
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10827-021-00788-3

ORIGINAL ARTICLE

Recurrence‑mediated suprathreshold stochastic resonance

Gregory Knoll1,2  · Benjamin Lindner1,2

Received: 9 February 2021 / Revised: 21 April 2021 / Accepted: 26 April 2021 
© The Author(s) 2021

Abstract
It has previously been shown that the encoding of time-dependent signals by feedforward networks (FFNs) of processing 
units exhibits suprathreshold stochastic resonance (SSR), which is an optimal signal transmission for a finite level of inde-
pendent, individual stochasticity in the single units. In this study, a recurrent spiking network is simulated to demonstrate 
that SSR can be also caused by network noise in place of intrinsic noise. The level of autonomously generated fluctuations in 
the network can be controlled by the strength of synapses, and hence the coding fraction (our measure of information trans-
mission) exhibits a maximum as a function of the synaptic coupling strength. The presence of a coding peak at an optimal 
coupling strength is robust over a wide range of individual, network, and signal parameters, although the optimal strength 
and peak magnitude depend on the parameter being varied. We also perform control experiments with an FFN illustrating 
that the optimized coding fraction is due to the change in noise level and not from other effects entailed when changing the 
coupling strength. These results also indicate that the non-white (temporally correlated) network noise in general provides 
an extra boost to encoding performance compared to the FFN driven by intrinsic white noise fluctuations.

Keywords Suprathreshold stochastic resonance · Recurrence · Spiking networks · Signal encoding

1 Introduction

The role of neurons as signal encoders has been shown to be 
enhanced in some situations by noise through the phenomenon 
known as stochastic resonance (SR), in which a finite amount 
of noise linearizes the response of a single processing unit or a 
population to a weak signal (Gammaitoni et al., 1998; Lindner 
et al., 2004; McDonnell & Ward, 2011). The necessary stochas-
ticity in single neurons can arise from channel noise (Steinmetz 
et al., 2000; Schmid et al., 2004; Fisch et al., 2012), background 
synaptic input (Calvin & Stevens, 1968; Shadlen & Newsome, 
1994; van Vreeswijk & Sompolinsky, 1996), or in networks of 
cells through heterogeneity (Chelaru & Dragoi, 2008; Marsat & 

Maler, 2010; Metzen & Chacron, 2015). Although the sources 
of noise abound, this type of noise-mediated coding benefit is 
largely limited to signals which are subthreshold, meaning that 
without noise they would not drive the cell to fire and would 
go undetected.

Stocks (2000) found that feedforward networks (FFNs) 
exhibit another distinct resonance from additive noise if it 
produces an effective heterogeneity in the response of the 
individual units, which aids in the encoding of both weak and 
strong signals and is therefore called suprathreshold stochas-
tic resonance (SSR). Because neurons in the periphery have 
little if any recurrence and can be represented by FFNs, SSR 
has implications for biological encoding and has been demon-
strated for a variety of models, including FitzHugh-Nagumo 
models (Stocks & Mannella, 2001; Hunsberger et al., 2014), 
nonlinear threshold devices (Hoch et al., 2003; Das et al., 
2009), Hodgkin-Huxley models (Hoch et al., 2003; Ashida 
& Kubo, 2010; Hunsberger et al., 2014) and leaky integrate-
and-fire (LIF) neurons (Hoch et al., 2003; Nikitin et al., 2010; 
Durrant et al., 2011; Hunsberger et al., 2014; Beiran et al., 
2017). It has been shown to occur for different sources of vari-
ability, including channel fluctuations (Ashida & Kubo, 2010), 
intrinsic white current noise (Nikitin et al., 2010; Durrant 
et al., 2011; Hunsberger et al., 2014; Beiran et al., 2017), and 
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heterogeneity (Stocks, 2000; Hunsberger et al., 2014; Beiran 
et al., 2017), as well as for signals with different distributions 
(Das et al., 2009) and correlations (Durrant et al., 2011).

In the cortex, the neurons in a population are no longer 
feedforward and receive inputs from many sources, including 
from other cortical regions (top-down), from FFNs in the sen-
sory periphery (bottom-up), and from local, lateral, recurrent 
connections with one another. The top-down and bottom-up 
connections uncorrelated with a given signal can again be 
modeled as background synaptic input (conventional SR with 
respect to such external noise from other populations was for 
instance studied by Droste and Lindner (2017b)), but the recur-
rent inputs are no longer uncorrelated with one another or the 
signal. The resulting interactions are nonlinear (Abbott & van 
Vreeswijk, 1993; Brunel, 2000) and this network noise can 
become strongly colored, i.e. temporally correlated (Lerchner 
et al., 2006; Litwin-Kumar & Doiron, 2012; Ostojic, 2014) 
with correlation statistics that obey self-consistent relationships 
(Lerchner et al., 2006; Dummer et al., 2014).

Recurrent synaptic input is often modeled as a Gaussian white 
noise process through the diffusion approximation (Gluss, 1967; 
Johannesma, 1968; Capocelli & Ricciardi, 1971; Ricciardi, 1977; 
Brunel, 2000; Richardson, 2004). The current study therefore 
investigates signal encoding in recurrent networks and whether 
SSR can result from this synaptic network noise in place of 
intrinsic white noise. Once SSR is shown to occur, the intrin-
sic, network, and signal parameters will be varied in order to 
assess its robustness and the influence each type of parameter 
has on the magnitude and placement of its peak. Finally, we test 
whether the observed encoding could be obtained in control 
experiments in which the network input is replaced by a con-
stant input, adjusted such that neurons have the same firing rate 
as neurons in the recurrent network (RN), or by a constant input 
and an individual Gaussian noise, adjusted according to the dif-
fusion approximation. Only in the latter case does one observe 
an enhanced encoding. This demonstrates that the optimal cod-
ing fraction at a nonzero synaptic amplitude is indeed due to 
the network noise and not due to other effects that a variation of 
coupling strength might entail.

