
RESEARCH ARTICLE

Interspike interval correlations in neuron

models with adaptation and correlated noise

Lukas RamlowID
1,2*, Benjamin LindnerID

1,2

1 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany, 2 Physics Department,

Humboldt University zu Berlin, Berlin, Germany

* lukas.ramlow@bccn-berlin.de

Abstract

The generation of neural action potentials (spikes) is random but nevertheless may result in

a rich statistical structure of the spike sequence. In particular, contrary to the popular

renewal assumption of theoreticians, the intervals between adjacent spikes are often corre-

lated. Experimentally, different patterns of interspike-interval correlations have been

observed and computational studies have identified spike-frequency adaptation and corre-

lated noise as the two main mechanisms that can lead to such correlations. Analytical stud-

ies have focused on the single cases of either correlated (colored) noise or adaptation

currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adap-

tation, the serial correlation coefficient can be approximated as a single geometric sequence

of the lag between the intervals, providing an explanation for some of the experimentally

observed patterns. Here we address the problem of interval correlations for a widely used

class of models, multidimensional integrate-and-fire neurons subject to a combination of col-

ored and white noise sources and a spike-triggered adaptation current. Assuming weak

noise, we derive a simple formula for the serial correlation coefficient, a sum of two geomet-

ric sequences, which accounts for a large class of correlation patterns. The theory is con-

firmed by means of numerical simulations in a number of special cases including the leaky,

quadratic, and generalized integrate-and-fire models with colored noise and spike-fre-

quency adaptation. Furthermore we study the case in which the adaptation current and the

colored noise share the same time scale, corresponding to a slow stochastic population of

adaptation channels; we demonstrate that our theory can account for a nonmonotonic

dependence of the correlation coefficient on the channel’s time scale. Another application of

the theory is a neuron driven by network-noise-like fluctuations (green noise). We also dis-

cuss the range of validity of our weak-noise theory and show that by changing the relative

strength of white and colored noise sources, we can change the sign of the correlation coef-

ficient. Finally, we apply our theory to a conductance-based model which demonstrates its

broad applicability.
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Author summary

The elementary processing units in the central nervous system are neurons that transmit

information by short electrical pulses, so called action potentials or spikes. The generation

of the action potential is a random process that can be shaped by correlated fluctuations

(colored noise) and by adaptation. A consequence of these two ubiquitous features is that

the successive time intervals between spikes, the interspike intervals, are not independent

but correlated. As these correlations can significantly improve information transmission

and weak-signal detection, it is an important task to develop analytical approaches to

these statistics for well-established computational models. Here we present a theory of

interval correlations for a widely used class of integrate-and-fire models endowed with an

adaptation mechanism and subject to correlated fluctuations. We demonstrate which pat-

terns of interval correlations can be expected from the interplay of colored noise, adapta-

tion and intrinsic nonlinear dynamics.

Introduction

Neural activity or spiking is a stochastic process due to the presence of multiple sources of

noise, including thermal, channel, and synaptic noise [1]. The study of neural systems in terms

of stochastic models is hence vital for understanding spontaneous neural activity as well as

neural information processing. Particularly useful in this respect are integrate-and-fire (IF)

models [2–4] because these models are often analytically tractable and thus permit insights

into the interplay of noise, signals, and nonlinear neural dynamics. It should be also noted that

they can mimic the neural response to in-vivo-like inputs for some cells surprisingly well [5–7]

and there exist procedures to systematically map biophysically detailed conductance-based

models to this model class (see e.g. [8]).

A common simplification in the study of neural spike generators lies in the assumption that

times between subsequent spikes, the interspike intervals (ISIs), are statistically independent.

Put differently, neural spiking is assumed to be a renewal process [9], which allows for a far-

reaching theory of neural interactions in recurrent networks [10, 11]. We note that simple

(one-variable) IF neurons, if driven by uncorrelated fluctuations, will exactly generate such a

renewal spike train and for this reason lots of theoretical efforts have focussed on the problem

of calculating the ISI probability density (statistics that completely characterizes a renewal pro-

cess) [2, 12, 13].

Although renewal theory has been successful in describing some aspects of neural activity,

there is increasing experimental evidence that in many cases ISIs are correlated over a few lags

[14–23]. These correlations are an important statistics of spike trains as they shape spectral

measures and therefore have consequences for information transmission and signal detection

[15, 16, 21, 24–27].

Such correlations can be quantified by the serial correlation coefficient (SCC)

rk ¼
hðTi � hTiiÞðTiþk � hTiþkiÞi

hðTi � hTiiÞ
2
i

ð1Þ

where Ti is the ith ISI, k represents the lag and h�i denotes the ensemble average. The SCC ρk
measures whether two intervals’ deviation from the mean are on average proportional (ρk>
0), anti-proportional (ρk< 0) or independent of each other (ρk = 0).
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Positive correlations can be induced by correlated input due to synaptic filtering [28, 29],

slow network processes [30–32] or channel noise with slow kinetics [33, 34]. Another mecha-

nism, commonly associated with negative ISI correlations, exhibited by many neurons is

spike-frequency adaptation, i.e. the increase of the ISI following an initial decrease due to a

stimulation. Adaptation currents include calcium-gated potassium currents, M-Type currents

as well as the slow recovery of sodium channels [35] (for the computational role of these and

other neural adaptation mechanisms, see [36]). Typical time scales of these currents range

from 50ms to 1s and can therefore by far exceed the mean ISI. Interestingly distinct causes of

correlations can result from a single source: In neurons of the sensory periphery adaptation-

channel noise, i.e. the stochastic opening and closing of slow ion channels that mediate an

adaptation current, may dominate the spiking statistics and provide at the same time adapta-

tion and correlated fluctuations [33, 34].

While both correlated input, in the form of colored noise, and adaptation and their implica-

tions for ISI correlations have been studied separately [37–39], a general theory that allows to

calculate the SCC in the presence of multiple correlation-inducing processes is still missing. In

this article we extend the weak noise theory developed by Schwalger and Lindner [39] for

mean-driven neurons to include multiple correlation-inducing processes. Our theory mainly

applies to noisy neurons in the sensory periphery, in which the type of noise and the adapta-

tion mechanisms are known. Cortical neurons, on the other hand, are more difficult: they typi-

cally operate in an excitable firing regime and the network noise that drives them is generally

not known with respect to its statistics; below we discuss a special case of cortical firing that

can nevertheless be captured by our theory.

We relate statistics of the spike train, namely the SCC ρk to intrinsic properties of nonlinear

neural dynamics captured by the phase-response curve (PRC). The PRC measures the shift of

the next spike time of a neuron subject to a small perturbation at different times in the firing

cycle [40–42]; see Fig 1 for an illustration of the method. The shape of the PRC depends cru-

cially on the neuron type: type 1 neurons which bifurcate from a quiescent to a tonically firing

regime via a saddle-node on invariant circle bifurcation possess a purely positive PRC, whereas

Fig 1. Linear response of a neuron models spike timing. The membrane potential of a tonically firing neuron with

deterministic ISI T� is subject to an arbitrary perturbation u(ti + τ) (left panel, red line). Here ti is the time of a

reference spike and τ 2 [0, T�] is the relative time since the last spike, resembling a phase. How strongly this

perturbation advances or delays the “phase” τ will in general depend on the “phase” itself at which the perturbation is

applied. This sensitivity is quantified by the phase-response curve Z(τ) shown in blue in the middle panel. The term Z
(τ)u(ti + τ) can thus be thought of a perturbation of the phase (middle panel, red line). In linear response these phase

perturbations can be integrated to yield the cumulative phase shift or spike time derivation δTi+1 = ti+1 − (ti + T�) (right

panel, red arrow). Note that separating the perturbation from the deterministic dynamics of the neuron model, i.e.

finding u(ti + τ) is part of the problem that we address in this paper and solve in detail in the Methods section.

https://doi.org/10.1371/journal.pcbi.1009261.g001

PLOS COMPUTATIONAL BIOLOGY Interspike interval correlations in neuron models with adaptation and correlated noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009261 August 27, 2021 3 / 35

https://doi.org/10.1371/journal.pcbi.1009261.g001
https://doi.org/10.1371/journal.pcbi.1009261


type 2 neurons which undergo a a supercritical Hopf bifurcation have a partially negative PRC

(see [8, 42] for more details on these neuron types). Our theory applies to both neuron types

and predicts qualitatively novel patterns of interval correlations that deviate from a single geo-

metric sequence; such deviations have been recently reported experimentally [43, 44].

The paper is organized as follows. We first introduce the broad class of models and the cor-

relation measure of interest; we illustrate both by a special case, the quadratic IF model with

adaptation and colored noise. In the following section, we present the general expression of

the serial correlation coefficient in terms of the phase-response curve, adaptation kernel, and

correlation function of the colored noise. We then explore the role of the specific shape of the

phase-response curve on the SCC by considering integrator and resonator models with purely

positive and partially negative PRC, respectively. We also discuss the case of a slow population

of stochastic ion channels that can be approximated by our model [33]. Finally, we demon-

strate that our theory can be applied to a conceptually different model, namely the conduc-

tance-based Traub-Miles model with an M current. We conclude our study with a discussion

of the results in the context of neural information transmission and give an outlook to several

open problems.

Results

Here we study a stochastic multidimensional integrate-and-fire neuron model with membrane

potential v(t) and N auxiliary variables wj(t) that is subject to spike-triggered adaptation (vari-

able a(t)) as well as correlated and uncorrelated Gaussian noise sources η(t) and ξv(t), respec-

tively.

_v ¼ f0ðv;wÞ þ m � aþ Zþ
ffiffiffiffiffiffi
2D
p

xvðtÞ; ð2aÞ

_wj ¼ fjðv;wÞ; j ¼ 1; . . . ;N ð2bÞ

ta _a ¼ � aþ D
P
dðt � tiÞ; ð2cÞ

tZ _Z ¼ � Zþ
ffiffiffiffiffiffiffiffiffiffiffi
2tZs

2
p

xZðtÞ: ð2dÞ

We apply the usual fire-and-reset rule: when v(t) reaches a threshold vT, a spike is triggered at

time ti = t; the membrane potential v and the auxiliary variables wj are instantaneously reset to

v = vR and w = wR, respectively. In contrast to that, a(t) undergoes a jump by Δ/τa� 0. In the

absence of any noise we assume that the system approaches a limit cycle (dashed line in Fig

2B) with a fixed period T� and a unique value of the adaptation variable right after a spike, a�.
Here we focus on the full stochastic system in which we use the uncorrelated noise sources

ξv(t), ξη(t), independent zero-mean Gaussian white noise processes with hξ(t)ξ(t0)i = δ(t0 − t).
As a consequence, η(t) represents a temporally correlated (colored) Ornstein-Uhlenbeck (OU)

process with auto-correlation function hη(t)η(t0)i = σ2exp(−|t0 − t|/τη), i.e. Eq (2d) is a Markov-

ian embedding for low-pass filtered noise (for more general embedding of colored noise in IF

neurons, see [45]). The presence of both white and colored noise will affect the voltage dynam-

ics directly. However, there is also an indirect effect through noise-induced deviations of the

adaptation variable from the deterministic limit cycle. As outlined in the method section, the

combined effect of the direct and indirect perturbations on the next spike time is subsumed in

the perturbation function u(t) that measures the deviation from the deterministic limit cycle

and is shown exemplary in Fig 1 (for the detailed definition of u(t) see Eq (35)). This function
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typically attains both positive and negative values and carries memory about previous activity

and stimuli.

