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Abstract We review applications of the Fokker–Planck equation for the description of systems with event
trains in computational and cognitive neuroscience. The most prominent example is the spike trains gener-
ated by integrate-and-fire neurons when driven by correlated (colored) fluctuations, by adaptation currents
and/or by other neurons in a recurrent network. We discuss how for a general Gaussian colored noise and
an adaptation current can be incorporated into a multidimensional Fokker–Planck equation by Markovian
embedding for systems with a fire-and-reset condition and how in particular the spike-train power spectrum
can be determined by this equation. We then review how this framework can be used to determine the
self-consistent correlation statistics in a recurrent network in which the colored fluctuations arise from the
spike trains of statistically similar neurons. We then turn to the popular drift-diffusion models for binary
decisions in cognitive neuroscience and demonstrate that very similar Fokker–Planck equations (with two
instead of only one threshold) can be used to study the statistics of sequences of decisions. Specifically, we
present a novel two-dimensional model that includes an evidence variable and an expectancy variable that
can reproduce salient features of key experiments in sequential decision making.

1 Introduction

The Fokker–Planck equation has a long history in sta-
tistical physics and is an essential element in the theory
of stochastic processes [1–3]. Over the last decades, it
has also found application in computational and cog-
nitive neuroscience, fields in which different kinds of
temporal functions that drive the nonlinear dynamics
of the system (a neuron, a neural network, or a deci-
sion process) can be described by Gaussian noise. A
popular example is the integrate-and-fire (IF) neuron
model driven by white Gaussian noise [4–9], in which
the driving uncorrelated fluctuations could represent
intrinsic channel noise, external synaptic background
noise, or even complex time-dependent stimuli. Another
example is a whole network of such neurons [10–15], in
which a single neuron is subject to a barrage of spikes
coming from many other (presynaptic) cells—a kind of
input that can be approximated as Gaussian but not
necessarily uncorrelated (i.e., white) noise [16–21]. The
third problem would be a competition between net-
works driven by binary stimuli to a ‘decision’ which
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can phenomenologically be modeled by a noisy evidence
variable that can reach one of the two decision thresh-
olds (see, e.g., [22–24]).

Characteristic for the problems sketched above is
the emergence of thresholds and uncommon boundary
conditions for the associated Fokker–Planck equations.
Mechanisms for memory are implemented via Marko-
vian embedding of colored (non-white, i.e., temporally
correlated) noise, of adaptation variables and via the
aforementioned threshold-and-reset conditions. In this
paper, we review our own recent attempts to extend the
application of the Fokker–Planck equation in computa-
tional and cognitive neuroscience in terms of the three
problems outlined above: the firing statistics of IF neu-
rons driven by external colored noise, the self-consistent
fluctuation statistics in recurrent networks of IF neu-
rons, and the statistics of stochastic decision models
for sequential decisions. Furthermore, we present new
results on a modified decision model with an expectancy
variable that can reproduce the essential features of a
set of experimental data on decision making and its
history dependence.
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2 Fokker–Planck equation for neural
spike-train statistics

While elaborated conductance-based models can describe
the action-potential generation in fine details, for many
applications in computational neuroscience simplified
phenomenological models of the integrate-and-fire type
are used [25]. These models can also be treated analyt-
ically in simple limit cases and, thus, provide insights
about the kinds of spike statistics one can expect in
different situations [6,7,9].

Generally, an IF model is given by the dynamics of
its voltage variable:

τv v̇ = f(v) + μ + RI(t). (1)
if v(t) > vth : v(t) → vref , v(t + τref) → vr. (2)

The first line is not the complete dynamics—a fire-and-
reset rule (second line) renders the model highly non-
linear even if the function f(v) would be constant or
vanish. The reset rule works as follows: whenever v(t)
reaches a threshold vth, a spike is generated at time
ti (the index i indicates the count of spikes) and the
voltage is reset to vr, possibly after a dead time, the
absolute refractory period τref . The essential output of
the model is, thus, not the voltage variable but the spike
train:

x(t) =
∑

δ(t − ti), (3)

where the ti are the aforementioned instances of thresh-
old crossings (and subsequent resets). The input con-
sists of a constant μ and a time-dependent input cur-
rent I(t) (here multiplied by the membrane resistance)
that is often approximated by a Gaussian noise pro-
cess with a certain input power spectrum (see Fig. 1),
but could also contain other variables, e.g., an adap-
tation variable a(t) that constitutes a feedback of the
model’s spike train x(t) (see below). The neural dynam-
ics is characterized by a subthreshold function f(v) that
can be quadratic (f(v) = v2, quadratic IF model), lin-
ear (f(v) = −v, leaky IF model) or identically vanish
(f(v) = 0, perfect IF model). As a model that can
be related to conductance based models [26] and to
experimental data [27], the exponential IF model with
f(v) = −v + Δ exp((v − vth)/Δ) (where vth and Δ are
threshold parameters) has gained popularity over recent
years [28]; it is in between the LIF model (obtained with
Δ → 0) and QIF model (obtained with Δ → ∞).

2.1 Neurons driven by white noise

A classical example of a stochastic neuron model is the
white-noise-driven IF neuron, given by the stochastic
differential equation:

τv v̇ = f(v) + μ +
√

2Dξ(t), (4)

where ξ(t) is Gaussian white noise with a delta corre-
lation function (〈ξ(t)ξ(t′)〉 = δ(t − t′)); the impact of

the noise on the voltage dynamics is determined by the
noise intensity D.

This model is analytically tractable to a large extent:
the probability density and the stationary firing rate
can be found in terms of integral expressions (involving
the nonlinear function f(v), the base current μ and the
strength of the noise D) [6,29–31]; the ISI density [32],
or at least its Laplace transform [29,33], is known for
particularly simple choices of f(v) (perfect and leaky IF
models); and also the linear [11,12,34–36] and weakly
nonlinear response [34,37,38] with respect to an addi-
tional signal can be calculated. These solutions have
been also used in stochastic mean-field theories of recur-
rent neural networks [12,34] in which it is assumed that
the spiking in the network is temporally uncorrelated
(equivalent to a Poisson process).

The dynamics of this one-dimensional white-noise-
driven IF neurons is particularly simple because it gen-
erates a renewal spike train: due to the reset of the
voltage after firing, there is no memory of previous
interspike intervals carried by the voltage, and the driv-
ing noise itself is uncorrelated and cannot contribute
to statistical dependencies among interspike intervals
(this does not change in model variants with a time-
dependent threshold starting at the same value after
each spike [39,40]). So, knowing the interspike inter-
val distribution gives us access to all statistics of inter-
est for this model class. The latter can be numerically
determined in an efficient way by Richardson’s thresh-
old integration method [41,42].

We note two more variants of white noise that go
beyond the form in Eq. (4). First, if the main source
of noise are the spikes from other neurons, one may
also consider white Poissonian shot noise (instead of
white Gaussian noise) as a source of driving fluctua-
tions. Richardson and Swarbrick [43] have solved the
problem for a driving Poisson process with exponential
weight distribution and put forward expressions for the
firing rate, the rate modulation in linear response, and
the power spectrum of the spike train. They demon-
strated that, for instance, the stationary firing rate
with white shot noise can deviate substantially from
the predictions of the model with Gaussian white noise
[43]. In the context of neural network simulations, how-
ever, the Gaussian approximation seems to be often less
severe than the approximation of uncorrelated fluctua-
tions (see e.g. [18]).

Furthermore, more realistic than the current noise we
use in this paper is certainly to model fluctuations as
a conductance noise, which enters the dynamics as a
multiplicative noise, i.e., a noise that is multiplied by a
function of the voltage. This entails also the problem of
the interpretation of the stochastic differential equation
(see, e.g., [2]), which is not unique for systems with
multiplicative white noise. In particular, it has been
shown that effects of the shot-noise character and of the
multiplicativity of the noise can be equally important
in shaping the asymmetry of the subthreshold voltage
distribution [44,45] (see also [46]).

Both complicating aspects of biophysical noise, the
shot-noise character and the multiplicative-noise char-
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acter, are certainly also present with colored noise but
have so far received less attention in the literature,
presumably because of the considerably more difficult
mathematical description. It is, to the best of our
knowledge, an unsolved problem, for instance, how to
model a driving shot noise with prescribed (non-white)
power spectrum.