2  Network and neuron models

 The model (see Fig. 1) is a network of leaky integrate-and-fire 
neurons, whose individual subthreshold voltages vi evolve in 
time according to

with a membrane time constant � , a mean constant input � , 
an intrinsic, Gaussian white noise with intensity Di� and 
correlation ⟨�i(t)�i(t�)⟩ = �(t − t�) , a time-dependent stimu-
lus s(t) common to all neurons, and recurrent input from 

(1)𝜏 v̇i = −vi + 𝜇 + s(t) +
√
2Di𝜏𝜉i(t) + RIi(t),

the network RIi(t) . For convenience, time can be measured 
in units of the membrane time constant and � set to 1, with 
the noise scaled accordingly. When the voltage reaches the 
threshold value vT =1 at time tk , it is reset to the voltage vR =0 
and a spike is registered. The neuron then sits at the reset 
voltage for a refractory period �ref . Throughout this paper, 
�ref=0.1. The sum of all such spikes is the output, or spike-
train, of the neuron

where ti,k denotes its kth spike time.
The stimulus s(t) is a Gaussian process with a flat power 

spectrum up to the cutoff frequency fc

Its variance is the integral over the power spectrum

(2)xi(t) =
∑

k

�(t − ti,k),

(3)Ss( f ) =
�2
s

2fc
Θ
(
fc − | f |

)
.

Fig. 1  System diagram.  The neural network is composed of NE 
excitatory cells (green) and NI inhibitory cells (red), all of which 
receive a common external stimulus s(t). An example of a single 
excitatory neuron i is shown above, with subthreshold voltage vi 
described by Eq. (1), intrinsic noise �i(t) and bias � . It also receives 
the common stimulus s(t) and local, lateral recurrent input randomly 
drawn from both populations: CE excitatory and CI inhibitory syn-
apses. Excitatory neurons have a postsynaptic weight J and inhibi-
tory neurons a postsynaptic weight of −gJ , regardless of the popula-
tion to which the target belongs. The output of neuron i is spike train 
xi(t) (Eq.  (2)), which elicits excitatory postsynaptic potentials with 
weight J, as shown for an example target neuron. An inhibitory cell 
j is also shown below, which only differs from i in its postsynaptic 
effect, meaning the input and firing statistics are equivalent for both 
excitatory and inhibitory neurons. As a result, NA arbitrarily chosen 
spike trains can be summed to calculate the population activity A(t) 
(Eq. (6))
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If fc is high enough, the signal is effectively Gaussian white 
noise and therefore the total white-noise intensity seen by 
the neuron (with � = 1 ) is D = Di + �2

s
∕(4fc).

Choosing instantaneous current-based synapses and a 
random network topology with fixed in-degree for simplic-
ity, the input from the network is given by (see e.g. Brunel 
(2000) or Ostojic (2014))

a sum over the spikes from neurons j providing input to the 
postsynaptic neuron i. The spikes arrive after a delay �D,ij , 
which is independently drawn for each synaptic connec-
tion from a uniform distribution between 0.5ms and 2ms. 
Each of the N neurons in the network receives input from 
CE presynaptic neurons, whose spikes at time tj,k cause a 
positive, excitatory voltage excursion with weight Jij = J , 
and from CI neurons whose spikes cause inhibitory voltage 
drops of magnitude Jij = −gJ , i.e. g sets the relative strength 
of the spikes from inhibitory neurons. CE + CI input neurons 
are selected randomly from the network for each neuron i 
such that there is no structure and because the number and 
the excitatory-to-inhibitory ratio are fixed, each neuron is 
subject to individual but statistically equivalent input. As 
there is no synaptic plasticity, this topology remains fixed 
throughout a single trial. Therefore, all neurons in the net-
work have the same firing statistics, regardless of whether 
they are excitatory or inhibitory themselves. In addition, for 
each trial a new topology (realization of the network con-
nectivity) is constructed and a new stimulus presented, such 
that averaging over trials constitutes averaging over intrinsic 
noise, random network connectivity, stimuli, synaptic delays 
and subpopulations (see below in Sect. (3)).

The network consists of N = NE + NI  neurons, NE

=10,000 excitatory and NI=2,500 inhibitory, giving an 
inhibitory-to-excitatory ratio � = NI∕NE = 0.25 . The frac-
tion of the population which provides input to the cells is 
given by pc , such that CE = pcNE and CI = pcNI and there-
fore CI∕CE = � as well.

3  Measures

We are interested in the encoding fidelity of a group of neurons 
within the network, or how well a stimulus s(t) is received and 
transmitted in the activity

(4)�2

s
= ∫

fc

−fc

S( f )df .

