike trains �sd on the z axis. (d) Same as (a) but the ratio of similarity and intrinsic reliability �sd/�ss on the z axis. (e)–(g) The
power spectra of the stimuli for different r† and CV †. Different rates are color coded and marked by the vertical dashed lines at the respective
frequency values; peak frequencies in (e), (f) increase with and appear close to the firing rate.

the division by χ0 in Eq. (16) turns the high-pass shape of
the susceptibility (Fig. 6) into a low-pass shape in the power
spectrum of the stimulus [Fig. 7(g)]. Again this argument is
not rigorous because after division by the susceptibility, the
stimulus undergoes a number of nonlinear transformations to
impose the constraints of Gaussianity and vanishing power
beyond the cutoff frequency.

IV. DISCUSSION

We have tested the procedure to evoke a prescribed
spike train by a correlated Gaussian stimulus with sharp
cutoff frequency for two stochastic neuron models and for
the sub- and suprathreshold firing regime. We extended

the original procedure developed in Ref. [14] to the case
that the firing rate and the coefficient of variation deviate
substantially from the typical values observed for a white-noise
stimulus. Over a broad physiological range of parameters,
we could design Gaussian stimuli that indeed evoked in
the neuron model the prescribed spike trains with high
reliability.

In our study we did not optimize the input statistics in order
to match the rate and CV between prescribed and evoked spike
trains. However, in most cases such a match was achieved as
a by-product of our procedure of transferring the prescribed
spike train into a stimulus. Thus, an interesting result of our
efforts is the power spectrum of stimuli that evoke spike trains
with a certain rate and CV.
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For regular spiking (small CV †) the power spectrum of
the driving noise has a pronounced peak at the prescribed
firing rate. Hence, if we are free to distribute the noise power
over frequencies (within the prescribed frequency band),
fluctuations seem to be least harmful for the regularity of firing
if the main power is distributed around the firing rate. This
is an important insight that deserves further exploration: In
general, it is quite difficult to predict how the shape of the noise
spectrum will affect the firing statistics of a spike-generating
(hence highly nonlinear) neuron model (for some analytical
results on this problem for simple integrate-and-fire neurons,
see [32–34]).

For more irregular spiking (larger CV †) the spectrum
becomes broader and the peak vanishes. The results for the
two-compartment model indicate that a particularly irregular
spike train can be generated by a Gaussian noise that has most
power at low frequencies. We suspect that the variability-
maximizing power spectrum would be achieved for an in-
finitely slow stimulus (all power at zero frequency) because
for such a static stimulus ensemble the single realization of
the noise does not suffer any self-averaging that diminishes
the ISI variability of the driven cell. Also this limit of high
variability under a colored-noise driving is largely unexplored
(for some exceptions, see the review [35] and references
therein).

For simplicity we restricted this study to prescribed spike
trains that are renewal processes. In contrast, many neurons
show ISI correlations [36] and these correlations can be
important for information transmission [37–39]. It is therefore
an interesting question how ISI correlations in the prescribed
spike train will affect our results. As shown in Ref. [34],
temporal correlations in the input, i.e., the noise color, can
cause negative ISI correlations. Therefore, correlations of the
intervals in the prescribed spike train will presumably cause
a modification of the color of the input stimulus. Hence,
we expect that our method will also work for prescribed
spike trains with ISI correlations.

In this study the performance of our method was demon-
strated for two different neuron models (one-compartment or
two-compartment EIF models) and different parameter sets,
illustrating in this way the method’s robustness. For both
models we observed that the discrepancy between the CV
of the prescribed spike train and that of the evoked spike train
was largest for high CV. This inability of our method to evoke
more irregular spike trains is likely due to the constraint of a
constant stimulus variance. We recall that this constraint was
imposed because living neurons tolerate only stimuli up to a
certain input power. Note that even with a constraint stimulus
variance it would presumably be possible to evoke spike trains
with a high CV with neuron models that possess an intrinsic
bursting mechanism [40,41].

Because our method relies on the measurements of some
fundamental properties (firing rate r0, coefficient of variation
CV,0, susceptibility χ0, and firing rate curve fI ) it requires a
minimal degree of stationarity that allows to estimate these
properties. Another interesting question in this context is how
transients in the prescribed statistics, e.g., a slowly changing
rate or CV of the prescribed spike train, can be incorporated
into our method. One possibility for this could be to use
sequences of piecewise constant prescribed statistics. In this
case the method could remain unchanged and the change of
the spike-train parameters would be achieved by changing the
respective parameter from trial to trial.

Turning to applications, we hope that our method opens
up new opportunities in experiments. Testing the behavioral
response to specific spike patterns, for instance, becomes
possible with our method. In particular, the dependence of
the effect size of the behavioral response on the irregularity
of spike patterns [12] could be studied in a more systematic
manner than previously done. Although some experiments are
necessary to calculate the susceptibility and the rate-vs-input-
current relation, not too much data are needed to estimate these
functions. Due to its simplicity, our approach can be a useful
tool in reverse-physiology experiments.
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