The model is an extension of the one considered by [39]. The crucial novel feature is the

addition of a colored noise process. Consequently, here we deal with two possible sources of

interspike interval correlations—spike-frequency adaptation and slow fluctuations, as found

for instance in the case of adaptation-channel noise [33, 34]. Note that the fixed reset of the

voltage and auxiliary variable ensures that the spike-train is renewal in the absence of these

two slow processes. In addition, a minor difference of the models is the scaling of the jump

amplitude; in [39] the jump amplitude was Δ and not Δ/τa but the latter choice is the natural

one for systems with adaptation-channel noise.

While our general theory does not impose any restriction on the dimensionality of the cho-

sen IF model we will discuss only a selection of paradigmatic models with one auxiliary vari-

able at most, namely the quadratic IF (N = 0), leaky IF (N = 0) and generalized IF (N = 1)

model. An interesting special case, the adaptive quadratic integrate-and-fire model (QIF), is

considered in Fig 2. It is a model without auxiliary variables (N = 0), a quadratic nonlinearity

in the voltage dynamics f0(v) = v2, and threshold and reset points at infinity vT = −vR =1.

The model is the normal form of a type I neuron for which the transition from the excitable

regime to the tonically firing regime occurs via a saddle-node bifurcation [8, 42], implying a

Fig 2. Serial correlation coefficients for the adaptive QIF (Theta) model with colored noise. Panel A shows the

transformed membrane potential θ(t) = 2tan−1v(t), adaptation current a(t) and colored noise η(t) with spike times {ti},
ISIs {Ti} and peak adaptation values {ai}. Panel B displays the deterministic limit cycle (dashed line) and exemplary

noisy trajectory (solid line) in the phase plane (θ, a). Note that the jump is of constant size Δ/τa, while the voltage or

equivalently phase always resets to a fixed value θR. Panel C depicts the corresponding type I PRC quantifying the QIF

model’s response characteristics. For a non-adaptive QIF model the PRC would be symmetric around T�/2; for the

adaptive QIF, however, the maximum is shifted towards the right, i.e. the neuron is particularly sensitive to stimuli

applied at the end of the ISI. Panel D shows the SCC with initial, slightly positive correlation coefficient due to

positively correlated noise and subsequent negative correlations governed by adaptation. This pattern cannot be

described by a single geometric sequence. Parameters: μ = 5, τa = 6, Δ = 18, τη = 4, σ2 = 0.5, D = 0 and resulting T� �
4.0 and coefficient of variation CV� 0.2.

https://doi.org/10.1371/journal.pcbi.1009261.g002
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non-negative phase-response curve (PRC) [46]. Furthermore, the QIF model is equivalent to

the Theta-neuron by the transformation θ = 2tan−1v and thus possesses identical statistical

properties; in particular, they share identical ISI correlations.

The time courses θ(t), a(t) and η(t) and the limit cycle in the θ-a-plane are shown in Fig 2A

and 2B, respectively. The central response characteristics of a tonically firing neuron, the PRC

Z(t), is displayed in Fig 2C. Our theory, that is based on this PRC and detailed in the following,

shows excellent agreement with the numerically simulated SCC (theoretical predictions and

simulation results are shown in Fig 2D). The shown pattern is unlike any other one discussed

in the theoretical literature on ISI correlations so far: very weak positive correlations ρ1

between adjacent ISIs and pronounced negative correlations at all higher lags k> 1. This is

due to a non-trivial interplay between adaptation and colored noise. The observed shape of the

correlations is only one of several distinct patterns that are possible in our model and explored

in the following by means of our analytical approximations.

Generally and in line with our weak noise assumption we discuss cases where the noise

intensity is rather small. However, in a later Section we explore the range of validity of our the-

ory in terms of the output variability of the spike train and find quantitative agreement up to

CV� 0.2. Qualitatively, typical correlation patterns (i.e. SCC as a function of the lag) are well

described for an even larger values of CV� 0.7.

General expression for the correlation coefficient

As pointed out above, we assume that our model in the absence of noise operates in the toni-

cally firing regime with deterministic period T� and that the spike train in the presence of

noise is a stationary stochastic process. As shown in the Methods section, if the neuron is sub-

ject to a weak noise, the interspike intervals will be correlated according to the serial correla-

tion coefficient (SCC)

rk ¼
A
C

� �

rk;a þ
B
C

� �

rk;Z; k > 0 ð3Þ

with coefficients

A ¼ 1þ
ð1þ ðanÞ

2
� 2anbÞ

an � b
r1;Z � anb; ð4aÞ

B ¼
ð1 � ðanÞ

2
Þð1 � abÞða � bÞ

ð1þ a2 � 2a2nÞðan � bÞ
; ð4bÞ

C ¼ 1þ 2r1;ar1;Z � anb ð4cÞ

a ¼ e�
T�
ta ; b ¼ e�

T�
tZ ; n ¼ 1 �

a�

ta

Z T�

0

dt ZðtÞe� t=ta : ð4dÞ

and deterministic peak adaptation value a� = (Δ/τa)/(1 − exp[−T�/τa]). Remarkably, the depen-

dence on the lag k is carried exclusively by the two specific SCCs ρk,a and ρk,η. The prefactors

though depend on properties of both the adaptation as well as the noise sources. The coeffi-

cient ρk,a describes the correlations in the case of adaptation and purely white noise (σ = 0).

The second coefficient ρk,η represents the correlations in the absence of adaptation (Δ = 0) but

with the combination of white and colored noise. The specific SCC ρk,a is identical to the one
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derived in [39]:

rk;a ¼ �
að1 � a2nÞ

1þ a2 � 2a2n
ð1 � nÞðanÞ

k� 1
; ð5Þ

The SCC ρk,η is derived in the Methods section and reads

rk;Z ¼

R
doj~ZðoÞj2ð1þ o2t2

Z
Þ
� 1e� ioT�

R
doj~ZðoÞj2½ð1þ o2t2

Z
Þ
� 1
þ D=ðtZs2Þ�

b
k� 1
; ð6Þ

where ~ZðoÞ ¼ 1

T�

R T�
0
dtZðtÞe� iot. Interestingly, Eq (6) is the only place where the noise

strength parameters D and σ2 enter and they do so as the ratio of noise intensities D/(τησ2). In

this formulation it is simple to see that ρk,η vanishes for D� τησ2. In the opposite limit of van-

ishing white noise (D = 0), Eq (6) coincides with the expression derived in [47].

Our main result Eq (3) implies that the SCC for a general stochastic IF model with both

adaptation and correlated noise is in fact a linear combination of two geometric series. These

geometric series are determined by the two correlation-inducing processes and agree with the

specific SCCs Eqs (5) and (6) except for a constant prefactor (constant with respect to the lag

k). A sum of two geometric series as in Eq (3) can exhibit completely different patterns of inter-

val correlations compared to a single geometric sequence obtained in previous theoretical cal-

culations [33, 37, 38, 47–49]. We recall that the absolute value of the elements of a geometric

sequence sk = s0rk decay exponentially with the lag k for physically plausible values |r|< 1. In

addition, the SCC’s sign is determined by the prefactor s0 and the sign between adjacent ele-

ments may alternate depending on the sign of the base r. The two possible signs of s0 and r
allow for four distinct patterns of correlations in the case of a single geometric sequence.

Possible shapes that result from the interplay between the specific SCCs are illustrated in

Fig 3. The pattern in Fig 3A for instance, is characterized by a very small positive first correla-

tion coefficient (this could also be amplified or diminished by fine tuning parameters) whereas

higher lags have pronounced negative correlations—a structure that cannot be generated by a

single geometric sequence. In Fig 3B the inverse case is shown: a weak and negative first corre-

lation coefficient followed by stronger positive coefficients at higher lags. Deviations from a

single geometric sequence have been seen experimentally (see [44] for a recent example). Indi-

rect evidence for the combination of short-term negative and long-term positive correlations

have been reported by means of the Fano factor [50–52] (see [21] for an explanation of the

underlying connection between correlations and Fano factor).

A closer inspection of Eqs (5) and (6) reveals that interval correlations introduced by the

OU process lead to a coefficient ρk,η that can only decay exponentially with k because for the

base of the power βk−1 we have the condition 0< β< 1, according to Eq (4d). A richer reper-

toire, however, becomes possible for ρk,a because the base of the power can attain values from a

broader interval −1 < αν< 1 (see Methods); note that α> 0 and hence the sign of the base is

determined by ν. Thus oscillatory correlation coefficients enveloped by an exponential func-

tion emerge for a negative base, ν< 0. For ν> 0 the purely exponential case is recovered.

In addition to the base, also the prefactor can attain different signs which specifically

depends on the neuron’s PRC. In the following sections we discuss patterns of interval correla-

tions for two distinct cases, that is the leaky IF model with a non-negative and the generalized

IF model with a partially negative PRC.
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Adaptive leaky integrate-and-fire model with colored noise

For one-dimensional IF models, i.e. f0(v, w) = f(v) the PRC can be calculated analytically by

means of the adjoint method Eq (17)

ZðtÞ ¼ ZðT�Þexp
Z T�

t

dt0f 0ðvðt0ÞÞ
� �

; ð7Þ

where the prime denotes the derivative with respect to v and Z(T�) = [f(vT) + μ − a� + Δ/τa)]−1

is the inverse velocity _vðT�Þ� 1
of the deterministic system at the threshold, see Eq (20). The

term a� − Δ/τa corresponds to a(T�) right before the spike (recall that a� is the deterministic

peak adaptation value right after the spike).

Since the neuron is required to fire in the absence of noise this velocity is positive and so is

the PRC. Put differently, for every one-dimensional IF model, a positive kick in the voltage

variable will always advance the phase as it brings the neuron model closer to the threshold.

For the adapting leaky IF model (f0(v) = −γv, N = 0) in particular, the PRC reads [39]

ZðtÞ ¼
exp½gðt � T�Þ�

m � gvT � a� þ D=ta
: ð8Þ

As discussed in the previous section the specific SCC ρk,a is a geometric sequence with oscil-

latory or exponential base pattern, distinguished by ν< 0 and ν> 0, respectively. Its prefactor

(using |αν| < 1 and 0< α< 1)

� Eð1 � nÞ with E ¼
að1 � a2nÞ

1þ a2 � 2a2n
> 0

depends specifically on the PRC and is always negative for positive PRCs. This is so because

according to Eq (4d) for positive PRCs we find ν< 1. The second term ρk,η decays

Fig 3. General correlation coefficient ρk of the adaptive LIF model subject to white and colored noise. The specific

SCCs ρk,a and ρk,η are obtained by considering one correlation inducing process at a time, i.e. adaptation and white

noise or colored and white noise, respectively. Two qualitatively different cases are displayed distinguished by i) the

base pattern exhibited by ρk,a that is exponentially decaying in A and oscillatory in B and ii) the sign of the first (k = 1)

and every subsequent (k� 1) SCC. For example consider A where ρ1 > 0 and ρk< 0 for k> 0. The inverse case is

shown in B, i.e. negative correlations at lag 1 and positive ISI correlation for every subsequent lag. Such patterns have

been reported in cats peripheral auditory fibers and the weakly electric fish electroreceptors [50, 51] and can not be

explained by adaptation or colored noise alone. Note that the SCC of the full model is not bound by the specific SCCs.

Parameters (A, B): γ = 1, μ = (5, 20), τa = (2, 1), Δ = (2, 10), τη = (0.5, 5), σ2 = 2 � 10−2, D = 10−3.

https://doi.org/10.1371/journal.pcbi.1009261.g003
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exponentially with lag k and possesses a non-negative prefactor because of the positive PRC of

the considered model (this becomes evident in Eq (32)). To summarize, in a type I neuron

model with non-negative PRC correlated noise leads to positive interval correlations with time

constant equal to the correlation time of the noise. On the contrary, spike-triggered adaptation

evokes a negative correlation between adjacent intervals (k = 1) followed by an exponential

decay in amplitude at higher lags (k> 1) that can be either monotonic or oscillatory.

