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Analytical approach to the mean-return-time phase of isotropic stochastic oscillators
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One notion of phase for stochastic oscillators is based on the mean return-time (MRT): a set of points
represents a certain phase if the mean time to return from any point in this set to this set after one rotation is equal
to the mean rotation period of the oscillator (irrespective of the starting point). For this so far only algorithmically
defined phase, we derive here analytical expressions for the important class of isotropic stochastic oscillators.
This allows us to evaluate cases from the literature explicitly and to study the behavior of the MRT phase in
the limits of strong noise. We also use the same formalism to show that lines of constant return time variance
(instead of constant mean return time) can be defined, and that they in general differ from the MRT isochrons.
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I. INTRODUCTION

Oscillatory processes encountered in physics and biology
often come along with a substantial component of random-
ness and are then termed stochastic oscillations. Intracellular
calcium waves [1], neural action potentials [2], rhythmic fluc-
tuations in lasing intensity [3], and population oscillations of
prey-predator systems [4] all show pronounced fluctuations in
their amplitude as well as in the timing of the cycles.

In order to find a reduced description of such random
oscillations, in recent years efforts have been made to gen-
eralize the phase concept for deterministic oscillators [5,6]
(which has also been applied to systems with weak noise,
see, e.g., Refs. [7–10]) to the stochastic case [11] (see
also Refs. [12–16]). The first proposal, the mean–return-time
(MRT) phase by Schwabedal and Pikovsky [11], is an intuitive
generalization of the stroboscopic return-time-phase defini-
tion for deterministic oscillators: in the two-dimensional case,
with any starting point on the line of equal phase (isochron),
the mean return-time to the very same line after one rotation is
equal to the mean rotation period of the oscillator. Schwabedal
and Pikovsky suggested an algorithmic procedure to deform
a line until (experimental or simulated) data satisfy this crite-
rion. Cao et al. [17] showed more recently, that the MRT phase
for planar white-Gaussian noise-driven oscillators obeys a
partial differential equation with an unusual jump condition.

Based on Ref. [17] we present an analytical solution for
the MRT phase for the important class of isotropic stochastic
oscillators. The solution is given in terms of quadratures and
is exploited to explore the limit of strong noise and the role
of boundaries for so-far purely numerically treated examples
from the literature. Finally, our approach allows us to go be-
yond the familiar notion of isochrons (lines of constant mean
rotation time) to introduce a new construct, the isovariance
lines (lines of constant variance of the rotation time). We
demonstrate that the isovariance lines strongly differ from the
isochrons.

II. MODEL AND METHODS

We consider a class of rotationally invariant planar stochas-
tic oscillators (also called isotropic stochastic oscillators) that
obey

ρ̇ = g(ρ) + qρ (ρ) ξρ (t ),

φ̇ = f (ρ) + qφ (ρ) ξφ (t ), (1)

in polar coordinates, where ξρ,φ denote white-Gaussian noise
sources with 〈ξi(t ) ξ j (t ′)〉 = δi, j δ(t − t ′), i, j ∈ {ρ, φ}. If the
noise is multiplicative (qρ (ρ) �= const) we interpret it in the
sense of Ito [18]. We impose reflecting boundaries at an inner
circle with radius ρ− and an outer circle ρ+ such that the
dynamics is restricted to ρ− < ρ(t ) < ρ+. We assume that
there is a mean rotation around the origin, the rotational sense
of which may change depending on the parameters.

Because none of the functions on the right-hand side de-
pend explicitly on the phase φ, the stochastic dynamics is
rotationally invariant, which is why we refer to Eq. (1) as an
isotropic oscillator. In particular, we expect that the isochrons
for different phases ψ ∈ [0, 2π ] will be rotationally invariant
as well, and can be expressed via ϕ(ρ) = φI(ρ) + ψ . In the
following we calculate φI(ρ).

