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Abstract
Stochastic oscillations can be characterized by a corresponding point process; this is a common practice in computational
neuroscience, where oscillations of the membrane voltage under the influence of noise are often analyzed in terms of the
interspike interval statistics, specifically the distribution and correlation of intervals between subsequent threshold-crossing
times. More generally, crossing times and the corresponding interval sequences can be introduced for different kinds of
stochastic oscillators that have been used to model variability of rhythmic activity in biological systems. In this paper we
show that if we use the so-called mean-return-time (MRT) phase isochrons (introduced by Schwabedal and Pikovsky) to
count the cycles of a stochastic oscillator with Markovian dynamics, the interphase interval sequence does not show any
linear correlations, i.e., the corresponding sequence of passage times forms approximately a renewal point process. We
first outline the general mathematical argument for this finding and illustrate it numerically for three models of increasing
complexity: (i) the isotropic Guckenheimer–Schwabedal–Pikovsky oscillator that displays positive interspike interval (ISI)
correlations if rotations are counted by passing the spoke of a wheel; (ii) the adaptive leaky integrate-and-fire model with
white Gaussian noise that shows negative interspike interval correlations when spikes are counted in the usual way by the
passage of a voltage threshold; (iii) a Hodgkin–Huxley model with channel noise (in the diffusion approximation represented
by Gaussian noise) that exhibits weak but statistically significant interspike interval correlations, again for spikes counted
when passing a voltage threshold. For all these models, linear correlations between intervals vanish when we count rotations
by the passage of an MRT isochron. We finally discuss that the removal of interval correlations does not change the long-term
variability and its effect on information transmission, especially in the neural context.
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1 Introduction

A number of biological systems of rather different nature
display stochastic oscillations. The calcium concentration
within cells (Skupin et al. 2008), the deflection of mechan-
ical organelles like the hair bundle (Martin et al. 2003), the
position of molecular motors (Plaçais et al. 2009), the mem-
brane potentials of neurons (Bryant et al. 1973; Walter et al.
2006), and even the number of individuals in biological pop-
ulations (McKane and Newman 2005) can all show a quasi-
rhythmic behavior that is shaped and in some cases even only
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enabled by randomness. Stochastic models for such kind of
oscillations are diverse as well, including harmonic oscilla-
tors with damping and fluctuations (Uhlenbeck and Ornstein
1930; Schimansky-Geier and Zülicke 1990), randomly per-
turbed limit-cycle systems (see, Ebeling et al. 1986 for an
early example), and noisy excitable (Lindner et al. 2004) or
heteroclinic systems (e.g., Giner-Baldo et al. 2017).

Most models are complicated (multidimensional, non-
linear, and stochastic) and even the calculation of such
fundamental statistics as the stationary probability density or
the mean rotation period is difficult. Hence, researchers have
attempted reduced descriptions that would capture the salient
features of the system and enable, for instance, the analysis of
coupled oscillator systems. In the deterministic case (without
noise) the most successful simplification is a phase descrip-
tion: to every point in the multidimensional phase space we
assign a phase, reducing in this way a multidimensional sys-
tem to a one-dimensional description. The great success of
this mapping is that weak interactions between nonlinear
oscillators can be efficiently described in terms of the phase
response curve (Hoppensteadt and Izhikevich 1997).

To generalize the concept of a phase to the stochastic case
is nontrivial, and different notions of phase have been sug-
gested. The mean-return-time (MRT) phase by Schwabedal
and Pikovsky (2013) is a generalization of the stroboscopic
definition of a deterministic phase; while the asymptotic
phase introduced by Thomas and Lindner (2014) is a gen-
eralization of the long-term properties of two phase points
in the deterministic case. Here we focus on the first defi-
nition of phase, the MRT phase: Points in the phase space
belong to the same phase (they are on the same isochron) if
the mean time to return to the same curve after one rotation
is equal to the mean period of the oscillator. To implement
this condition according to this algorithmic definition is not
as straightforward as it may sound. More recently, Cao et al.
(2020) proposed an analytical definition for a special class of
planar white-noise-driven oscillators, which is based on the
well-known partial differential equation for the mean-first-
passage time with an unusual jump condition.

Another simplifying approach to oscillatory systems is to
associate a point process with the repetitive features of the
system: In neurons, for instance, upcrossings of a voltage
threshold have been used to define a spike train or, equiva-
lently, an ordered sequence of interspike intervals (ISIs); in
heart dynamics, the intervals between heartbeats have been
analyzed in a similar way. Besides the statistical distribu-
tion of the single intervals, its mean, variance, coefficient
of variation, skewness, etc., correlations among the intervals
have attracted attention because they may betray interesting
dynamical features of the system or the driving stimuli. Most
often, one focusses on the linear correlations as quantified by

the serial correlation coefficient (SCC)

ρk = 〈(Ii − 〈Ii 〉)(Ii+k − 〈Ii+k〉)〉〈
(Ii − 〈Ii 〉)2

〉 , (1)

where the average can be taken over the sequence of intervals
(i.e., over the index i) or, equivalently, over an ensemble of
spike trains (then i would be fixed). For a stationary sequence
of intervals, the SCC compares the covariance between two
intervals lagged by an integer k to the variance of the sin-
gle interval (this yields a number between -1 and 1). If
intervals are independent, as is the defining property of a
renewal point process, ρk = 0 for k > 0. (We always have
ρ0 = 1 by definition.) Note that this conclusion cannot be
reversed: A point process with vanishing SCC can still dis-
play nonlinear correlations and there might be a statistical
dependence among its intervals. Hence, strictly speaking, a
process with ρk = 0, ∀k > 0 is not necessarily a renewal
process. Still, because ρk is the almost exclusively used mea-
sure of nonrenewal behavior, wemay still regard a spike train
with vanishing linear correlations as being approximately
renewal.

In neurons, nonrenewal behavior, i.e., nonvanishing ISI
correlations may emerge because of slow (Lindner 2004;
Schwalger and Schimansky-Geier 2008) or quasi-rhythmic
(Bauermeister et al. 2013) stochastic stimuli, in networks due
to refractoriness of presynaptic neurons, short-term synaptic
depression (Schwalger et al. 2015), and, last but not least,
spike-frequency adaptation (Liu and Wang 2001; Chacron
et al. 2001); see Farkhooi et al. (2009); Avila-Akerberg and
Chacron (2011) for reviews on experimental data of the SCC
and its implications for signal transmission. Interbeat inter-
vals in heart dynamics show correlations as well due to the
often highly nonlinear and complex dynamics, see, e.g., Kim
et al. (2019); Goldberger et al. (2002).

We note that the most studied stochastic model of spike
generation, the one-dimensional integrate-and-fire model
driven bywhite noise would generate a renewal process—the
reset of the voltage after reaching a threshold would elim-
inate any memory of past intervals and the driving noise
is uncorrelated by assumption and cannot carry any mem-
ory either. In contrast, multidimensional stochastic neuron
models (which include, for instance, dynamical variables for
spike-frequency adaptation and/or colored noise) can gener-
ate richer (nonrenewal) spike statistics.