The relation between specific and general SCCs for the LIF model was already discussed in

the preceding section; cf. Fig 3. In Fig 4 we inspect how the general correlation coefficient

depends on the correlation time of the colored noise τη, here given in multiples of the unper-

turbed period T�. We distinguish the two possible cases of strong Fig 4A and weak adaptation

Fig 4B in terms of the parameter ν that we can recast into ν = (f(vR) + μ − a�)Z(0) (derivation

similar to [38], Appendix 4.1.2). Strong and weak adaptation are related to the sign of the

parameter ν that appears for the noiseless system in the temporal derivative of the voltage at

the reset _v ¼ n=Zð0Þ. For weak adaptation (ν> 0) the voltage after reset runs on average

towards the threshold. On the contrary, for strong adaptation (ν< 0) the peak adaptation

value a� is so high that the voltage after being reset to vR drops on average even further towards

more hyperpolarized values.

For τη� T� the noise becomes effectively white and consequently correlations are intro-

duced solely by adaptation, i.e. the general SCC is reduced to ρk,a. In the other limit of long

Fig 4. Pattern of interval correlations for the adaptive LIF model. The PRC Z(τ) and SCC ρk for two different cases

that are strong ν< 0 A and weak adaptation 0< ν< 1 B are shown. In both cases the colored noise correlation time τη
is gradually increased. For small correlation times the SCC is governed by the adaption as the colored noise becomes

essentially white (dark line and circles). In the other limit of long correlation times the SCCs are positive and governed

by the colored noise (light line and circles). For intermediate time scales the SCCs are determined by both processes

equally as shown in Fig 3. Parameters (A, B): γ = 1, μ = (20, 5), τa = 2, Δ = (20, 2), σ2 = 0.1, D = 0 and resulting T� =

(0.67, 1.04).

https://doi.org/10.1371/journal.pcbi.1009261.g004
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correlated noise with τη� T�, the general SCC does coincide with ρk,η if there is no white

noise present (D = 0). This implies that in the limit of long correlated noise the origin of posi-

tive ISI correlations (the colored noise) wins against the origin of negative ISI correlations (the

adaptation), and consequently, ρk> 0. Why does the colored noise dominate in this limit? A

long-range correlated noise η(t) can be regarded as a constant modulation of the input μ over

many ISIs leading to similar deviations in adjacent intervals from the mean ISI. The adaptation

acting on a finite scale τa will reduce these deviations in adjacent intervals, but can not change

their common sign.

For intermediate values τη� T� the SCCs can be governed by one process for small lags

and the other for higher lags which is the case shown in Fig 4B. The first SCC is governed by

positively correlated noise while the remaining SCCs are negative due to adaptation.

Adaptive generalized integrate-and-fire model with colored noise

In the two-dimensional case, as for instance for the generalized IF (GIF) model [53, 54]

f0ðv;wÞ ¼ � gv � bww ð9aÞ

f1ðv;wÞ ¼ ðv � wÞ=tw ð9bÞ

the PRC can be partially negative and resembles type II resetting. Positive kicks applied to the

voltage at appropriate time instances can thus prolong the ISI. The PRC can be calculated ana-

lytically [39]:

ZðtÞ ¼
el2ðt� T�Þ cosðOðt � T�ÞÞ � 1� twg

2twO
sinðOðt � T�ÞÞ

h i

m � gvT � bww0ðT�Þ � a� þ D=ta
ð10Þ

where λ = γ + 1/τw, O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bwþg

tw
� l2

4

q
and w0(T�) is the deterministic value of the auxiliary vari-

able w at the threshold. Having a second variable not only changes the PRC qualitatively but

will also affects the deterministic period T� and, consequently, the parameters α and β. We

would like to emphasize that the GIF model includes the LIF model as a limit case. For this rea-

son we expect that all patterns shown by the LIF model can also be realized by the GIF model.

The observed patterns for ν< 0 and 0< ν< 1, shown in Fig 5A and 5B, can also be realized

by the LIF model and have been discussed in the preceding section (details depend on the spe-

cific parameter and model, though).

As a consequence of the partially negative PRC, the parameter ν can exceed one as seen

from Eq (4d) and introduce positive correlations even if the driving noise is only shortly corre-

lated. This is seen in Fig 5C where the correlation coefficients for short correlation times are

positive. We recall that this case cannot be realized by an LIF model with adaptation and thus

represents a novel feature of the GIF model. The involved dependence of ρ1 on the correlation

time τη is presented in a different way in Fig 6A and contrasted with a similar case in the

absence of adaptation in Fig 6B.

In order to understand the case ν> 1 shown in Fig 5C, first consider the effect of the adap-

tation separately from the colored noise. A shortened reference interval evokes a positive devi-

ation of the peak adaptation value, δai = ai − a� affecting the next interval. If the corresponding

inhibitory (negative) current [−δaiexp(−τ/τa), see Methods], acts mainly at the beginning of

the next interval where the PRC is negative as well (for instance with τa� T�/2 as in Fig 5C), it

has a shortening effect on the subsequent interval. First and second interval are both shorter

than the mean, implying a positive correlation; a similar line of arguments applies for a refer-

ence interval longer than the mean ISI. Now consider the additional effect of the correlated

PLOS COMPUTATIONAL BIOLOGY Interspike interval correlations in neuron models with adaptation and correlated noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009261 August 27, 2021 10 / 35

https://doi.org/10.1371/journal.pcbi.1009261


noise. First, short-range correlated noise (τη/T� = 10−2) is essentially white and does not intro-

duce correlations. Therefore the SCC is governed by adaptation and remains positive by the

mechanism discussed above. Secondly, consider larger correlation times still shorter than the

proportion of the ISI for which the PRC is negative, e.g. τη/T� = 10−1. Values of η(t) that are

preserved beyond a spike will then have opposite effects on the two intervals separated by the

spike, inducing an anti-correlation of these intervals. As a consequence the overall SCC

decreases initially with increasing τη. Finally, for correlation times equal or longer than the

mean ISI, τη� T�, the particular shape of the PRC becomes irrelevant and the positive correla-

tions of the colored noise translate into positive correlations of the ISIs. The minimal correla-

tion at intermediate values of the colored noise correlation time is demonstrated in Fig 6A.

The asserted anti-correlation induced by a colored noise of intermediate correlation time is

explicitly demonstrated in Fig 6B. Here we consider the GIF model without adaptation at

parameters that ensure a negative PRC at short times. Clearly, the SCC is negative for interme-

diate values of the correlation time. This is an interesting result in its own right: A low-pass fil-

tered noise can evoke negative correlations in a resonator model. Besides the combinations of

white noise and spike-triggered adaptation [16, 55, 56], white noise and short term depression

Fig 5. Pattern of interval correlations for the adaptive GIF model. The PRC Z(τ) and SCC ρk for three different

cases that corresponds to ν< 0 A, 0< ν< 1 B and ν> 1 C are shown. The first two cases A, B resemble the previously

discussed cases of the adaptive LIF model, see Fig 4. For the third case C both adaptation and correlated noise can have

counter intuitive effects on the SCC if they act mainly on the proportion of the ISI where the PRC is negative. This can

be ensured by appropriate choice of the time scales, here τa� T�/2 and τη� T�/2. Thus the adaptation can give rise to

positive interval correlations and additional colored noise with varying correlation time initially decreases the SCCs for

intermediate τη and eventually leads to enhanced positive correlations for large τη. Parameters (A, B, C): γ = (1, 1, −1),

μ = (10, 20, 1), βw = (3, 1.5, 5), τw = (1.5, 1.5, 1.1), τa = (10, 10, 1), Δ = (10, 10, 2.3), σ2 = 10−3, D = 0 and resulting T� =

(1.24, 0.57, 1.91).

https://doi.org/10.1371/journal.pcbi.1009261.g005

PLOS COMPUTATIONAL BIOLOGY Interspike interval correlations in neuron models with adaptation and correlated noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009261 August 27, 2021 11 / 35

https://doi.org/10.1371/journal.pcbi.1009261.g005
https://doi.org/10.1371/journal.pcbi.1009261


[47], and network noise from neurons firing more regular than a Poisson process [47], this is

yet another independent mechanism for the generation of negative ISI correlations.

Leaky integrate-and-fire model with adaptation-channel noise

Adaptation and colored noise in our model Eq (2) can also be regarded as an idealized descrip-

tion of the current flowing through a population of stochastically opening and closing ion

channels with adaptation-mediating voltage-dependent gating kinetics [33, 34]. A paradig-

matic example is the Ca2+-dependent K+ current [55, 57] but several other candidates for such

spike-triggered adaptation currents are known (see [35]). Whatever the type of channel is, the

current through a single channel is highly stochastic and this remains true also for the summed

current through a finite population of channels—this is what is commonly referred to as chan-

nel noise. As was demonstrated in [33], the total current through a finite population of adapta-

tion channels can be split up into a deterministic part (equivalent to the adaptation dynamics

Eq (2c)) and a stochastic part that corresponds to an Ornstein-Uhlenbeck process (our Eq

(2d)).

In this interpretation of the model, the summed current a(t) + η(t) stems from one source,

i.e. from the population of adaptation channels and we regard the sum as adaptation-channel

noise (the white noise may be regarded as resulting from faster, e.g. Na+ channels). Crucially,

because noise and adaptation have a common origin, the previously independent time con-

stants τa and τη have to be set equal. We will refer to the common time constant as τc≔ τa =

τη. Note that consequently we have α = β, parameters which where defined in Eq (4d). We

emphasize that we will not consider explicit channel models here but refer the interested

reader to [33, 34].

First note that our expression for the general SCC Eq (3) simplifies considerably if τa = τη
since in this case the second term (B/C)ρk,η drops out. This is so because with α = β the

Fig 6. First serial correlation coefficient of the GIF model with respect to the correlated noise time constant τη. Panel A

shows the SCC for an adaptive GIF with parameters similar to those in Fig 5C. In panel B we consider a GIF model without

adaptation and parameters chosen so that the PRCs in A and B qualitatively agree. The SCC at lag k = 1 can exhibit non-

monotonic behavior with respect to the time constant τη due to the partially negative PRC. The PRC is shown in the upper left

inset and is in both cases found to be negative until τ� T�/2. If the correlation time matches this proportion of the ISI the SCC

is significantly decreased compared to the case of short correlation times. For τη� T� adjacent ISIs are positively correlated as

they are similarly affected by the slow varying noise. Parameters (A, B): γ = −1, μ = 1, βw = 5, τw = (1.1, 1.1), wR = (0, 1), τa = (1,

0), Δ = (2.3, 0), σ2 = 10−3, D = 0 and resulting T� = (1.91, 1.76).

https://doi.org/10.1371/journal.pcbi.1009261.g006
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prefactor B = 0, see Eq (4b). The possible interval correlations are thus determined by a single

geometric sequence and comprise exponentially decaying or oscillatory patterns.

Quantitative agreement between simulations (circles) and theory (lines) for the first corre-

lation coefficient is demonstrated in Fig 7 for the cases of weak (Fig 7A) and strong adaptation

(Fig 7B) and varying intensities of white noise (black lines). We also compare to the limiting

cases of vanishing colored fluctuations (σ = 0, blue dashed line) and vanishing adaptation (Δ =

0, orange dash-dotted line).

We recover a number of results known from the literature. First of all, if the total noise in

the system is dominated by the uncorrelated fluctuations (D is sufficiently large), the SCC is

negative and the absolute value is maximized if the time constant of the adaptation is about the

mean ISI [33, 55]. Secondly, as already argued above and in line with results from [33] the cor-

relations are always positive if τc is sufficiently large and the white noise is sufficiently weak,

i.e. the stochasticity of the adaptation (described by the colored noise) wins against the feed-

back effect of the adaptation in determining the sign of the correlation coefficient. Finally, we

find qualitative agreement of ρ1(τc) in our model with the channel model of Ref. [33]: it exhib-

its a non-monotonic shape with small negative correlations for small τc and positive correla-

tions for larger values of τc (cf. solid line for D = 0.05 in Fig 7A, with empty circles in Figure 9

of Ref. [33]).