A. Derivation of the isochron expression

According to Ref. [17], the MRT isochrons are the level
sets of a mean-first-passage-time function T (ρ, φ). Given a
curve in our two-dimensional domain as a simple connection
between the inner boundary at ρ− and the outer boundary at
ρ+, we can ask how long it takes the oscillator to return to
this curve after having completed one rotation. This time is
a random variable the mean value of which will, in general,
depend on the starting point (ρ, φ) on the considered curve.
The family of curves for which the mean value of the return
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time does not depend on the starting point constitutes the MRT
phase isochrons.

The mean-first-passage-time function is the solution to the
partial differential equation

L† T (ρ, φ) =
[

g∂ρ + f ∂φ + q2
ρ

2
∂2
ρ + q2

φ

2
∂2
φ

]
T (ρ, φ) = −1.

(2)
L† is the adjoint of the Kolmogorov forward operator, i.e.,
the operator associated with the so-called backward Fokker-
Planck equation [18]. Reflecting boundary conditions for the
forward equation imply the following adjoint boundary con-
ditions for T (ρ, φ) (cf. Ref. [18], Sec. 5.2.4)

q2
ρ ∂ρT (ρ, φ)

∣∣
ρ=ρ±

= 0. (3)

In addition to that, T (ρ, φ) satisfies a periodic-plus-jump
condition at an arbitrary connection between the inner and
outer boundaries (here we choose for simplicity the line φ = 0
and consider a counterclockwise rotation):

T (ρ, 2π ) + T = T (ρ, 0). (4)

T denotes the mean period, the time it takes one realization
of the process on average to perform one revolution around
the origin. Following Ref. [17], we assume f , g, qρ, qφ ∈ C2

as well as q2
ρ (ρ) > 0 and q2

φ (ρ) > 0 for all ρ ∈ [ρ−, ρ+]. The
choice of polar coordinates translates the rotational invariance
of Eq. (1) into a translational invariance in the angular coor-
dinate φ. Correspondingly, a symmetry-adapted solution is of
the general form

T (ρ, φ) = − T

2 π
φ + Tρ (ρ) (5)

that also fulfills the periodic-plus-jump condition. This
symmetry-adapted ansatz reduces the number of dimensions
in Eq. (2), giving an ordinary differential equation for Tρ in
ρ, which can be solved explicitly in terms of quadratures.
The isochron φI as a special level set of T (ρ, φ) can then
be parametrized according to φI(ρ) = 2πTρ (ρ)/T , leading to
our main result:

φI(ρ)=2

ρ∫
ρ−

dq

q∫
ρ−

du
f (u) − ω

q2
ρ (u)

exp

[
−2

∫ q

u
dv

g(v)

q2
ρ (v)

]
. (6)

The mean rotation frequency ω (essentially, the inverse mean
rotation period 2π/T ) is given by

ω = 2π

T
=

∫ ρ+
ρ−

dρ f (ρ)/q2
ρ (ρ) e−2

∫ ρ+
ρ

dρ ′q−2
ρ (ρ ′ ) g(ρ ′ )

∫ ρ+
ρ−

dρ q−2
ρ (ρ) e−2

∫ ρ+
ρ

dρ ′q−2
ρ (ρ ′ ) g(ρ ′ )

. (7)

We can make a few conclusions from the analytical result
Eq. (6) without any numerical evaluation: (i) qφ , i.e., the
strength of phase diffusion, does not enter the isochron
parametrization at all (all oscillators that only differ with re-
spect to qφ have the same isochrons); (ii) the slope of the phase
dφ/dρ is given by the difference between the local phase
progression speed f (ρ) and the average speed ω weighted
with the (normalized) steady state density of the radius and
averaged over the interval (ρ−, ρ); (iii) if the overall strength
of the radial noise increases without bounds and we keep the
two boundary values ρ± fixed at nonvanishing finite values,

the integrand in Eq. (6) approaches zero, i.e., the isochron
φI does not depend on the radius anymore and isochrons
approach the shape of spokes of a wheel.

