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We study the diffusive motion of an overdamped Brownian particle in a tilted periodic
potential. Mapping the continuous dynamics onto a discrete cumulative process we find
exact expressions for the diffusion coefficient and the Péclet number which characterize
the transport. At a sufficiently strong but subcritical bias an optimized transport with
respect to the noise strength is observed. These results are confirmed by numerical
solution of the Fokker-Planck equation.
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1. Introduction

There are many examples of stochastic dynamics which can be described by the
Brownian motion in a tilted washboard potential ranging from mathematical pen-
dulum with dissipation and noise [1] over superionic conduction [2] to neuronal
activity [3, 4]. The qualitative asymptotic behavior of the system is well known.
Expressed in terms of real Brownian motion, particles in a tilted washboard sub-
jected to friction and noise will diffuse and drift in the direction of the bias. The
determination of mean velocity and effective diffusion coefficient, however, was a
challenging task for decades and can be performed in the general damped case only
by simulations or by a numerical solution of the Fokker-Planck equation [1].
The overdamped limit of this model in turn can be treated analytically to a great
extent. Already in 1958, Stratonovich [5] derived a closed expression for the station-
ary mean velocity and gave also an approximate expression for the effective diffusion
coefficient. During the 1970’s, an exact expression for the diffusion coefficient could
be calculated for the special case of vanishing bias [6]. Another approximation for
a finite bias has been proposed recently [7].
Stratonovich’s approach to the diffusion coefficient holds true for a weak tilting
of the potential and small noise intensity. In this case the particle rarely jumps
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from one potential minimum into the next one to the right or left, respectively,
whereby one of the directions is preferred due to the bias. Stratonovich assumed
in this regime that the process can be modeled by a biased random walk. Thus,
the diffusion coefficient is determined by the rate from the minimum to the left
and right potential barriers (maxima of the potential). This approach neglects the
relaxation time from barrier to minimum that becomes relevant for stronger tilt. It
fails completely for a so called supercritical tilt for which minima and maxima of the
potential vanish since in this case the process cannot be described by a Poissonian
hopping process anymore. In the case of a very strong tilt, however, the situation
is simplified again since the potential shape can be ignored and the diffusion coef-
ficient coincides with that of free diffusion.
The transport of particles is characterized by an average motion in direction of the
bias and the counteracting spreading effect due to the presence of noise. While
the drift may be desired the dispersion is an unwanted but - especially in case of
a subcritical bias - inevitable side effect. Coherent transport refers to the case of
large mean velocity at fairly small diffusion. It can be best quantified by the nondi-
mensional Péclet number, i.e., a proper ratio of mean velocity to effective diffusion
coefficient. Clearly, the transport is most coherent when this number is maximal.
In this paper we address a situation where the minima and maxima of the effective
potential are still present (subcritical tilt) but the tilt is sufficiently strong that the
relaxation time scale has to be taken into account. We will restrict ourselves to
the overdamped case and derive exact expressions for the diffusion coefficient and
the Péclet number. It will be shown that a large relaxation time scale can lead
to a coherent (regular) transport of particles when the noise strength is optimally
chosen. This is manifested by a maximum of the Péclet number with respect to
the noise intensity. We will illustrate the meaning of this maximum in terms of the
time dependent probability density of particles.
Furthermore, for specific potential shapes another quality of coherence appears. If
a flat potential with small sharp maxima is sufficiently tilted the effective diffu-
sion coefficient itself attains a local minimum as a function of the noise intensity.
The surprising effect that increasing noise decreases diffusion is explained by the
occurrence of a large ratio of relaxation to escape time for a certain range of noise
intensities.
Regarding the calculation of the diffusion coefficient for finite bias, independent
work by Reimann et. al. [8] has been done although the approach as well as the
physical phenomenon considered in that study differ much from ours.
The paper is organized as follows. In section 2 we introduce the model and the
quantities of interest. In section 3 we outline the mapping onto a discrete cumula-
tive process that permits the determination of asymptotic mean and variance of the
original process. In sections 4 and 5 we turn to specific potential shapes and the
phenomenon of coherent transport. Finally in section 6, we give a summary and
discuss the close connection of our findings to coherence resonance encountered in
excitable systems.
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2. Model and quantities of interest

Consider the overdamped motion of a Brownian particle in a potential U(x) with
period L subject to a tilting force F and a white Gaussian noise