2.2 Neurons driven by colored noise

A simple example for an IF neuron driven by colored
Gaussian noise is

τv v̇ = f(v) + μ + η,

τη η̇ = −η +
√

2σ2
ητηξ(t), (5)

where ξ(t) is Gaussian white noise and the second equa-
tion generated a low-pass-filtered noise, the Ornstein–
Uhlenbeck process with an exponential correlation
function. Following the Wiener–Khinchin theorem, the
power spectrum is the Fourier-transformed correlation
function, in this case, a Lorentzian function. As a more
general input process, a colored noise with a wide
range of power spectra is given by the multidimensional
Markovian embedding:

η(t) =
d∑

k=1

ak + βξ1(t),

ȧ = Aa + Bξ(t). (6)

Here, ξ(t) is a vector of independent Gaussian white
noise of which the components obey 〈ξi(t)ξj(t + τ)〉 =
δ(τ)δij . The first component of the noise vector ξ1(t)
times the scalar β directly enters η(t). A and B are
matrices. The power spectrum of this process with d-
dimensional vectors a and ξ can be written as a rational
function (see [47,48] for details):

Sηη(ω) = lim
T→∞

〈η̃η̃∗〉
T

= β2 +

∑d−1
k=0 Xk(A,B,β)ω2k

1 +
∑d

�=1 Y�(A)ω2�
,

η̃ =

T∫

0

eiωtη dt, (7)

where η̃∗ is the complex conjugate of η̃. In the high-
frequency limit, the second term vanishes because the
order of the denominator being 2d is higher than the
order of the numerator being 2(d − 1). Thus, the high-
frequency limit of the power spectrum is given by β2.
The low-frequency limit is given by Sηη(0) = β2 + X0.
Note that for a sufficiently high-dimensional process,
coefficients of the Markovian embedding can be found
such that the spectrum of η is in a good approxi-
mation to a given input power spectrum. The coeffi-

cients Xk and Y� can be calculated from the matrices
A and B as:

d∑

�=1

Y�det(A)2ω2� = |det(A+ iω1)|2 − det(A)2,

d−1∑

k=0

Xkdet(A)2ω2k = 1ᵀ2Re
[
adj(A− iω1)det(A+ iω1)

]
Bβ

+ 1ᵀadj(A− iω1)BBᵀadj(A+ iω1)ᵀ1. (8)

Here, 1 is the identity matrix and 1 denotes a d-
dimensional vector that is in every entry equal to one.
Note that different matrices A and B exist that yield
the same coefficients Xk and Y�. Furthermore, the range
of values for Xk and Y� is restricted by Eq. (8) such that
Sηη is always positive and does not diverge.

The determination of a proper process η with a power
spectrum that approximates a given one may be a diffi-
cult task, especially if we have to use a high-dimensional
process. At first, we determine the coefficients β, Xk

and Y� of the rational function in Eq. (7), for instance,
by a least square fitting procedure. The resulting func-
tion has to be larger than zero and is not allowed to
have poles. Second, we determine the solution of the
inverse problem of Eq. (8) to obtain the coefficients of
the Ornstein–Uhlenbeck process. For d = 1, where the
matrices A and B reduce to scalars A and B, solutions
for these scalars can be found:

A = − 1√
Y1

and B = − β

2
√

Y1

+

√
β2

4Y1
+

X0

Y1
.

(9)

Also for d = 2 an analytical solution can be found as
presented in the Appendix B of [47] in Eq. (B3). With
the further increase of the dimensionality, it is more dif-
ficult to find a solution of the inverse problem of Eq. (8).

The statistics of the spike-train generated by a neu-
ron driven by the general colored-noise input given by
Eq. (1) with RI = η and Eq. (6) can be derived from the
solution of the corresponding Fokker–Planck equation.
This gives us the temporal evolution of the probability
density P (v,a, t):

∂tP (v,a, t) = L̂P + R̂P. (10)

The subthreshold dynamics of v and a are incorporated
by the operator L̂ that reads:

L̂ = − ∂v
f(v) + μ +

∑d
k=1 ak

τm
+

β2

2τ2
m

∂2
v −

d∑

k,l=1

∂ak
Aklal

+
d∑

k,l,m=1

BklBml

2
∂ak

∂am
+

d∑

k=1

βBk1

τm
∂v∂ak

. (11)

As a consequence of the white noise term that directly
enters the v dynamics, P obeys absorbing boundary
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Fig. 1 Stochastic dynamics of a neuron (middle), that is
driven by external noise (left upper corner) with a given
power spectrum (left lower corner). The neuron is subject
to intrinsic noise and spike-frequency adaptation both medi-
ated by ion channels (middle). The neuron generates a spike
train x(t) (right upper corner) the statistics of which can

be characterized by the spike-train power spectrum (right
lower corner). If the neuron’s input noise is caused by the
superposition of spike trains from other (similar) neurons
within a recurrent network, the input power spectrum and
the spike-train spectrum would be related (self-consistence
problem, addressed in Sect. 2.4)

conditions at the threshold (see [49] for details) and
natural boundary conditions elsewhere:

lim
|a|→∞

P (v,a, t) = lim
v→−∞ P (v,a, t) = P (vth,a, t) = 0.

(12)

The total efflux of probability at the threshold is the
probability for a neuron to fire an action potential which
is the firing rate:

r(t) = 〈x(t)〉 = − β2

2τ2
m

∫

Ma

da∂vP (v,a, t)
∣∣∣
v=vth

.

(13)

Here, we integrate over all dimensions of a represented
by the manifold Ma. The operator R̂ in the Fokker–
Planck equation takes into account the reset of prob-
ability that crossed the threshold. For simplicity, we
consider only a vanishing refractory period τref = 0 (see
[47] for detailed calculation with τref > 0) for which the
operator reads:

R̂P (v,a, t) = −δ(v − vr)
β2

2τ2
m

∂vP (v,a, t)
∣∣∣
v=vth

.

(14)

The stationary probability density P0 and firing rate
r0 are given by the solution of the stationary Fokker–
Planck equation and the normalization condition for
P0:

(L̂ + R̂)P0(v,a) = 0,

vth∫

−∞
dv

∫

Ma

daP0(v,a) = 1,

r0 = −
∫

Ma

da
β2

2τ2
m

∂vP0(v,a)
∣∣∣
v=vth

. (15)

As shown in [47], the Fourier-transformed probability
density Q̃(v,a, ω) is given by the solution of the partial
differential equation:

(iω + L̂ + R̂)Q̃(v,a, ω) =
(
1 − r−1

0 R̂
)

P0(v,a)
(16)

and can be used to calculate the spike-train power spec-
trum as:

S(ω) = r0 − 2r0Re

⎛

⎝
∫

Ma

da
β2

2τ2
m

∂vQ̃(v,a, ω)
∣∣∣
v=vth

⎞

⎠ .

(17)

In Fig. 2, the solution of the theory for one example
is compared to the spike-train power spectrum deter-
mined by direct simulation of a two-dimensional leaky
integrate-and-fire neuron.

2.3 Adapting neurons

The formalism introduced in [47] is not only useful to
determine the spike-train power spectra of integrate-
and-fire neurons driven by colored noise, but can also
be generalized to deal with other stochastic multi-
dimensional integrate-and-fire models. One important
example for a neural feature modeled by an additional
dimension is adaptation that generates a negative feed-
back to the membrane voltage (see for instance [28,50]).
This kind of multidimensional IF model is capable to
generate spike trains with negatively correlated inter-
spike intervals or complex spiking patterns [51–54],
both features that have been observed experimentally
(for reviews, see [55,56]). We consider the following
model:

τmv̇ = f(v) + μ − a + βξ1(t),
τaȧ = Av − a + bξ2(t),
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Fig. 2 Stationary solution in panel a and spike-train power
spectrum from simulation and theory as well as the power
spectrum of the input noise in panel b. The model dynamics
are given by τmv̇ = −v + μ + a + βξ(t) and ȧ = Aa + Bξ(t)

and the fire-and-reset rule. Used parameters are τm = 20 ms,
vth = 20 mV, vr = 0mV, μ = 15 mV, β = 4 mV

√
s,

A = −25 s−1 and B = −68.4 mV/
√

s

if v(t) > vth : v(t) → vr and a(t) → a(t) + δa.
(18)

ξ1 and ξ2 are independent Gaussian white noise. The
term Av in the second line incorporates subthreshold
adaptation (see, e.g., [54,57]). If the neuron fires an
action potential, the adaptation variable is increased by
δa (spike-triggered adaptation). The spike-train statis-
tics of the model can be determined analogously to
colored-noise driven neuron models by Eqs. (15)–(17),
if the operators L̂ and R̂ are generalized. The operator
for the subthreshold dynamics of the model reads

L̂ = −∂v
f(v) + μ − a

τm
+

β2

2τ2
m

∂2
v − ∂a

Av − a

τa
+

b2

2τ2
a

∂2
a.

(19)

The reset operator R̂ has to include the spike-triggered
adaptation by a shift of the efflux of probability along
the a-axis before the reinsertion. It is given by:

R̂P (v, a, t) = −δ(v − vr)
β2

2τ2
m

∂vP (v, a − δa, t)
∣∣∣
v=vth

.

(20)

If the corresponding Fokker–Planck equation is numer-
ically solved, its results agree well with stochastic sim-
ulations of the Langevin model (not shown here but see
[47]).

