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Thomas and Lindner [P. J. Thomas and B. Lindner, Phys. Rev. Lett. 113, 254101 (2014).], defined an
asymptotic phase for stochastic oscillators as the angle in the complex plane made by the eigenfunction,
having a complex eigenvalue with a least negative real part, of the backward Kolmogorov (or stochastic
Koopman) operator. We complete the phase-amplitude description of noisy oscillators by defining the
stochastic isostable coordinate as the eigenfunction with the least negative nontrivial real eigenvalue. Our
results suggest a framework for stochastic limit cycle dynamics that encompasses noise-induced
oscillations.
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Introduction.—Nonlinear stochastic oscillations occur
throughout natural and engineered systems. Examples
include the membrane potential of nerve cells [1,2], the
deflection of sensory organelles [3], the concentration of
intracellular calcium [4], the populations of predators and
prey [5], chemical reactions [6], climate systems [7], and
the intensity of lasers [8]. For a system described by
deterministic ordinary differential equations,

dx
dt

¼ fðxÞ; x ∈ Rn ð1Þ

robust oscillations arise from orbitally stable limit cycle (LC)
solutions x ¼ γðtÞ ¼ γðtþ TÞ with finite period T. The
analysis of limit cycle systems through phase-amplitude
reduction provides an essentially complete understanding of
oscillatory dynamics [9,10]. By transforming to a phase
variable θ, together with n − 1 amplitude variables σ that
decay at rates given by the nontrivial Floquet exponents λi,
(i ¼ 1;…; n − 1), the system Eq. (1) becomes

_θ ¼ 2π=T; _σ ¼ Λσ ð2Þ

with Λ ¼ diagðλ1;…; λn−1Þ [11,12]. This transformation
facilitates the understanding of synchronization, entrain-
ment, and control in a broad range of scenarios [13–17].
Indeed, whereas the level sets of θ form the well-known
“isochrons” [18], the LC coincides with the set of points
fxjσðxÞ ¼ 0g.

In contrast, in stochastic systems, oscillatory behavior
can arise not only from an underlying limit cycle, but in a
noise-perturbed spiral–fixed-point system (quasicycle) (see
the early example [19]), in systems with an underlying
stable heteroclinic orbit driven by random fluctuations [20],
or in noisy excitable systems [21]. Incorporating stochastic
dynamics fundamentally changes the conceptual found-
ations underlying the phase-amplitude construction.
Consider the Langevin equation

dX
dt

¼ fðXÞ þ gðXÞξðtÞ ð3Þ

where f is an n-dimensional vector, g is an n × k matrix, ξ
is k-dimensional white noise with uncorrelated components
[22], hξiðtÞξjðt0Þi ¼ δðt − t0Þδi;j, and we interpret the sto-
chastic differential equation in the sense of Itô [25]. For this
system, orbits are no longer periodic. The transit times
between isochrons or other Poincaré sections are random
variables [27,28]. The classical notion of a “limit cycle,” as
a closed, isolated periodic orbit, is no longer well defined,
and a shift in perspective is required.
By considering the evolution of ensembles of trajecto-

ries, two of us [29] established a generalization of the
asymptotic phase to stochastic oscillators, in terms of the
slowest decaying complex eigenfunction of the generator
L† of the Markov process Eq. (3) [30]. In this Letter we
generalize the amplitude coordinate for a planar stochastic
oscillator, which we define to be the slowest decaying real
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eigenfunction of L†. By putting the notion of phase and
amplitude on a common basis, we suggest a framework for
the study of stochastic oscillatory systems.
Mathematical preliminaries.—As in [29,31], we de-

scribe an ensemble of trajectories through the density

ρðy; tjx; sÞ ¼ 1

jdyjPr fXðtÞ ∈ ½y; y þ dyÞjXðsÞ ¼ xg

for s < t. The density satisfies Kolmogorov’s equations

∂
∂tρðy;tjx;sÞ¼Ly½ρ�¼−∇y ·ðfðyÞρÞþ

∂2

∂yiyj ðDijðyÞρÞ

−
∂
∂sρðy;tjx;sÞ¼L†

x½ρ�¼ fðxÞ ·∇xðρÞþDijðxÞ
∂2

∂xixj ðρÞ

where D ¼ 1
2
gg⊺. We assume the operators L, L† admit a

complete biorthogonal eigenfunction expansion with res-
pect to the standard inner product hujvi¼R