ẋ = − d

dx
(U(x)− Fx) +

√
2Dξ(t). (1)

Here, the friction coefficient γ has been omitted realized by rescaling the force term
and noise intensity D. The force in (1) is often written as the derivative of the
effective potential V (x) = U(x) − Fx. If U(x) is periodic there exists obviously a
critical tilt Fc where the corresponding minima and maxima vanish for V (x).
The corresponding probability density for eq. (1) obeys the Fokker-Planck equation

∂tP (x, t) = ∂x (V ′(x) +D∂x)P (x, t). (2)

An ensemble represented by P (x, t) started at the sharp value x0 = 0 moves in
direction of the bias and spreads at the same time over several periods of the
potential (cf. Fig. 1). For large times, the drift is characterized by the mean
stationary velocity

v = 〈ẋ〉 = lim
t→∞

〈x(t)− x(0)〉
t

(3)

while the dispersion is quantified by the effective diffusion coefficient

Deff =
1
2

lim
t→∞

〈∆x(t)2〉
t

=
1
2

lim
t→∞

〈[x(t)− 〈x(t)〉]2〉
t

. (4)

The density itself tends asymptotically to

Pas(x, t) = P0(x)
exp[−(x− vt)2/4Deff t]√

4πDeff t
(5)

where P0 refers to the stationary (necessarily periodic) solution of eq. (2) [1] with the
special normalization

∫ L
0
dxP0(x) = L. Clearly, this function is responsible for the

local structure (local minima and maxima) whereas the Gaussian part represents
the coarse grained density (thick line in Fig. 1). The asymptotic mean and variance
of the true density Pas(x, t) coincide with those of the Gaussian factor as we have
tacitly assumed in eq. (5). The Gaussian function can be numerically extracted
from P (x, t) in different ways (cf. Fig. 1). One may fit P (x, t) to a Gaussian
function, filter the density (Fourier transformation, cutting off the high frequencies
and perform the back transformation) or carry out a direct coarse graining by
P̃ (x̃, t) =

∫ x̃+L/2

x̃−L/2 dxP (x, t)/L with x̃ = x0 + kL, k ∈ Z. All three methods yield a
satisfying agreement. For the data in Fig. 1 the fitted and filtered functions coincide
within line thickness while the histogram obtained from the coarse graining seems
to be the discrete counterpart to these functions.
It might be desired that particles started at a sharp value should reach a certain
region without much spreading. An optimal transport in this sense is realized at
large velocity and small diffusion and will result in a large Péclet number

Pe =
vL

Deff
. (6)
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Fig 1. Evolution of the density P (x, t) (thin line) for the potential U(x) = cos(x), F = 0.95
and D = 2.05. The density started at x = 4.4 (arrow) is calculated by a numerical solution
of eq. (2). Additionally shown: the coarse grained density (histogram) and a fit of P (x, t)
to a Gaussian function (thick line) which coincides in line thickness with a filtered version
of P (x, t) (not shown). The potential U(x) is drawn at the bottom for comparison.

This nondimensional ratio was frequently used in convection problems [9] and also
recently applied to the transport problem in ratchet potentials [10].
Beside the trivial case of vanishing potential U(x) ≡ 0 (then v = F , Deff = D), the
usual approach to the diffusion problem posed by eq. (4) is to extract the diffusion
coefficient from the time dependent solution of the Fokker-Planck equation (2). This
works, e.g. in case of piecewise constant potential U(x) [1], however, for a general
periodic potential the time dependent solution is not available. Another way is
to use a generalized fluctuation-dissipation relation [1]. However, this applies only
in case of equilibrium systems, i.e., for vanishing tilt (F = 0) and results in an
approximate formula for a system with finite bias [7].
Our approach utilizes the fact that the diffusion is entirely determined by the local
properties of the system due to the periodicity of the potential. This allows a
mapping onto a discrete process yielding the coarse grained density the asymptotic
variance of which can be easily calculated.

3. Theory

The process described by eq. (1) is physically equivalent to the motion of a particle
in an infinite ordered set of segments of the effective potential V (x) as sketched in
Fig. 2. The spatial overlap between subsequent segments is given by one period L
while the length of a single segment is 2L. Whenever the particle reaches the left or
right boundary it is absorbed and reinjected in the respective neighboring segment.
These jump events have no physical meaning since coordinates and potential forces
at absorption and injection points coincide. The probability in the n-th segment
Pn(x, t) obeys a FPE like (2) with absorbing boundary conditions and with an ad-
ditional source of probability corresponding to the particle injection in the middle
of the segment (see reference [11] for technical details of a similar system of FPE’s).
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Fig 2. The motion of the particle (circle) in the tilted periodic potential V (x) (left) is
equivalent to that one in an infinite number of segments of the potential (right) with
length 2L. The arrows indicate transitions from one segment to the other.