2.4 Neurons subject to network noise

In networks of deterministic integrate-and-fire neu-
rons, neural input is given by the sum of the spike
trains generated by the presynaptic neurons. A simple
paradigmatic case is the Brunel network [12]:

τmv̇� = −v� + RI�(t),
if v�(t) > vth : v�(t) → vr,

RI�(t) = RIext + τmJ

CE∑

i=1

∑

k

δ(t − tki − D)

− τmgJ

CI∑

j=1

∑

l

δ(t − tlj − D). (21)

Spikes of excitatory neurons increase the membrane
voltage of the postsynaptic neuron by J and spikes
of inhibitory neurons decrease it by gJ ; both sorts
of spikes arrive after a delay D. Here, each neuron
has the same numbers CE and CI of excitatory and
inhibitory presynaptic neurons, respectively, and the
numbers CE , CI are both large (about 103) but much
smaller than the total number of neurons (104−105),
i.e., we deal with a sparse network. This simple model
has distinct states characterized by different levels of
synchrony among the cells and irregularity of individual
firing that can be characterized by a stochastic mean-
field analysis (see, e.g., [11,12,58–60]). We focus here
on the important asynchronous irregular state that is
often observed in the awake behaving animal in differ-
ent brain areas [61]. Standard mean-field theories and
theories using a linear-response ansatz [14,62] employ
the diffusion approximation and, thus, neglect that non-
trivial temporal correlation of the input spike trains are
maintained in the sum [63] and have to be considered by
colored noise [16–18,20]. Each neuron in the recurrent
network is not only a driven element but also a driver
implying a number of self-consistency conditions for the
neural statistics (See Fig. 3). First of all, the mean out-
put of the neuron will determine the mean input to the
typical neuron. Most importantly, in a homogeneous
network of statistically equivalent neurons, the correla-
tion of the neuron’s spike train will be proportional to
the correlation of its input, yielding a condition of self-
consistency for the power spectrum of the input noise
Sηη(ω) and the resulting spike-train power spectrum
S(ω) (see also [18]):

Sηη(ω) = τ2
mJ2(CE + g2CI)S(ω). (22)
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Fig. 3 Mean-field theory of large and sparsely connected
networks of spiking neurons. Top: Sketch of the considered
network. Excitatory (blue) and inhibitory (red) neurons are
randomly connected to each other. Each neuron obeys the
same dynamics and has the same number of excitatory
and inhibitory input synapses (here for visualization only
CE = 4 and CI = 1, the theory assumes at least hundred).
Bottom: The mean-field approach. Neural input in the net-
work is the sum of the presynaptic neurons’ spike trains.
For a sparsely connected network, the input spike trains are
almost independent of each other. For a sufficient number of
presynaptic connections, the sum of the input spike trains

can be modeled as a stochastic process with Gaussian statis-
tics, although the network is fully deterministic. The power
spectra of the input spike trains determine the power spec-
trum of the quasistochastic input η [see Eq. (22)]. In turn,
the spike-train power spectrum of a representative neuron
and the power spectrum of its input are self-consistent. The
approximation of the input η by a multidimensional Marko-
vian embedding given by Eq. (6) with the assumption that
its power spectrum must be self-consistent with the spike-
train power spectrum of a representative neuron yields the
mean-field theory that considers the temporal correlations
of spike-trains

This self-consistency condition can be used to deter-
mine the power spectrum of network noise by an iter-
ative scheme of single-neuron simulations [18], which
can be even generalized to the case of heterogeneous
networks [64].

The introduced formalism in Eqs. (15)–(17) can be
regarded as the open-loop version of the problem: the
computation of the spike-train power spectrum of an
integrate-and-fire neuron driven by colored Gaussian
noise with a given power spectrum. If we consider the
noise coming from the nonlinear neural interactions
within the network, we do not know the input noise
anymore but we know that it is related to the spike-
train power spectra, i.e., to output of the model. If we
approximate neural input by the multidimensional pro-
cess in Eq. (6), the framework can be used to develop
a mean-field theory that takes the temporal correlation
of spike trains into account by the self-consistency of

input and spike-train power spectrum in Eq. (22):

τmv̇ = f(v) + μ + βξ1(t),
ȧ = Aa + Bξ(t). (23)

The coefficients μ, β, A and B are initially unknown
but they are the self-consistent solution of the closed-
loop problem. Of course, for any numerical solution of
the problem, we have to restrict ourselves to a finite-
dimensional Ornstein–Uhlenbeck process for the col-
ored noise. However, the shape of the power spectrum
for such a process cannot attain an arbitrary shape
and thus, it may (and generally will) not fit the self-
consistent power spectrum. Thus, we can require only
approximate self-consistency that can be achieved with
a given finite dimension of the process.

For any dimensionality, even with a zero-dimensional
process, it is useful to assume self-consistency of the
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first order statistics, i.e., the firing rate r that is repre-
sented by the high-frequency limit of the power spec-
trum. The diffusion approximation of neural input as
white Gaussian noise used by Brunel [12] corresponds
to a zero-dimensional process in our framework. In this
case, the mean input RIext and noise intensity β only
depend on the firing rate using:

RIext = τ2
mJ(CE − gCI)r, β2 = τ2

mJ2(CE + g2CI)r.
(24)

The condition of a self-consistent firing rate was used
in [12] to determine the firing rate but also formed the
basis for the stability analysis of the asynchronous irreg-
ular state.

Increasing the dimensionality to d = 1 or 2 (where
d is the dimensionality of the process a) allows us to
approximate the self-consistency better. It is reasonable
to assume self-consistency at zero frequency yielding
the condition:

S(0) = β2 + X0. (25)

The remaining degrees of freedom in the input power
spectrum should be used to make the spike-train power
spectrum approximately self-consistent to the input
power spectrum. A reasonable ansatz is to assume self-
consistency at predetermined frequencies ωi:

Sηη(ωi) = τ2
mJ2(CE + g2CI)S(ωi). (26)

The number of frequencies at which self-consistencies
is given by the 2d + 1 degrees of freedom of the input
power spectrum that are the number of coefficients on
the right-hand side of Eq. (7). In addition to the self-
consistency of firing rates (spectrum for ω → ∞) and at
ω = 0, 2d−1 frequencies have to be predetermined. In a
numerical example, we have assumed self-consistency at
the firing rate (ω1 = 2πr0) for d = 1 and in addition at
double and half the firing rate (ω1 = πr0, ω2 = 2πr0,
ω3 = 4πr0) for d = 2. The solution for one example
network is presented in Fig. 4a and has been deter-
mined iteratively (see also [47]): starting with an ini-
tial input power spectrum, we calculated the station-
ary firing rate and the spike-train power spectrum at
all values of ωi. The input power spectrum for the next
iteration is determined such that it goes through the
calculated point times the factor in Eq. (26). Ten itera-
tions are typically enough to yield input and spike-train
power spectra that are very close to each other, i.e., to
match approximately the self-consistency condition at
the selected frequencies.

An alternative approximation of self-consistency is
the minimization of mean squared difference between
input power spectrum and the spike-train power spec-
trum times the factor in Eq. (22), additionally to self-
consistency of the firing rates and at zero frequency

[Eqs. (24) and (25)]:

arg min
A,B

Ωc∫

0

dω
[
Sηη(A,B, ω) − τ2

mJ2(CE + g2CI)S(ω)
]2

.

(27)

Here, the integral is numerically carried out up to a cut-
off frequency Ωc of several multiples of the firing rate
(the exact value does not affect the resulting spectra
significantly as long as it is large enough). The solution
for the example network is presented in Fig. 4b and
has also been determined iteratively. The input power
spectrum for the next iteration has been determined by
a least square fitting of the spike-train power spectrum
times the factor in Eq. (22). Both approximations yield
similar results and improve with increasing dimension-
ality.

3 Fokker–Planck equation for decision
processes

Primates and humans but also, for instance, rodents
make decisions based on visual and other cues. If they
have to choose between two alternatives, we talk about
binary decision making. In some experimental settings
isolated decisions are enforced, and self-explanatory
statistics like the error rate or the decision time is mea-
sured. These statistics can be surprisingly well mod-
eled by stochastic drift-diffusion (DD) models in which
a variable representing the accumulated evidence per-
forms a biased diffusion (the bias being associated with
the binary stimulus) and a decision is made if this vari-
able reaches one of the two absorbing boundaries.

However, many real life tasks consist of sequences
of decisions to be made. Think of a rat running in a
maze and opting for a certain path at every parting of
the ways—it will make a sequence of decisions that is
obviously influenced by fatigue, learning, the growth
or decrease of external background noise, and many
other effects. Experiments attempting to approach this
problem have studied the history-dependence of deci-
sion rates and times. As shown in many studies [65–68],
the performance of making binary decision depends on
the stimulus history even if the sequence is fully ran-
domized.