(5)RIi(t) = �
∑

j

Jij

∑

k

�
(
t − tj,k − �D,ij

)
,

(6)A(t) =
1

NA

NA∑

i=1

xi(t)

of a population of neurons of size NA . Because the output of 
all neurons is equivalent, the selection of the NA neurons in 
the population is arbitrary. The coherence function,

quantifies the linear correlation between the signal and the 
activity in the Fourier domain. SAs is the cross-spectrum 
between the activity and the stimulus

and SA( f ) and Ss( f ) are the power spectra of the activity and 
stimulus, respectively, defined as

In the preceding equations, Y∗ is the complex conjugate, Ỹ  
denotes the Fourier transform ∫ T

0
ei2�ftY(t)dt , and ⟨⋅⟩

=⟨⟨⟨⟨⟨⋅⟩�i⟩Jij⟩�D,ij⟩s⟩NA
 is the average over intrinsic noise, net-

work realizations (connectivity and synaptic delays), stimuli, 
and subpopulations.

In order to get a point estimate of the encoding fidel-
ity over the entire frequency spectrum, the coding 
fraction

is introduced, which measures the quality of the estimate of 
the stimulus from the activity (Gabbiani, 1996). The numer-
ator in the square root is the mean square error �2 between 
the stimulus s(t) and its optimal linear reconstruction sest(t) . 
The denominator is the variance of the signal, �2

s
 , making 

the entire square root expression the ratio of the standard 
deviations of the error and signal, �∕�s , which will approach 
0 for perfect reconstructions and approach 1 for estimates 
which are no better than chance. Therefore, like the coher-
ence function, the coding fraction in Eq. (10) is limited to 
the range between 0 (chance resemblance) and 1 (the stimu-
lus can be reconstructed in its entirety).

4  Evidence for suprathreshold stochastic 
resonance due to network noise

The network responses to a time-dependent stimulus for 
three different synaptic weights are illustrated in Fig. 2a-c, 
with the raster plot from a population of size NA=250 plotted 

(7)CAs( f ) =
|SAs( f )|2

SA( f )Ss( f )
,

(8)SAs( f ) = lim
T→∞

⟨
Ã( f )s̃∗( f )

⟩

T

(9)SY ( f ) = lim
T→∞

⟨
Ỹ( f )Ỹ∗( f )

⟩

T
.

(10)Γ = 1 −

√√√√√√√√
∫

∞

−∞

Ss( f )[1 − CAs( f )]df

∫
∞

−∞

Ss( f )df

= 1 −
�

�s
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above its activity recorded at the same point in time from 
three trials. The same stimulus s(t) (Fig. 2d) was presented 
in all trials, not only to compare how the overall response 
changes with increasing weights, but also to demonstrate the 
trial-to-trial variability due to intrinsic and network noises.

Without recurrence (J=0; Fig. 2a), the only noise in the 
system is the very low intrinsic noise ( Di=2.5 × 10−5 ) and 
the stimulus itself. The activity is therefore rather synchro-
nous and shows rectification for negative signal swings. As 
the strength is increased to J=0.01 (Fig. 2b), the activity is 
more asynchronous and irregular, indicative of the network 
noise emerging due to the nonlinear interactions among the 
neurons. This noise is only weakly correlated for different 
neurons and thus endows each neuron with an independent 
individual response to the common driving stimulus. As a 
consequence, the entire population better captures the full 
swing of the stimulus and is able to encode more of the 

signal. In addition, the network noise remains low enough 
such that the population rate follows the signal reliably. At 
a much higher synaptic strength (J=0.1; Fig. 2c), there is 
even less rectification, but the network noise overpowers the 
signal, preventing reliable encoding. Hence, the intermedi-
ate value of the coupling strength in Fig. 2b seems to be 
optimal with respect to signal encoding. Because we mainly 
change the network noise when changing the synaptic cou-
pling strength, this can be taken as evidence for the presence 
of a suprathreshold stochastic resonance effect. Of course, 
increasing the synaptic strength also changes the mean input 
to every neuron (and by that the firing rate) and there is also 
a network input related to the common stimulus. As we show 
in Sect. (5), however, taking these other connection-induced 
effects into account cannot explain the significant boost in 
the coding fraction.

The above conclusion is more systematically investigated 
in Fig. 2e, where the coding fraction is plotted as a function 
of synaptic strength. A new stimulus was presented in each 
trial, as indicated by the averages in Eq. (8) and Eq. (9) (the 
fixed stimulus in Fig. 2a-d was solely for illustration pur-
poses). The coding fraction values corresponding to the time 
series in Fig. 2a-c are indicated by filled circles in the bottom 
panel. As stated above, with no synaptic input, there is little 
variability and therefore a low coding fraction. The coding 
fraction also suffers from large synaptic strengths, because 
the network noise drowns out the signal. The peak at J=0.01 
represents suprathreshold stochastic resonance (SSR), where 
recurrence adds enough noise to improve encoding without 
dominating the neuronal dynamics.

In the following we explore how the beneficial effect 
of the asynchronous state and the network noise found in 
Fig. 2 depends on the cellular, network, and signal param-
eters. Specifically, we will show how the dependence of the 
coding fraction on the coupling strength varies if we change 
these parameters.

4.1  Intrinsic parameters

Although the neurons are embedded in a network, their 
individual properties will determine their responses to the 
signal and network activity. Two such properties are their 
individual bias current � and their individual noise intensity 
Di , both determining how often and how irregularly the sin-
gle cell would fire without any network input and common 
stimulus. To one extreme, if the neurons are subthreshold 
( 𝜇 < vT ) and have little intrinsic noise, they will barely be 
spontaneously active and will be slower to react to a sig-
nal, causing rectification similar to that seen in Fig. 2a in 
the absence of connectivity. As the neurons become more 
active, their output will increasingly amplify the network 
noise, which can also disrupt transmission if too strong.