In this paper, we report the remarkable observation that
counting rotations in terms of theMRTphase in planarwhite-
noise-driven oscillators leads to a sequence of interphase
intervals (IPIs), for which linear correlations vanish. Put dif-
ferently, if we count spikes not with a standard threshold
but rather by the passing of an MRT isochron, the associ-
ated point process will be (at least approximately) a renewal
process.
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In the next section, we give the general rationale for
this result. We then look at specific examples in Sect. 3.
In Sect. 3.1 we analyze an isotropic noise-driven oscillator
with two stable limit cycles that, counted with a conven-
tional threshold, generates an ISI sequence with pronounced
positive correlations. In Sect. 3.2 we test our idea for an
integrate-and-fire model with spike-frequency adaptation
that is well known for its negative ISI correlations (Liu and
Wang 2001). Finally, in Sect. 3.3 we look at a conductance-
basedneuronmodelwith channel noise that hasweakpositive
ISI correlations if spikes are generated by upcrossings of a
voltage threshold. In all cases, counting rotations as passings
of the MRT isochron leads to an IPI sequence with vanish-
ing correlation coefficients. We conclude the paper with a
brief discussion of the implications of our result for model-
ing stochastic oscillations.

2 Model class and general result

Here we introduce the general model of a stochastic oscil-
lator with white noise and recapitulate how phase lines and
corresponding crossing times forming a point process can be
defined. We discuss the salient feature of the mean-return-
time phase and argue why linear correlations among the
corresponding interphase intervals should vanish.

2.1 The general oscillator model

We consider an n-dimensional nonlinear stochastic system,
given in terms of a system of Langevin equations:

ẋ = f (x) + g(x)ξ(t). (2)

Here f (x) is the n-dimensional drift vector, g(x) is an
n × k matrix (where k can be larger than n), and ξ(t) a k-
dimensional vector of white Gaussian noise processes with
vanishing mean values and correlation functions

〈
ξi (t)ξ j (t

′)
〉 = δi jδ(t − t ′), i, j = 1, . . . k ≥ n.

Here f (x) is the n-dimensional drift vector, g(x) is an
n×kmatrix. For technical reasons, we require that thematrix
g(x)g(x)ᵀ be invertible everywhere (see Cao et al. (2020)).
If the noise is multiplicative (g(x) �= const), it is always
interpreted in the sense of Itô. Furthermore, for certain types
of models (integrate-and-fire neurons), an additional reset
rule for the trajectory applies if it reaches certain bound-
aries. Much of what we discuss here is illustrated in terms
of two-dimensional (planar) systems with n = 2 but can be
generalized to higher dimensions. At the risk of stating the
obvious: the above system of Langevin equations describes

a Markov process x(t) (irrespective of whether a reset rule
applies or not).

We assume that the system undergoes stochastic oscil-
lations, i.e., it performs randomly timed rotations around a
center core and remains within an annulus-like domain (cf.
Fig. 1); for integrate-and-firemodels this is a bitmore compli-
cated because the trajectory remains within a certain cutout
of the annulus—the reset rule shortcuts a part of it but for
the moment we leave this complication aside. In the general
case, as a helpful construction, we impose reflecting inner
and outer boundaries. Both boundaries of the domain are cho-
sen such that reflections are rare events and the main share
of probability lies far from the boundaries. In many cases
we may also perform the limit in which the inner and the
outer boundary shrink to zero or go to infinity, respectively
(see Holzhausen et al. (2022); Holzhausen (2021) for some
examples). Here we are not interested in the mathematical
generality of the result but assume that the considered sys-
tem is sufficiently non-pathological such that the exact values
of the boundaries are not important (except for the behavior
close to those boundaries). We furthermore assume that for
the stochastic oscillator, the sets of constant phase (such as
the MRT phase or the asymptotic phase) are given by sim-
ple manifolds that can be parametrized by polar coordinates
as (r , φ(r)); this has been the case for all examples studied
by us and co-authors in the past (Thomas and Lindner 2014,
2015, 2019; Cao et al. 2020; Pérez-Cervera et al. 2021).

For a planar system we can define a simple connecting
curve � (or a connecting (n−1)-dimensional manifold for
an n-dimensional system) between the inner and the outer
boundaries. We count rotations by the crossings of �, or, put
differently, the return to this curve after the completion of
a rotation. The latter condition is important: Crossings of a
curve are a subtle issue in dynamical systems driven bywhite
noise because even if we restrict the crossings to be counted
only when occurring into the direction of rotation, there will
be infinitely many of them in a finite time if we count them in
a naive way without the condition of the completed rotation
(for the general problem of the number of crossings for a
stochastic process, see Stratonovich (1967)).

Helpful in this respect is a mapping of the trajectory in
Cartesian coordinates to a first-passage-time problem in a
transformed space with an angle variable and a number of
radius variables. This is evident in the two-dimensional case,
inwhichwe just transform to effective angle-radius variables,
as illustrated in Fig. 1. The connecting curve � in Cartesian
coordinates can now be numbered, according to the num-
ber of completed rotations, e.g., �0(r , φ), �1(r , φ), . . . . The
return of the trajectory starting at � to the very same curve �

in Cartesian coordinates is mapped in polar coordinates to a
passage from the curve �0 = (φ(r), r) to a copy of the curve
at �1 = (φ(r) + 2π, r).
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Fig. 1 Mapping from the stochastic oscillator dynamics in Cartesian
coordinates (a) to effective angle-radius coordinates (b). For simplicity
we consider a dynamics that is constrained to a ring-like domain by
imposed reflecting boundaries on an inner and an outer circle (or topo-
logically equivalent lines as in the sketch). Simple connections between
these boundaries define a phase line �. The return-time problem in
Cartesian variables poses some subtle problems that can be removed
by considering the passage-time problem between copies of the phase
line in angle-radius coordinates (�0, �1, �2 in (b). We show two rota-
tions (first in black, second in purple) in (a) and (b). Technically, the
mapping from (a) to (b) may involve as an intermediate step the map-
ping to a true annulus and from the true annulus to polar coordinates in
(b) (see Cao et al. (2020))

For certain obvious choices of the curve (spoke of a wheel
or, in the neural models, a voltage threshold), we call the
crossing times of the curves �i the spike times ti and the
intervals between adjacent spike times the interspike inter-
vals Ii = ti − ti−1. These intervals

..., Ii−1, Ii , Ii+1, ... (3)

form an ordered sequence of stochastic variables that will in
general be correlated, i.e., the correlation coefficient, defined
in (1), displays nonvanishing values, ρk �= 0 for k > 0.
We expect that correlations depend on the lag between two
intervals and that these correlations vanish as the lag goes to
infinity ( lim

k→∞ ρk = 0).

The stationary mean value of the intervals Ii

T̄ = lim
N→∞

1

N

N∑

i=1

Ii , (4)

themean rotation period, is independent of the specific choice
of �. To see this, consider the relation of T̄ to the winding
number, i.e., the mean number of rotations per time unit ν =
〈N (T )〉 /T obtained by time averaging over a long window
(0, T ):

ν = lim
T→∞

N

T
= lim

N→∞

(

t0 + 1

N

N−1∑

i=1

Ii + tN

)−1

= 1

T̄
,

Here, we have used that what we find in the denominator is
essentially the definition of the mean rotation period. (The
effect of the start and final intervals t0 and tN becomes neg-
ligible for N → ∞.) Because the winding number ν cannot
depend on the specific way we count the rotation, also T̄
(its inverse) cannot depend on the shape of � (as long as it
faithfully counts every single rotation at some point).