Here, we review models that consider an experiment
in which a subject performs a sequence of binary deci-
sions. We start with the renewal model that we recently
developed and studied in Ref. [69], a model to which
Richardson’s threshold-integration method for nonlin-
ear integrate-and-fire neurons [41,42] can be readily
applied to determine the stationary statistics. We then
extend the model by an additional variable that, very
similar to the adaptation variable for neural spike
trains, can act as a source of memory in the system. We
demonstrate that such a model can reproduce essential
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Fig. 4 Approximate solutions of the mean-field theory
for different dimensionalities of the Markovian embedding.
Spike-train power spectra are plotted as solid lines, input
power spectra divided by the factor φ = τ2

mJ2(CE + g2CI)
as dashed lines. Note that self-consistency in Eq. (22) means
Sηη = φS. In panel a, self-consistency is achieved at prede-
termined frequencies. For d = 0, the flat input spectrum
shown as dashed lightgreen line is determined such that
Eq. (24) is fulfilled. Input and spike-train power spectrum
(solid green line) are self-consistent at the high-frequency
limit that represents the firing rate. For d = 1, the input is
determined such that its spectrum (dashed lightblue line)

and spike-train power spectrum (solid blue line) are self-
consistent also at zero frequency [Eq. (25)] and at one fur-
ther frequency for which we chose the firing rate (dotted ver-
tical blue line). For d = 2, self-consistency can be assumed
at three more frequencies [see Eq. (26)] for which we chose
half, single and double the firing rate (dotted vertical red
lines). Increasing dimensionality improved the approxima-
tion of the spike-train power spectrum in the network sim-
ulation, shown as solid black line. In panel b, input and
spike-train power spectra are approximately self-consistent
by minimizing the integrated difference in Eq. (27)

aspects of the dependence on stimulus history in deci-
sion experiments.

3.1 Drift-diffusion model for a sequence of decisions

The classical drift-diffusion model (DDM) of binary
decision-making works as follows. The accumulated evi-
dence is represented by a stochastic process y(t) that
starts at y(0) = y0 = 0 and evolves according to the
stochastic differential equation:

τy ẏ = μ + σ
√

2τyξ(t), (28)

where μ is a bias term, representing the sign and
strength of the signal and taken without loss of gen-
erality to be positive for the specific example consid-
ered; ξ(t) is Gaussian white noise that enters via the
prefactor with an intensity of σ2τy; we have also added
a time scale τy that could be easily absorbed into the
other two parameters. A decision is reached if one of two
thresholds, y± = ±1, is reached. For μ > 0, reaching
y+ = 1 would correspond to a correct detection; hit-
ting the uphill threshold y− = −1 (which could happen
due to the effect of noise) would correspond to a erro-
neous decision. One can formulate and solve a Fokker–
Planck equation with two absorbing boundaries for the
corresponding first-passage-time problem to determine
the error rate (the probability to hit the wrong thresh-
old) and the distribution of decision times [22,23,70].
This very simple description of a complicated signal-
affected competition between different neural popula-
tions works surprisingly well in comparison to experi-
mental data (see, e.g., [24,71]). Obvious generalizations

of the problem concern an asymmetry of the threshold
distances (|y+−y0| �= |y−−y0|), time-dependent thresh-
olds, multi-dimensional generalizations, etc.

Here, we briefly review two generalizations in the
Fokker–Planck framework that we have recently put
forward [69]: one concerning the model and one con-
cerning the kind of statistics considered. For once,
instead of a biased random walk, we can also consider
more generally the diffusion in a nonlinear potential
landscape. This is motivated by studies of neural pop-
ulation dynamics in which a decision is made if one
of the two interacting neural populations is activated:
simplified to the level of a drift-diffusion model, Roxin
and Ledberg [72] arrive at a model in which the dynam-
ics depend in a nonlinear manner on the actual value
of the accumulated evidence. This nonlinear drift can
always be understood as the (negative) derivative of an
effective potential U±(y) (the potential is shaped by the
signal). Adding also a time scale to the left-hand side,
we consider the dynamics

τy ẏ = −U ′
±(y) + σ

√
2τyξ(t). (29)

Second, we may consider not only an isolated deci-
sion but also an entire sequence of decisions. We imag-
ine, similar to the reset mechanism in the stochas-
tic integrate-and-fire neuron, that the cognitive sys-
tem (possibly after a break) is reset after a decision is
made, a new signal is presented, evidence about this
signal is accumulated, again a decision is made, the
system is once more reset, and so on. In this kind of
experiment, we observe a sequence of (correct or incor-
rect) decisions that all take different times (the inter-
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decision intervals). In general, this may also depend
on the signal. There are two aspects in the decision
problem that change when we go from a + signal to a
− signal: (i) the potential shape changes from U+(y)
to U−(y); and (ii) the threshold of correct detection
changes from y+ to y−. If the decision process is sym-
metric with respect to the signal, we may assume that
U+(y) = U−(−y) and y± = −y∓ (for an initial point at
zero, y0 = 0). In this symmetric case, we can describe
all subsequent decisions by the same type of equation
for an evidence variable that accumulates evidence for
the correct (threshold xc = y+) or incorrect decision
(threshold xi = y−), captured by the Langevin dynam-
ics in a potential U(x) = U+(x):

τxẋ = −U ′(x) + σ
√

2τxξ(t). (30)

Assuming a fixed break of Δ, we can formulate the reset
condition as follows:

if x(t) < xi or x(t) > xc : x(t + Δ) = 0
xi < 0 < xc. (31)

The time instances of correct and incorrect decisions
form two distinct point processes dc(t) and di(t), which
we endow by an amplitude (−1 for incorrect decisions
and +1 for correct decisions); the sum of these two
trains is called the decision train D(t):

di(t) := −
ni∑

i=0

δ(t − ti,k)

dc(t) :=
nc∑

j=0

δ(t − tc,j)

D(t) := di(t) + dc(t). (32)

The model and the different point processes associated
with the decisions are illustrated in Fig. 5.

3.1.1 Fokker–Planck equation for the renewal decision
process

Conventional statistics like the response time as well as
neuroscience-inspired statistics like the power spectrum
of the decision train can be determined from solutions
of the Fokker–Planck equation that is associated with
Eq. (30) and the reset condition, which we formulate
as a continuity equation (in analogy to Richardson’s
treatment of stochastic integrate-and-fire models [41,
42]):

∂tP (x, t) − 1
τx

∂x[U ′(x) + σ2∂x]P (x, t) = ν(x, t).

(33)

This set of equations has to be solved with absorbing
boundary conditions:

P (xc, t) = P (xi, t) = 0. (34)

d (t)

d (t)

D(t)

Δ

t

i

c

c

0

x(t)

U(x)

x

x

x

i

Fig. 5 A renewal model for a sequence of binary decisions.
The evidence variable x(t) undergoes a Brownian motion in
a nonlinear potential U(x) (shown on the right) and a cor-
rect (incorrect) decision is made if the x(t) reaches the right
boundary xc (left boundary xi). After a decision is made,
there is a short break Δ after which the evidence variable
is reset to the initial point x0 = 0 and the next decision is
made. The sequence of correct decisions is associated with
a train of positive-amplitude spikes, dc(t) (green); incorrect
decisions are marked by negative spikes (red) in the train
di(t), and the information on all decisions is covered in the
sum of both trains, the so-called decision train, D(t) (bot-
tom). Note that (somewhat surprisingly) a signal in this
model is absent, because we assume that (i) there is no
memory about previous decisions; (ii) the original decision
process is perfectly symmetric in the sense that evidence
accumulation is the same for left and right stimuli. Adopted
and modified from Ref. [69]

There are different statistics of interest: the station-
ary density of the evidence variable x, the rates of cor-
rect and of incorrect decisions, the distribution of times
between decisions, the distribution of times between
correct decisions, the power spectra of the different deci-
sion trains, etc. All these statistics can be determined
by solving the Fokker–Planck equation with different
source functions ν(x, t) (for some statistics we need the
Fourier transformed Fokker–Planck equation as in the
case of the neuron models reviewed above). For a thor-
ough discussion of all the different cases, we refer the
interested reader to [69]; here, we restrict ourselves to
two simple example statistics, the stationary distribu-
tion and the power spectrum of the decision train D(t).

If we want to know how often a correct decision is
made and how likely a certain value of the evidence vari-
able x will occur, we have to solve Eq. (33) in the steady
state case (∂tP (x, t) = 0) and with a likewise station-
ary flux function ν0(x) = (rc,0 + ri,0)δ(x) − rc,0δ(x −
xc) − ri,0δ(x − xi) that reflects the influx of reset tra-
jectories into the reset point at x0 = 0 (first term) and
the outflux of probability at the boundaries (last two
terms). The stationary rates for correct (rc,0) and incor-
rect decisions (ri,0) are determined from the normaliza-
tion of the probability density over the domain (taking
into account also the amount of probability that sits
in the refractory state) and from the continuity of the
density over the domain. Specifically, we can reduce the
computational problem of solving the partial differen-
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tial equation of second order to solving two coupled
equations of first order [69]

∂xJ0 = − rc,0δ(x − xc) − ri,0δ(x − xi) + (rc,0 + ri,0)δ(x)

∂xP0 = − 1
σ2

(τxJ0 + U ′(x)P0), (35)

that can be solved by the threshold integration method.
The aforementioned continuity and normalization con-
ditions read

lim
x→−0

P0(x) = lim
x→+0

P0(x), (36)

xc∫

xi

P0 dx =1 − (rc,0 + ri,0)Δ. (37)

The determination of the power spectra of the deci-
sion trains is more involved. We first use a Fourier-
transformed version of the Fokker–Planck equation and
split again into two first-order ordinary differential
equations for the current and for the probability den-
sity:

d
dx

J̃(x, ω) =iωP̃ (x, ω) + ν̃(x, ω)

d
dx

P̃ (x, ω) = − 1
σ2

(τxJ̃ + U ′(x)P̃ (x, ω)). (38)