The true density P (x, t) from eq. (2) is given by the sum of these densities Pn(x, t).
The seemingly complicated mapping onto the system of segments allows a rough

discrete determination of the particle’s position in terms of the segment nt. Choos-
ing the boundaries of the segments such that x = 0 (starting point) is in the middle
of the segment with n = 0, we can approximate x(t) ≈ Lnt with an uncertainty
∆x = ±L at any time t. It is evident that in the asymptotic limit t→∞

〈x(t)〉 = L〈nt〉 , 〈∆x(t)2〉 = L2〈∆n2
t 〉 (7)

holds true. The process nt illustrated in Fig. 3 (r.h.s.) emerges to be a cumulative
process with independent increments (see appendix) for which asymptotic mean
and variance can be easily found [12]. They are expressed by the first two central
moments µ and σ2 of the escape time density for a single segment depicted in Fig. 3
(l.h.s.). From these formulae and by virtue of eqs. (7), (3), (4), and (6) we find

v = L
p+ − p−

µ
(8)

Deff =
L2

2

(
1
µ

+
(p+ − p−)2

µ3
(σ2 − µ2)

)
(9)

Pe = 2
p+ − p−

1− (1− σ2

µ2 )(p+ − p−)2
. (10)

P(x,τ=0)

j−(τ)V
(x

)

xL0−L

j+(τ)

τ
Wi

i

n

t

t

Fig 3. Left: The problem of escape from a single well. The initial condition P (x, τ = 0) = δ(x)
is indicated by a line. j−(τ), j+(τ) denote out currents of probability. Right: a sample trajectory
of the process nt. The random increments Wi ∈ {−1, 1} and the intervals τi correspond to
independent realizations of the escape problem sketched at the l.h.s.
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Therein, p− and p+ denote the total probability to escape from the segment via the
left and right boundary, respectively which are given by [13]

p+ = 1− p− =
1

1 + e−
FL
D

. (11)

The first two cumulants of the escape time density ρ(τ) can be calculated by stan-
dard formulae (see e.g. [13]). Assuming without loss of generality that the middle
of the segment is at x = 0 and the boundaries are at ±L yields

µ =
1

D(1 + e−
FL
D )

L∫
0

dxe
V (x)
D

x∫
x−L

dye
−V (y)
D (12)

σ2 =
2

D(1 + e−
FL
D )

L∫
0

dxe
V (x)
D

x∫
x−L

dye
−V (y)
D

(
T1(y)− 1

2
µ

)
(13)

where T1(x) is given in terms of Φ(x) = exp[V (x)/D] by

T1(x) =

(
x∫
−L

dy Φ(y)

)
L∫
x

dy
y∫
−L

dz
Φ(y)
Φ(z) −

(
L∫
x

dy Φ(y)

)
x∫
−L

dy
y∫
−L

dz
Φ(y)
Φ(z)

D
L∫
−L

dy Φ(y)
. (14)

We stress that the relations (8),(9) and (10) are exact for an arbitrary shape of the
periodic potential. The quadratures (12) and (13) have to be evaluated numerically,
in general.
By inserting (12) into eq. (8) and an additional little manipulation of the integrals
we recover the classic formula by Stratonovich (see, e.g. [1])

v =
LD(1− e−LFD )

L∫
0

dx e−
V (x)
D

x+L∫
x

dy e
V (y)
D

. (15)

For an unbiased potential (F = 0, i.e., p+ = p−) the velocity and Péclet number
vanish trivially while the diffusion coefficient reduces to L2/2µ, i.e., to

Deff (F = 0) =
L2D∫ L

0
dxe−U(x)/D

∫ L
0
dyeU(y)/D

. (16)

Thus, we recover the well known result from [1].
On the other hand, according to Stratonovich’s random walk assumption in case
of a weak tilt, one may approximate σ = µ and again the second term in eq. (9)
vanishes (Deff = L2/2µ). In this case, the Péclet number approximatively reads