2.2 TheMRT phase and the associated point process

The MRT phase is defined as a set of special phase lines
�MRT,k , such that for all points which start with a given phase,
i.e., on the isochron �MRT,0 = (r , φMRT(r)), the mean time
to reach the very same isochron again after one rotation (or
in polar coordinates the copy �MRT,1 = (r , φMRT(r)+2π) is
equal to the mean rotation time of the oscillator, irrespective
of the starting point on the isochron, (r , φMRT(r)),

〈T (φMRT(r) → 2π + φMRT(r))〉 = T ∀ r− < r < r+ (5)

Note that the target radius variable upon return to � can
have an arbitrary value; the defining property of this special
isochron is that there is no dependence of the average interval
on the radius of the starting point on �0. For planar oscilla-
tors, Cao et al. (2020) showed that this definition uniquely
determines the phase mapping (apart from a trivial off-set of
the phase, of course). We also note that in the limit of van-
ishing noise, this corresponds to the classical phase of the
oscillator (if it exists).1

Subsequent passing of the isochrons �i at times ti can
be used to define a sequence of special interspike intervals
that we call in the following the interphase intervals (IPIs)
Ti = ti − ti−1:

. . . , Ti−1, Ti , Ti+1 . . . . (6)

On the notation: we reserve the letter Ii for a general interval
(including the interspike interval), while Ti is specifically the
interval for the MRT-phase-line crossings, i.e., the IPI.

The main result of our paper is that for the sequence in
(6), there are no linear correlations, i.e., ρk = 0 for k > 0.
Why should this be the case?

1 The convergence of the MRT isochron function to the determinis-
tic asymptotic phase function in the limit of vanishing noise was not
addressed in Cao et al. (2020), and a rigorous investigation of this ques-
tion lies beyond the scope of the present paper. In §3.2-3.3, we will
simply assume that the MRT isochrons converge to the deterministic
isochrons, so that we can approximate one via the other in specific
cases.
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2.3 Whywe can expect that IPI correlations vanish

We focus now on the passages from an arbitrary phase line �0
(not necessarily the MRT phase) to its 2π−shifted copy �1
and from �1 to �2, i.e., on the two subsequent passage times I1
and I2. The covariance between these two intervals 〈I1 I2〉 −
〈I1〉 〈I2〉 is the central piece of the correlation coefficient ρ1.
We can write the stationary average of the product of the
intervals as follows

〈I1 I2〉 =
∫

dr0

∫
dr1

∫
dr2

∫
d I1

∫
d I2

×I1 I2P(I1, I2, r0, r1, r2) (7)

Here the variable rk parametrizes the crossing point on the
curve �k and we have expressed the average by means of
the stationary probability density of the two intervals and
the initial and final points on the starting and the target line,
respectively2. Obviously, r1 describes the final point for I1
but also the initial point for I2, and for the Markov process
considered it is exactly this value r1 that can carry memory
between the intervals I1 and I2 (and also between I1 and any
higher interval I1+k with k > 1). If the interspike interval
sequence shows correlations, this is exclusively due to the
fact that the final point of the first interval coincides with
the initial point to the subsequent interval. If we choose the
phase curve in such a way that the expected interval is always
the same irrespective of the starting point, we eliminate the
source of (linear) correlations— this is why we expect that
correlationswill vanish for a sequence of interphase intervals.
In what follows we underpin this intuitive argument with a
calculation.

Because of the Markov property of the stochastic process
x(t), I2 will depend only on the initial point r1 but not on
the previous initial point r0. Based on this property, we can
simplify the probability density as follows

P(I1, I2, r0, r1, r2)

= P(I2|I1, r0, r1, r2)P(I1, r0, r1, r2)

= P(I2|r1, r2)P(r2|I1, r0, r1)P(I1, r0, r1)

= P(I2|r1, r2)P(r2|r1)P(I1|r0, r1)P(r1|r0)P(r0) (8)

Here we have systematically split up multivariate probability
densities into conditional densities and lower-dimensional
multivariate densities (according to the scheme P(x, y) =
P(y|x)P(x)) and have then used the Markov property to
reduce the number of conditions. The conditional probabil-
ity density for the second interval

2 For a Markov process as in (2), if it is started in the far past at a long-
forgotten initial condition, we can assume that passage times between
the curves �i follow a stationary statistics.

P(I2|I1, r0, r1, r2) does neither depend on the first inter-
val I1 nor on the initial point of the first interval, r0 and
thus we can replace this by the conditional probability den-
sity P(I2|r1, r2), which has fewer arguments. Similarly, the
statistics of the second target point r2 does not depend on
the first interval and its initial point r0 and this is why
P(r2|I1, r0, r1) reduces to P(r2|r1), etc.

Inserting (8) into (7), we can write the averaged product
as follows:

〈I1 I2〉 =
∫

dr0P(r0)

×
∫

dr1

∫
d I1 I1P(I1|r0, r1)P(r1|r0)

×
∫

dr2

∫
d I2 I2P(I2|r1, r2)P(r2|r1) (9)

We emphasize that this holds true for any phase line. If we
specifically use the MRT phase line (switching from the I
notation to the T notation), the conditional mean value of
the return time becomes independent of the initial point on �

(this was the defining feature of this line), and we obtain :

∫
dr2

∫
dT2T2P(T2|r1, r2)P(r2|r1) = 〈T 〉 . (10)

If we use this relation above, we can furthermore simplify
the second set of integrals:

∫
dr1

∫
dT1T1P(T1|r0, r1)P(r1|r0) = 〈T 〉 . (11)

With this, the above relation reduces to

〈T1T2〉 = 〈T 〉2
∫

dr0P(r0) = 〈T 〉2 . (12)

This, of course, corresponds to a vanishing covariance and,
consequently, a vanishing first correlation coefficient, ρ1 =
0. The above line of arguments can be repeated for intervals
T1 and T1+k with k > 1, and thus, we expect that linear
correlations vanish at all lags, i.e., ρk = 0 ∀k > 0. Finally,
we note that our argument does not exclude that nonlinear
correlations among the intervals can still exist—our deriva-
tion applies only to the linear correlations 〈T1T2〉−〈T1〉 〈T2〉
but could not be extended, for instance, to the variances of
the intervals because these follow a different phase line (as
shown by Holzhausen et al. (2022) for one example).
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3 Examples of stochastic oscillators

3.1 A planar oscillator with two stable limit cycles

We start with an example of a white-noise-driven isotropic
(rotationally symmetric) planar oscillator, the so-called
Guckenheimer–Schwabedal–Pikovsky oscillator (Gucken-
heimer 1975; Schwabedal and Pikovsky 2013)

ρ̇ = g(ρ) + σ ρ ξρ(t)

φ̇ = f (ρ)

g(ρ) = ρ (1 − ρ)(3 − ρ)(c − ρ) + σ 2 ρ/2,

f (ρ) = ω + γ (ρ − 2) − (1 − ρ) (3 − ρ). (13)

This system shows stochastic transitions between the two
stable limit cycles of the deterministic system at ρ = 1 and
ρ = 3 when overcoming an unstable limit cycle at ρ = c
(with 1 < c < 3); cf. Fig. 2a for an example trajectory in the
phase space.

If we count rotations in a simple manner by first upcross-
ings of φ = N2π (here N would be the rotation count or
winding number), we obtain a sequence of stochastic inter-
vals Ii that is clearly positively correlated (see Fig. 3). Why
do we see positive correlations? In simple terms, the speed
is different on the two limit cycles—the difference is deter-
mined by the parameter γ in (13). Consequently, the ISIs on
one of the limit cycles will be on average different to the
one on the other limit cycle, and both will deviate from the
mean ISI. If transitions between the two limit cycles are not
too frequent, we will see a number of shorter ISIs belong-
ing to the outer limit cycle followed by a subsequence of
longer intervals belonging to the inner limit cycle. Put dif-
ferently, adjacent intervals deviate in the same manner from
the mean interval which corresponds to positive interval cor-
relations. The mechanism is also illustrated in Fig. 2b: only
one Cartesian component of the oscillator is shown here,
clearly elucidating the difference in oscillation frequency and
the resulting subsequences of adjacent intervals that are all
shorter or all longer than the mean ISI. Indeed, as becomes
evident in Fig. 3b, counting intervals by the passages through
the spoke of a wheel leads to pronounced positive ISI corre-
lations.