All decision times are independent of each other and
so are the intervals between subsequent correct deci-
sions. If we want to determine the power spectrum of
the train of correct decisions, we can thus apply the
renewal formula [73]

sc(ω) = rc,0
1 − |�̃c(ω)|2
|1 − �̃c(ω)|2 , (39)

where �̃c(ω) is the (one-sided) Fourier transform of the
PDF of the interdecision intervals. It is useful to discuss
how we would have to solve the Fokker–Planck equation
in the time domain in order to determine �c(t). First
of all, because there is the refractory period Δ we will
start the density at t = Δ at the reset point x0 = 0. Sec-
ond, whenever probability leaves the interval through xi

(corresponding to realizations with incorrect decisions),
this probability current is redirected to x0 (the corre-
sponding probability is reset to x0). Third, we mea-
sure the time-dependent probability current through
the threshold xc and may identify it with �c(t). The
conditions we have formulated lead to the following
source-and-sink function in the Fourier domain

ν̃c(ω) =
(

1 +
σ2

τx
∂xP̃ (x, ω)

∣∣∣
xi

)
δ(x − x0)eiωΔ

− �̃c(ω)δ(x − xc) − σ2

τx
∂xP̃ (x, ω)

∣∣∣
xi

δ(x − xi),

(40)

where −(σ2/τx) ∂xP̃ (x, ω)
∣∣∣
xi

is the Fourier-transformed

current through xi (its sign is negative because the cur-
rent through the left boundary is negative). This sys-
tem of equations, together with the absorbing boundary
conditions and the continuity at the reset point

P̃ (xi, ω) = 0, P̃ (xc, ω) = 0 (41)

lim
x→−0

P̃ (x, ω) = lim
x→+0

P̃ (x, ω) (42)

can be numerically efficiently solved for the density
�̃c(ω). An analogous procedure can be carried out to
determine �̃c(ω) (the one-sided Fourier transform of the
PDF of intervals between subsequent incorrect deci-
sions). From the latter, we can get via Eq. (39) the
power spectrum of the train of incorrect decisions di(t).
The spectrum for the full decision train D(t) = dc(t) +
di(t) can be shown to obey [69]

S(ω) =
(

1 − rc,0

ri,0

)[
si(ω) − ri,0

rc,0
sc(ω)

]
+ rc,0 + ri,0.

(43)

One remarkable feature of this result is, that no matter
how complicated the single spectra sc(ω) and si(ω) may
look like, if the probability of either decisions is equal
(rc,0 = ri,0), the power spectrum of the decision train
will be always flat like for a white noise. This has been
verified numerically in Ref. [69].

3.1.2 Stationary distribution and spectra of the decision
trains for an example renewal decision process

We look at one example with a cubic potential (see
Fig. 6, left panel, black line), motivated by the deriva-
tion of such a nonlinear binary-decision model from a
model of competing neural networks put forward by
Roxin and Ledberg [72]. The potential is asymmet-
ric such that the correct decision, i.e., an absorption
at xc, is favored. The steady-state profile (left panel,
blue line) displays features that are also known from
the integrate-and-fire dynamics [31,74]: At the absorb-
ing boundaries, the density vanishes; in the middle at
the reset point, its derivative suffers a jump due to
the influx of probability. The flux of probability can
be imagined like a fountain with the water running off
through the boundaries being pumped again into the
system at the reset point. Because in addition to this
source of probability, the potential possesses also a local
minimum close to x0, the density exhibits a pronounced
maximum close to this point.

The power spectra (see Fig. 6, right) show different
shapes for the trains of correct (green) and incorrect
(red) decisions. For the incorrect decisions, the spec-
trum is lower (reflecting the low probability of a incor-
rect decision, i.e., a low rate r0,i, which determines the
high-frequency limit of the spectrum) and is rather flat.
Because incorrect decisions are rather rare with the cho-
sen parameters and for this potential shape, the train
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(a) (b)

Fig. 6 Statistics for a sequence of binary decisions. a For a
polynomial potential landscape U(x) = −x4/2+x2/2−x/5
(black line) and a noise amplitude of σ = 0.1, and a time
scale τx = 0.1, the stationary distribution is shown (blue).

b Power spectra of the trains of correct decisions (green),
incorrect decisions (red), and of the entire decision train
(black). Adopted and modified from Ref. [69]

of incorrect decisions obeys approximately a rare-event
statistics of a Poisson process, which is a sequence of
completely independent spikes that would have a white-
noise (perfectly flat) power spectrum.

Correct decisions are more frequent and display
a certain regularity due to the refractory period Δ
and the passage from the barrier to the threshold
point—consequently, the corresponding power spec-
trum reveals peaks at the rate of correct decisions and
multiples. The power spectrum of the complete decision
train inherits features of the latter spectrum: it shows
peaks at the decision rate and its higher harmonics. The
plot compares numerical simulations of the system to
the solution of the Fokker–Planck equation as outlined
in the previous subsection; in all cases, the results of
both approaches agree very well.

The above illustrates that the concept of a spike
train, which is of such great relevance in neuroscience,
can also be used in the modified form of decision trains
for an important problem in cognitive neuroscience.
Spectra like the ones simulated above could be mea-
sured in experiments and then models could be fitted
not only by means of the response time densities, error
rates, etc. but also by power spectra of the decision
trains. Of course, this approach would be particularly
interesting when the intervals between decisions are not
independent. Our results from Ref. [69] give only new
statistics (the decision trains) for the simple renewal
model. A more complicated model is discussed in the
following, a model that can reproduce features of mem-
ory seen in certain experiments.

3.2 Drift-diffusion model with sequential effects:
capturing the experimentally observed
sequence-dependence of decisions

To model the binary decision-making process for two
types of stimuli (+ and −) and account for sequential
effects, we consider the following two-dimensional DDM

(see Fig. 7):

τy ẏ = −y ± μ + b + σ
√

2τyξ(t)

τbḃ = −b. (44)

The variable y represents the accumulated evidence for
either decision. The increase and decrease of y corre-
spond to the perception of evidence for + and − stim-
uli, respectively. The leak term in the dynamics of y
ensures that evidence that was perceived a long time
ago is forgotten. The stimulus enters the model by a
mean evidence μ and its sign reflects the current stim-
ulus. We assume symmetry between the two types of
stimuli such that the statistics of + decisions for a given
+ stimulus are equal to the statistics of − decisions for
a given − stimulus. Fluctuations that occur from noisy
perception and stimulus or from intrinsic noise in neu-
ral networks are incorporated by the Gaussian white
noise term that obeys 〈ξ(t)ξ(t + τ)〉 = δ(τ). Memory
of the stimulus history is stored in the variable b. The
leak term in the dynamics of b ensures that the memory
decays exponentially in time. Decisions are made when
sufficient evidence is accumulated for a decision, i.e., y
exceeds one of the thresholds y− or y+ with y− = −y+.
For simplicity, we measure y in units of y+ such that
y+ = 1 and y− = −1. A − decision yields an instanta-
neous decrease of b by the amount of −δb, a + decision
an increase by the amount of δb. After the non-decision
time Δ, y is reset to zero and again evolves according to
Eq. (44) in the subsequent trial, in which the stimulus is
chosen randomly to + or − with probability 0.5 for each
independent of the stimulus history. Note that the non-
decision time does not represent the response–stimulus
intervals but times within a trial in which no evidence
is accumulated, for instance, time to recognize the start
of a new trial and time to push a response button. Here,
we assume that during the RSIs y and b are constant.
As a consequence, in our model we only consider times
within experimental trials such that t does not repre-
sent the physical time, but stringing together the times
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(a)

(b)

Fig. 7 Drift-diffusion model with adaptation: a when the
accumulated evidence y exceeds one of the thresholds y− or
y+, a decision is made. After the non-decision time Δ has
elapsed, y is reset to zero and the stimulus for the next trial
is chosen randomly. The current stimulus is indicated by
the upper blue and lower orange areas for + and − stimuli,
respectively. The shown sequence is + − − + +. After reset,
y evolves again according to Eq. (44). b Information about
past decisions enters the dynamics by the variable b that is
increased or decreases by the increment δb when a + or a −
decision is made, respectively. Within a trial, the variable
decays exponentially

within the subsequent trials. In summary, decisions are
made following the decision-and-reset rule:

if y(t) < y− :
y(t + Δ) → 0, b(t) → b(t) − δb,

if y(t) > y+ :
y(t + Δ) → 0, b(t) → b(t) + δb. (45)

The intervals T between the time at which the
stimulus is faded in and the time at which the but-
ton is pressed are the response times. The variable b
incorporates sequential effects in the model such that
the repetitions of the stimulus yield shorter response
times than alternations. As experimentally observed,
for instance by [65–67], the four previous stimuli influ-
ence the response times. Here, we note the stimulus
history by four indices, for example, the response time
TARAR belongs to the stimulus history + − − + + and
− + + − −.