J=0

J=0.1

J=0.01

A

B

C

D

E

Fig. 2  Suprathreshold stochastic resonance resulting from an 
optimal amount of network noise. A-C:  The raster plot of a sub-
population of NA=250 neurons is shown above its activity from 
three trials, in which it was presented the same stimulus, s(t) (lowest 
panel). The dashed lines are the average firing rates. D: The stimulus 
s(t) was the same for the three synaptic strengths and their three trials. 
E:  The coding fraction versus synaptic strength, J. The filled mark-
ers correspond to the values shown in the time plots above. Param-
eters: Di=2.5 × 10−5 , �s=0.1, fc=2, �=1.1, g=5, pc=0.01. T=200, 
dt=0.001, activity bin size Δ=0.1. The coding fraction was calculated 
from 200 trials

410 Journal of Computational Neuroscience (2021) 49:407–418



1 3

That is why, as the bias � is increased from just at thresh-
old to well into the suprathreshold range, there is an optimal 
value which strikes the balance between actively sampling 
the signal and not driving the network too strongly. This is 
reflected in the global maximum of the family of curves for 
the coding fraction shown in Fig. 3a.

Increasing the intrinsic noise intensity improves the 
encoding at low synaptic strengths, as shown in Fig. 3b and 
found by Beiran et al. (2017) in the case of a pure feed-
forward population. The network of course benefits most 
from network noise if there is no intrinsic noise at all ( Di

=0), because some noise is better than none. However, this 
only occurs for very weak coupling because as the synaptic 
strength increases (above J=0.002 in Fig. 3), the network 
noise dominates, diminishing or eliminating the benefits of 
relatively small amounts of added white noise at a given 
connection strength J.

Also included in Fig. 3b is the single neuron’s coding 
fraction for the Di =0 case, indicated by inverted triangles; 
these values are all low. For Di =0 and J=0, the signal is the 
only source of noise in the network, and it is common to all 
neurons. As a result, all neurons in the network are essen-
tially identical and there is no benefit to taking a population’s 
instead of a single neuron’s output. The slight discrepancy 
in the coding fractions of the single neuron and population 
for J=0, Di =0 is most likely due to the different initial con-
ditions of the neurons in the population that lead to small 
differences in their spike trains at the point where measure-
ments begin. We have verified that this artificial discrepancy 
can be reduced by increasing the initial transient period prior 
to measuring spikes for the coding fraction.

Because the mean input �=1.1 is above the threshold vT
=1, we do not observe common stochastic resonance in the 
single neuron’s coding fraction curve as the network noise 
is increased, lending evidence to the hypothesis that the 
observed transmission benefits seen in the other curves are 
due to suprathreshold stochastic resonance. As can be seen 
by comparing the two Di =0 curves, a single neuron’s coding 
fraction only suffers further from network noise (monotoni-
cally decreases), whereas reading the population activity is 
immediately beneficial as soon as network noise is added, 
which is again an indication of suprathreshold stochastic 
resonance.

In order to aid comparison, the red circles with the black 
curves are the same in both panels of Fig. 3 and will be used 
throughout the paper as default parameters, against which 
other results are compared. The default value for the param-
eter of interest will be highlighted in red in the legend, as it 
is here. Parameters not specifically varied in a plot assume 
their default values. For instance, in Fig. 3a, Di=2.5e-05, 
which is indicated in red in Fig. 3b, where D is varied.

The simulation data points marked by x’s in both panels 
are the result of calculating the coherence of the output of 
the network with default parameters and a random signal. 
The curve serves to better compare the measured coding 
fraction with chance values, serving as a type of lower bound 
on the coding fraction. Like the default parameter curve, it 
too will be shown in the following figures to add consist-
ency and to serve as a reference to better assess the effects 
of varying a single parameter.

A

B

Fig. 3  Intrinsic parameters. A:  The bias current is swept from �
=1.0 (the threshold value) up to �=1.3, which is well into the 
suprathreshold range, revealing an optimal bias which maximizes 
the overall coding fraction. B:  The coding fraction without intrinsic 
noise ( Di=0; upturned triangles) is compared to two nonzero noise 
intensities. The single neuron’s coding fraction for the Di =0 case is 
indicated by inverted triangles. Both: The red circles and labels are 
the default parameters and are the same in both panels. The x’s were 
calculated from the default parameter output and a random signal, 
indicating chance correlations. Parameters (unless varied): �=1.1, 
Di=2.5 × 10−5 , g=5, pc=0.01, NA=250, �s=0.1, fc=15
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4.2  Network parameters

We have seen that individual parameters can have an effect 
on the network performance. It is then of course interest-
ing to see how the connectivity and size of the population 
amplify or detract from the collective performance.

As a point of reference, the relative inhibitory strength 
is set to g=5 in the default parameters, which causes slight 
inhibition-domination in order to put the network in the 
asynchronous irregular regime. It is intuitive that if g < 4, 
the network will transition into the excitation-dominated 
regime and begin to oscillate, causing single neurons to syn-
chronize (Brunel, 2000). Such pathological behavior will 
greatly diminish the network’s ability to listen to the signal 
and encode its information, which is reflected by the poor 
performance of the g=3.5 curve in Fig. 4a.