Pe(F � Fc) ≈ 2(p+ − p−) = 2 tanh(FL/2D). (17)
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the absolute value of which is a decreasing function of the noise intensity D.
We would like to point out a remarkable property for systems with symmetric
potential U(x) = U(−x). In this case, all calculated quantities do not change for
the inverse potential −U(x), for instance

U(x) = U(−x) =⇒ Deff [U(x)] = Deff [−U(x)] (18)

and likewise for v and Pe. This can be proven by manipulations of the resulting
quadrature formulae for v and Deff .
Finally, we remark that the above discretization by segments of length 2L is not the
only valid choice. Reimann and coworkers [8] have implicitly used a mapping onto
a set of infinitely long segments. They obtained the same result for the effective dif-
fusion coefficient like in the present work (the proof is given in appendix Appendix
B) and, furthermore, provided an elegant simplification of the quadratures.

4. Optimal transport in a cosine potential

Consider the archetypal potential U(x) = cos(x). The critical tilt at which the
minima and maxima of the effective potential vanish is given by Fc = 1. For a strong
but subcritical tilt F = 0.95, velocity and effective diffusion coefficient are increasing
functions of the noise intensity (cf. Fig. 4, l.h.s.). The Péclet number, however,
attains a maximum at a moderate value of D indicating an optimal transport in
this case. These findings are confirmed by results of a numerical solution of the
FPE (2).
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Fig 4. Left: Velocity, diffusion coefficient, and Péclet number according to eqs. (8),(9),(10)
versus noise intensity for F = 0.95. Circles indicate results from a numerical solution of
(2). Right: Péclet number for different tilting forces F = 0.1, 0.2, 0.3 (from bottom to top).
Theory according to eq. (10) (solid) compared with ’biased-random-walk’ approximation
eq. (17) (dashed).
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At the optimal noise intensity, the motion of the particle is mainly determined by
two processes: the noise driven escape from the potential minimum via the right
potential barrier followed by a relaxation into the next minimum. The relaxation
time depends only weakly on the noise strength and possesses a small variance. The
latter fact leads to a certain regularity of the particle motion and accounts for the
maximum of the Péclet number.
A weaker maximum of Pe is also observed at smaller tilt. Fig. 4 (r.h.s) shows the
Peclet number for F = 0.1, 0.2, 0.3 compared to the random walk approximation
(17). The latter is sufficient for F = 0.1 as well as for small and large noise intensity
at arbitrary tilt. It fails, however, to reproduce the nonmonotonous dependence on
noise strength that arises numerically for F > 0.24.
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Fig 5. Probability densities versus spatial coordinate for F = 0.95 and three different noise
levels D1 = 0.015, D2 = 0.25 and D3 = 2.05 at fixed time instances t ≈ 1919, 275 and
139, respectively. D1, D3 are chosen such that Pe(D1) = Pe(D3) and D2 is the optimal
value from Fig. 4. Top: densities obtained by numerical solution of the FPE (2) with
P (x, t = 0) = δ(x− 4.4) (arrow) for D1, D2, D3 (from left to right). The insets show the
densities over one period. Bottom: Gaussian fits to these densities, D1 (circles),D2 (solid),
D3 (dashed).

The coherent transport for large tilt can be illustrated in the following way. At
three different noise intensities D1 < D2 < D3 (with D2 = Dmax resulting in the
maximal Péclet number) an ensemble of particles is started at fixed position x0.
The Fokker-Planck equation is integrated until the mean of the respective density
reaches a given marker xe. This will, of course, take different times ∆ti for the three
different noise intensities. For the variances of the densities 〈∆x2

i 〉 one obtains

〈∆x2
i 〉 = 2Deffi∆ti = 2

Lvi∆ti
Pei

= 2
L(xe − x0)

Pei
, i = 1, 2, 3. (19)
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Thus one may conclude that the density at greatest Péclet number will have the
smallest variance. This can be verified numerically for the densities depicted in
(Fig. 5, top) and is clearly seen when the densities are fitted to Gaussian functions
(Fig. 5, bottom). For a given subcritical tilt, the ordered transport of particles from
x0 to xe is thus optimized at finite noise strength.