We would like to emphasize that for the channel noise case we have explicitly taken into

account additional white noise (we used D = 0 for the previous cases). As it becomes evident

from Fig 7, this white noise can change the sign of the correlation coefficient and, more gener-

ally, the way the first SCC depends on the time constant of the channel kinetics. This illustrates

how different channel fluctuations may interact to shape the serial correlation coefficient of

the interspike interval.

Fig 7. Serial correlation coefficients for the LIF with adaptation-channel noise. The SCC of adjacent intervals ρ1 (black

lines and dots) for our model Eq (2) with identical time constants τη = τa = τc shows non-monotonic behavior with a

minimum as a function of τc given that the white noise intensity D is sufficiently large. This is so because the kick amplitude

scales with t� 1
c . The panels A and B correspond to weak and strong adaptation, respectively. The limiting cases are shown in

orange (no adaptation or white noise, Δ = 0, D = 0) and blue (no colored noise, σ = 0, D = 0.1). However, only the limit case of

vanishing colored noise can be attained by the full model through varying the white noise intensity. Parameters: (A, B) γ = 1 μ
= (5, 20), Δ = (2, 20), σ2 = 0.1. Note that in contrast to the Figs 4–6, the deterministic period T� depends for some of the curves

on τc. For the black and blue curves the deterministic period T� 2 [0.56, 0.67] in A and T� 2 [0.74, 1.08] in B and increases in

both panels with τc. For the orange curve T� = 0.22 in A and T� = 0.05 in B.

https://doi.org/10.1371/journal.pcbi.1009261.g007
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Adaptive leaky integrate-and-fire model with network-noise-like

fluctuations

So far we have discussed neuron models that are subject to positively correlated noise as it

would arise due to synaptic filtering of uncorrelated pre-synaptic spike trains or due to slow

adaptation channels. Such input noise processes exhibit power spectra with increased power at

low frequencies (or, depending on the perspective, reduced power at high frequencies). This

has clear applications to neurons in the sensory periphery that often lack synaptic input (spike

variability is mainly caused by channel noise) or are only subject to approximately uncorre-

lated feedforward spike input. However, what about the interesting case of cortical neurons as

part of a recurrent network of neurons? Although our theory requires a mean-driven cell and

is therefore not generally applicable to this situation (many neurons in the cortex operate in an

excitable, i.e. fluctuation-driven, regime), we discuss now a special case in which it nevertheless

can be employed.

Most neural networks show a large heterogeneity with respect to cellular parameters as well

as to the kind, number, and strength of synaptic connections, resulting in distributions of fir-

ing rates and CVs with the latter measure of variability varying between 0.2 and 1.5 (see e.g.

[58]). For cells that fire rather regular and with high rates we can assume that they are effec-

tively mean driven (with respect to the sum of intrinsic and recurrent currents); although a

low value of the CV is in principle also possible for an excitable neuron through the mechanism

of coherence resonance [59], this requires a close proximity to the bifurcation point and a fine

tuning of the noise intensity that is unlikely to take place in the mentioned cells. The same

argument can be made for certain areas in the brain, as for instance the motor cortex, where

the firing variability is generally lower (see e.g. the review [60] or a more recent study on the

variability in motor cortex [61]).

We consider such a mean-driven neuron that receives input from a recurrent network in

an asynchronous irregular state (the neuron could be part of this network or be subject to a

feedforward input from such a network). The kind of network noise can be approximated by a

Gaussian process; its temporal correlation function can attain different shapes and depends on

the detailed connectivity in the network (see e.g. [62, 63]). In typical cases of low to intermedi-

ate firing rate one encounters both in in vivo experiments [64] and in theoretical studies [45,

62, 65] fluctuations that are referred to as green noise, the power spectrum of which possesses

reduced power at low frequencies and is otherwise flat. Such a power spectrum is well approxi-

mated by a sum of a white noise and an Ornstein-Uhlenbeck process (see e.g. Figure 14 in

[45]) if the previously independent noise sources in Eq (2a) and (2d) are chosen to be anti-cor-

related ξv = −ξη. The respective power spectrum of the random process z ¼ ZðtÞ þ
ffiffiffiffiffiffi
2D
p

xðtÞ is

given by

SzzðoÞ ¼ 2Dþ
2tZs

2 � 4
ffiffiffiffiffiffiffiffiffiffiffiffi
DtZs2

p

1þ t2
Z
o2

: ð11Þ

This power spectrum possesses a constant high frequency limit limω!1 S(ω) = 2D and

reduced power at low frequencies Szzð0Þ ¼ ð
ffiffiffiffiffiffi
2D
p

�
ffiffiffiffiffiffiffiffiffiffiffi
2tZs

2
p

Þ
2
< 2D, see Fig 8A. The turning

point between those two limits is given by ω = 1/τη. Furthermore, numerical inspection of the

self-consistent network spectrum in [45] revealed that the parameter τη is mainly set by the

mean firing rate r0 of the neurons in the recurrent network, or, equivalently, to their mean ISI

hTinet = 1/r0, and we have roughly τη� hTinet/π. The parameters D and σ2 are determined by

the number, type, and strength of synaptic connections, see [45].
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It turns out that such a power spectrum can be treated by our theory if we adjust the specific

correlation coefficient ρk,η as follows

rk;Z ¼

R
doj~ZðoÞj2SzzðoÞe� ikoT

�

R
doj~ZðoÞj2SzzðoÞ

: ð12Þ

This is exactly the approximation for the SCC that has been derived for purely colored-noise

driven neurons in [47]. For our model with an adaptation variable, this generalization is valid

if the corresponding autocorrelation function Czz(τ) decays exponentially (an additional delta-

function is also permitted), which is the case for the considered green noise.

In Fig 8 we consider a mean-driven LIF neuron with (Fig 8C) or without adaptation (Fig

8D), which is subject to network-noise-like green fluctuations with spectrum Szz, see Fig 8A.

This spectrum exhibits a low-frequency power suppression of Szz(ω = 0)/Szz(ω!1) = 0.25,

similar to that of the self-consistent power spectrum in Ref. [45], Fig 14. We choose the overall

amplitude of the noise such that the resulting CV is in between 0.2 and 0.5, which is in the

lower physiological range for cortical cells. We compare the theoretical SCC (lines) to stochas-

tic simulations for different values of the time scale τη and find in all cases a good agreement;

this becomes an excellent agreement for weaker noise, as can be expected. Remarkably, even in

the absence of adaptation, a green noise evokes negative ISI correlations, see Fig 8C; a

Fig 8. Serial correlation coefficients for the LIF with network-noise-like fluctuations. Panel A shows the input

power spectrum Sin with reduced power at low frequencies of a random process that is applied to a LIF model. The

resulting SCC ρ1 for no adaptation (upper line) and weak adaptation (lower line) are displayed in panel B. The

coefficient ρ1 has a minimum because for both long and short correlation times the noise becomes essentially white.

The pattern of interval correlations are shown in C for no and D for weak adaptation. Even in the absence of an

adaptation current the network-noise can generate negative ISI correlations. This is due to the lack of power at low

frequency. For an adaptive LIF model negative correlations are enhanced. Parameters (C, D): γ = 1, μ = 5, τa = (0, 2), Δ
= (0, 2), D = 0.18, τησ2 = 4.5 � 10−2 and resulting T� = (0.22, 0.67).

https://doi.org/10.1371/journal.pcbi.1009261.g008
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corresponding observation has been made for another noise process with reduced low-fre-

quency power in [47] and also the excitable (non-adapting) cells in the recurrent network in

Ref. [45] exhibit a (somewhat smaller) negative correlation of ρ1� −0.1 [66]. With an addi-

tional adaptation current (Fig 8D), negative ISI correlations become even stronger as can be

expected. Furthermore, in both cases the SCCs depend non-monotonically on τη, see Fig 8B

because, somewhat non-intuitive, in both limits τη! 0 and τη!1 the effective noise

becomes white (uncorrelated) and will not cause negative correlations anymore. We note that

for the network situation with a mean-driven cell with mean ISI T� firing somewhat faster

than the average cell with ISI hTinet, a time constant tZ ¼ hTinet=p≳T�=p, e.g. a ratio of

τη/T� = 1 seems to be the most relevant value. Interestingly, this is close to the value that maxi-

mizes the strength of correlations, cf. Fig 8B.

Adaptive generalized integrate-and-fire model with both colored and white

noise—Testing the range of validity

We turn to the most general case and discuss to what extend it can be expected that the SCC of

a simulated stochastic spike train is well described by our perturbation theory. We choose a

specific parameter set with respect to the deterministic system and the involved time scales

and vary the two small parameters of our theory, i.e. the white noise intensity D and variance

of the colored noise σ2. In order to inspect the range of validity, we show not only the SCC ρ1

but also a popular measure of the output variability, the coefficient of variation (CV)

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðTi � hTiiÞ
2
i

q

hTii
:

In a first simulation setup the variance σ2 is fixed so that for small values of D the SCC ρ1 is

predominantly determined by the colored noise (cf. ρ1 > 0 in Fig 9A bottom for small D).

Increasing the white noise intensity has a twofold effect. First, it boosts the output variability of

the spike train (cf. growth of the CV in Fig 9A top). Secondly, with stronger white noise the

adaptation becomes the dominant process in shaping the SCC (ρ1 < 0) as demonstrated in Fig

9A bottom for large D. Put differently, the sign of the SCC can be determined by the ratio of

the noise intensities D/(τησ2), which can be seen from Eq (6), the only place where the noise

intensities enter in our theory.

We find quantitative agreement between theory and simulation for both the CV and SCC

ρ1 up to CV = 0.3. Qualitative agreement is maintained over the whole tested range of noise

intensities D; even for a relatively high CV, e.g. CV� 0.7, the dependence of the SCC on the lag

k is well described by our theory (see inset Fig 9A).

In a second setup we fix the white noise intensity D and test how varying the colored-noise

variance affects the agreement between simulation and theory.

Here we find quantitative confirmation of our theory up to CV = 0.15. Again, theory and

simulations agree qualitatively over the whole range tested as demonstrated in the inset of Fig

9B. Specifically, focusing on the SCC’s dependence on the lag k the theory reproduces the

change in sign between ρ1 and ρ2, the minimum at k = 3 and the subsequent decay.

Traub-Miles model with an M current and both colored and white noise

Finally, we demonstrate that our theory can be applied beyond the integrate-and-fire frame-

work to a Hodgkin-Huxley-like conductance-based neuron. Specifically, we use the Traub-

Miles model endowed with a slow adaptation-like potassium current as considered by
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Ermentrout [67] and drive it with both colored and white (notation as above)

C
dV
dt
¼ � Iion � Iadap þ I þ Zþ

ffiffiffiffiffiffi
2D
p

xVðtÞ; ð13aÞ

tZ
dZ
dt
¼ � Zþ

ffiffiffiffiffiffiffiffiffiffiffi
2tZs

2

q
xZðtÞ: ð13bÞ

Here I is a constant current and Iion comprises the fast sodium, leak and potassium currents,

given in terms of the reversal potentials Ey, the maximum conductances gy and the gating vari-

ables h, n and m

Iion ¼ gNahm3ðV � ENaÞ þ gLðV � ELÞ þ gKn4ðV � EKÞ; ð14aÞ

dx
dt
¼ axðVÞð1 � xÞ � bxðVÞx; with x ¼ h;m; n: ð14bÞ

Fig 9. Range of validity and effect of varying noise strengths. Coefficient of variation CV (top) and SCC of adjacent

intervals ρ1 (bottom) for the GIF model with weak adaptation. We test to which extent simulation results are well described

by our weak-noise theory with respect to the two small parameters (D, σ2). In A the variance of the colored noise is fixed (σ2

= 0.1) and the white noise intensity D is varied; in B we fix D = 0.01 and vary σ2. We find quantitative agreement for CV< 0.3

in A and CV< 0.15 in B. In both cases qualitative agreement in terms of the shape of the SCCs (see insets) is found over the

whole range of D and σ2, respectively. Parameters: γ = 1, μ = 20, βw = 1.5, τw = 1.5, τa = 10, Δ = 10, τη = 1 and resulting T� =

0.57.

https://doi.org/10.1371/journal.pcbi.1009261.g009
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spike-frequency adaptations is mediated by a slow potassium current

Iadap ¼ �gzðV � EKÞ; ð15aÞ

tz
dz
dt
¼ hðVÞ � z; with hðVÞ ¼

1

1þ exp � Vþ20

5

� � : ð15bÞ

For ax(V), bx(V), h(V) and the parameter values, see Table 1.