As the excitation-inhibition relation is shifted from bal-
anced (g=4) to inhibition-dominated, the network noise 
increases in intensity and carries with it an increasingly 
negative mean recurrence. It is then a mixture of the effects 
from Fig. 3, where decreasing � potentially improves the 
overall coding fraction, which can be seen most clearly by 
comparing g=4 and g=5 ( �=1.1 here, so g=4 would be like 
the �=1.2 curve in Fig. 3a), and increasing the noise inten-
sity improves the performance almost exclusively at lower 
synaptic strengths, as seen in the transition from g=5 to (the 
physiologically unrealistic value of) g=50.

Somewhat more surprising is that SSR is observed even 
at extreme inhibition levels, albeit for very low synaptic 
strengths. At those levels, the slightest synaptic strength 
gives the expected noise benefit because the network noise 
is still small, but further increases overwhelm the network 
and quickly degrade the encoding. If J=0, g of course has 
no effect and it can be seen in Fig. 4a that all curves are 
equivalent at this point.

Because the input from the network acts largely as noise 
and the amount of noise can be beneficial, it is reasonable to 
investigate whether changing the number of inputs instead of 
their strength has a significant impact on encoding. Fig. 4b 
shows that increasing the number of inputs shifts the peak 
to lower synaptic strengths and vice versa. However, the 
magnitude of the peak does not change significantly. In order 
to demonstrate this more clearly, the inset shows the coding 
fraction as a function of J

√
pc instead of J. The curves do 

show slight variations, but mostly for pc = 0.002 where there 
are so few inputs (only 25). Fig. 4b demonstrates that SSR is 
a result of the amount of network noise, and that the number 
of inputs that transmit that noise only serves to broaden the 
range of weights over which the peak extends.

In contrast, the number of neurons in the measured popu-
lation does have a large effect on the magnitude and range 
of the coding fraction. SSR is the phenomenon of sampling 
diversity by a population of neurons of a common signal 
leading to a collective encoding advantage. In Fig. 4c this is 
demonstrated by increasing the size of the population from 
a relatively small number ( NA=50) to the entire network ( NA

=12,500). All else being equal, the added degrees of freedom 
provided by larger sampling populations improve the encod-
ing and the SSR peak, even up to very large population sizes.

4.3  Signal properties

So far the network and its units have been the focus, but 
the properties of the stimulus itself influence how well a 
subpopulation of the network can encode it. Signal param-
eters of interest are the amplitude (quantified by the standard 
deviation �s ) and the bandwidth of the signal (quantified by 
the cutoff frequency fc ). We will inspect how changing those 
parameters with respect to our default values will affect the 
coding fraction.

A B C

Fig. 4  Network parameters. A:  The relative strength of the inhibi-
tory synapses g shifts the excitatory-inhibitory mix in the synap-
tic input. The network is balanced if g=4, excitation-dominated for 
g < 4, and inhibition-dominated for g > 4. B: The connection prob-
ability pc represents the number of inputs to a single neuron, because 
the size of the network doesn’t change. It influences the amount of 
input as well as correlation entering a cell. The inset shows the same 

curves, but as a function of J
√
pc instead of J, demonstrating that the 

shifted peaks in the left panel represent the same amount of input, 
and are therefore equivalent. C: The size NA of the observed popula-
tion is increased from NA=50 up to the size of the entire network ( NA

=N=12,500), each time improving the overall encoding. Parameters 
(unless varied): �=1.1, Di=2.5 × 10−5 , g=5, pc=0.01, NA=250, �s
=0.1, fc=15
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First of all, whether the amplitude is large or small rela-
tive to the dynamics and noise of the network will deter-
mine the nonlinearity of the signal transfer and thus the 
value of the coding fraction. If, on the one hand, the signal 
is extremely weak, it will inadequately stimulate the sys-
tem, as seen for �s=0.02 (orange right-pointing triangles 
in Fig. 5a), where the overall coding fraction is low. The 
slightest network noise drowns out the weak signal, shifting 
the small SSR peak to minuscule synaptic weights. On the 
other hand, if the amplitude is extremely large, the network 
response becomes strongly nonlinear because the stimulus 
drives all the neurons into synchronous firing or silences all 
of them at once. This kind of response is only weakly influ-
enced by mutual synaptic connections within the network 
— silenced neurons, for instance, will not affect other cells, 
no matter how strong their outgoing synaptic connections 
are. The nonlinear all-or-none response is expected to lead 
to small values of the coding fraction, which, as we recall 
here, measures the linear part of the signal transfer. As a 
consequence, an intermediate amplitude might be optimal 
for the signal transmission.

These expectations are confirmed in Fig. 5a. As the stim-
ulus amplitude is increased from very low values, the stimu-
lus is well-encoded across a broad coupling range and the 
maximum is attained at a larger synaptic strength because 
(as known from conventional SSR) more noise is required 
for a stronger signal to maximize the coding fraction (Beiran 
et al., 2017). As was argued above, there is an optimal ampli-
tude for a global maximum of the coding fraction, �s=0.1, 
shown by the curve with red points in Fig. 5a. For higher 
values of the stimulus amplitude, the SSR peak becomes 
broader and its maximum decreases (e.g. for �s=0.3; purple 
upturned triangles).