The correlation lag is roughly givenby the number of inter-
vals it takes on average to switch between the limit cycles.
The observed correlation could be analytically described by
a theory that assumes Markovian switching of the firing
between two rates and coefficients of variation (see Schwal-
ger et al. (2012)).

For the system at hand, some of us have recently derived
an analytical expression for the MRT phase in the form of a
parametrization of the isochron (Holzhausen et al. 2022):
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Fig. 2 Guckenheimer–Schwabedal–Pikovsky oscillator. aA stochastic
trajectory in Cartesian coordinates showing the switching between the
two limit cycles (solid circles).bAspike sequence given by the crossing
times of a spoke (top) and one of the components as a time series
(bottom), revealing stochastic oscillations that are slower (for the inner
limit cycle) and faster (for the outer limit cycle) leading to subsequences
of shorter and longer intervals between spikes (see top panel)

φI(ρ) = 2

ρ∫

ρ−

dq

q∫

ρ−

du
f (u) − ω

σ 2u2
exp

[
−2

∫ q

u
dv

g(v)

σ 2v2

]
.

(14)

Here the mean rotation frequency (or, equivalently, the
inverse of the mean rotation period) can also be calculated
via (Holzhausen et al. 2022)

ω = 2π

T
=

∫ ρ+
ρ− dρ f (ρ) e−2

∫ ρ+
ρ dρ′ g(ρ′)/(σρ′)2

/(σρ)2

∫ ρ+
ρ− dρ e−2

∫ ρ+
ρ dρ′ g(ρ′)/(σρ′)2

/(σρ)2
.

(15)

We can now use this isochron to count rotations and create
a sequence of IPIs. If we measure their SCC, all linear cor-
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Fig. 3 Event cross sections in phase space (a) and serial correla-
tions of subsequent ISIs and IPIs (b) of the planar oscillator with two
stable limit cycles (Guckenheimer–Schwabedal–Pikovsky oscillator).
Stochastic periods Ti aremeasured with respect to three event cross sec-
tions in phase space: a threshold line (spoke), MRT isochron I and the
twisted MRT isochron φI−Twisted(ρ) = 5φI (ρ). The black dotted line
indicates the reflecting boundaries of the annulus domain at ρ− = 0.5
and ρ+ = 4.0. Model parameters: σ = 0.37, ω = 2.0, δ = 1.0,
c = 1.875. Numerical simulations of the model were performed using
an explicit Euler–Maruyama scheme with time step Δt = 10−4

relations are gone (see green line in Fig. 3b): ρk ≡ 0 for all
k > 0 in line with what we argued in Sect. 2.3. The isochron
in this case is not a straight line between the inner and the
outer boundary but it winds several times around the origin.
This gives inner-laying points (ρ < c) of the same phase
more head start compared to the faster moving points close
to the outer limit cycle (ρ > c) that move with higher mean
speed. And that is also the reason that the cause of positive
correlations is now absent because the different speeds close
to the outer and inner limit cycles are now compensated by
the different starting points.

We also note that the sequence of IPIs is significantlymore
irregular than the ISIs. Below in the discussion section we
uncover the general mechanism, why the CV should increase
(decrease)whenpositive (negative) correlations are removed.

Last but not least we report an interesting finding for a
counting curve that is five times as twisted as the isochron
(here we have usedφ(ρ) = 5φI (ρ)).In this case, correlations
between the respective intervals become slightly negative.
This illustrates that for aMarkov process, the geometry of the
counting line for the spikes or events controls the correlation
of the intervals. Choosing theMRT isochron as counting line
leads to vanishing correlations but in principle both positive
and negative correlations are possible.

3.2 An integrate-and-fire model with a
spike-triggered adaptation current

We turn now to a simple yet very successful neuron model,
the leaky integrate-and-fire (IF) model with an adaptation
current (Treves 1993; Liu and Wang 2001; Chacron et al.
2001; Benda and Herz 2003) endowed with white Gaussian
current noise (Schwalger and Lindner 2013). The equations
of this system are as follows

v̇ = μ − v − a + √
2Dξ(t),

τaȧ = −a + τaΔa

∑

i

δ(t − ti )
(16)

with an additional fire-and-reset rule: Whenever the voltage
variable reaches a certain threshold v(t) = vT a spike is fired
at time ti = t , at the same time v(t) is reset to some reset value
vR . In contrast, the adaptation variable a is increased by Δa

whenever a spike is fired. This does not require an additional
reset rule but is incorporated directly into the dynamics of
the adaptation variable by a sum over the delta functions.
(The sum runs over the spike times of the IF model.) Further
parameters are the mean input μ and the noise intensity D of
the Gaussian white noise ξ(t), that obeys the autocorrelation
function 〈ξ(t)ξ(t ′)〉 = δ(t− t ′). Here, we chooseμ such that
the deterministic neuron model (D = 0) is mean-driven, i.e.,
there is no stable fixed point between vR and vT , and even in
the absence of noise the neuron fires repetitively.

We can interpret this model as a two-dimensional oscilla-
tor,with the caveat that a certain part of the plane is cut out and
the dynamics in this cutout part are replaced by the fire-and-
reset condition—it is exactly the stereotypical shape of the
action potential that is not modeled in an integrate-and-fire
framework. We can still think of the deterministic dynam-
ics of the model for D = 0 as governed by a limit cycle
(Schwalger et al. 2010; Schwalger and Lindner 2013). This
limit cycle is represented by a thick black line in Fig. 4a: It
extends only from the reset line vR = 0 to the threshold line
vT = 1 and includes two infinitely fast parts, the increase of
the adaptation variable by Δa and the reset to the reset volt-
age vR . Indeed, in the deterministic system, all initial values
will lead to a trajectory close to the limit cycle.
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(a)

(b)

Fig. 4 The adaptive leaky integrate-and-fire model as a planar oscil-
lator. Panel (a) shows the deterministic vector field according to (16).
The limit cycle (including increase and reset) is represented by the
thick black line. The reset (vR = 0) and threshold (vT = 1) are shown
by dotted and dashed vertical lines, respectively. Panel (b) shows three
stochastic trajectories with corresponding ISIs In = tn+1− tn and spike
times tn . Dotted vertical lines in the upper panel indicate the times at
which a spike would have been expected in the renewal case given
that there has been a spike at tn , i.e., at tn + 〈I 〉. Because the first
ISI Ii is shorter than the average interval (ti+1 < ti + 〈I 〉) the fol-
lowing intervals Ii+k with k = 1, 2 are more likely to be prolonged
(ti+k > ti+k−1 + 〈I 〉, k = 1, 2) indicating negative interval correla-
tions over several lags k. Parameters (a, b): μ = 2, τa = 2, Δa = 1 and
D = (0, 0.1)

The standard way of counting spikes and generating a
sequence of ISIs is the passage of the voltage threshold;
equivalently, we can think of the reset events as forming a
point process. The ISIs are typically negatively correlated
(see blue circles in Fig. 5b) as is well known from the
theoretical literature (Liu and Wang 2001; Chacron et al.
2000; Schwalger et al. 2010; Schwalger and Lindner 2013;
Shiau et al. 2015) and also from experimental recordings
(see reviews by Farkhooi et al. (2009); Avila-Akerberg and
Chacron (2011)).