B. Simulation methods

We validate our analytic findings by measuring the mean
rotation time T and testing the MRT phase isochrons for their
defining property in numerical simulations. The Itô equations
are solved using the Euler-Maruyama method with a time step
of �t = 10−4, taking the reflecting boundaries of the domain
into account. T is a stationary property that is inferred from
the trajectories of the unwrapped phase φ(t ) by

T = 2π
tfinal − tstart

φ(tfinal) − φ(tstart )
(8)

at long simulation times tfinal − tstart = 105. To test the
isochron property, the first return times T (ρ0) are measured
for different initial positions (ρ0, φI (ρ0)) along the isochron
across an ensemble consisting of N = 105 realizations. The
system is simulated on an extended domain [ρ−, ρ+] × R
which allows the angular coordinate φ to take any real value.
On that domain the same isochron is repeatedly represented,
representations being separated by 2π in φ. In this setup, a
return event corresponds to a first passage from (ρ0, φI (ρ0))
to the curve (ρ, φI (ρ) + 2π ) (if the mean rotation is math-
ematically positive) or to the curve (ρ, φI (ρ) − 2π ) (if the
mean rotation is mathematically negative); this condition en-
sures that the system has rotated once around the origin. The
mean return times are calculated as the first moments of the
return time distribution in the ensemble 〈T (ρ0)〉. In a similar
fashion, we can also compute the variances of the return times
〈�T 2(ρ0)〉 for starting points on the so-called iso-variance
curves (see Sec. IV). A related calculation of the variance of
the return time was obtained by Ref. [19] in the small-noise
limit.

III. SPECIFIC EXAMPLES

We now turn to different examples for rotationally sym-
metric stochastic oscillators and study the structure of the
isochrones.

A. Newby-Schwemmer oscillator

This is given by Ref. [20]

ρ̇ = −γ ρ (ρ2 − 1) + D

ρ
+

√
2 D ξρ (t ),

φ̇ = ω + ω γ c (1 − ρ)2 +
√

2 D

ρ
ξφ (t ). (9)

The sense of rotation is counterclockwise on the limit cycle at
ρ = 1 but, for c < 0, turns to clockwise when the trajectory
deviates sufficiently both towards the inside and the outside.
With noise, the occupation probability w.r.t. ρ determines
whether the net rotation goes clockwise or counterclockwise
[20], and at the transition point D = Dt between both regimes,
the mean rotation time diverges [see Fig. 1(c)].

The deterministic isochron [dark green line in Figs. 1(a)
and 1(b)] has a hooklike shape, because points away from
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FIG. 1. MRT-Isochrons of the Newby-Schwemmer model.
(a) Isochron parametrization φI(ρ ), Eq. (6). (b) Isochrons (col-
ored), reflecting boundaries (dotted) and limit cycle (solid black)
[isochrones for different D are arbitrary aligned to start at φ = 0
on the inner boundary ρ−]. (c) Mean period T vs D according to
theory (lines) and simulations (circles). (d) Mean return-time 〈T (ρ0)〉
to a curve vs initial position ρ0 on this curve, for the curve being an
isochron (circles, different colors represent different D) or a spoke
(triangles, here D = 0.1).

the limit cycle need some head start (net rotation is coun-
terclockwise). For nonvanishing noise this principal shape
is maintained: for D < Dt the net rotation is still counter-
clockwise, and points off the limit cycle need a headstart;
for D > Dt these points need a “later” start (net rotation is
clockwise), thus the isochron has the same curvature. In addi-
tion, with increasing noise intensity D the isochrons become
flatter, approaching the spoke of a wheel (dashed black line)
as predicted by our general conclusion (iii) above.

We checked the constant-MRT property by performing ex-
tensive simulations with ensembles of stochastic trajectories
for a certain noise intensity D starting on the corresponding
isochron. Indeed, the MRT for a given noise intensity from
and to the isochron do not depend on the specific starting point
along the isochron [circles in Fig. 1(d)]. In marked contrast,
choosing (for a comparatively small noise intensity) as initial
set and target line the spoke of a wheel, the mean return times
do depend on the initial position [triangles in Fig. 1(d)].