For the following calculations, it is convenient to con-
sider correct and incorrect decisions instead of + and −
decisions. Thus, we introduce the accumulated evidence
for a correct decision x and the variable a that stores
memory of past decisions that obey the subthreshold
dynamics:

τxẋ = −x + μ + a + σ
√

2τxξ(t),
τaȧ = −a. (46)

Note that Eq. (46) directly follows from Eq. (44) if
τa = τb, τx = τy and

x =

{
y for + stimulus
−y for − stimulus

, a =

{
b for + stimulus
−b for − stimulus

(47)
Due to the assumed symmetry between + and − deci-

sions mentioned above, only the history of repetitions
and alternations and not the actual stimulus history is
relevant. Corresponding to the thresholds, y+ and y−,
correct or incorrect decisions are made when x exceeds
xc or xi, respectively. If a + stimulus is presented,
xc = y+ and xi = y−, otherwise xc = y− and xi = y+.
After a decision is made, x is undefined during the non-
decision time Δ and reset to zero afterwards. If the
stimulus in the subsequent trial decision is a repetition,
a is increased or decreased by the amount δa = δb or
−δa if a correct or incorrect decision was made, respec-
tively. In case of the stimulus alternation, the sign of
the entire variable a has to be flipped due to the defini-
tion of x in Eq. (47) and the modified decision-and-reset
rules are given by:

if x(t) < xi :
x(t + Δ) → 0, a(t) → a(t) − δa,

if x(t) > xc :
x(t + Δ) → 0, a(t) → a(t) + δa,

if stimulus alternates : a(t) → −a(t). (48)

In the following, we determine the response statistics

for a given alternation-repetition history based on the
Fokker–Planck equation that corresponds to Eqs. (46)
and (48).

3.2.1 Fokker–Planck equation and boundary condition

Corresponding to the subthreshold dynamics in Eq. (46),
the Fokker–Planck equation that describes the evolu-
tion of an ensemble is given by:

∂tP (x, a, t) =
[
∂x

1
τx

(x − μ − a) +
σ2

τx
∂2

x + ∂a
a

τa

]
P (x, a, t)

= L̂P (x, a, t). (49)

The white noise term in Eq. (46) causes absorbing

boundary conditions at the thresholds. We assume nat-
ural boundary conditions for a:

P (xc, a, t) = P (xi, a, t) = lim
a→±∞ P (x, a, t) = 0.

(50)
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Fig. 8 Example experiment for sequential effects in binary
decision making: the subject is placed in front of a monitor
that presents one of two stimuli, here a + or a − symbol. As
soon as the subject perceived the stimulus, it makes a deci-
sion by pressing the corresponding button. After a decision
has been made, no stimulus is presented for the response–
stimulus interval (RSI). After the time has elapsed, the next

stimulus is presented that is randomly chosen and indepen-
dent of the stimulus history. The responses to both types of
stimuli are symmetric in the sense that the response statis-
tics are equal for + responses on + stimuli and − response
to − stimuli. Thus, sequential effects on the response times
only depend on the history of alternations and repetitions
of stimuli and not on the actual stimulus

The total efflux of probability at the correct or incor-
rect thresholds gives us the probability density for the
next correct or incorrect decision, respectively:

gc(t) = −
∞∫

−∞
da

σ2

τx
∂xP (x, a, t)

∣∣∣
x=xc

,

gi(t) =

∞∫

−∞
da

σ2

τx
∂xP (x, a, t)

∣∣∣
x=xi

. (51)

Note that only the sum of gc and gi is normalized. The
time integral over gc or gi gives us the probability that
the decision is correct or incorrect, respectively.

3.2.2 Reset operations and stationary solution

To determine the stationary statistics of the model, we
have to take into account the decision-and-reset rule in
Eq. (48). Probability that crosses either threshold has
to be reinserted at x = 0 after the non-decision time Δ
has elapsed. The location at which the probability has
to be reinserted is depending on which threshold has
been crossed and if the subsequent stimulus is a rep-
etition or an alternation. For a repeated stimulus, the
reset of probability that crosses xc can be incorporated
in the Fokker–Planck equation by the operator R̂R,c

that measures the efflux of probability at the correct
threshold, performs shifts in a and reinserts probability
at x. It acts on the probability density as:

{R̂R,c P}(x, a, t) = −δ(x)
σ2

τx
e

Δ
τa ∂xP (x, e

Δ
τa a − δa, t)

∣∣∣
x=xc

.

(52)

The second argument of P on the right-hand side is the
result of the increase of a after the decision was made
and the exponential decay during the non-decisions
time. A trajectory that crosses the threshold at a′ has
to be reinserted at a = e− Δ

τa (a′ + δa), hence, probabil-
ity that is reinserted at a has crossed the threshold at

the inverse expression a′ = ae
Δ
τa −δa which is the argu-

ment of the probability density on the right hand side.
The efflux of probability is measured by the negative
derivative at the correct threshold and the reinsertion
is performed by the δ function. The other reset opera-
tions, namely for a correct decision and an alternating
stimulus and an incorrect decision with repeating or
alternating stimuli are given by:

{R̂R,i P}(x, a, t) = δ(x)
σ2

τx
e

Δ
τa ∂xP (x, e

Δ
τa a + δa, t)

∣∣∣
x=xi

,

{R̂A,c P}(x, a, t) = −δ(x)
σ2

τx
e

Δ
τa ∂xP (x, −e

Δ
τa a + δa, t)

∣∣∣
x=xc

,

{R̂A,i P}(x, a, t) = δ(x)
σ2

τx
e

Δ
τa ∂xP (x, −e

Δ
τa a − δa, t)

∣∣∣
x=xi

.

(53)

In the stationary case, probability that is reinserted
from both thresholds and the probability for a repeti-
tion or an alternation are 0.5 in both cases. Thus, the
stationary probability density P0(x, a) is determined by
the solution of the partial differential equation:

L̂P0 + 0.5(R̂R,c + R̂R,i + R̂A,c + R̂A,i)P0 = 0.
(54)

A decision process is either in the subthreshold regime
or in the non-decision state for the time Δ after a deci-
sion was made. The fraction of decision-making pro-
cesses in the non-decision state is given by Δ times the
stationary efflux of probability at both thresholds yield-
ing the normalization condition:

∞∫

−∞
da

xc∫

xi

P0(x, a)

= 1 − Δ
σ2

τx

∞∫

−∞
da

[
∂xP0(x, a)

∣∣∣
x=xi

− ∂xP0(x, a)
∣∣∣
x=xc

]
.

(55)
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The stationary solution is uniquely determined by
Eqs. (54) and (55) and can be found numerically using
finite difference methods as described in Appendix A.1.

3.2.3 Initial distributions for a sequence of stimuli

The initial distribution for one trial considers the dis-
tribution in a at which the previous decision was made
and the probability that the decision was correct. Let
us consider the probability density PX(x, a, t) of a trial
with the stimulus history X, for which the probability
densities for correct and incorrect decisions to be made
at a are given by the time integral over the efflux of
probability at the respective threshold:

gc(a) =

∞∫

0

dt

(
−σ2

τx
∂xPX(x, a, t)

∣∣∣
x=xc

)
,

gi(a) =

∞∫

0

dt
σ2

τx
∂xPX(x, a, t)

∣∣∣
x=xi

. (56)

Probability that has crossed xc or xi is increased or
decreased by δa and a decays exponentially during the
non-decision time before it is inserted in the subthresh-
old dynamics for the next trial. It is convenient to cal-
culate the efflux, the shift and the decay by the reset
operations introduced in Eqs. (52) and (53). We may
obtain the initial distribution of the subsequent trial
with alternating stimulus by:

PXA(x, a, 0) = α

∞∫

0

dt (R̂A,c + R̂A,i)PX(x, a, t)

= α(R̂A,c + R̂A,i)P∞,X(x, a), (57)

where P∞,X(x, a) is the time integral over PX(x, a, t)
and the factor α ensures the normalization of the initial
distribution PXA(x, a, 0):

P∞,X(x, a) =

∞∫

0

dt PX(x, a, t),

α =

⎛

⎝
∞∫

−∞
da

∫ xc

xi

dx (R̂A,c + R̂A,i)P∞,X(x, a)

⎞

⎠
−1

.

(58)

To calculate the initial distribution for a repeating stim-
ulus PXR(x, a, 0), the reset operations (R̂A,c + R̂A,i) in
Eqs. (57) and (58) have to be replaced by (R̂R,c + R̂R,i).
Note, that the we have inserted the probability at t = 0
in contrast to the previous section where we inserted
the probability after the non-decision time has elapsed.

To determine P∞,X(x, a), an expression can be derived
from the time integration of the Fokker–Planck equa-

tion in Eq. (49) yielding:

∞∫

0

dt ∂tPX(x, a, t) =

∞∫

0

dt L̂ PX(x, a, t)

= −PX(x, a, 0) = L̂P∞,X(x, a). (59)

The partial differential equation in the second line can
be solved numerically as shown in the Appendix and
yields us P∞,X(x, a) if we know the initial distribution
on the left hand side.