We consider here a case of weak adaptation, for which the
SCC is negative at all lags (Schwalger and Lindner 2013).
Why are correlations between adjacent intervals negative? In
Fig. 4 we have depicted three successive interspike intervals
(b, top) together with their stochastic trajectories (b, bottom).
The first trajectory (dark blue) starts close to the limit cycle

and reaches the threshold quickly. This can either be seen
from the top of panel (b) where Ii is much shorter than the
mean interval Ii < 〈I 〉 or from the bottom of panel (b) where
the trajectory crosses the threshold above the limit cycle (even
though it started close to the limit cycle). The latter is related
to the length of the interval because the dynamics of the
adaptation imply a simple exponential decay over the course
of an ISI. Hence, if we find a larger value of the adaptation
variable at the end of an ISI (compared to the limit cycle)
that is because this ISI was shorter than the mean ISI. Now
consider the second interval (green). The initial condition of
the adaptation variable for this trajectory is determined by
the length of the previous interval. In particular, since the
first interval was shorter than the mean, the initial value of
a for the second interval will be larger than on average (see
Fig. 4b—the green trajectory starts above the limit cycle).
From (16) it becomes evident that an increase in a will slow
down the v dynamics. The second trajectory will thus, again
on average, reach the threshold after some time that is larger
than the mean ISI. This can be seen in the top part of panel
(b), where the second interval is indeed prolonged Ii+1 >

〈I 〉. A weaker version of the same effect still applies to the
third trajectory (yellow), i.e., the trajectory still starts slightly
above the limit cycle. To summarize, an initial, shortened
interval leads to an increase of the adaptation variable that
prolongs the subsequent intervals—this is the mechanism by
which all subsequent intervals are negatively correlated with
the first interval.

In line with the above explanation, we expect that these
serial correlations vanish for the IPIs, i.e., the time between
successive crossings of the MRT-isochron. Even the deter-
ministic definition of the phase (D = 0) has not been studied
for this model to the best of our knowledge. For simplicity,
we restrict ourselves in the following to the deterministic
isochron that, for weak noise and in the mean-driven regime,
we assume to be a good approximation for theMRT-isochron;
we have extracted the phase isochron for the deterministic
system as outlined in the appendix Sect. A.

The resulting isochron for one specific phase φ = 2π is
shown in Fig. 5a; as can be seen, there are several branches
that belong to the same phase. This is a consequence of the
reset rule, which, in the simplest case, can be understood as
follows: Consider a point on the isochron that lies directly
on the threshold pT = (vT , a(vT )); due to the reset rule, a
trajectory that starts at pT will be reset to pR = (vR, a(vT )+
Δa) (see Fig. 8d). This reset does not take any time; therefore,
the return time to the isochron starting at pR or pT is the
same and both points should belong to the same isochron.
This argument is valid with one restriction: The deterministic
system has to pass the threshold at pT , i.e., v̇(pT ) > 0 must
hold true.

If we now count rotations for a weakly stochastic adaptive
integrate-and-fire model by the passage of a (deterministic)
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(a)

(b)

Fig. 5 Isochron and interval correlations for the adaptive leaky
integrate-and-fire model. a: Deterministic vector field including limit
cycle, reset, and threshold (dark blue line) but over a larger domain
compared to Fig. 4a and including the deterministic isochron with
phase φ = 2π (green line) and the horizontal (yellow) line as another
(rather arbitrary) example of how a spike sequence could be defined
(ln = {(v, a) | a = a0 + nΔa, v ∈ [vmin, vT ]}} with vertical spacing
Δa and a0 being the adaption variable of the limit cycle at the thresh-
old). Because the phase of the isochron was chosen to be φ = 2π the
isochron passes the limit cycle right at the threshold and accordingly
at the reset point, which corresponds to φ = 0. b: Interval correlations
where the intervals are defined as the time between the successive cross-
ing of the threshold, isochron, or certain horizontal lines, as shown in a.
Serial correlations of the ISI (blue circles) are negatively correlated; IPI
correlations (green circles) defined by the crossings of the isochrons
vanish as expected; intervals defined by subsequent crossings of the
horizontal lines are positively correlated (yellow circles). Parameters
(a, b): μ = 2, τa = 2, Δa = 1 and D = (0, 0.1)

isochron, we can construct a sequence of IPIs, for which the
SCC vanishes at all lags k to a very good approximation (see
Fig. 5b). Also the standard deviation of the IPIs is signifi-
cantly smaller than that of the ISIs as can be seen from the
distributions of the two types of intervals (see inset inFig. 5b).
Hence, for weak noise we confirm again our general result
derived in Sect. 2.3.

Interestingly, if we use an alternative phase definition that
is very different from both the constant voltage or the deter-
ministic isochron, namely, a set of horizontal lines (constant
adaptation, yellow in Fig. 5a), for counting rotations, the
serial correlation coefficient becomes positive (cf. yellow
circles in Fig. 5b; additional features of the interval’s prob-
ability density are discussed in the appendix, Sect. B). This

is yet another example for how the geometry of the count-
ing lines determines the correlations of the corresponding
interval sequences.

3.3 A Hodgkin–Huxleymodel with channel noise

As our last example, we consider the classical Hodgkin–
Huxley model endowed with channel noise. Following
Skaugen and Walløe (1979), at the molecular level we take
the sodium channel to comprise three independent binary
“m” gates and one independent binary “h” gate, leading to
a channel state graph with eight vertices and 20 directed
edges. Similarly, we take the potassium channel to comprise
four independent binary “n” gates, leading to a channel state
graph with five vertices and eight directed edges. See Fig. 10
in appendix C for illustration. Given a total population of
Mtot sodium and Ntot potassium channels, we define the state
vectors

M = [M00, M10, M20, M30, M01, M11, M21, M31]ᵀ
∈ [0, 1]8 (17)

N = [N0, N1, N2, N3, N4]ᵀ ∈ [0, 1]5, (18)

each summing to unity. The net sodium conductance is M31

(the fraction of sodium channels in the open state) multiplied
by gNa (themaximal sodium conductance); the net potassium
conductance is gKN4. Each of the 28 directed edges in Fig. 10
represents a particular channel state transition, i.e., opening
or closing a single gate. We take each such edge to be an
independent source of fluctuations. In the large channel pop-
ulation limit, the resulting diffusion approximation (Fox and
Lu 1994; Goldwyn and Shea-Brown 2011; Goldwyn et al.
2011) gives a system obeying the following set of Langevin
equations (Pu and Thomas 2020, 2021):

C
dV

dt
= −ḡNaM31(V − VNa) − ḡKN4(V − VK)

−gL(V − VL) + Iapp, (19)
dM
dt

= ANa(V )M + SNaξNa(t), (20)

dN
dt

= AK(V )N + SKξK(t). (21)

Here, C (μF/cm2) is the capacitance, Iapp (nA/cm2) is the
applied current, the maximal conductance is ḡion (mS/cm2),
Vion (mV) is the associated reversal potential, for ion ∈
{Na+,K+}, and the Ohmic leak current is gleak(V − Vleak).
The voltage-dependent drift matrices, ANa (8 × 8) and AK

(5×5), and the 8×20 Na+ noise coefficient matrix SNa, and
the 5 × 8 matrix SK, are derived by Pu and Thomas (2020,
2021) and reproduced in Appendix C.
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For this 14-dimensional HH systemwe extract a sequence
of interspike intervals (ISIs) and interphase intervals (IPIs)
as follows.