5. Enhanced transport coherence due to a particular potential shape

The optimal transport discussed in the previous section became apparent by a
maximum of the Péclet number with respect to the noise intensity. An even stronger
coherence of the particle motion emerges for specific potential shapes which generate
a long relaxation period and a quick escape at not too small noise intensity noise.
Such shape can be realized, for instance, by the potential

U(x) =
∆
ε
eε(cos(x)− 1) (20)

For large ε the potential is flat apart from periodically occurring small barriers (cf.
Fig. 6, r.h.s., top) the height of which can be scaled by the parameter ∆. If ∆
is negative (cf. Fig. 6, r.h.s., top, black dashed line), the potential exhibits small
valleys instead of barriers. For the opposite limit ε → 0 and fixed ∆ = 1 in turn,
one recovers the cosine potential.
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Fig 6. Left: Velocity, diffusion coefficient and Péclet number for the potential eq. (20)
according to eqs. (8),(9),(10) versus noise intensity D. Circles indicate results from the
numerical solution of the FPE (2). Parameters: ∆ = 10, ε = 100, F = 0.2. Right top: The
potentials for decreasing values of ε = 100, 5, 0.1 with ∆ = 10.0, 1.225, 0.282, respectively.
Right bottom: The effective diffusion constant versus noise intensity for the potentials
plotted above. The minimum of Deff vanishes at ε ≈ 5.

Besides the maximum in the Péclet number we find for large ε a pronounced mini-
mum in the effective diffusion coefficient at almost the same noise level (see Fig. 6,
l.h.s.). This remarkable result (increasing noise decreases diffusion) relies on the
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large ratio of relaxation to escape time for the specific potential (ε = 100) at opti-
mal noise intensity. Since the potential tends to a cosine for ε → 0, we expect the
minimum to vanish for decreasing ε. This is shown in Fig. 6 (r.h.s., bottom) for the
potentials depicted in Fig. 6 (r.h.s., top). Here, the parameter ∆ was tuned such
that the potential barriers to the right and left are the same for all potentials.
Because the potential (20) possesses spatial symmetry we find according to relation
(18) the same functions if ∆→ −∆, i.e., the same velocity, diffusion coefficient and
Péclet number for the potentials drawn as black solid and dashed lines in Fig. 6
(r.h.s., top).
In contrast to the cosine potential, the velocity at the optimal noise intensity is
almost saturated (v ≈ F ). Furthermore, the maximal value of Pe exceeds the max-
imal Pe of a random walk (i.e., the small noise limit with Pe = 2) by one order
of magnitude. Consequently, a much more pronounced coherence is expected for
the same ’experiment’ like in the previous section. Indeed, the numerical results in
Fig. 7 reveal a larger difference in the dispersions at small, large and optimal noise
intensity. In addition, the difference in the times to reach the marker xe is small for
optimal and large noise. Hence, for the special potential the most coherent diffusive
transport at optimal noise intensity is only slightly slower than the fastest diffusive
transport at large D.
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Fig 7. Probability densities versus coordinate for F = 0.2 and three different noise levels
D1 = 0.01, D2 = 0.033, D3 = 0.472 at fixed time instances t ≈ 4540, 691 and 625,
respectively. D1, D3 are chosen such that Pe(D1) = Pe(D3) and D2 is the optimal value
from Fig. 6. Top: densities obtained by numerical solution of the FPE (2) with P (x, t =
0) = δ(x− 6.1) (arrow), D1, D2, D3 (from left to right). The insets show the logarithm of
the densities over one period. Bottom: Gaussian fits to these densities, D1 (dashed),D2

(solid),D3 (circles).

The minimum of the diffusion coefficient trivially implies a minimum of the disper-
sion for the optimal noise intensity when a fixed time instead of a fixed distance is
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considered.

6. Summary and conclusions

We have derived exact expressions for the diffusion coefficient and the Péclet num-
ber of an overdamped Brownian particle in an arbitrary periodic potential with
additional tilt. At moderate to strong subcritical bias the Péclet number displays
a maximum with respect to the noise intensity indicating a most coherent motion
for moderate noise. Especially, for a flat potential with small sharp barriers an-
other effect emerges: the effective diffusion coefficient takes on a local minimum as
a function of noise intensity.
The effect of optimal transport is strongly related to the coherence resonance (CR)
observed in excitable systems [14] as can be seen in the following. A frequently used
measure of this resonance is the coefficient of variation, i.e., the relative standard
deviation R of the time interval between subsequent excitations

R =

√
〈∆τ2〉
〈τ〉

. (21)