At the beginning of each sequence, we assume the
stationary probability density such that the initial dis-
tribution for the first repetition or alternation is given
by:

PR(x, a, 0) =
(R̂R,c + R̂R,i)P0

∞∫
−∞

da
xc∫
xi

dx (R̂R,c + R̂R,i)P0

,

PA(x, a, 0) =
(R̂A,c + R̂A,i)P0

∞∫
−∞

da
xc∫
xi

dx (R̂A,c + R̂A,i)P0

. (60)

The probability densities integrated in time are given by
the solutions of Eq. (59), from which the initial distri-
butions of the subsequent trials can be calculated using
Eq. (57). Subsequently, the iterative use of Eqs. (57)
and (59) using the respective operators (R̂A,c + R̂A,i)
for an alternating stimulus and (R̂R,c + R̂R,i) for a
repeating stimulus enables us to determine the initial
condition and the time integrated probability density
of a trial with any given stimulus history.

3.2.4 Error rate and mean response time

The error rate of a trial is the fraction of incorrect deci-
sions and can be calculated for a stimulus history X by
the efflux of probability at the incorrect threshold inte-
grated over time divided by the efflux at both thresh-
olds integrated over time:

EX =

∞∫
−∞

da ∂xP∞,X

∣∣∣
x=xi

∞∫
−∞

da

[
∂xP∞,X

∣∣∣
x=xi

− ∂xP∞,X

∣∣∣
x=xc

] .

(61)

The total efflux of probability that crosses the correct
threshold gives us the probability density for a correct
decision at t which is the response time density. Its
mean value 〈TX〉 is the most important measure for the
sequential effects and given by:
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〈TX〉 =

∞∫

0

dt t

∞∫

−∞
da

(
−σ2

τx
∂x PX(x, a, t)

∣∣∣
x=xc

)

= −σ2

τx
∂x

∞∫

−∞
da

⎛

⎝
∞∫

0

dt t PX(x, a, t)

⎞

⎠
∣∣∣
x=xc

.

(62)

To determine the term in the large brackets, a partial
differential equation can be derived from the Fokker–
Planck equation in Eq. (49), if we consider its temporal
mean value and apply the operator L̂ on it. The left-
hand side then reads:

L̂
∞∫

0

dt t ∂tPX(x, a, t) = −
∞∫

0

dt L̂

PX(x, a, t) = −
∞∫

0

dt ∂tPX(x, a, t) = PX(x, a, 0).

(63)

With the right-hand side, we obtain the partial differ-
ential equation:

PX(x, a, 0) = L̂
∞∫

0

dt t L̂ PX(x, a, t) = L̂2
∞∫

0

dt tPX(x, a, t).

(64)

This partial differential equation of fourth order may
appear more difficult to solve at first glance; how-
ever, using the finite-size method introduced in the
Appendix, a solution can easily be found. Subsequently,
the mean-response time can be calculated by Eq. (62).

3.2.5 Fit to experimental data

To show that the model is capable to describe sequential
effects of the decision making processes, we have fitted
the mean response times and error rates of a decision
made after a sequence of five stimuli to the experimental
data that are presented in Fig. 9 as gray crosses. Data
set 1 and data set 2 are shown on the left and right hand
sides and are extracted from Refs. [66,67], respectively.
In both studies two-alternative forced choice tasks as
sketched in Fig. 8 were performed by volunteers. In the
experiment corresponding to data set 1 two stimuli, a
white lowercase ‘o’ and a white uppercase ‘O’ were pre-
sented on a black background. If an ‘o’ stimulus or an
‘O’ stimulus appear, participants should press buttons
with their index or middle fingers, respectively. The
stimuli are presented in a random order but with equal
frequency in each series with a response–stimulus inter-
val of 800 ms. The response times were measured for six
volunteers from which each performed 13 series of 120
trials. In data set 2, the subjects should press a button
with their index finger if an uppercase letter except of

‘X’ appears, and a button with their middle finger if a
single digit ‘5’ appears on the computer screen. Stim-
uli that do not belong to these two categories were not
shown. A response–stimulus interval was not fixed. The
stimuli were presented for 250 ms with a subsequent
break of 1-s interstimulus interval. The response times
were measured for 65 participants who performed three
series of 150 trials. In the series, the percentage of stim-
uli that belonged to the first category was 17, 50, and
83%. For both data sets, the model parameters have
been determined by least square fitting as described
below. To reduce the number of fitting parameters, we
set τx = 1 s and consider the mean response times of
given sequences divided by the average of the mean
response times over all considered sequences. We also
consider the error rates by the cost function:

C(τa, μ, σ, δa,Δ) =
∑

X

⎛

⎝16 〈TX〉∑
X

〈TX〉 − 16Texp,X∑
X

Texp,X

⎞

⎠
2

+ (EX − Eexp,X)2 , (65)

where Texp,X are the median of the response times and
Eexp,X are the error rates of the experimental data for
a given sequence X and the sum over X goes over all
16 considered sequences (RRRR, ARRR, RARR, ...,
RAAA, AAAA). The 〈TX〉 and EX are calculated as
presented above for each parameter set. Note that 〈TX〉
depends on the choice of τx but due to the scaling, the
cost function does not depend on it, nor does EX . In
the fitting procedure, we determine the parameters that
minimize the cost function:

arg min
τ ′

a, μ, σ, δa, Δ′
C(τ ′

a, μ, σ, δa,Δ′). (66)

Subsequently, we calculate the mean response times
with τx = 1 s and the solution of the minimization τ ′

a.
In a last step, the temporal parameters of the model
have to be scaled by the factor:

κ =

∑
X

〈TX〉
∑
X

Texp,X
τx = κ · 1 s τa = κτ ′

a Δ = κΔ′,

(67)

ensuring that the average of the mean response times
from the model over the sequences is equal to the aver-
age of the median response times from the experiment.

The mean response times that result from the fitting
procedure are presented in Fig. 9 as black dots for both
data sets. In order to validate the theory for the calcu-
lation of the mean response times, results from direct
simulations of the model with the fitted parameters are
presented as white diamonds and are very close to the
theory.

The model is capable to fit the essential sequential
effects that are the longest response times and high-
est error rate for the sequence RRRA, shortest time
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Fig. 9 Fit results of the two-dimensional DDM to exper-
imental data. Data set 1 on the left-hand side is extracted
from [66] and data set 2 on the right-hand side from [67].
Mean response times (top) and error rates (bottom) are
encoded at the y axes, the respective sequence of repetitions
(R) and alternations (A) of the stimuli on the x axis. Exper-
imental data are shown as gray crosses and the fit results

as black dots. To test the theory, mean response times and
error rates are also determined by direct simulations of the
models with the fit parameters shown as white diamonds.
Fit parameters for data set 1 are τx = 0.37 s, τa = 0.90 s,
μ = 3.0, σ =1.04, δa = 0.66, Δ = 0.22 s and τx = 0.60 s,
τa = 0.86 s, μ = 2.5, σ = 1.03, δa = 0.64, Δ = 0.16 s for
data set 2

and lowest error rate for RRRR and some local max-
ima and minima. One may argue that we compare the
mean values calculated with the introduced theory to
the medians of the experimental data. Thus, we have
checked the median response times from the direct sim-
ulations that are similar to the mean values and max-
ima and minima are at the same locations. Compared
to the mean values, the median values have a nega-
tive bias. The distributions of the simulated response
times for data set 1 and 2 are characterized by a simi-
lar skewness (2.0 for set 1 and 2.1 for set 2) but differ
in their coefficients of variation (0.28 and 0.46). These
values are in line with experimental findings, e.g., in
[75].

4 Conclusions

We have reviewed applications of the Fokker–Planck
equation for systems that generate event trains. The
events are spikes (action potentials) in the case of neural
integrate-and-fire (IF) models or (correct or incorrect)
decisions in the case of generalized drift-diffusion (DD)
models. Concepts like the decision train are straight-
forward generalizations of the neural spike train, gener-
alizations that may prove useful in the future study
of behaviorally realistic sequences of decisions. One
purpose of this paper is that we would like to high-
light the opportunities and benefits of the transfer
of (fairly recent) methods from computational neu-
roscience to stochastic problems in cognitive neuro-
science.

While the application to the one-dimensional ver-
sions of the IF model is a standard approach in com-
putational neuroscience for decades [4,5,25], the exten-
sion to the multidimensional case to incorporate col-
ored noise [20,26,76,77] and adaptation [78] has been
limited largely to the simple two-dimensional setup.
Here, we demonstrated that the approach developed
in Ref. [47] permits to model more general (and bio-
physically relevant) noise spectra and even provides
a closed system of equations for the difficult prob-
lem of the self-consistent network noise: this theory
describes how the static disorder of random connections
between deterministic neurons leads to a quasi-random
stochastic network noise. Although the governing equa-
tions look rather cumbersome, it is possible to approx-
imately solve them in some cases. We showed explic-
itly that results are robust and that different numerical
approaches yield similar results for the self-consistent
spike-train power spectrum. However, the application
of the formalism is limited, since the determination of
a solution is computationally expensive and only appli-
cable if the input spectrum can be achieved by a two-
dimensional Markovian embedding. For a detailed dis-
cussion, see [47].