In order to find the sequence of voltage spikes, we set
a threshold voltage of Vth = −20 mV. Each spike time is
determined as the upcrossing time of Vth. Because all noise
in the model is contained in the gating variables, rather than
the voltage, the voltage is continuously differentiable and
there is no ambiguity about the spike times.

In order to find the interphase interval sequence, we track
the times at which the simulated trajectory crosses the deter-
ministic isochron that passes through the deterministic limit
cycle trajectory at V = Vth. Cao et al. provided a method for
calculating the MRT isochrons for planar systems, but the
method does not readily extend to a 14-dimensional phase
space. However, in the small noise regime, we assume that
the MRT isochron is close to the classical deterministic limit
cycle isochron, which we use as an approximation. Thus we
track the phase of the trajectory andmark one isophase cross-
ing every time the phase advances by 2π . See Appendix C
for details.

If we simulate the system for a large number of channels
(implying a weak noise intensity) and measure spike times
and corresponding ISIs by upcrossings of a voltage thresh-
old, we observe a weak but significantly negative correlation
ρ̄1 = −0.0226 ± 8.9194e-04 (mean ± standard error of the
mean (SEM)). Here we simulate the stochastic HH model
using the same framework as Eq. 3 by Pu andThomas (2021),
and set ε = 0.0281. Themean and standard deviation are cal-
culated from 400 simulations, where each single simulation
contains more than 10,200 ISIs. If we measure IPIs using the
deterministic phase (which for weak noise should be rather
close to the stochasticMRT phase), we get a correlation coef-
ficient at lag one of ρ̄1 = −0.0012±8.9317e-04.We applied
the one-sample t-test to test the null hypothesis that ρ1(ISI)
has amean zero at the 5% significance level (andρ1(IPI) sim-
ilarly). The test result rejects the null hypothesis for the ISIs,
with a p-value = 5.9797e-85, and accepts the null hypothe-
sis for the IPIs, with a p-value = 0.1927. Hence, as for the
other two systems we can confirm our general result.

To further illustrate the significance or insignificance of
the negative correlation coefficient at lag one,we compare the
ISI and IPI statistics to that of the corresponding sequences
of shuffled intervals. We recorded ρ1 for each permutation
and plotted a histogram. Figure 7 presents an example of
the distributions of ρ1 for ISIs and IPIs with 1000 ran-
domly permutations. The mean(ρ1) (in red) is the mean of
the ρ1 values, obtained from the 1000 permutations, which
are almost 0 in both cases. Mean(ρ1(ISI)) = −1.4626e-04
and mean(ρ1(IPI)) = −4.1438e-04. The actual ρ1’s of the
original (unshuffled) spike trains are plotted in a black bar,
where ρ1(ISI) = −0.0232 and ρ1(IPI) = −7.7171e-04. The
one-sample t-test suggested to accept the null hypothesis that
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Fig. 6 Negative ISI correlations in the stochastic Hodgkin–Huxley
model and vanishing correlations for the associated IPI sequence. The
inset shows the statistical distribution of ρ1 for the ISIs (in light blue)
and IPIs (in green) based on an ensemble of 400 trials (each containing
more than 10,200 oscillations). Error bars indicate the mean ± SEM

Fig. 7 Validating the significance of negative serial correlation coef-
ficient. Each histogram plots the distribution of ρ1 for 1000 randomly
shuffled sequences of ISIs (top) or IPIs (bottom). Black bar: ρ1 of the
unshuffled sequence. Red: mean ρ1 of the shuffled sequences

“mean(ρ1(ISI)) (and mean(ρ1(IPI))) has a mean zero” at the
5% significance level, with a p-value of 0.6357 for ISIs and
0.1731 for IPIs. Given the distributions of the ρ1(ISI) with
permutations, the z-score of observing ρ1(ISI) = −0.0232 is
−1.6989e03, whose probability is almost zero. For the IPIs,
the z-score of observing ρ1(IPI) = −7.7171e-04 is -1.0851,
where we are in favor of the null hypothesis that ρ1(IPI) is
from the distribution of ρ1 for the shuffled IPIs.

4 Discussion and conclusions

We have found an interesting property of the recently intro-
duced MRT phase in multidimensional oscillator models:
Rotation counts of these systems form in general a non-
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renewal point process if standard threshold criteria are used;
however, if the isochron of the MRT phase is used, at least
linear correlations would vanish. This finding has beenmath-
ematically derived above but can also be intuitively under-
stood as follows. For a Markov process correlations between
adjacent passage intervals can arise only due to their shared
point in space (which is the final point of the first interval
and the initial point for the second interval). The correlation
between the intervals can be regarded as a conditional mean
value of the second interval, but if this mean value becomes
independent of the initial point in space (the point on theMRT
phase line), it becomes independent of the first interval.

Counting according to the MRT phase gives us thus an
(approximate) renewal process, which is a great simplifi-
cation because for these processes many formulas for their
basic statistics and relationships between different statistics
are known (Cox 1962). It might even be possible to use this
mapping (from themodel’s phase space to theMRT phase) to
find novel ways to calculate the serial correlation for the stan-
dard threshold counting, although we have to admit at this
point that we have not yet an idea how to practically do this.

One motivation for the calculation of the interspike inter-
val’s correlation coefficient is the effect that ρk has on the
long-termvariability of the spike train. In particular, the long-
term asymptotics of the Fano factor of the counting process
is given by

lim
T→∞ F(T ) = lim

T→∞

〈
(N (T ) − 〈N (T )〉)2

〉
/ 〈N (T )〉

= C2
V (1 + 2

∞∑

k=1

ρk). (22)

Hence, purely negative correlations over all lags, for instance,
are known to reduce the Fano factor while positive corre-
lations will increase it. The long-term Fano factor is also
intimately related to the spike-train power spectrum via the
relation (Cox and Lewis 1966)

lim
f →0

S( f ) = r0 lim
T→∞ F(T ) = r0C

2
V (1 + 2

∞∑

k=1

ρk), (23)

where r0 is the firing rate of the neuron (the inverse of the
mean ISI). Negative correlations, for instance, can lead to a
considerable drop of power at low frequencies while positive
correlations boost the spectrum in this range. These effects of
correlations on the spontaneous power spectrum can be rel-
evant for the transmission of weak time-dependent signals
in the neural spike train (Chacron et al. 2004; Lindner et al.
2005; Blankenburg and Lindner 2016), because the sponta-
neous spectrum (the spectrum in the absence of a stimulus)
serves as the background spectrum in the presence of a stim-
ulus and may affect the signal-to-noise ratio.

Does this mean that with the removal of negative correla-
tions in the neuron model with adaptation, we have removed
the potentially beneficial effect as well? We do not think
that this is the case for the following reason. The long-term
statistics of the count will not depend on the exact way we
count phase rotations or spikes as long as we do not leave
out events or introduce new ones. Hence, we expect that irre-
spective of the way we count rotations, the long-term values
of the count’s mean and variance is always the same and,
consequently, we have the same Fano factor in all cases, in
particular:

FISI = FIPI (24)

and thus we have

C2
V ,ISI

(

1 + 2
∞∑

k=1

ρk,I S I

)

= C2
V ,IPI. (25)

In all our examples, we have checked this relation numer-
ically and confirmed it. It also concisely explains why a
renewalization of the spike train of an adapting neuron comes
along with a reduction of the CV, while in the case of a sys-
tem with bistable behavior and positive ISI correlations, the
CV becomes larger when going over to the IPI sequence.

