E10: Two-Soliton Solution of the KdV Equation (10 Points)

(a) Consider the two-soliton solution of the KdV equation as a function of the parameters $\chi_1, \chi_2, \beta_1(0), \beta_2(0)$ as well as of t, x. Assume that the scattering data consists of two energy levels $E_1 = -\chi_1^2$ and $E_2 = -\chi_2^2$ with $\chi_1 > \chi_2$ and that the reflection coefficient vanishes. Solve the GLM equation.

Hint: Follow the one-soliton solution determined in the lectures. Look for solutions to the GLM equation of the form $K(x, y) = K_1(x)e^{-\chi_1 y} + K_2(x)e^{-\chi_2 y}$ and note that the functions e^{ax} and e^{bx} are linearly independent for different constants a and b.

(b) Show that the two-soliton solution can be written in the form

$$
\phi(t, x) = -2\frac{\partial^2}{\partial x^2} \log[\det A(x)], \quad A_{mn}(x) = \delta_{mn} + \frac{\beta_m e^{-(\chi_m + \chi_n)x}}{\chi_m + \chi_n},
$$

where A denotes the 2×2 matrix defined by the elements A_{mn}.

Remark: This is the generic form of the N-soliton solution for an $N \times N$ matrix A.

(c) **Mathematica:** Use Mathematica to check that the obtained solution indeed satisfies the KdV equation (print and hand in the implementation).

Hint: Define a function \(\Phi[t, x, \chi_1, \chi_2, \beta_{10}, \beta_{20}] := \ldots \) in Mathematica, with the \(\ldots \) replaced by your two-soliton solution. Implement the derivatives in the KdV equation using for instance

\[
D[\Phi[t, x, \chi_1, \chi_2, \beta_{10}, \beta_{20}], \{x, 2}\]
\]

for the second derivative in x. Use `Simplify[...]` to simplify your expressions. Mathematica knows a function `KroneckerDelta[m, n]`. `Log[...]` is the natural logarithm, `Det[...]` the determinant. The 2×2 matrix A can be defined by \(A = \{\ldots, \ldots, \ldots\} \) with the dots replaced by the matrix elements. It is often helpful to use replacement rules such as \(\ldots \beta[1] \rightarrow \beta[10]*\text{Exp}[8 \chi_1^3 t] \), which replaces every term $\beta[1]$ in \(\ldots \) by the right hand side of $->$.

(d) **Mathematica:** Plot the two-soliton solution $\Phi[t, x, 1, 2, 3, 4]$ obtained in (a) for $\chi_1=1$, $\chi_2=2$, $\beta_{10}=3$, $\beta_{20}=4$ as a function of x and for different times t using Mathematica and the command:

\[
\begin{align*}
f[0][x_] &= -\Phi[0, x, 1, 2, 3, 4]; \\
f[1][x_] &= -\Phi[0.5, x, 1, 2, 3, 4]; \\
f[2][x_] &= -\Phi[1.0, x, 1, 2, 3, 4]; \\
Plot[{f[0][x], f[1][x], f[2][x]}, \{x, -10, 10\}, \text{PlotRange} \rightarrow \{-1, 10\}]
\end{align*}
\]

To enjoy the result of your hard work try the following and play with the time slider:

\[
\begin{align*}
f[t, x_] &= -\Phi[t, x, 1, 2, 3, 4]; \\
\text{Manipulate}[\text{Plot}[f[t, x], \{x, -10, 10\}, \text{PlotRange} \rightarrow \{-1, 10\}], \{t, -2, 2\}]
\end{align*}
\]

Hint: In order to understand the above Mathematica commands in more detail, you can find useful explanations in the Mathematica-Menu under Help \rightarrow Wolfram Documentation.
E11: Lax Formulation of KdV Equation (4 Points)

Consider the operators
\[L = -\frac{d^2}{dx^2} + \phi(t, x), \quad M = 4\frac{d^3}{dx^3} - 3\left[\phi(t, x)\frac{d}{dx} + \frac{d}{dx}\phi(t, x) \right]. \]

Show that the Lax equation
\[L_t = [L, M] \]

is equivalent to the KdV equation by acting on a test function.

E12: Lax and Zero-Curvature Representation (6 Points)

Let \(L = -\partial_x^2 + \phi(t, x) \) be a Schrödinger operator with a real potential \(\phi \) and let another operator \(M \) have the form
\[M = a_n\partial_x^n + \cdots + a_1\partial_x + a_0, \]
with \(a_k = a_k(t, x) \). Assume that \(L_t = [L, M] \).

(a) Show that the eigenvalues of \(L \) are independent of \(t \).

(b) Let \(f \) be an eigenfunction of \(L \) corresponding to an eigenvalue \(u \) which is non-degenerate. Show that there exists a function \(\hat{f} = \hat{f}(t, x, u) \) such that
\[L\hat{f} = u\hat{f}, \quad \hat{f}_t + M\hat{f} = 0. \]

\textit{Hint:} It may be useful to define an integrating factor \(A(t) = \exp\left[-\int_{t_0}^{t} c(t')dt'\right] \) and to use its properties under the time derivative.

(c) Now assume that \(n = 3 \) and \(a_3 = 1, a_2 = 0 \). Show that the Lax representation (1) yields a zero-curvature representation with
\[\partial_t U_L - \partial_x V_M + [U_L, V_M] = 0, \]
where \(U_L \) and \(V_M \) are some \(2 \times 2 \) matrices which should be determined.

\textit{Hint:} Consider (2) as a system of first-order differential equations on a pair of functions \((\hat{f}, \partial_x \hat{f})\).