In addition to the stimulus amplitude, its frequency con-
tent must play a role, because the network has its own time 
scales governing how quickly it can react and recover. We 
recall that in our parametrization of the stimulus, if the vari-
ance �2

s
 is fixed, then according to Eq. (4) an increase of 

the cutoff frequency fc implies that the spectral height Ss( f ) 
for | f | < fc will decrease, i.e. a lower density in a broader 
bandwidth. Therefore, as the cutoff frequency is increased 
from fc=15 to fc=30, it behaves like a weak signal within the 
frequency range for which the neuron is sensitive (compare 
orange right-pointing triangles in Fig. 5a and Fig. 5b). A 
decrease in the encoding of relatively high-frequency signals 
is also in keeping with the known low-pass-filter nature of 
LIF neurons and other integrators (Fourcaud-Trocmé et al., 
2003; Vilela & Lindner, 2009).

At the other extreme, for fc=0.1 (purple upturned trian-
gles in Fig. 5b) the overall amplitude of the coding fraction 
increases, especially at weak synaptic strengths, and the 

curve is almost flat for low and moderate synaptic values. 
Hence, very slow signals can be very well encoded by the 
network, even with little to no noise (notice the coding frac-
tion axis has been extended to 1 in Fig. 5b). The reason is 
that the signal is so slow and its power is contained in such 
a small frequency range, that it can be easily sampled by the 
population of neurons with a firing rate of around r=0.3. 
For slow signals, an increase in the synaptic amplitude only 
decreases the coding fraction, i.e. in this case we do not 
observe SSR. Very slow signals, however, are probably less 
relevant for real neural systems.

A

B

Fig. 5  Signal properties. A: The standard deviation of the stimulus 
amplitude, �s , determines the relative strength of the signal compared 
to the system noise. B:  As the cutoff frequency is decreased, the 
stimulus information is concentrated with higher power in lower fre-
quency bands and can be sampled more thoroughly. In order to show 
the peaks for lower cutoff frequencies, which shift the coding frac-
tion peak to much higher synaptic weights, the data is plotted on a log 
scale above 10−3 , while for smaller weights (gray region) the linear 
scale is preserved in order to include J=0. Parameters (unless var-
ied): �=1.1, Di=2.5 × 10−5 , g=5, pc=0.01, NA=250, �s=0.1, fc=15
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5  Feedforward control experiments

The previous sections showed that a recurrence-mediated 
improvement of signal encoding occurs across a large swath 
of the parameter space. We hypothesized that the underlying 
mechanism is SSR, only that here the recurrent input acts 
as network noise in place of the intrinsic white noise used 
for SSR in feedforward networks. In this interpretation, an 
increase in synaptic strength J will intensify the network 
noise, and thus J replaces the noise intensity parameter in 
conventional SSR curves. However, in addition to the net-
work noise, changing the connection strength of neurons 
alters other statistics of the network, e.g. the firing rate of 
the neurons. In the following, we demonstrate through con-
trol simulations of an equivalent FFN, that it is indeed the 
increase in network noise that causes the improved signal 
transmission. The FFN is for all parameter values the same 
as the recurrent model in Eq. (1) except that J = 0 and the 
bias � and/or the intrinsic noise level Di are altered as dis-
cussed in the following.

5.1  Controlling for the firing rate

The simplest control is to adjust the firing rates of the neu-
rons in the FFN through their bias term � . This would rule 
out a change in coding fraction due to the network sampling 
the stimulus at a higher rate. Figure 6 shows that, although 
the rates of the FFN are adjusted, the coding fraction is 
almost stagnate. In fact, as one would expect, as the bias 
decreases and the rate along with it, the coding fraction also 
decreases, but the change is so subtle that it is not immedi-
ately obvious from the blue curve in the top panel without 
zooming in. It should also be noted that the bias is changed 
only very slightly, resulting in less than a 10% decrease in 
the firing rate. However, this only gives further evidence to 
the claim that the firing rate of the RN is not responsible for 
the drastically better coding fraction performance.

5.2  Controlling for the network noise 
with a diffusion approximation

Given that the firing rate is not responsible for the SSR, 
the next step is to take into account the ’network noise’ in 
a control experiment with an FFN. Roughly, the recurrent 
synaptic inputs can be approximated by a Gaussian white 
noise process using the so-called diffusion approximation 
(DA) following the approach in Brunel (2000). In contrast to 
the latter, however, for the control we do not use a self-con-
sistent rate from the mean-field theory, but instead the meas-
ured average firing rate of the recurrent network, rRN . For 
small synaptic weights, recurrent inputs in the asynchronous 

irregular state can be approximated by the sum of a time-
independent mean

and a white noise term with intensity

giving a total mean input of �� = � + �R and total noise 
intensity D′

i
=Di + DR , the values which are used in the FFN 

simulations.
The FFN’s coding fraction (blue triangles and indicated 

as ’DA control’ in Fig. 7) very closely resembles that of the 
RN’s (red circles), demonstrating that the coding fraction 
benefit and SSR results seen thus far in the paper can be 
explained largely as the result of the extra noise provided 
by the network input.