For the special case of an integrate-and-fire dynamics
with an adaptation current, the non-renewal dynamics has
been related by Nesse et al. (2010, 2021) in another way to
the variations of an independent (renewal-like) variable, the
increments in the adaptation variable. The authors of these
studies also speculate how this independent variable might
be read out by a postsynaptic readout neuron via matched
synaptic kinetics. Whether the relation to the increments of
the adaptation variable is somehow related to our mapping
to the MRT phase and the approximated renewalization is
unclear at themoment but certainlyworth further exploration.
Likewise, it would be interesting how the phase concept and
the vanishing of the correlation coefficient apply to general-
ized models of adapting neurons, for instance, models with
subthreshold adaptation components (Shiau et al. 2015) or
correlated Gaussian noise (Ramlow and Lindner 2021).
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Fig. 8 Numerical procedure to determine the deterministic isochron.
For a detailed description see themain text of Sec.A. Parameters:μ = 2,
τa = 2, Δa = 1 and D = 0

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendices

A Numerical procedure for the deterministic
isochron of the leaky integrate-and-fire
model with adaptation

We assume that the deterministic system approaches for all
initial conditions a limit cycle with period T . To construct the
isochron we proceed as follows. First, we choose a point on
the limit cycle p0 = (v0, a0) that serves as a starting point for
the construction of the corresponding isochron. The phase of
that point can easily be found using that i) the phase on the
limit cycle at the reset and threshold voltages are φ = 0 and
φ = 2π , respectively; ii) the phase evolves with constant
velocity φ̇ = 2π/T (sometimes φ̇ = 1/T if φ ∈ [0, 1]).

Second,we construct the isochron above (right) and below
(left) the limit cycle separately. Starting above, we choose a
point that is off the limit cycle (not yet necessarily on the
isochron) p1 = (v1, a1) and define a straight-line segment

l0→1 = {(v, a) | a = a0 + a1 − a0
v1 − v0

(v − v0), v ∈ [v0, v1]}}

that connects p0 and p1 (see Fig. 8a). This segmentwill even-
tually become a local linear approximation of the isochron.
Let p1 evolve according to (16) with D = 0 and measure
the return time τ from p1 to l0→1. Note that it is guaran-
teed that the trajectory will pass l0→1 because the stability
of the limit cycle implies that the trajectory gets closer to

the limit cycle (for an exemplary trajectory starting at p1 see
Fig. 8a black dotted line). If p1 is already on the isochron,
the return time will exactly match the deterministic period
τ = T . If that is not yet the case the adaptation variable of
p1 = (v1, a1) is adjusted as follows: If τ is smaller/larger
than T the variable a1 is increased/decreased by some value
εa . This defines a new point p̂1 = (v1, a1 ± εa) (see Fig. 8a)
for which the aforementioned procedure (define a curve from
p0 to p̂1, measure the return time τ , adjust a1) is repeated
until τ − T < ετ , i.e., until the return time is sufficiently
close to the deterministic period. (As an error criterion we
choose ετ = 10−3T .) We have now found one segment of
the isochron, namely l0→1.

Third, to find the whole isochron over a certain domain
[vmin, vT ] the isochron has to be extended. To do so, the
aforementioned procedure is in principle repeated for further
points pi = (vi−1 ± δv, ai−1) where pi−1 = (vi−1, ai−1) is
the previous point and δv is the v-spacing between adjacent
points on the isochron (see Fig. 8b). The connecting segment
li−1→i is defined as before but the return time is measured
with respect to the entire preliminary isochron

l0→i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l0→1, for v ∈ [v0, v1],
l1→2, for v ∈ [v1, v2],
...

li−1→i , for v ∈ [vi−1, vi ].

The procedure is repeated for the part of the isochron that
lies below the limit cycle (see Fig. 8c). Finally, due to
the reset rule, the isochron has multiple branches. This
was already explained in the main part. As a reminder if
pT = (vT , a(vT )) lies on the isochron so does pR =
(vR, a(vT ) + Δa) with the restriction that the determinis-
tic system has to pass the threshold at pT , i.e., v̇(pT ) > 0
must hold true. Starting at pR the isochron can be constructed
point-by-point as before.

B Features of the interval probability
densities of the leaky integrate-and-fire
model with adaptation

Here, we report an interesting finding for oscillators with
a reset mechanism and a counting procedure that deviates
from a simple voltage threshold passing. If the intervals are
not counted with respect to the crossing of the threshold
that defines the reset but some other line, we find that the
intervals fall into two categories with distinct interval dis-
tribution: Intervals during which the threshold was crossed
versus intervals during which the threshold was not crossed.
The distributions for these two types of intervals can be seen
in Fig. 9b, c where the darker distribution indicates that the
threshold was crossed. The actual interval distribution, i.e.,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Biological Cybernetics (2022) 116:235–251 247

0 1 2 3 4 5 6
I

0.0

0.5

1.0

1.5

P
(I
)

(a)
CV = 0.33
F (T ) = 0.043± 0.009

0 1 2 3 4 5 6
T

0.0

0.5

1.0

1.5

P
( T

)

(b)
CV = 0.20
F (T ) = 0.045± 0.004

0 1 2 3 4 5 6
I

0.0

0.5

1.0

1.5

P
(I
)

(c)
CV = 0.17
F (T ) = 0.044± 0.003

Fig. 9 Probability density for different intervals. The interval distribu-
tion is shown by a solid line. For each panel the intervals are defined as
the time between the successive crossings of a certain line. This curve
is either the threshold (a), isochron (b) or a set of horizontal lines with
vertical spacingΔa (c), cf. Fig. 5. Interestingly, andmost pronounced in
the third case intervals with (dark) orwithout (bright) threshold crossing
have distinct probability densities. Parameters: μ = 2, τa = 2, Δa = 1
and D = 0

the sum of the two aforementioned distributions, is plot-
ted as a solid line. The interval distribution for successive
crossings of horizontal lines, shown inFig. 9c, requires expla-
nation. The distribution of the intervals that do not include
a crossing of the threshold is a delta function, i.e., the length
of the interval is fixed because the decay of the adaptation
variable follows a completely deterministic dynamics. To be
more specific, consider two horizontal lines ln = {(v, a) |
a = a0 + nΔa, v ∈ [vmin, vT ]} with fixed a0 and n = 0, 1
and calculate the time it takes to get from l1 to l0. Because the
dynamics of the adaptation variable without reset are deter-
ministic, it will take exactly t1→0 = τa log(1 + Δa/a0) to
reach l0 given that the trajectory started at l1. Therefore, the
corresponding probability density is a delta function at t1→0

and accounts for approximately 20% of all intervals. Note
that even though the probability P(I ) includes a delta func-
tion the Fano factor is still preserved.
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Fig. 10 Transition state diagram for the stochastic Hodgkin–Huxley
model, redrawn with permission from Pu and Thomas (2021). A:
Na+ states and transitions. B: K+ states and transitions. States marked
in green shading represent conducting states M31 (Na+) and N4 (K+).
See App. C for voltage-dependent per capita transition rates for each
directed edge (αn , βn , αm , βm , αh and βh) Small blue numerals label the
directed edges 1-8 (K+ channel) and 1-20 (Na+-channel). Transitions
involving the Na+ channel fast activation (m) gates are marked with red
arrows
Table 1 Parameters used for stochastic Hodgkin–Huxley simulations