B. Guckenheimer-Schwabedal-Pikovsky oscillator

A classic example of a deterministic system, in which the
definition of phase is problematic, is one with two limit cycles
with distinct rotation frequencies (this example goes back to
Guckenheimer [6]). As shown numerically by Schwabedal
and Pikovsky [11], with noise, transitions occur between the
attraction domains of the two limit cycles and thus the MRT
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FIG. 2. MRT-Isochrons of the Guckenheimer-Schwabedal-
Pikovsky oscillator. Panels as in Fig. 1 but for Eq. (10). Parameters:
ω = 3, c = 1.8, ρ− = 0.5, ρ+ = 4.0.

phase uniquely defines one phase for the entire system. This
system is given by

ρ̇ = ρ (1 − ρ)(3 − ρ)(c − ρ) + σ 2 ρ

2
+ σ ρξ (t ),

φ̇ = ω + δ (ρ − 2) − (1 − ρ) (3 − ρ). (10)

The unstable limit cycle at ρ = c separates the basins of
attraction at ρ = 1 and ρ = 3. With noise, the unstable limit
cycle can be surmounted, smoothing the discontinuity, and
thus resulting in one stochastic isochron that is continuous
over the whole domain connecting both basins of attraction
[see Figs. 2(a) and 2(b)].

While MRTs for a given noise intensity remain constant for
initial positions along the corresponding isochron, they vary
significantly if the initial set and target line is a ray emanating
from the origin [cf. Fig. 2(d)]. For D = 0, the return time
suffers a jump by 2 δ between the basins of attraction (i.e.,
for an initial point ρ = c), reflecting the above-mentioned fact
that there is no unique phase for the deterministic system.
The stronger this jump is, the more twisted the stochastic
MRT isochron becomes (cf. lines for δ = 0.01 and δ = 0.2 in
Figs. 2(a) and 2(b); δ may also change how the mean rotation
period depends on the noise level [cf. Fig. 2(c)] We note that
for strongly increasing noise, the shape of the isochron flattens
as again expected from our general consideration.

C. A monomial model

According to what we have found so far, we may expect
that in the strong-noise limit (until now, the less explored
regime of stochastic oscillators), the isochrons always ap-
proach a radial spoke [conclusion (iii) above]. This, however,
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FIG. 3. MRT-isochrons of the monomial model. Presentation in
the panels is as in Fig. 1 but for Eq. (11) with n = 1, ρ− = 0, ρ+ =
∞. Simulations in (d) are, however, performed with ρ− = 10−4 ρ+ =
4.0 consequently, the MRT property is only obeyed for initial points
far from the outer boundary.

is only true for systems with finite boundaries. To show this,
we consider a particularly simple model system with mono-
mial frequency dependence, for which the integrals in Eq. (6)
can be expressed by elementary functions. The model obeys

ρ̇ = −α + D

ρ
+

√
2 D ξρ (t ),

φ̇ = −β ρn +
√

2 D

ρ
ξφ (t ), (11)

with positive parameters α, β and integer n, resulting in clock-
wise rotations with a speed that increases as a power law with
increasing radius. We are specifically interested in the limit
in which the inner boundary approaches the origin and the
outer boundary goes to infinity. In this limit, the MRT and
the isochrons can be expressed by elementary functions [21];
particularly simple and striking is the expression for n = 1:

lim
ρ−→0
ρ+→∞

α>0

φ(ρ) = β

α

ρ2

2
, lim

ρ−→0
ρ+→∞

α>0

T = α

2βD
. (12)

Hence, quite surprisingly, the MRT phase is completely inde-
pendent of the noise level but clearly different from a simple
ray [see Figs. 3(a) and 3(b)]. Specifically in the limit D → ∞
the isochrons do not converge to the spokes of wheel, which
is due to the absence of finite boundaries: for stronger and
stronger noise, the main share of probability moves to larger
and larger radii and the mean rotation time drops strongly
[see Fig. 3(c)].

We can test how important the infinite boundary condi-
tion is by running stochastic simulations with initial set and

target line with the isochron Eq. (12) but imposing a reflecting
boundary at a finite value ρ+ < ∞ [for this setting, Eq. (12)
is not the exact isochron]. For all noise intensities, the MRT is
flat as a function of the initial radius except for a finite region
close to the outer boundary [see Fig. 3(d)].