The transient behavior of V(t) and z(t) in response to a current step, see Fig 10A, displays

spike-frequency adaptation (note the increase in the interspike intervals in the course of time).

The noisy trajectory of the full system is close to the deterministic limit cycle for a sustained

constant input, Fig 10B. Using the deterministic model (D = 0, σ = 0) and small short pulses,

we can determine the PRC of the system according to Eq (16) numerically, see Fig 11A.

In addition to the PRC our theory requires the knowledge of the deterministic interspike

interval as well as the peak-value and the time-scale of the adaptation current. The latter time-

scale is readily identified as the time-constant of the gating variable z, τa = τz. The former

parameters can be determined numerically from simulations of the deterministic model; we

Table 1. Simulation parameters for the Traub-Miles model.

Parameter Value Parameter Value Parameter Value

I [μA/cm2] 5 gNa [mS/cm2] 100 ah(V) 0:128exp � Vþ50

18

� �

D [(μA/cm)2ms] 0.1 gL [mS/cm2] 0.1 am(V) 0:32 Vþ54

1� exp � Vþ54
4ð Þ

τη [ms] 10 gK [mS/cm2] 80 an(V) 0:032 Vþ52

1� exp � Vþ52
5ð Þ

σ2 [(μA/cm)2] 0.1 ENa [mV] 50 bh(V) 4

1þexp � Vþ27
5ð Þ

τz [ms] 100 EL [mV] -67 bm(V) 0:28 Vþ27

exp Vþ27
5ð Þ� 1

�g [mS/cm2] 5 EK [mV] -100 bn(V) 0:5exp � Vþ57

40

� �

https://doi.org/10.1371/journal.pcbi.1009261.t001

Fig 10. Traub-Miles model with slow M current. Panel A shows the membrane potential V(t) and the adaptation’s

gating variable z(t). At t = 25ms a constant current I = 5μA/cm2 (red line panel) is applied so that the model undergoes

a transition from the excitable to the tonic firing regime. Due to the slow build-up of the adaptation current the model

shows a transient behavior where the firing-rate decreases until z(t) has reached its stationary value (doted line). The

inset shows that z has two different phases, one during which z rapidly increases and another where z slowly decays.

Panel B shows the deterministic limit cycle (dashed line) together with a noise trajectory of the tonically firing model

with T� = 18.9ms. Parameters are as given in Table 1.

https://doi.org/10.1371/journal.pcbi.1009261.g010
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find T� = 18.9ms and a� ¼ I�adap=C ¼ 4:2mV=ms, which correspond for the chosen parameters

to a slow and weak adaptation.

Consistent with our discussion surrounding Fig 3, we inspect the SCC in three different

cases: i) with adaptation and white noise, ρk,a ii) with colored and white noise but no adapta-

tion, ρk,η and iii) with both colored and white noise and adaptation present, ρk.
The resulting SCCs, see Fig 11B, show very good agreement between simulations and the-

ory and illustrates that our theory is applicable to conductance-based models. A comparison

with Fig 3A demonstrates that the type of the PRC is indeed the essential response characteris-

tics that determines the pattern of interspike-interval correlations.

Discussion and conclusion

Neurons often show both stochasticity as well as slow time scales in their spiking process, fea-

tures that are due to intrinsic and external noise sources ´ [4, 13] and due to adaptation cur-

rents [35], respectively. The two essential characteristics of neural firing, randomness and

adaptation, do not only become apparent in the spontaneous activity of nerve cells but also

influence strongly their signal transmission properties (when stimulated with time-dependent

signals) [67–78] and their synchronization with other cells (when considered in large recurrent

networks) [79–82]. It is thus an important goal in neuroscience to theoretically understand

spiking models of the nerve cell that incorporate these features.

Multidimensional stochastic integrate-and-fire models endowed with adaptation currents

and intrinsic noise are simplified yet biophysically minimalistic descriptions that incorporate

both stochasticity and spike-frequency adaptation. It has been shown that they can mimic the

response of pyramidal cells to complex stimuli to an astonishing degree of accuracy [5, 83–85].

Thus, not surprisingly, many theoretical efforts have been devoted to this model class, aiming

to calculate the firing rate, the stationary voltage distribution, or the spike-train power spec-

trum. The most general theory of these statistics uses the framework of a multidimensional

Fokker-Planck equation [45, 86, 87] that, however, permits in most cases only numerical solu-

tions that do not permit simple conclusions on how certain parameters shape the SCC.

Fig 11. Serial correlation coefficients for the Traub-Miles model with slow M current. Panel A shows the Phase-

response curve Z(τ) as well as the deterministic time-course of the membrane potential V(t) from which the PRC was

obtained. Note that the PRC is always positive wherefore we expect to find SCCs that are qualitatively similar to those

obtained from a LIF model. Panel B shows a comparison between numerically obtained and theoretically calculated

SCCs. As in Fig 3 we compare specific and general SCCs ρk,a, ρk,η and ρk and find the same patterns as for a LIF model

with likewise purely positive PRC.

https://doi.org/10.1371/journal.pcbi.1009261.g011
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A striking effect of both adaptation currents and realistic (i.e. temporally correlated) noise

sources is that the interspike intervals will be not independent of each other anymore. It is easy

to understand that, for instance, a slow noise (resulting from low-pass filtered synaptic noise

or from a channel population with slow kinetics) will correlate adjacent intervals. Adaptation

combined with fast fluctuations, lead on the contrary to negative correlations, i.e. a short ISI is

on average followed by a longer one. Often, the spike generation is more complicated, as in a

resonator model [39, 53]; the noise may have fast and slow components or its power may be

even concentrated in a narrow frequency band [88]; slow noise and slow adaptation may result

from the same source (stochastic adaptation ion channels [33]). In all these more complicated

cases, we need a theory in order to predict and interpret the sign and, more generally, the pat-

terns of interval correlations. Special cases have been attacked with different methods, assum-

ing a slow noise [48, 89], a weak noise [38, 39, 47, 49, 88], weak adaptation [37, 90], or a

discrete Markov-state description [91, 92]. The most important problem of ISI correlations

evoked by a combination of both adaptation and colored noise has not been addressed yet.

Here we made an important step towards a general theory of interspike-interval correla-

tions in stochastic neurons. We derived a general formula for the serial correlation coefficient

of a multidimensional IF model subject to both a spike-triggered adaptation currents and cor-

related noise. Two important assumptions of our theory are that i) the neuron is (if noise is

switched off) in a tonically firing regime; ii) the stimulating noise is weak. We tested this for-

mula in several situations corresponding to special cases of our general multidimensional inte-

grate-and-fire model and we applied the theory even to a conductance-based model with

adaptation. In all cases we found an excellent agreement with the theory, demonstrating that

especially the second assumption is not a strong limitation. We will return to the limitations of

our model below.

Our theory draws heavily on previous approaches that used the phase-response curve to

study stochastic neurons [39, 47, 82]. Generalizing these methods, we arrived at a qualitatively

novel result: the serial correlation coefficient as a function of the lag between the two intervals

is not limited to a single geometric sequence but, if both spike-triggered adaptation and low-

pass filtered noise are present, can be expressed by a sum of two geometric sequence, one cor-

responding to the adaptation part and one to the colored noise. Because of the nonlinear feed-

back nature of the adaptation and because the SCC is the ratio of two statistics (covariance and

variance of intervals), this is a highly nontrivial but very useful finding. The structure of this

new solution allows to explain serial correlations that have been observed experimentally but

could not be explained so far theoretically. Note that this does not concern the case of a tempo-

rally structured input noise. For instance, if a neuron is driven by a narrow-band noise with

power in a preferred frequency band, or a power-law noise with power distributed over a

broad frequency band, the SCC adopts some of this input’s temporal structure and can be

more complicated [47, 88].

Correlations in the interval sequence of a spiking neuron are certainly interesting on their

own: we see a complex biophysical system far from thermodynamic equilibrium that generates

pulse sequences with rich statistics, very different in nature from the text book example of a

Poisson process or other renewal processes that would not show any interval correlations at

all. The nonlinear model with colored noise and feedback poses an important problem for the-

oreticians in the field of computational neuroscience. Still one may wonder why we should

invest so much effort in the (approximate) calculation of this particular second-order statistics.

However, besides the basic understanding of spontaneous neural firing, there are at least three

more reasons to explore ISI correlations, outlined below in more detail.

First of all, having an analytical expression for the ISI correlations in terms of biophysical

parameters, may allow us to extract some of these parameters from measured correlation
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coefficients. That it is principally possible to extract otherwise inaccessible parameters from

experimentally measured ISI correlation coefficients, has been demonstrated in Ref. [88] for

electrosensory cells subject to narrowband noise. For the more involved case of an adapting

neuron, it might be recommendable to use not only ISI correlations but also other statistics

(spike-train power spectra, for instance) to extract model parameters. Since the correlation

coefficient depends nontrivially also on simple stimulation parameters, injecting a (temporally

constant) current, varying its amplitude, and comparing the resulting variation in the SCC

with the theoretical formula might provide another way to access parameters.

Secondly, interval correlations in the spontaneous activity can have a strong impact on the

transmission of signals. This is clearly seen in the power spectrum of the spike train, the low-

frequency limit of which is directly related to the sum over the ISI correlation coefficients [93]

lim
f!0

Sðf Þ ¼ r0C
2

V 1þ 2
X1

j¼1

rj

 !

:

This spectrum of the spontaneous activity plays the role of a background spectrum if a stimu-

lus is present. Having a reduced background spectrum at low frequencies (due to negative ISI

correlations) may enhance the signal-to-noise ratio in this frequency band (but also diminish

it in other bands) [24, 25]; positive correlations, on the contrary, may diminish the mutual

information about a broadband stimulus [94]. A similar argument for the beneficial effect of

negative ISI correlations can be made for a signal detection task [15] by means of the asymp-

totic Fano factor F(T) = h(N(T) − hN(T))2/hN(T)i (where N(T) is the spike count in the time

window [0, T]), that is simply related to the low-frequency limit of the power spectrum stated

above by limT!1 F(T) = S(0)/r0. For the transmission of time-dependent signals, interval cor-

relations are a way to control the noise spectrum and thus to shape the information transmis-

sion in a frequency-dependent manner, contributing to what is known as information filtering

[26]. In all these cases, our theory describes how exactly the cellular dynamics (PRC), the adap-

tation (strength and time scale) and the noise (strength and correlation time) affect the serial

correlations and by them the signal transmission properties of the respective neuron.