As a manifestation of CR, this ratio becomes minimal for a moderate noise intensity,
i.e., the excitation sequence is closest to a regular periodic one. In case of the
washboard potential it is not obvious how to define a mean time interval since we
deal with two different ‘excitations’: escapes to the left or right side of the segment.
If, however, the passage time over one period in direction of the bias [8] is considered
we obtain the exact relation (see appendix Appendix B)

Pe =
2
R2

. (22)

It is clearly seen that Pe becomes maximal when R is minimal. A coherence res-
onance of the above defined passage time hence implies an optimal transport of
particles and vice versa.
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Appendix A. The discrete process nt
The process nt depicted in Fig. 3 (r.h.s.) consists of random jumps with random
increments Wi ∈ {−1, 1} with probabilities p− and p+, respectively, at likewise
random time instants ti, i.e.,

nt =
Nt∑
i=1

Wi. (A.1)

where Nt denotes the total number of events. Since each realization of an escape
event from one segment is independent of all foregoing or subsequent realizations,
the escape times τi = ti − ti−1 and increments Wi are independent of all other
escape times and increments, respectively. The escape time statistics is given by
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the problem illustrated in Fig. 3 (l.h.s.), i.e., by the time dependent FPE (2) with
initial condition and absorbing boundary conditions

P (x, 0) = δ(x) P (−L, t) = P (L, t) = 0 (A.2)

The absolute values of the outfluxes of probability are related to the conditional
escape time densities ρ−(τ) and ρ+(τ) for left and right jumps, respectively, [13]

j+(t) = p+ρ+(τ) = −D ∂P (x, t)
dx

∣∣∣∣
x=L

, j−(t) = p−ρ−(τ) = D
∂P (x, t)
dx

∣∣∣∣
x=−L

.

(A.3)
We now show the surprising property

ρ+(τ) ≡ ρ−(τ) (A.4)

that permits the conclusion that there exist no correlations between the escape time
τ and the subsequent jump W .
The special Laplace transformation p(x, λ) = exp[(V (x)−V (0))/2D]

∫∞
0
dte−λtP (x, t)

applied to eq. (2) leads to

L̂p = Dp′′(x, λ)− (
(V ′(x))2

4D
− V ′′(x)

2
+ λ)p(x, λ) = −δ(x) (A.5)

where the prime denotes the derivative with respect to x. The (conventional)
Laplace transforms of j−(t) and j+(t) in terms of p(x, λ) are given by

J+(λ) = −De
FL
2D

∂p(x, λ)
dx

∣∣∣∣
x=L

, J−(λ) = De−
FL
2D

∂p(x, λ)
dx

∣∣∣∣
x=−L

(A.6)

It is well known that an equation like (A.5) can be treated by means of homogeneous
solutions in [−L, 0] and [0, L] which have to be connected according to

lim
ε→0

(p(ε, λ)− p(−ε, λ)) = 0 , lim
ε→0

(p′(x, λ)|x=ε − p′(x, λ)|x=−ε) = − 1
D
. (A.7)

Provided that ψ1(x), ψ2(x) and φ1(x), φ2(x) (omitting the second argument λ) are
such independent solutions of the homogeneous problem in [−L, 0] and [0, L], re-
spectively

L̂ψ1,2(x) = 0 , −L < x < 0 L̂φ1,2(x) = 0 , 0 < x < L (A.8)

then we may assume

φ1(x) = ψ1(x− L) and φ2(x) = ψ2(x− L) (A.9)

because of the periodicity of the force field in (A.5).
The Ansatz

p(x, λ) =
{
c1ψ1 + c2ψ2 , −L < x < 0

d1φ1 + d2φ2 , 0 < x < L
(A.10)
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leads by (A.2,(A.7),(A.9) and (A.6) to the following ratio of currents

J+

J−
=

ψ′1(0)ψ2(0)− ψ1(0)ψ′2(0)
ψ′1(−L)ψ2(−L)− ψ1(−L)ψ′2(−L)

e
FL
D (A.11)

The expression ψ′1(x)ψ2(x)−ψ1(x)ψ′2(x) which occurs at different argument in the
fraction does not depend on the argument x. This can be shown by taking the
derivative with respect to x and employing (A.8). Hence, we have for arbitrary λ

J+(λ)
J−(λ)

= e
FL
D =

p+

p−
. (A.12)

Obviously, the time dependent currents possess the same ratio and the identity
(A.4) is proven.
Since all increments and intervals are independent of each other, the process nt is
a so called cumulative process with independent increments whose asymptotic mean
and variance are given by [12]

〈nt〉 = 〈W 〉 t
µ

〈∆n2
t 〉 = 〈∆W 2〉 t

µ
+ 〈W 〉2 tσ

2

µ3
. (A.13)

Here, µ and σ2 are the first two cumulants of the escape time density ρ(τ). For
mean and variance of W one easily verifies

〈W 〉 = p+ − p− , 〈∆W 2〉 = 4p+p−. (A.14)

Inserting into (A.13) and utilizing eqs. (7), (3), (4), and (6) yield the final results
eqs. (8) and (9).