Limitations of this approximation have different origins: 

i) pronounced temporal correlations emerge self-consistently 
in many situations (Lerchner et al., 2006; Dummer et al., 
2014; Vellmer & Lindner, 2019), even when synaptic fil-
tering is neglected (which adds another low-pass filter, 
see e.g. Brunel & Sergi, 1998; Lindner & Longtin, 2006; 

(11)
�R = JCErRN� − gJCIrRN�

= JCE(1 − �g)rRN�

(12)DR =
1

2
J2CE(1 + �g2)rRN�,

Fig. 6  Control for the effect of a changing mean from synaptic 
input. The bias � of a feedforward network (FF control) is adjusted to 
match its firing rates to those of a recurrent network (RN), as shown 
in the bottom panel. Using the new bias, the FFN’s coding fraction 
is compared to an equivalent RN’s (all parameters are equal except 
those that control synapses). RN Parameters: �=1.1, Di=2.5 × 10−5 , 
g=5, pc=0.01, NA=250, �s=0.1, fc=15
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Moreno-Bote & Parga, 2010), i.e. the network noise is 
colored and not white;

ii) synaptic input for larger amplitudes is poorly approxi-
mated by Gaussian noise (Richardson & Gerstner, 2005; 
Wolff & Lindner, 2008), which can have strong effects 
on the neural firing statistics (Richardson & Swarbrick, 
2010; Droste & Lindner, 2017a). For the relatively low 
synaptic amplitudes considered here, the second limita-
tion is not significant, but the first plays a role.

In fact, in line with previous studies of correlations in 
network noise (Lerchner et al., 2006; Dummer et al., 2014; 
Wieland et al., 2015), we find that the power spectrum of the 
synaptic input (i.e. of the network noise) is far from being 
spectrally flat (see Fig. 8). For large frequencies, it is indeed 
flat because it is a sum of spike trains, the delta functions 
of which create a flat spectrum at high frequencies in the 
Fourier domain. At low and intermediate frequencies, how-
ever, we find decreased power or peaks, respectively. With 
an increase in the synaptic amplitude, the high-frequency 
limit increases and the peaks broaden, which is an effect of 
the network noise. Hence, small deviations in the coding 
fraction of the control feedforward system and of the RN as 
observed in Fig. 7 can be expected based on the difference in 
the statistical nature of the background fluctuations.

As seen in Fig. 7, this difference between the actual syn-
aptic input power spectrum and the DA has a somewhat 
negligible effect on the firing rate, except for very high 
synaptic weights (see lower panel), but does cause devia-
tions between the curves on either side of the SSR peak 
(upper panel). In order to further explore these differences, 
the DA control was run for increasing values of g, as shown 
in Fig. 9. Interestingly, for a balanced net, the DA captures 
the coding fraction on either side of the peak quite well and 
worse at the peak itself, whereas for higher g values it does 
consistently worse. For g=50 (an extreme and unrealistic 
value from a physiological point of view), the DA control 
performs significantly worse, indicating that the recurrence 
is no longer well-approximated by white noise (here also 
the Gaussian approximation may be less justified), and more 
closely resembles a colored noise process. Remarkably, in 
almost all cases this colored noise difference from the DA is 
beneficial to the encoding, outperforming the white noise in 

Fig. 7  Control for the effect of a changing mean and noise inten-
sity from synaptic input. The mean input and intrinsic noise inten-
sity of the FFN are adjusted using the diffusion approximation of 
the recurrence (Eq.  (11) and Eq.  (12) with the measured RN aver-
age firing rate) in order to compare the effects of network noise and 
diffusive white noise on encoding. Top: The FFN’s coding fraction 
(DA control; blue triangles) is plotted with the RN’s (red points) and 
DA linear response theory (black line). Bottom: The measured fir-
ing rates of the networks (same symbols as above) compared to the 
self-consistent theory in Eq. (13) (black line). Parameters same as in 
Fig. 6

Fig. 8  Synaptic input power spectra. The blue lines show the meas-
ured synaptic input power spectra.   The dashed lines are the mean-
field white-noise approximations of the recurrent spectra, S

DA
= 2DR , 

with the noise intensity from Eq. (12). Parameters same as in Fig. 6

Fig. 9  Recurrence outperforms DA as inhibition dominates. The 
feedforward DA control (colored, solid lines) superimposed over the 
RN data points (circles) for balanced (top: g=4) and inhibition-domi-
nated regimes (middle: g=10; bottom: g=50). Other parameters same 
as in Fig. 6
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all inhibition-dominated regimes. This demonstrates that the 
type of correlated noise generated by the recurrent network 
may be especially useful for signal processing.

Because the RN behaves similarly to the FFN with 
adjusted mean input and intrinsic noise level, it is worth 
asking if existing DA theories can be applied to predict the 
coding fraction of an RN. First of all, in the mean-field (MF) 
theory one can estimate the firing rate by a self-consistent 
solution of the classical equation for an LIF neuron receiving 
a mean input �MF and a Gaussian white noise with intensity 
DMF (Ricciardi, 1977), in which �MF = JCE(1 − �g)rMF� 
and DMF = (1∕2)J2CE(1 + �g2)rMF� depend on the firing 
rate (Brunel, 2000):

This yields a good description of the firing rate for neurons 
in the network, as seen by the black curve in the lower panel 
of Fig. 7.