IV. ISOVARIANCE CURVES

The same approach used for the isochrons permits us to
calculate the lines of constant variance, that is, the lines for
which the return time to the line after one rotation possesses
the same variance irrespective of the starting point. It turns out
that these lines are the contour lines of the variance function,
obeying

L†� = q2
ρ (∂ρ T (ρ, φ))2 + q2

φ (∂φ T (ρ, φ))2 (13)

with a jump condition �(ρ, φ) = �(ρ, φ + 2 π ) + � which
can be solved for the isotropic oscillator by a similar ansatz
�(ρ) = �ρ (ρ) − φ�/(2π ) resulting in the parametrization
of the isovariance curve

φ�(ρ) = 2
∫ ρ

ρ−
dq

∫ q

ρ−
du

[
2π

�

(
q2

ρ (u)(∂uTρ (u))2 + q2
φ (u) T

2

4π2

)

− f (u)

]
exp

(
−2

∫ q

u
dv

g(v)

q2
ρ (v)

)/
q2

ρ (u). (14)
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FIG. 4. Isovariance curves for the Newby-Schwemmer oscilla-
tor.(a) Isochronal curve and curve of constant return-time variance of
the Newby-Schwemmer model in terms of angle variable vs radius.
(b) Same curves as in (a), in cartesian coordinates. (c) Mean return
time to isochrons, isovariance line, or spoke as function of the initial
point on the respective line. (d) Variances of the return times 〈�T 2〉
as function of initial position on the respective lines ρ0.
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Here the variance of the rotation time � is given by

� = −2π

∫ ρ+
ρ−

dρ
[
(∂ρTρ (ρ))2 + q2

ρ

q2
φ

T
2

4π2

]
exp

( − 2
∫ ρ+
ρ

du g(u)
q2

ρ (u)

)
∫ ρ+
ρ−

dρ f (ρ) exp
( − 2

∫ ρ+
ρ

du g(u)
q2

ρ (u)

)
/q2

ρ (ρ)
. (15)

We have evaluated and tested these formulas for the Newby-
Schwemmer oscillator Eq. (9) and also compare the resulting
isovariance lines to the isochrons and the spoke of wheel
in Fig. 4. We observe that isochron and isovariance curve
do not agree in this case: the iso-variance curve [pink line
in Figs. 4(a) and 4(b)] is significantly less twisted than the
isochron (green line). In panels (c) and (d) we test the defining
properties of the two lines: the MRT is approximately inde-
pendent of the starting point only for the isochron but neither
for the isovariance curve nor the spoke (c); the variance of the
return time is approximately flat as a function of the starting
point for the isovariance line but neither for the isochron nor
the spoke.

V. CONCLUSIONS

We have found the analytical mapping for Schwabedal and
Pikovsky’s mean return-time (MRT) phase for the important
class of planar isotropic stochastic oscillators and have tested
it for three examples. We have seen that for systems with
finite boundaries, the phase description in the strong noise
limit always yields the geometric phase (spokes of a wheel);
for small to moderate noise, the curvature of the MRT phase
isochrons reflect the stochastic interplay between radial and

angular dynamics. We also demonstrated that constancy of the
first cumulant (the MRT) over the isochron does not imply
constancy of higher cumulants, for instance, the variance of
the return time for different initial positions on the isochron.
We could find an equation and solve it for the isovariance
curve: in our example the resulting line was quite different
from the MRT isochron.

In some applications, it may also be of interest to
quantify the correlations between subsequent return times;
in neuroscience, for instance, this would be the so-called
interspike-interval correlations (see, e.g., Refs. [22–26]). Re-
markably, it was shown very recently [27] that return times
based on the MRT phase display vanishing correlations. The
associated point process defined by the MRT phase is in this
respect particularly simple, which is a clear advantage of this
phase concept for stochastic oscillators.

We hope that our results can be used to address important
open issues in the analysis of stochastic oscillators: (i) the
comparison to the asymptotic phase [12] in some analytically
tractable cases (see, e.g., Ref. [28]); (ii) the oscillator response
to external perturbations via a generalized phase-response
curve [29,30]; (iii) the analysis of variability in neuronal fir-
ing patterns [19]; (iv) the treatment of networks of strongly
stochastic oscillators [31].
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