Symbol Meaning Value

C Membrane capacitance 1 μF/cm2

ḡNa Maximal sodium conductance 120 μS/cm2

ḡK Maximal potassium conductance 36 μS/cm2

gleak Leak conductance 0.3 μS/cm2

VNa Sodium reversal potential for Na+ 50 mV

VK Potassium reversal potential for K+ -77 mV

Vleak Leak reversal potential -54.4 mV

Iapp Applied current to the membrane 10 nA/cm2

A Membrane Area 100μm2

Mtot Total number of Na+ channels 6,000

Ntot Total number ofK+ channels 18,00

C Hodgkin–Huxley model details

C.1 HH channel state transition graph andmodel
parameters

In this appendix we provide details of the stochastic
Hodgkin–Huxley Langevin model. Figure 10 illustrates the
ion channel state transition diagram. Panel A shows eight
distinct sodium channel states, M = [M00, M10, M20, M30,

M01, M11, M21, M31]ᵀ, connected by 20 directed edges. Red
arrows indicate edges with fast transition kinetics (m-gate
transitions). Panel B shows five distinct potassium chan-
nel states, N = [N0, N1, N2, N3, N4]ᵀ, connected by eight
directed edges. Table 1 provides model parameters.
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The subunit kinetics for Hodgkin and Huxley parameters
are given by the following equations

αm(V ) = 0.1 ∗ (25 − V )

exp(2.5 − 0.1V ) − 1
βm(V ) = 4 ∗ exp(−V /18)

(26)

αh(V ) = 0.07 ∗ exp(−V /20) βh(V ) = 1

exp(3 − 0.1V ) + 1
(27)

αn(V ) = 0.01 ∗ (10 − V )

exp(1 − 0.1V ) − 1
βn(V ) = 0.125 exp(−V /80)

(28)

The mean field sodium transition rate matrix (cf. (20)) is
given by:

ANa(V ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ANa(1) βm 0 0 βh 0 0 0
3αm ANa(2) 2βm 0 0 βh 0 0
0 2αm ANa(3) 3βm 0 0 βh 0
0 0 αm ANa(4) 0 0 0 βh

αh 0 0 0 ANa(5) βm 0 0
0 αh 0 0 3αm ANa(6) 2βm 0
0 0 αh 0 0 2αm ANa(7) 3βm

0 0 0 αh 0 0 αm ANa(8)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (29)

The mean field potassium transition rate matrix (cf. (21))
is given by:

AK(V ) =

⎡

⎢⎢⎢⎢
⎣

AK(1) βn(V ) 0 0 0
4αn(V ) AK(2) 2βn(V ) 0 0

0 3αn(V ) AK(3) 3βn(V ) 0
0 0 2αn(V ) AK(4) 4βn(V )

0 0 0 αn(V ) AK(5)

⎤

⎥⎥⎥⎥
⎦

,

(30)

with diagonal elements

Aion(i) = −
∑

j : j �=i

Aion( j, i), for ion ∈ {Na,K}.

The noise coefficient matrices SK and SNa in (20)-(21) are
given by

SK = 1√
Nref

⎡

⎢⎢⎢⎢
⎣

−√
4αnn0

√
βnn1 0 0 0 0 0 0√

4αnn0 −√
βnn1 −√

3αnn1
√
2βnn2 0 0 0 0

0 0
√
3αnn1 −√

2βnn2 −√
2αnn2

√
3βnn3 0 0

0 0 0 0
√
2αnn2 −√

3βnn3 −√
αnn3

√
4βnn4

0 0 0 0 0 0
√

αnn3 −√
4βnn4

⎤

⎥⎥⎥⎥
⎦

,
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and

S(1:10)
Na = 1√

Mref

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−√
αhm00

√
βhm01 −√

3αmm00
√

βmm10 0 0 0 0 0 0
0 0

√
3αmm00 −√

βmm10 −√
αhm10

√
βhm11 −√

2αmm10
√
2βmm20 0 0

0 0 0 0 0 0
√
2αmm10 −√

2βmm20 −√
αhm20

√
βhm21

0 0 0 0 0 0 0 0 0 0√
αhm00 −√

βhm01 0 0 0 0 0 0 0 0
0 0 0 0

√
αhm10 −√

βhm11 0 0 0 0
0 0 0 0 0 0 0 0

√
αhm20 −√

βhm21

0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

S(11:20)
Na = 1√

Mref

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−√
αmm20

√
3βmm30 0 0 0 0 0 0 0 0√

αmm20 −√
3βmm30 −√

αhm30
√

βhm31 0 0 0 0 0 0
0 0 0 0 −√

3αmm01
√

βmm11 0 0 0 0
0 0 0 0

√
3αmm01 −√

βmm11 −√
2αmm11

√
2βmm21 0 0

0 0 0 0 0 0
√
2αmm11 −√

2βmm21 −√
αmm21

√
3βmm31

0 0
√

αhm30 −√
βhm31 0 0 0 0

√
αmm21 −√

3βmm31

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where S(i : j)
Na is the ith-jth column of SNa.

Note that each of the 8 columns of SK corresponds to the
flux vector along a single directed edge in the K+ channel
transition graph. Similarly, each of the 20 columns of SNa
corresponds to the flux vector along a directed edge in the
Na+ graph (cf. Fig. 10). Factors Mref = 6000 and Nref =
1800 represent the reference number of K+ and Na+ chan-
nels from Goldwyn and Shea-Brown’s model (Goldwyn and
Shea-Brown 2011).

C.2 Numerical steps to calculate the interphase
intervals

For the 14-dimensional HH system we extract the determin-
istic phase as follows.

• Given a sample trajectory X(t), we approximate the
deterministic infinitesimal phase response curve (iPRC)
near the limit cycle, Z̃(X(t)), by using the phase response
curve on the deterministic limit cycle

Z̃(X(t)) ≈ Ẑ(X(t))
Δ= Z

(
argmin

s

∣∣∣∣

(
γ (s) − X(t)

)ᵀ
Z(s)

∣∣∣∣

)
,

(31)

where γ is a point on the deterministic limit cycle and
Z is the infinitesimal phase response curve on the limit
cycle (LC).

• To calculate the interphase interval, we first set up an
isophase section (S0) that intersects the deterministic
limit cycle at the point (γ0), such that for all X(t) ∈ S0,
Ẑ(X(t)) = Z(γ0). The point γ0 is chosen to coincidewith
the upcrossing of the Schmitt trigger voltage Vth by the
deterministic limit cycle. Given a specific initial condi-

tion, there is a one to one correspondence between points
on the deterministic limit cycle, the time before it reaches
the end of the limit cycle, and the phase response curve.
We select the isophase section as a set of points that share
the same iPRC value, which guarantees the same return
time for all points on the same isophase section.

• Similarly as the one-dimensional case, the times that a tra-
jectory crosses a given isophase section are recorded, and
the time between consecutive crossing times are recorded
as the interphase intervals (IPIs). Numerically to do so,
we assign an index for each point on the LC, starting from
1 at the initial point.Whenwe use Eq. (31) to estimate the
iPRC, we also return the index of the point on LC. Note
that the isophase section (S0) can be identified either by
the phase response curve (Z(γ0)) on the LC, or its cor-
responding index on the LC. Here, we are collecting the
indices of iPRC (i.e., index of s in Eq. (31) on the LC) for
each point on the sample trajectory. In each full oscilla-
tion, we mark the first time that the indices recorded for
the trajectory cross a specific index (this is the threshold)
as the time for the IPIs, and linear interpretation is used
to approximate the exact threshold-crossing time.
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