Thirdly, we may consider ISI correlations for neurons connected in the large recurrent net-

works of the brain. In networks correlations can be evoked by the slow or oscillatory (narrow-

band) noise emerging from the nonlinear interactions of neurons [27, 30–32, 95], by devia-

tions of presynaptic spike statistics from Poisson statistics [47, 62], but also by synaptic short-

term plasticity [47]. As outlined above for the case of a single noisy neuron, such ISI correla-

tions can likewise affect the signal transmission properties of whole populations [27]. More-

over, the specific strength and pattern of ISI correlations may be informative about properties

of the network (again in combination with other statistics). Although our theory cannot be

readily applied to cortical neurons (many cells are excitable and the driving fluctuations are

strong), it can be used in certain special situations, as we have demonstrated here.

Turning back to the theoretical challenges and achievements of our paper, we would like to

finally discuss its limitations and possible directions of future research to go beyond the results

achieved here. Although our analytical approach applies to a broad class of models and is not

limited with respect to the time scales of adaptation or colored noise, it is restricted to i) neu-

rons in the tonically firing regime and ii) weak input noise. We had to exclude cases in which

neurons already in the deterministic case fire spike trains with complex patterns [96]. More

restrictive from our point of view is that we had to exclude excitable neurons and neurons that

are subject to strong stochastic input such as emerging from synaptic background noise in

recurrent neural networks. Of course, these cases are of particular importance for the stochas-

tic dynamics of cortical cells and they can be addressed in the Fokker-Planck framework as has
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been demonstrated for important spike-train statistics in full generality in [45]. Cases in which

strong noise impinges on a mean-driven neuron may be also addressed by taking into account

amplitude dynamics [97, 98] and higher order phase-response functions.

However, the PRC techniques used in our work might turn out to be applicable also in

these cases based on generalizations of the notion of phase to the situation of strongly stochas-

tic and excitable neurons. Indeed, two attempts have been made over the last couple of years to

generalize the phase concept for deterministic systems to stochastic oscillators: the phase can

be either defined in terms of the mean-first-passage time [99–101] (see in particular the recent

analytical approach to the problem in Ref. [102]) or in terms of the asymptotic evolution of the

probability density [103] (see specifically the analytically tractable case of a multidimensional

Ornstein-Uhlenbeck process addressed in Ref. [104]). It is yet neither clear which of the two

phases is more appropriate for a given system [105, 106] nor how to generalize the concept of a

phase-response curve to this case. The success of the PRC method in the limit of weakly per-

turbed deterministic systems demonstrated here and in previous studies [39, 47, 82] should be

a strong incentive to pursue this line of research.

Methods

Phase response curve

The phase-response curve (PRC) provides a method to calculate the phase shift of a nonlinear

oscillator in (linear) response to a perturbation applied at specific phases of the limit cycle. The

phase of the unperturbed system is defined with respect to some event, reoccurring at a specific

phase. An interesting subclass of nonlinear oscillators to which this theory can be applied are

tonically firing integrate-and-fire (IF) neurons subject to weak noise, as considered here. The

phase τ of the oscillator is then defined with respect to the spiking event that, in the determin-

istic case, occurs with period T� at times ti−1, ti, ti+1 and so on. This period can be normalized

to 1 or 2π depending on the context. However, here we interpret τ 2 [0, T�] as a relative time

since the last spike and abstain from normalizing the phase.

In order to calculate the PRC, consider an IF model that is subject to a weak perturbation

that instantaneously shifts the voltage variable v by some small � at time τ. This can be realized

by applying a delta kick to the dynamics of the neuron model _v ¼ f0ðv;wÞ þ m � aþ �dðt �
ðti� 1 þ tÞÞ (with a reference spike at time ti−1). The PRC Z(τ) measures the shift of the subse-

quent spike time ti(τ, �) = ti−1 + Ti(τ, �) or equivalently deviation of the corresponding ISI

δTi(τ, �) = Ti(τ, �) − T� due to that delta kick applied at “phase” τ

ZðtÞ ¼ � lim
�!0

dTiðt; �Þ

�
; ð16Þ

The sign on the right hand side is chosen so that a positive PRC is obtained if a positive kicks

to the voltage variable � > 0 leads to a shortened ISI δT< 0.

Adjoint method. A useful approach to calculate the PRC analytically is provided by the

adjoint method. The PRC satisfies the adjoint equation [40, 42]

_ZðtÞ ¼ � ATZðtÞ; ð17Þ

where Z(t) is a set of N + 2 functions

ZðtÞ ¼ ½ZðtÞ;Zw1
ðtÞ; . . .ZwN

ðtÞ;ZaðtÞ�
T
: ð18Þ

Each component quantifies the linear response of the spike time to a perturbation of the limit

cycle in the corresponding variable of the model. In particular, this implies that we can also
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calculate the phase-response with respect to perturbations of the auxiliary or adaptation vari-

ables. The matrix A(t) is the Jacobian of the considered IF model evaluated at the T�-periodic

limit cycle solution X0(t) = [v0(t), w0(t), a0(t)]T

AðtÞ ¼

@vf0 @w1
f0 . . . @wN f0 � 1

t� 1
1
@vf1 t� 1

1
@w1

f1 . . . t� 1
1
@wN f1 0

..

. ..
. . .

. ..
. ..

.

t� 1
N @vfN t� 1

N @w1
fN . . . t� 1

N @wN fN 0

0 . . . . . . 0 � t� 1
a

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

ð19Þ

with the normalization

ZðtÞ _X0ðtÞ ¼ ZðtÞ _v0ðtÞ þ ZwðtÞ _w0ðtÞ þ ZaðtÞ _a0ðtÞ ¼ 1 ð20Þ

and the end (instead of initial) conditions (see [39])

Zw1
ðT�Þ ¼ . . .ZwN

ðT�Þ ¼ ZaðT�Þ ¼ 0; ð21Þ

which, together with Eq (20), implies the condition

ZðT�Þ ¼ _v0ðT�Þ
� 1
: ð22Þ

Solving the above differential equation for Z(t) with these conditions either analytically (in

simple cases) or, for the general case, numerically, provides the PRC with respect to perturba-

tions in the voltage, which is the first component of the vector Z(t).

Assumptions for the analytical approximations

We require that the deterministic neuron model exhibits a unique limit-cycle solution with a

finite period T�, i.e. the neuron is tonically firing in the absence of noise. Furthermore, follow-

ing [39] we assume that the effect of the noise sources is weak such that the deviation of the ISI

from the deterministic interval δTi = Ti − T� is small and can be described by the PRC (see

above). First of all, this weak-noise condition allows to approximate the average by the deter-

ministic ISI hTii � T�. More rigorous approaches to the mean ISI (or, equivalently, to the

mean first-passage time of the voltage going from reset to threshold values) have been pursued

for white [107, 108] and colored [29, 48, 109, 110] noise, but are not considered here.

Although in the weak noise limit the mean deviation of the ISI vanishes, correlations

between individual ISI deviations do not and the SCC can be approximated by

rk � hdTidTiþki=hdT2
i i: ð23Þ

This is indeed only an approximation due to the assumption that the deviation from the mean

is equal to the deviation from the deterministic interval, Ti − hTii � Ti − T� = δTi, which is of

course implied by the afore mentioned assumption that the noise does not change the mean

ISI.

In the succeeding sections we calculate the SCC for a general nonlinear stochastic IF model

with spike-triggered adaptation and driven by a combination of white and colored noise. It

simplifies the analytical treatment to first address the special case of a neuron without adapta-
tion but with white and colored noise, which is what we do in the next subsection.
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Correlation coefficient for IF models without adaptation

We first demonstrate how the SCC for a non-adaptive stochastic IF model driven by correlated

and white noise can be calculated, i.e. in a first step we explicitly exclude the adaptation which

can be easily achieved by setting Δ = 0.

Deviations from the mean ISI can be calculated via the PRC Z(τ), which quantifies how a

small displacement of the voltage variable v due to a perturbation ui(τ) = �δ(τ − τ0), applied a

specific “phase” τ0 2 [0, T�] after the last spike time ti−1, advances (Z(τ0)ui(τ0)> 0) or delays

(Z(τ0)ui(τ0)< 0) the next spike time ti. In general, a perturbation will affect the ISI deviation

over the entire time window (see Fig 1) according to

dTi ¼ �

Z T�

0

dtZðtÞuiðtÞ: ð24Þ

The PRC Z(τ) of the deterministic system (D = σ = 0) is obtained by the adjoint method or

numerically, as described above, while the perturbation follows immediately from Eq (2)

uiðtÞ ¼ Zðti� 1 þ tÞ þ
ffiffiffiffiffiffi
2D
p

xvðti� 1 þ tÞ: ð25Þ

Hence, the deterministic limit cycle is perturbed by two independent processes: a weak OU

process η and Gaussian white noise ξv. The deviation of the i-th interval is then given by

dTi ¼ �

Z T

0

dt ZðtÞ½Zðti� 1 þ tÞ þ
ffiffiffiffiffiffi
2D
p

xvðti� 1 þ tÞ�; ð26Þ

from which we define two random numbers given by the integrals of the weighted noises act-

ing over the i-th interval

Hi� 1 ¼

Z T�

0

dt ZðtÞZðti� 1 þ tÞ; ð27Þ

Xi� 1 ¼

Z T�

0

dt ZðtÞ
ffiffiffiffiffiffi
2D
p

xvðti� 1 þ tÞ: ð28Þ

Taking products of deviations of intervals that are lagged by an integer k, permits to calculate

the covariance of intervals needed in the Eq (24) for the SCC:

hdTidTiþki ¼ hHiHiþk þ XiXiþki ð29Þ

�

Z T�

0

Z T�

0

dtdt0 ZðtÞZðt0Þ½CZðkT
� þ t0 � tÞ þ 2DCxðkT

� þ t0 � tÞ� ð30Þ

¼

Z T�

0

Z T�

0

dtdt0 ZðtÞZðt0Þ½s2e�
jkT�þt0 � tj

tZ þ 2DdðkT� þ t0 � tÞ�: ð31Þ

where we approximated ti+k − ti� kT� and used the correlation functions of the noise sources,

e.g. Cη(Δt) = hη(ti)η(ti + Δt)i. Note that mixed terms do not contribute since η and ξv are inde-

pendent processes. Because of the presence of δ-correlated white noise it is convenient to dis-

tinguish between the calculation of the covariance between distinct intervals (k� 1, here the

white noise correlation function does not contribute) and the calculation of the variance
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(k = 0):

hdTidTiþki �

R T�
0

R T�
0
dtdt0 ZðtÞZðt0Þ s2e�

jt0 � tj
tZ þ 2Ddðt0 � tÞ

� �

; k ¼ 0

R T�
0

R T�
0
dtdt0 ZðtÞZðt0Þs2e�

jT�þt0 � tj
tZ b

k� 1
; k > 0;

8
>><

>>:

ð32Þ

where β = exp(−T�/τη). Intuitively this distinction implies that the white noise source does

increase the variance of the ISIs but does not introduce correlations among the intervals (at

least, in the absence of adaptation). We note that the variance of the interspike interval in the

case of purely white noise (Eq 32 with k = 0 and σ2 = 0) reduces to hdT2
i i ¼ 2D

R T�
0
dtZðtÞ2,

which agrees with an expression derived by Ermentrout et al. [111] (see the unnumbered equa-

tion below their Eq 10).