Rn u�ðxÞvðxÞdx

L½Pλ� ¼ λPλ; L†½Q�
λ � ¼ λQ�

λ ; hQλjPλ0 i ¼ δλλ0 : ð4Þ

The eigenmode P0 represents the unique stationary prob-
ability distribution. The normalization Eq. (4) implies
Q0 ≡ 1. The eigenfunction expansion allows us to write
the density exactly as

ρðy; tjx; sÞ ¼ P0ðyÞ þ
X

λ≠0
eλðt−sÞPλðyÞQ�

λðxÞ: ð5Þ

As in [29] we assume that the system is “robustly
oscillatory,” meaning (i) the nontrivial eigenvalue with
least negative real part λ� ¼ μ� iω is complex (with
ω > 0), (ii) jω=μj ≫ 1, and (iii) for all other eigenvalues
λ0, ℜ½λ0� ≤ 2μ. These conditions guarantee that we can
extract the “stochastic asymptotic phase” ψðxÞ from
the eigenfunctions Q�

� corresponding to λ� by writing
Q�

�ðxÞ ¼ jQ�
�je�iψðxÞ, so ψðxÞ ¼ � arg½Q�

�ðxÞ�. Along
trajectories, the eigenfunctions Q�

�(XðtÞ) evolve in the
mean as ðd=dtÞE½Q�

�� ¼ λ�E½Q�
��, so they behave as a

linear focus, oscillating with a period of 2π=ω and decaying
as 1=jμj as the density approaches the steady state P0.
We now turn to the special case of planar systems [32]. In

order to establish the amplitude part of the phase-amplitude
reduction, we require the slowest mode describing pure
contraction without an associated oscillation. In analogy
with [29] we seek the asymptotic amplitude behavior.
Assuming that L† has a unique, real, least negative
eigenvalue, λFloq ≤ 2μ < 0, its corresponding eigenfunc-
tion, denoted as ΣðxÞ≡QFloqðxÞ, will decay in the mean as

d
dt

E½Σ� ¼ λFloqE½Σ�; ð6Þ

cf. Eq. (2). We interpret ΣðxÞ as the generalization of the
amplitude (or isostable) coordinate for the stochastic
system Eq. (3). If λ2 < λFloq is a more negative real
eigenvalue, then the isostable mode dominates the non-
oscillatory convergence on time scales τ⪆1=ðλFloq − λ2Þ.
Moreover, the average of individual trajectories, when

transformed to the amplitude variable, shows a purely
exponential decay towards the set Σ0 ≡ fxjΣðxÞ ¼ 0g.
Since Σ0 in the deterministic case corresponds to a LC,
it is natural to ask what Σ0 represents in the stochastic
system. To that end, we define a vector field F via

∇Q�
�ðxÞ ·FðxÞ¼ λ�Q�

�ðxÞ;
∇ΣðxÞ ·FðxÞ¼ λFloqΣðxÞ: ð7Þ

Equation (7) determines a unique vector field, provided the
gradients of ΣðxÞ and Q�

�ðxÞ are linearly independent at
each point x. Although the original deterministic system
_x ¼ fðxÞ may not have oscillatory dynamics, if the full
system Eq. (3) is robustly oscillatory, the deterministic
vector field ℜ½F� will generate a flow with a stable LC,
coinciding with Σ0. Moreover, Eq. (7) generates the same
amplitude dynamics as E½Σ�: pure exponential decay, at rate
λFloq, towards Σ0. In the remainder of the Letter (see
Supplemental Material [33] for numerical details) we
illustrate the construction of Σ, Q�

�, ℜ½F�, and Σ0 for a
system arising from an underlying LC as well as for noise-
induced oscillations and show that it has properties com-
porting well with physical intuition. Indeed, in the special
case of a LC system perturbed by noise, we observe that Σ
converges to σ asD → 0, in each example we have studied.
Phase-amplitude description of a spiral sink.—As a first

illustration of the isostable construction for a stochastic
oscillator we study a two-dimensional Ornstein-Uhlenbeck
process with complex eigenvalues at the origin. This
system would not oscillate in the absence of noise.
Surprisingly, however, phase reduction via the spectral
decomposition Eq. (4) is well defined [31].
We consider a Langevin equation in the form

_X ¼ AXþ BξðtÞ ð8Þ

and assume that the two eigenvalues of A form a complex
conjugate pair, λ� ¼ μ� iω [cf. Fig. 1(a)]

A ¼
�
μ −ω
ω μ

�
; B ¼

�
B11 B12

B21 B22

�
ð9Þ

with Bij arbitrary. The stationary probability density P0 of
Eq. (8) has a planar Gaussian shape [Fig. 1(e)] [26]. As the
spectrum of L† shows [Fig. 1(a)] the first complex mode is
part of an entire family of harmonics [34]. By using the
eigenfunctions Q�

�ðxÞ ¼ x1 � ix2 associated to the small-
est complex eigenvalue λ� ¼ μ� iω, we can define an
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asymptotic phase function ψðxÞ¼arctanðx2=x1Þ [Fig. 1(e)]
[31]. In addition, we find the eigenfunction ΣðxÞ of L†,
associated with the least negative nontrivial real eigenvalue
λFloq, to be

ΣðxÞ ¼ 2þ μ

ϵ
ðx2

1 þ x2
2Þ; λFloq ¼ 2μ; ð10Þ

depicted in Fig. 1(d), with ϵ¼ðB2
11þB2

12þB2
21þB2

22Þ=4.
Hence, using Q�

� and Σ we can obtain an analytical
expression for the effective vector field FðxÞ in Eq. (7),

F1ðxÞ ¼ μx1 − ωx2 þ 2ϵ
x1 − ix2

x2
1 þ x2

2

;

F2ðxÞ ¼ ωx1 þ μx2 þ 2ϵ
x2 þ ix1

x2
1 þ x2

2

: ð11Þ

The real part of F, plotted in Fig. 1(c), shows how the
dissipative effect of the dynamics (μ < 0) combines with
the expansive effects of the noise (ϵ > 0) to give a finite
effective radius, [which is evident upon writing Eq. (11) in
polar coordinates] coinciding with the zero level curve of
the isostable function ΣðxÞ. That is,

Σ0ðxÞ ¼ x2
1 þ x2

2 ¼
2ϵ

jμj ð12Þ

with Floquet exponent λ ¼ 2μ ¼ λFloq. Hence, averaging an
amplitude using Σ(XðtÞ) instead of the original variables
XðtÞ, provides a meaningful asymptotic amplitude Σ0 (the
effective limit cycle) to which trajectories decay exponen-
tially in the mean [see Figs. 1(b) and 1(d)].
Noisy Stuart-Landau (SL) oscillator.—The SL equations

capture universal dynamics near a Hopf bifurcation,

_X ¼ bX½1 − ðX2 þ Y2Þ� − Y½1þ baðX2 þ Y2Þ�
þ

ffiffiffiffiffiffiffiffi
2Dx

p
ξxðtÞ;

_Y ¼ bYð1 − ðX2 þ Y2ÞÞ þX½1þ baðX2 þ Y2Þ�
þ ffiffiffiffiffiffiffiffi

2Dy

p
ξyðtÞ

with a; b ¼ ½1; 2� ∈ R. In the absence of noise this system
has a LC of period T ¼ 2π=ð1þ baÞ and a Floquet expo-
nent λ ¼ −2b. To see how isostables capture the effects of
noise, in Fig. 2 we study an isotropic (Dx;y ¼ 0.1) and an
anisotropic (Dx ¼ 0.1, Dy ¼ 2.5 × 10−4) noise case.