Appendix B. Equivalence of the result from ref. [8] to formula (9)

In accordance with [8], the velocity and effective diffusion coefficient for F ≥ 0 are
given by

v =
L

〈T (0→ L)〉
, Deff =

L2

2
〈∆T 2(0→ L)〉
〈T (0→ L)〉3

. (B.15)

Here, 〈T (0 → L)〉 denotes the mean of the first passage time from 0 to L with
absorbing boundary at −∞ and L while 〈∆T 2(0→ L)〉 is the variance of this time.
The formulae (B.15) hold asymptotically for a renewal process corresponding to the
discrete mapping depicted in Fig. B.1 (l.h.s.).
Seemingly, the Ansatz in particular at large noise and small bias should fail since
the density p(n) is distorted in direction of the bias (obviously, starting an ensemble
of particles in the segment with n = 0 will not yield any contributions for n < 0).
Furthermore, it is not obvious which segment number belongs to a certain interval
of x. However, formula (B.15) emerges to be correct and is equivalent to our results
(8) and (9). In order to proof this equivalence we derive and employ a relation
between the Laplace transforms of the escape time densities corresponding to finite
and infinite segment.
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n+1

n−1
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j2

j3
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+

+
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−

Fig B.1. Left: Renewal process resulting in eqs. (B.15). Right: An ensemble of particles indicated
by the thick lines is started at τ = 0, x = 0 and absorbed at x = L. j(τ), j±i (τ) with i = 1, 2, 3 · · ·
are the absolute values of the respective probability currents. Note that the numbering of the
segments is vice versa to that in Fig. 2 for technical reasons.

The renewal event in the above discretization is the escape out of the single infinite
segment starting in a distance of one period from the absorbing right boundary
(Fig. B.1, middle). It can be expressed by the escape via the corresponding right
boundary in an infinite number of finite segments (Fig. B.1, r.h.s.). The escape
time density out of the infinite segment is given by the current j(τ) which is equal
to j+

1 (τ) (cf. Fig. B.1, middle and r.h.s.) since both discrete descriptions apply to
the same physical situation. For the currents j+

n one obtains

j+
1 (τ) = j(τ) = p+ρ(τ) + p+

τ∫
0

dτ ′ j+
2 (τ ′)ρ(τ − τ ′)

j+
n (τ) =

τ∫
0

dτ ′ [p+j
+
n+1(τ ′) + p−j

+
n−1(τ ′)]ρ(τ − τ ′) , n > 1 (B.16)

where we have used the relation j−n (τ) = j+
n (τ)p−/p+ derived in Appendix A.

Let J(λ), Jn(λ) and %(λ) be the Laplace transforms of j(τ), j+
n (τ) and ρ(τ), respec-

tively. Then, eqs. (B.16) lead to a one-sided recurrence relation

p+%Jn+1 − Jn + p−%Jn−1 = 0 , n ≥ 1 , J0 ≡ p+/p− (B.17)

whose solution is given by the periodic continued fraction that can be further sim-
plified [1] to

J(λ) = J1(λ) =
2p+%(λ)

1 +
√

1− 4p+p−%(λ)2
. (B.18)

From this relation between the escape time densities the relations between the
cumulants 〈T 〉, 〈∆T 2〉 and µ, σ2 are readily obtained by the first two derivatives of
ln(J(λ))at λ = 0 yielding

〈T 〉 =
µ

p+ − p−
, 〈∆T 2〉 =

σ2

p+ − p−
+

4p+p−µ

(p+ − p−)2
. (B.19)

For the diffusion constant Deff = L2〈∆T 2〉/(2〈T 〉3) according to eq. (B.15) one
recovers our result eq. (9). Hence, the equivalence of both approaches is established.
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In addition, from (B.15) we find immediately eq. (22)

Pe = 2
〈T (0→ L)〉2

〈∆T 2(0→ L)〉
=

2
R2

. (B.20)
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