Beyond the firing rate, the approach in Beiran et  al. 
(2017) is applied to find linear approximations to the cross-
spectrum, power spectrum, coherence and coding fraction 
of a population of feedforward LIF neurons with intrinsic 
Gaussian white noise. For the formulas we refer the inter-
ested reader to the exhaustive explanation by Beiran et al. 
(2017). As seen in Fig. 7, the DA analytical expressions are 
only able to describe the networks’ encoding for relatively 
large synaptic strengths (the axis is also extended to J=0.1 
here), where the coding fraction is already declining. The 
reason for this is that for small weight values, there is not 
enough noise in the system to linearize it, and the theories 
are linear approximations; see the corresponding discussion 
by Beiran et al. (2017). Describing the coding fraction for a 
population of neurons with a low level of noise (no matter 
whether it is intrinsic or network noise) is an unsolved theo-
retical problem. For instance, at J=0 the network’s response 
to the signal is so nonlinear (Fig. 2a) that a perturbation 
theory is inappropriate to estimate it. As a consequence, it 
is unfortunately not possible to predict analytically where 
exactly the maximum of the coding fraction will be attained.

6  Discussion

The question that was being investigated was whether the 
benefits to signal encoding, especially suprathreshold sto-
chastic resonance (SSR), awarded by the increase in intrinsic 
white noise and the heterogeneity of parameters for feed-
forward networks (Stocks, 2000; Stocks & Mannella, 2001; 
Hoch et al., 2003; Das et al., 2009; Ashida & Kubo, 2010; 
Nikitin et al., 2010; Durrant et al., 2011; Hunsberger et al., 
2014; Beiran et al., 2017) could also be found in recurrent 

(13)rMF =

�
�ref +

√
� ∫

�MF−vR√
2DMF

�MF−vT√
2DMF

ez
2

erfc (z)dz

�−1
.

networks whose synaptic weights were increased instead. 
SSR was shown to occur with respect to the level of network 
noise controlled by the synaptic coupling strength and the 
effect was robust over a wide range of intrinsic, network, and 
signal parameters.

Previous studies have shown that network input can be 
roughly approximated in some cases as white noise using 
the diffusion approximation (Gluss, 1967; Johannesma, 
1968; Capocelli & Ricciardi, 1971; Ricciardi, 1977; Brunel, 
2000). However, for all synaptic weights used, pronounced 
temporal correlations are present in the network (Ostojic, 
2014; Wieland et al., 2015; Pena et al., 2018), as can be seen 
for our model in Fig. 8. We therefore tested to what extent 
these deviations of the network fluctuations from white noise 
influence the signal encoding of the recurrent network by 
comparing its coding fraction to that of an FFN receiving 
purely white noise. In general the network noise coding frac-
tion was comparable to its DA feedforward counterpart, but 
where they differed the network noise mostly boosted per-
formance for equivalent firing rates. In order to study the 
effect of colored network noise on the coding fraction, future 
studies could exploit extended mean-field theories involv-
ing Markovian embedding via a multidimensional Fokker-
Planck equation (Vellmer & Lindner, 2019) or simplified 
rotator neurons (Van Meegen & Lindner, 2018).

In the recurrent network, intrinsic white noise was also 
used, albeit very little in order to provide a baseline stochas-
ticity, and it was shown that increasing it improves the per-
formance for only small synaptic values, where the network 
noise is not yet strong enough to overpower it. From previ-
ous work it is then assumed that a weak heterogeneity in 
thresholds would have a similar effect as such weak intrinsic 
noise. However, in large recurrent networks the main share 
of variability originates from the network noise, and thus we 
conclude that SSR due to network noise is more likely than 
SSR due to (comparatively weak) intrinsic noise.

The level of synaptic connection strength at which the 
SSR maximum was attained here is at the lower end of 
the physiological range. To see this, we have to convert 
our nondimensional voltage variables to physiological 
units by rescaling them by the reset-to-threshold differ-
ence, which is typically 10-30 mV. Were 30 mV to be 
used, for example, the scale for the synaptic coupling con-
stant J would also be converted to units of evoked PSP 
amplitude, and hence the range of values of the synaptic 
amplitude that maximizes the coding fraction (in nondi-
mensional units between 10−3 and 10−2 ) would correspond 
to 0.03 − 0.3 mV for excitatory synapses. Because in our 
homogeneous system, we use the same constant amplitude 
J for all excitatory connections, this must be compared to 
the average excitatory PSP. The estimates of this average 
PSP vary widely, depending on species and brain region. 
For instance, in young rat somatosensory cortex estimates 
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are around 1.3 mV (Markram et al., 1997), whereas in the 
hippocampus of guinea pigs it is on the order of 0.1mV 
(Sayer et al., 1990). Despite our strongly simplified setup 
of a sparse, random and homogeneous connectivity, we 
may nonetheless naively conclude that the network fluc-
tuations provide more than enough network noise to cover 
the breadth of biological estimates as required for the SSR 
effect, and may even be so high as to be detrimental to 
signal encoding.

This picture may change if we take into account hetero-
geneity of synaptic amplitudes (Lefort et al., 2009), cor-
relations between activity and connectivity (Yassin et al., 
2010), and other non-random features in network connec-
tivity (Song et al., 2005). First of all, a heterogeneity of 
amplitudes would also provide a source of noise if they were 
drawn from a distribution, as quantified recently by us and 
others (Bostner et al., 2020). Going beyond a purely ran-
domly drawn connectivity, for instance specific topologies 
(Litwin-Kumar & Doiron, 2012) or the overrepresentation 
of bidirectional connections (Esposito et al., 2014; Brunel, 
2016), will also influence where the SSR maximum with 
respect to the synaptic amplitude is attained; this can be 
taken into account by mean-field methods, developed for 
instance in Refs. Schmeltzer et al. (2015); Laing and Blae-
sche (2020). Future studies may reveal the way in which 
such correlations act on the transmission of sensory stimuli.
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