FIG. 1. Noisy linear focus Eq. (8)with coefficientsA ¼ ½0.1598;
−0.52; 0.7227;−0.319� (taken from [35]), and isotropic noise
B¼ ffiffiffiffiffiffiffi

2D
p

· ½1;0;0;1�.D¼1.25×10−3 for all panels. (a) Eigenvalue
spectrum of L†. λ� and λFloq are the complex and real eigenvalues
having least negative real part. (b) ln ðE½Σ(XðtÞ)=Σ(Xð0Þ)�Þ
versus time, showing exponential decay of the mean isostable
coordinate. (c) Deterministic vector field (black) and effective
vector field FðxÞ and its associated effective limit cycle (blue).
(d) Isostable function and ten trajectories. Black oval marks the
level curve Σ0. (e) Stationary probability distribution (color
coded), eight isochrons (straight lines), and Σ0 (closed line).

FIG. 2. Stuart-Landau oscillator with isotropic noise (Dx;y ¼
0.1, blue symbols) and anisotropic noise (Dx ¼ 0.1, Dy ¼
2.5 × 10−4, orange symbols). (a) Eigenvalue spectra of L† for
isotropic and anisotropic noise. (b) ln ðE½Σ(XðtÞ)=Σ(Xð0Þ)�Þ
versus time, showing exponential decay of the mean isostable
coordinate. (c) Deterministic limit cycle and vector field (black)
and effective vector fields F and their associated effective limit
cycles (d),(e) Isostable functions and ten trajectories for isotropic
(d) and anisotropic (e) noise. (f),(g) Stationary probability
distribution (color coded), with seven isochrons (straight lines)
and Σ0 (closed line) for isotropic (f) and anisotropic (g) noise.
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The isotropic case has larger total noise than the
anisotropic case. For this reason, for the anisotropic case,
Σ0 and λFloq lie nearer their deterministic analogues than for
the isotropic case [Figs. 2(a) and 2(c)]. Under reduced total
noise, the real part of the smallest complex eigenvalue pair
increases, indicating slower decay of coherent oscillation to
the steady-state distribution. We notice the occurrence of a
family of eigenvalues λk ≈�iωk − μk2 [29,36]. At the
same time, λFloq becomes more negative, indicating a faster
decay of the isostable coordinate [cf. Figs. 2(a) and 2(b)].
As in the spiral focus system, the slowest decaying real and
complex eigenfunctions of the noisy SL system lead to an
effective vector field F that exhibits a stable limit cycle, Σ0

[panel (c)]. Note the rotational symmetry of Σ0 in the
isotropic case [blue circle in (c)] versus the lack of
symmetry of the anisotropic case [orange ellipse in (c)];
the dashed black curve shows the deterministic SL limit
cycle, for comparison. In both cases, the noise reduces the
effective radius of the LC. The asymmetry of the aniso-
tropic case appears in all level sets of Σ, as well as the
stationary distribution and isochrons [panels (e) and (g)].
Noisy heteroclinic oscillator.—The underlying vector

field of a heteroclinic oscillator creates a closed loop of
trajectories connecting a sequence of saddle equilibria [37–
39]. Figure 3 shows the phase-amplitude analysis of the
heteroclinic oscillator system

_X ¼ cosðXÞ sinðYÞ þ α sinð2XÞ þ
ffiffiffiffiffiffiffi
2D

p
ξ1ðtÞ

_Y ¼ − sinðXÞ cosðYÞ þ α sinð2YÞ þ
ffiffiffiffiffiffiffi
2D

p
ξ2ðtÞ ð13Þ

with α ¼ 0.1 and reflecting boundary conditions on the
domain −π=2 ≤ fX;Yg ≤ π=2. Without noise the system
has an attracting heteroclinic cycle. Therefore, it can only
sustain robust oscillations in the presence of noise [29]. We
study this oscillator for a lower (D ¼ 0.01125) and for a
higher level of noise (D ¼ 0.1). For the lower level of noise
we observe a rightward shift of both the smallest complex
eigenvalue, indicating a longer persistence time of the
oscillation, and also the smallest real eigenvalue, indicating
slower convergence to the stationary state and slower
decay of the isostable coordinate towards Σ0 [cf. Figs. 3(a)
and 3(b)] [40]. At the same time, the mean period increases
logarithmically in D (not shown) [20]. The effective vector
fields FðxÞ differ significantly from the deterministic
system fðxÞ [panel (c)], especially near the domain
boundaries. Noise causes the effective direction of flow
to change, from paralleling the walls, to pointing inwards
towards the origin. Consequently, although f does not
support a limit cycle, F does.
For smaller noise, the stationary distribution [panel (f)] is