From Eqs (32) and (23) the SCC can be calculated in terms of the correlation functions,

yielding for a general PRC an expression in terms of double integrals that have to be evaluated

numerically. However, following [47] we choose to express the SCC in the Fourier domain,

using the Wiener-Khinchin theorem CðDtÞ ¼
R1
� 1

do SðoÞeioDt to substitute the correlation

functions, and the finite Fourier transform of the PRC ~ZðoÞ ¼ T�� 1
R T�

0
dt ZðtÞeiot. Eq (32)

then becomes

hdTidTiþki �

R
doj~ZðoÞj2½2tZs2ð1þ o2t2

Z
Þ
� 1
þ 2D�; k ¼ 0;

R
doj~ZðoÞj2½2tZs2ð1þ o2t2

Z
Þ
� 1e� ioT� �bk� 1

; k > 0:

8
<

:
ð33Þ

The SCC reads (as stated in the main part)

rk;Z ¼

R
doj~ZðoÞj2ð1þ o2t2

Z
Þ
� 1e� ioT�

R
doj~ZðoÞj2½ð1þ o2t2

Z
Þ
� 1
þ D=ðtZs2Þ�

b
k� 1
: ð34Þ

For D = 0 this expression agrees with the one derived by Schwalger et al. [47]. Remarkably, Eq

(34) is the only place where the intensity of the white noise and the variance of the colored

noise appear in our theory. Note that the limit D! 0, σ2! 0 is well defined for a fixed ratio of

noise intensities, D/(τησ2).

Derivation of the general correlation coefficient

To calculate the SCC for the full system we pursue a similar strategy as done by Ref. [39]. We

find a relation between ISI deviations and perturbations and another relation between ISI devi-

ations and adjacent peak adaptation values. These two relations allow i) to express ρk by the

covariance of the peak adaptation values ck and ii) to find a stochastic map for the peak adapta-

tion values from which this covariance can be calculated.

First ISI deviations can be calculated again via the PRC Z(τ) as described above. To this end

we separate limit cycle dynamics from noise induced perturbations. In this case the perturba-

tion

uiðtÞ ¼ � dai� 1e� t=ta þ Zðti� 1 þ tÞ þ
ffiffiffiffiffiffi
2D
p

xvðti� 1 þ tÞ; ð35Þ

acting over one ISI Ti is found by rewriting Eq (2) as

_v ¼ f0ðv;wÞ þ m � a�e� t=ta þ uiðtÞ; ð36Þ

with the deterministic peak adaptation value a� ¼ ðD=taÞ=ð1 � e� T�=taÞ and the deviation from
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it δai−1 = a(ti−1) − a� [a(ti) taken right after the incrementation]. Here, the deterministic limit

cycle is not only perturbed by a weak OU process η and Gaussian white noise ξv but also by a

small deviation in the peak adaptation value δai−1. Combining Eqs (24) with (35) and shifting

the index for notational convenience, we obtain

dTiþ1 ¼

Z T�

0

dt ZðtÞðdaie
� t=ta � Zðti þ tÞ �

ffiffiffiffiffiffi
2D
p

xðti þ tÞÞ: ð37Þ

In contrast to the case considered in the previous section interval correlations can not be

calculated from this equation directly because correlations among peak adaptation values

hδai δai+ki are unknown. Moreover the peak adaptation value and, for example, colored noise

are not independent of each other hδaiHi+1i 6¼ 0.

Instead we derive a second expression for the interval deviations by relating adjacent peak

adaptation values ai = a(ti), ai+1 = a(ti+1), that will generally deviate from the deterministic

value, δai = ai − a� 6¼ 0. Since the adaptation is spike triggered, its time course over one ISI is

deterministic. The only non-deterministic quantity relating the two adjacent peak adaptation

values is the length of the corresponding ISI Ti+1

aiþ1 ¼ aie� Tiþ1=ta þ D=ta: ð38Þ

Deviations δTi and δai, δai+1 from their deterministic values can be related by linearizing Eq

(38)

dTiþ1 ¼
ta
a�
ðdai � eT�=tadaiþ1Þ; ð39Þ

i.e. two adjacent peak adaptation values give us knowledge about the deviation of the interval

in between. Inserting Eq (39) into (23 we find an expression for the SCC in terms of the covari-

ances ck = hδaiδai+ki of the peak adaptation values:

rk �
ða2 þ 1Þck � aðck� 1 þ ckþ1Þ

ða2 þ 1Þc0 � 2ac1

ð40Þ

with α = exp(−T�/τa) that contains the adaptation time scale. Next we determine the covari-

ance from a stochastic map that is derived by combining Eqs (37) and (39)

daiþ1 ¼ ðanÞdai þ
aa�

ta
ðHi þ XiÞ; ð41Þ

where the linear response to adaptation is described by

n ¼ 1 �
a�

ta

Z T�

0

dt ZðtÞe� t=ta ; ð42Þ

while the linear responses to colored and white noise Hi, Xi are defined as in the proceeding

section [Eqs (27) and (28)] Note that ν is constant, which reflects the fact that the adaptation

dynamics does neither include noise nor subthreshold adaptation. In contrast, Hi and Xi are

random numbers. Furthermore the stability of the stochastic map Eq (41) requires |αν| < 1.

Recursively applying the map to itself yields an relation not only between adjacent peak

adaptation values, i.e. lag 1, but any lag k

daiþk ¼ ðanÞ
k
dai þ

aa�

ta

Xk

n¼1

ðanÞ
k� n
ðXiþn� 1 þHiþn� 1Þ: ð43Þ
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The covariance is obtained by multiplying Eq (43) with δai and applying the average

ck ¼ ðanÞ
k
hda2

i i þ
aa�

ta

Xk

n¼1

ðanÞ
k� n
hdaiHiþn� 1i: ð44Þ

Note that hδaiXi+n−1i = 0 for n> 0 because Xi only contains the uncorrelated white noise after
the spike time ti to which the peak adaptation value δai belongs. The remaining terms of the

sum can be simplified using the exponential decay of the averaged OU process

hdaiHiþki ¼ b
k
hdaiHii; ð45Þ

with β = exp(−T�/τη) and k� 0. The resulting geometric sequence can be summed, yielding

the covariance

ck ¼ ðanÞ
k
hda2

i i þ
ðanÞ

k
� b

k

an � b

aa�

ta
hdaiHii: ð46Þ

The so obtained covariance for any lag k is determined by the variance hda2
i i, covariance

hδaiHii (at lag k = 0), and two prefactor that exclusively carry the dependence on k. To deter-

mine the SCC from ck according to Eq (40), we use the stochastic map to calculate the ratio

hda2
i i=hdaiHii (it turns out that this ratio is all we have to know). We obtain a first equation by

squaring the map and averaging

hda2
iþ1
i ¼ ðanÞ

2
hda2

i i þ
2a2na�

ta
hdaiHii þ

aa�

ta

� �2

ðhH2

i i þ hX
2

i iÞ; ð47Þ

for further use below we note that in the stationary case hda2
iþ1
i ¼ hda2

i i. A second equation is

obtained by multiplying the map with Hi+1 and averaging

hdaiþ1Hiþ1i ¼ anhdaiHiþ1i þ
aa�

ta
hHiHiþ1i ¼

aa�

ta

hHiHiþ1i

1 � anb
: ð48Þ

Here we used Eq (45) and the fact that terms containing Xi drop out for the reason discussed

above. Combining Eqs (47) and (48) yields the desired relation

ta
aa�
hda2

i i

hdaiHii
¼

2an

1 � ðanÞ
2
þ

1 � anb

1 � ðanÞ
2

hH2
i i þ hX

2

i i

hHiHiþ1i
ð49Þ

The remaining terms hX2

i i, hH
2
i i and hHiHi+1i are the known correlation functions of white

and colored noise and can be calculated as done in the preceeding section.

We can now calculate the SCC by combining Eq (40) with 46, divide both numerator and

denominator by hδaiHii, apply Eq (49) and find the result presented in the main part

rk ¼
A
C

� �

rk;a þ
B
C

� �

rk;Z: ð50Þ
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with coefficients

A ¼ 1þ
ð1þ ðanÞ

2
� 2anbÞ

an � b
r1;Z � anb; ð51aÞ

B ¼
ð1 � ðanÞ

2
Þð1 � abÞða � bÞ

ð1þ a2 � 2a2nÞðan � bÞ
; ð51bÞ

C ¼ 1þ 2r1;ar1;Z � anb ð51cÞ

a ¼ e�
T�
ta ; b ¼ e�

T�
tZ ; n ¼ 1 �

a�

ta

Z T�

0

dt ZðtÞe� t=ta : ð51dÞ

and specific correlation coefficients

rk;a ¼ �
að1 � a2nÞ

1þ a2 � 2a2n
ð1 � nÞðanÞ

k� 1
; ð52aÞ

rk;Z ¼

R
doj~ZðoÞj2SouðoÞe� ioT

�

R
doj~ZðoÞj2½SouðoÞ þ 2D�

b
k� 1
: ð52bÞ

As easily verified, the main result Eq (50) is consistent in different limit cases. Switching off the

colored noise (σ = 0 implying Sou(ω)� 0) yields ρk = ρk,a. Similarly, setting Δ = 0 (vanishing

adaptation) results in ν = 1 and ρk = ρk,η.

Coefficient of variation

Finally, we derive the coefficient of variation for the full system which follows a similar scheme

as the derivation of the correlation coefficient presented above. Again, we use the assumption

that the mean ISI can be approximated by the deterministic ISI. This allows us to express the

CV in terms of the derivation δTi of the spike time and the deterministic period T�

C2
V ¼
hðTi � hTiiÞ

2
i

hTii
2

�
hdT2

i i

T�2
: ð53Þ

Eq (39) can be used to relate the variance of the ISI to the variance and co-variance of the adap-

tation variable

hdT2
i i ¼

ta
a�
� �2

ðhda2
i i � 2a� 1hdaiþ1daii þ a� 2hda2

i iÞ: ð54Þ

The latter variance and co-variance can be traced back to the statistics of the uncorrelated and

correlated Gaussian random numbers, Xi and Hi, respectively. Specifically, we derive three

relations from the stochastic map Eq (41) that are related to Eqs (47) and (46) at lag 1 and
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Eq (48)

hda2
i i ¼

ðaa�Þ2

t2
að1 � ðanÞ

2
Þ
½hH2

i i þ hX
2

i i� þ
2a2na�

tað1 � ðanÞ
2
Þ
hdaiHii: ð55Þ

hdaiþ1daii ¼ ðanÞhda2
i i þ

aa�

ta
hdaiHii: ð56Þ

hdaiþ1Hiþ1i ¼
aa�

tað1 � anbÞ
hHiHiþ1i: ð57Þ

Substituting these expressions into Eq (53) and dividing by T�2 yields the following expression:

C2
V ¼

1þ a2 � 2a2n

T�2ð1 � ðanÞ2Þ
½hH2

i i þ hX
2

i i� �
2að1 � a2nÞð1 � nÞ

T�2ð1 � anbÞð1 � ðanÞ2Þ
hHiHiþ1i: ð58Þ

We recall that Hi and Xi are the integrated and PRC weighted colored and white noise sources

and that correspondingly the terms above are found to be

hH2
i i þ hX

2

i i ¼

Z T�

0

Z T�

0

dtdt0 ZðtÞZðt0Þ s2e�
jt0 � tj
tZ þ 2Ddðt0 � tÞ

� �

ð59Þ

hHiHiþ1i ¼

Z T�

0

Z T�

0

dtdt0 ZðtÞZðt0Þs2e�
jT�þt0 � tj

tZ ð60Þ

in strict analogy to the considerations in section Correlation coefficient for IF models without

adaptation.

We stress again that our theory is based on the linear response function of a phase model,

namely the phase-response curve, a description that holds true only in leading order of the per-

turbation amplitude (e.g. σ in the case of purely colored noise). Therefore, in this linear frame-

work, deviations in the phase and in consequence in the interspike-interval caused by

perturbations with amplitude σ can meaningfully be described only up to linear order in σ.

This also implies that averages of products of intervals depend in leading order on σ2. Any

extension into the realm of higher-order terms must be based on nonlinear response

functions.

Details on the numerical integration of stochastic equations

For the numerical integration of Eq (2), a stochastic Euler scheme was used with step size

Δt = 10−5. The simulation was terminated after 5 � 104 to 105 spikes; for all curves shown the

standard error of the estimated mean of ρ1 was below 0.009.