We note for the studied IF models, it is also pos-
sible to include colored fluctuations as conductance
noise instead of current noise (see [79] as an exam-
ple for a recent analytical approach to this prob-
lem). It may, however, be misleading to take into
account the multiplicative character of the noise but
still to neglect its shot-noise character [44,80]. Espe-
cially, if we want to take into account arbitrarily cor-
related spike train input with non-small and possi-
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bly random amplitudes that acts on a conductance
dynamics of an IF neuron, we still lack a general
framework that would be comparable to the multi-
dimensional Fokker–Planck equation discussed in this
paper.

The standard statistics of decision models in cogni-
tive neuroscience often do not take into account that in
many real-life situations decisions are not made in iso-
lation but in a sequence—think again of the rat running
in a maze or of tourists in a big city finding their way
to the museum. Here we introduced the decision train,
showed how the Fokker–Planck equation for the drift-
diffusion model has to be solved to determine the cor-
relation statistics of these event trains for the simplest
renewal version of the drift-diffusion model. Moreover,
we introduced a novel two-dimensional stochastic model
of sequential decision making and explained how exper-
imentally measured stimulus-history-dependent statis-
tics can be extracted from numerical solutions of the
Fokker–Planck equation under different initial condi-
tions. Remarkably. this simple model can reproduce
salient features of the experimental data.

On a final note, we would like to point out that the
framework we have reviewed can be also applied to
study the response to time-dependent signals. For sim-
ple IF models, this is standard in computational neu-
roscience to investigate the flow of information in sin-
gle neurons (e.g., in [6,38,81–83]) and populations (cf.
[84–87]). There are still many open problems when it
comes to the information transmission in neurons under
the influence of colored noise (intrinsic channel noise
or network fluctuations) and adaptation (see, however,
[88]). For the cognitive models, the response statis-
tics would allow to probe and calibrate drift-diffusion
models in new ways if experimental conditions over
a sequence of binary decisions would be changed in
a controlled time-dependent manner. This could lead
to fruitful experiment–theory interactions on a novel
quantitative level in this field of research.
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Appendix A: Numerical calculation of mean
response times and error rates

A.1 Discretization

To determine the stationary solution, the start distribution
for a given stimulus history and thereby the mean response
times and error rates, we use a finite-difference method sim-
ilarly to the one introduced in [47]. The variables x and a
are discretized to N bins:

x → xj = −1 + (j + 1) Δx

a → ak = a0 + k Δa (68)

with j, k ∈ [0, . . . , N −1]. x is defined in between the thresh-
olds such that x−1 = xi = −1 and xN = xc = 1 are not
considered. The increment between two neighboring bins is
δx = 2/(N + 1). The relevant range of a was estimated by
the maximum increment within five decisions a1 = −5δa

and aN = 5δa such that Δa = 10δa/N . For the fitting pro-
cedure, N = 80 was sufficient. Discretized probability den-
sities are N -dimensional vectors P with the components:

Pj+kN = P (xj , ak). (69)

A.2 Subthreshold dynamics

By the symmetric approximation of the first and second
derivatives with respect to x and a, the discretized version
of the subthreshold operator L̂ in Eq. (49) is a N2 × N2

matrix of which the components are given by:

L̂j+kN,m = − 2σ2

τxΔ2
x

δj+kN,m +
ak+1

2τaΔa
δ̄k,N−1δj+(k+1)N,m

− ak−1

2τaΔa
δ̄k,0δj+(k−1)N,m

+

(
σ2

τxΔ2
x

− −xj+1 + ak

2τxΔx

)
δ̄j,N−1δj+1+kN,m

+

(
σ2

τxΔ2
x

+
−xj−1 + ak

2τxΔx

)
δ̄j,0δj−1+kN,m, (70)

where the δj,k are Kronecker symbols and δ̄j,k = 1−δj,k are
’anti ’-Kronecker symbols.

A.3 Reset operations

The decision-and-reset operators R̂R,c, R̂R,i, R̂A,c and R̂A,i

in Eqs. (52) and (53) perform five steps: they measure the
efflux of probability at the respective threshold, they shift
probability along the a axis, if the stimulus alternates, they
flip the sign of the variable a, they account for the expo-
nential decay of a during the non decision time and, finally,
they reinsert the probability at the reset point. In the dis-
cretized version, we perform each step by a single operator,
for instance, R̂A,c=R̂ÊF̂AŜcD̂c. The efflux of probability
at the correct and incorrect threshold can be calculated by
the operators D̂c and D̂i, respectively, that read in their
discretized versions:

D̂c
m,j+kN =

σ2

τxδx
δm,kδj,N , D̂i

m,j+kN =
σ2

τxδx
δm,kδj,1.

(71)
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Note that these are the components of N × N2 matrices.
For a correct decision, a is increased by δa corresponding to
a shift of δa along the a axis, for an incorrect decision, a is
decreased. The probability from the m-th bin is transferred
into the (m + na)-th or the (m − na)-th bin with na =
δa/Δa. For our choice of discretization, na = 8 is an integer
number. The discretized shift operators are given by the
N × N matrices:

Ŝc
m′,m = δm′−na,m, Ŝi

m′,m = δm′−na,m. (72)

The flip of the sign of a for the alternation of the stimulus
is incorporated by the N × N matrix:

F̂R
m′′,m′ = δm′′,m′ , F̂A

m′′,m′ = δN−m′′,m′ . (73)

The exponential decay during the non-decision time Δ
yields that probability located at am′′ has to be inserted at
am′′e−Δ/τa which lies in between two bins. Thus, we split
the probability and insert it into two neighboring bins at
anE and anE+1 with the fraction 1 − κ and κ given by:

Ê = (1 − κ) δm′′′,nE
+ κ δm′′′,nE+1,

nE = floor

(
am′′e−Δ/τa − a0

Δa

)
,

κ =

(
am′′e−Δ/τa − a0

Δa

)
− nE . (74)

Finally, the reinsertion of probability is performed by an
N2 × N matrix that is for an even number N given by:

R̂j′+k′N,m′′′ =
δj′,N/2 + δj′,N/2+1

2Δx
δk′,m′′′ . (75)

A.4 Stationary solution

The partial differential equation for the stationary probabil-
ity density in Eq. (54) can be approximated as a homoge-
neous linear system by approximating the operators as the
matrices and probability density as a vector:

(L̂ +0.5(R̂R,c + R̂R,i + R̂A,c + R̂A,i))P0 = 0. (76)

To exclude the trivial solution of the homogeneous system
that is P0 j+kN = 0 for all j and k, we force the N2/2+N/2-
th component to be one yielding:

([L̂ +0.5(R̂R,c + R̂R,i + R̂A,c + R̂A,i)]P
′
0)j,k + P ′

0 N2/2+N/2 = 1.

(77)

We determined P′
0 numerically using the linear algebra

package scipy.sparse.linalg.spsolve in Python. Subsequently,
the stationary probability density P0 that fulfills the nor-
malization condition in Eq. (55) is determined by:

P0 =
P′

0

1 + σ2

τxΔx
Δa

N∑
k=1

(P ′
0 kN + P ′

0 N−1+kN )

. (78)

A.5 Mean response times and error rates

The discretized initial distributions of the first trial in the
sequence for a repetition and for an alternation of the stim-
ulus PR or PA with PR j+kN = PR(xj , ak, 0) are given by

Eq. (60):

PR =
(R̂R,c + R̂R,i)P0

ΔaΔx

N−1∑
j,k=0

((R̂R,c + R̂R,i)P0)j+kN

,

PA =
(R̂A,c + R̂A,i)P0

ΔaΔx

N−1∑
j,k=0

((R̂A,c + R̂A,i)P0)j+kN

. (79)

As the next step, we have to calculate the time integral of
the probability densities that are given as the solution of the
partial differential equation (59) that reads in discretized
version:

−PX = L̂P∞,X. (80)

We solve this linear system numerically as Eq. (77). The
initial probability density for the subsequent trial can be
calculated according to Eq. (57):

PXR =
(R̂R,c + R̂R,i)PX

ΔaΔx

N−1∑
j,k=0

((R̂R,c + R̂R,i)PX)j+kN

,

PXA =
(R̂A,c + R̂A,i)PX

ΔaΔx

N−1∑
j,k=0

((R̂A,c + R̂A,i)PX)j+kN

. (81)

Applying Eqs. (80) and (81) iteratively, initial probability
density for any given sequence of repetitions and alternation
can be calculated. Subsequently, the error rate of the last
considered trial is given by Eq. (61):

EX =

N−1∑
k=0

P∞,X kN

N−1∑
k=0

[P∞,X kN + P∞,X N−1+kN ]

. (82)

The mean response time can be calculated from the solution
of the partial differential equation (64):

PX = L̂2
QX, QX =

∞∫

0

dt tPX(t). (83)

We determine QX numerically and calculate the mean
response time with Eq. (62):

〈TX〉 =
Δa

Δx

σ2

τx

N−1∑

k=0

QX N−1+kN . (84)
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