pressed tightly against the domain boundaries, and trajec-
tories rarely visit the interior of the domain [panel (d)].
Hence, the zeroth isostable Σ0 remains close to the do-
main walls [panel (d)]. For larger noise, the stationary

distribution spreads farther from the walls. Because of the
reflecting boundaries, trajectories visit all regions of the
domain, and Σ0 contracts partway into the domain interior
[panel (e)]. Increasing the noise amplitude reduces signifi-
cantly the curvature of the isochrons [panels (f) and (g)].
Discussion.—In this Letter we advance the work begun

in [29] towards a self-consistent phase-amplitude descrip-
tion of stochastic oscillations. Our methodology applies to
stochastic oscillations, even if they are noise induced. By
providing an analog of both phase and amplitude, we
establish a unified description of deterministic and sto-
chastic oscillations. The zeroth isostable Σ0 links the
deterministic setting, in which the amplitude coordinate
obeys _σ ∝ −σ, and the stochastic setting, in which
_hΣi ∝ −hΣi. Thus, for an oscillatory stochastic system,

trajectories asymptotically approach Σ0 “in the mean.” In
addition to unifying noise-perturbed deterministic LCs and
noise-induced oscillations in heteroclinic systems, Σ0 also

FIG. 3. Heteroclinic oscillator with lower (D ¼ 0.01125, or-
ange symbols) and higher (D ¼ 0.1, blue symbols) noise.
(a) Eigenvalue spectra of L† for lower and higher noise levels.
In this case, reducing D shifts both ℜ½λ�� and λFloq to the right.
(b) ln ðE½Σ(XðtÞ)=Σ(Xð0Þ)�Þ versus time, showing exponential
decay of the mean isostable coordinate. (c) Deterministic vector
field fðxÞ (black) and effective vector fields F and their associated
effective limit cycles. F and f differ, especially near the borders.
(d),(e) Isostable functions and ten trajectories for lower (d) and
higher (e) noise. As noise increases, trajectories spread across the
phase space, and Σ0 moves away from the boundaries. (f),(g)
Stationary probability distribution (color coded), five isochrons
(straight lines), and Σ0 (closed line) for lower (f) and higher
(g) noise level.
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captures the mean amplitude dynamics in the case of
quasicycles [41–44]. Together with [29], the framework
introduced in this Letter may provide a basis for studying
noise-driven oscillations in excitable systems [21], stocha-
stic bifurcations [45], coherence resonance [46,47], or to
construct a physically grounded definition for stochastic
limit cycles.
Our results assume a particular structure for the spectrum

of L†: the “robustly oscillatory criteria” are met and the
initial slowest decaying complex pair entails an entire
family of eigenvalues [29]. After this family constituting
the phase dynamics, then, the slowest decaying part of the
remaining eigenmode decomposition is precisely the least
negative real eigenvalue. Moreover, the structure of the
spectrum of L† can also be interpreted in terms of the
deterministic phase-amplitude coordinates derived from
the eigenfunctions of the Koopman operator [48,49].
Indeed, the connection between the asymptotic phase for
stochastic oscillators introduced in [29] and the Koopman
operator has been noted [50–52]. This connection is not
coincidental: the backward Kolmogorov operator at the
heart of our analysis, L†, is also the generator of the
Markov process, as well as the stochastic Koopman
operator [36]. Therefore, beyond its theoretical interest,
since our phase-amplitude functions are encoded in the
Koopman operator, modern methods for extracting
Koopman eigenfunctions from data may lead to practical
methods for establishing phase-amplitude coordinates for
noisy oscillatory systems in medicine, biology, enginee-
ring, economics, control, or other areas [53–56].
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