To reduce transient effects, the initial conditions were chosen to be on the deterministic

limit cycle, specifically v0 = vR, w0 = wR, a0 = a�, η0 = 0. The deterministic peak adaptation

value a� can be calculated from the deterministic period via a� = [1 − exp(−T�/τa)]Δ/τa or, if

T� is analytically inaccessible, directly from integrating the noiseless system. Of course, the

specific initial values of the noise variable and adaptation variable in the stochastic system

impose a transient (non-stationary) behavior in any measured statistics. However, due to the

large number of subsequent ISIs, the transients have little effect on the considered statistics.

Indeed, for selected parameter sets, we have verified that the initial values do not matter for the

measured SCC.
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83. Jolivet R, Schürmann F, Berger TK, Naud R, Gerstner W, Roth A. The quantitative single-neuron

modeling competition. Biol Cybern. 2008; 99:417. https://doi.org/10.1007/s00422-008-0274-5 PMID:

19011928

84. Badel L, Lefort S, Berger TK, Petersen CCH, Gerstner W, Richardson MJE. Extracting non-linear inte-

grate-and-fire models from experimental data using dynamic I-V curves. Biol Cybern. 2008; 99:361.

https://doi.org/10.1007/s00422-008-0259-4 PMID: 19011924

85. Harrison PM, Badel L, Wall MJ, Richardson MJE. Experimentally Verified Parameter Sets for Model-

ling Heterogeneous Neocortical Pyramidal-Cell Populations. PLoS Comput Biol. 2015; 11:8. https://

doi.org/10.1371/journal.pcbi.1004165 PMID: 26291316

86. Ladenbauer J, Augustin M, Obermayer K. How adaptation currents change threshold, gain, and vari-

ability of neuronal spiking. J Neurophysiol. 2014; 111:939. https://doi.org/10.1152/jn.00586.2013

PMID: 24174646

87. Augustin M, Ladenbauer J, Baumann F, Obermayer K. Low-dimensional spike rate models derived

from networks of adaptive integrate-and-fire neurons: comparison and implementation. PLoS Comput

Biol. 2017; 13:e1005545. https://doi.org/10.1371/journal.pcbi.1005545 PMID: 28644841

88. Bauermeister C, Schwalger T, Russell D, Neiman AB, Lindner B. Characteristic Effects of Stochastic

Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor

Data. PLoS Comput Biol. 2013; 9:e1003170. https://doi.org/10.1371/journal.pcbi.1003170 PMID:

23966844

89. Schwalger T, Schimansky-Geier L. Interspike interval statistics of a leaky integrate-and-fire neuron

driven by Gaussian noise with large correlation times. Phys Rev E. 2008; 77:031914. https://doi.org/

10.1103/PhysRevE.77.031914 PMID: 18517429

90. Urdapilleta E. Noise-induced interspike interval correlations and spike train regularization in spike-trig-

gered adapting neurons. Europhys Lett. 2016; 115(6):68002. https://doi.org/10.1209/0295-5075/115/

68002

91. Schwalger T, Lindner B. Theory for serial correlations of interevent intervals. Eur Phys J Spec Topics.

2010; 187:211. https://doi.org/10.1140/epjst/e2010-01286-y

92. Schwalger T, Tiana-Alsina J, Torrent MC, Garcia-Ojalvo J, Lindner B. Interspike-interval correlations

induced by two-state switching in an excitable system. Epl-Europhys Lett. 2012; 99:10004. https://doi.

org/10.1209/0295-5075/99/10004

93. Cox DR, Lewis PAW. The Statistical Analysis of Series of Events. London: Chapman and Hall; 1966.

94. Blankenburg S, Lindner B. The effect of positive interspike interval correlations on neuronal informa-

tion transmission. Math Biosci Eng. 2016; 13:461. https://doi.org/10.3934/mbe.2016001 PMID:

27106183

95. Braun W, Longtin A. Interspike interval correlations in networks of inhibitory integrate-and-fire neurons.

Phys Rev E. 2019; 99(3):032402. https://doi.org/10.1103/PhysRevE.99.032402 PMID: 30999498

96. Touboul J, Brette R. Dynamics and bifurcations of the adaptive exponential integrate-and-fire model.

Biol Cybern. 2008; 99:319. https://doi.org/10.1007/s00422-008-0267-4 PMID: 19011921

97. Wilson D, Ermentrout B. Greater accuracy and broadened applicability of phase reduction using iso-

stable coordinates. J Math Biol. 2018; 76(1-2):37–66. https://doi.org/10.1007/s00285-017-1141-6

PMID: 28547210

98. Wilson D. Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet mul-

tipliers. Phys Rev E. 2019; 99(2):022210. https://doi.org/10.1103/PhysRevE.99.022210 PMID:

30934292

99. Schwabedal JTC, Pikovsky A. Effective phase dynamics of noise-induced oscillations in excitable sys-

tems. Phys Rev E. 2010; 81:046218. https://doi.org/10.1103/PhysRevE.81.046218 PMID: 20481818

100. Schwabedal J, Pikovsky A. Effective phase description of noise-perturbed and noise-induced oscilla-

tions. Euro PhysJ-Special Topics. 2010; 187:63. https://doi.org/10.1140/epjst/e2010-01271-6

101. Schwabedal J, Pikovsky A. Phase Description of Stochastic Oscillations. Phys Rev Lett. 2013;

110:204102. https://doi.org/10.1103/PhysRevLett.110.204102 PMID: 25167416

PLOS COMPUTATIONAL BIOLOGY Interspike interval correlations in neuron models with adaptation and correlated noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009261 August 27, 2021 34 / 35

https://doi.org/10.1152/jn.2002.88.2.761
http://www.ncbi.nlm.nih.gov/pubmed/12163528
https://doi.org/10.1371/journal.pcbi.1002478
https://doi.org/10.1371/journal.pcbi.1002478
http://www.ncbi.nlm.nih.gov/pubmed/22511861
https://doi.org/10.3389/fncom.2013.00113
https://doi.org/10.3389/fncom.2013.00113
http://www.ncbi.nlm.nih.gov/pubmed/23970864
https://doi.org/10.1007/s00422-008-0274-5
http://www.ncbi.nlm.nih.gov/pubmed/19011928
https://doi.org/10.1007/s00422-008-0259-4
http://www.ncbi.nlm.nih.gov/pubmed/19011924
https://doi.org/10.1371/journal.pcbi.1004165
https://doi.org/10.1371/journal.pcbi.1004165
http://www.ncbi.nlm.nih.gov/pubmed/26291316
https://doi.org/10.1152/jn.00586.2013
http://www.ncbi.nlm.nih.gov/pubmed/24174646
https://doi.org/10.1371/journal.pcbi.1005545
http://www.ncbi.nlm.nih.gov/pubmed/28644841
https://doi.org/10.1371/journal.pcbi.1003170
http://www.ncbi.nlm.nih.gov/pubmed/23966844
https://doi.org/10.1103/PhysRevE.77.031914
https://doi.org/10.1103/PhysRevE.77.031914
http://www.ncbi.nlm.nih.gov/pubmed/18517429
https://doi.org/10.1209/0295-5075/115/68002
https://doi.org/10.1209/0295-5075/115/68002
https://doi.org/10.1140/epjst/e2010-01286-y
https://doi.org/10.1209/0295-5075/99/10004
https://doi.org/10.1209/0295-5075/99/10004
https://doi.org/10.3934/mbe.2016001
http://www.ncbi.nlm.nih.gov/pubmed/27106183
https://doi.org/10.1103/PhysRevE.99.032402
http://www.ncbi.nlm.nih.gov/pubmed/30999498
https://doi.org/10.1007/s00422-008-0267-4
http://www.ncbi.nlm.nih.gov/pubmed/19011921
https://doi.org/10.1007/s00285-017-1141-6
http://www.ncbi.nlm.nih.gov/pubmed/28547210
https://doi.org/10.1103/PhysRevE.99.022210
http://www.ncbi.nlm.nih.gov/pubmed/30934292
https://doi.org/10.1103/PhysRevE.81.046218
http://www.ncbi.nlm.nih.gov/pubmed/20481818
https://doi.org/10.1140/epjst/e2010-01271-6
https://doi.org/10.1103/PhysRevLett.110.204102
http://www.ncbi.nlm.nih.gov/pubmed/25167416
https://doi.org/10.1371/journal.pcbi.1009261


102. Cao A, Lindner B, Thomas PJ. A partial differential equation for the mean—first–return-time phase of

planar stochastic oscillators. submitted. 2019.

103. Thomas PJ, Lindner B. Asymptotic Phase of Stochastic oscillators. Phys Rev Lett. 2014; 113:254101.

https://doi.org/10.1103/PhysRevLett.113.254101 PMID: 25554883

104. Thomas P, Lindner B. Phase descriptions of a multidimensional Ornstein-Uhlenbeck process. Phys

Rev E. 2019; 99(6):062221. https://doi.org/10.1103/PhysRevE.99.062221 PMID: 31330649

105. Pikovsky A. Comment on “Asymptotic Phase for Stochastic Oscillators”. Phys Rev Lett. 2015;

115:069401. https://doi.org/10.1103/PhysRevLett.115.069401 PMID: 26296133

106. Thomas PJ, Lindner B. Comment on “Asymptotic Phase for Stochastic Oscillators” Reply. Phys Rev

Lett. 2015; 115:069402.

107. Arecchi FT, Politi A. Transient Fluctuations in the Decay of an Unstable State. Phys Rev Lett. 1980;

45:1219. https://doi.org/10.1103/PhysRevLett.45.1219

108. Lindner B, Longtin A, Bulsara A. Analytic expressions for rate and CV of a type I neuron driven by

white Gaussian noise. Neural Comp. 2003; 15:1761. https://doi.org/10.1162/08997660360675035

PMID: 14511512

109. Brunel N, Sergi S. Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics.

J Theor Biol. 1998; 195:87. https://doi.org/10.1006/jtbi.1998.0782 PMID: 9802952

110. Galán RF. Analytical calculation of the frequency shift in phase oscillators driven by colored noise:

Implications for electrical engineering and neuroscience. Phys Rev E. 2009; 80(3):036113. https://doi.

org/10.1103/PhysRevE.80.036113 PMID: 19905186

111. Ermentrout B, Beverlin B, Troyer T, Netoff TI. The variance of phase-resetting curves. J Comput Neu-

rosci. 2011; 31(2):185–197. https://doi.org/10.1007/s10827-010-0305-9 PMID: 21207126

PLOS COMPUTATIONAL BIOLOGY Interspike interval correlations in neuron models with adaptation and correlated noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009261 August 27, 2021 35 / 35

https://doi.org/10.1103/PhysRevLett.113.254101
http://www.ncbi.nlm.nih.gov/pubmed/25554883
https://doi.org/10.1103/PhysRevE.99.062221
http://www.ncbi.nlm.nih.gov/pubmed/31330649
https://doi.org/10.1103/PhysRevLett.115.069401
http://www.ncbi.nlm.nih.gov/pubmed/26296133
https://doi.org/10.1103/PhysRevLett.45.1219
https://doi.org/10.1162/08997660360675035
http://www.ncbi.nlm.nih.gov/pubmed/14511512
https://doi.org/10.1006/jtbi.1998.0782
http://www.ncbi.nlm.nih.gov/pubmed/9802952
https://doi.org/10.1103/PhysRevE.80.036113
https://doi.org/10.1103/PhysRevE.80.036113
http://www.ncbi.nlm.nih.gov/pubmed/19905186
https://doi.org/10.1007/s10827-010-0305-9
http://www.ncbi.nlm.nih.gov/pubmed/21207126
https://doi.org/10.1371/journal.pcbi.1009261

