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Abstract
We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that
differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a determin-
istic heterogeneous population, where each unit exhibits a different baseline firing rate (’disorder’). Our criterion for making
both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both sys-
tems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder
maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of
suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects
for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the
stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous
population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a
moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong
noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that,
depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

Keywords Integrate-and-fire neuron · Noise · Heterogeneity · Stochastic resonance · Population coding

1 Introduction

The ability of the nervous system to reliably process infor-
mation from the outer environment is essential for the survival
and reproduction of anorganism.However, the in vivo response
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of neurons to a repeated stimulus is usually highly variable. Fur-
thermore, neurons that belong to the same neural structures
show a wide diversity of excitability properties. Two types of
variability are observed: (i) unreliability of responses at the sin-
gle neuron level caused by intrinsic neural noise and (ii) het-
erogeneity at the population level. Both of them influence
notably the information transmission properties of neural
populations. The sources of variability, such as channel
noise (Fox 1997; Steinmetz et al. 2000; Schmid et al. 2004;
Fisch et al. 2012) and background synaptic input (e.g. Shadlen
and Newsome (1994), van Vreeswijk and Sompolin-
sky (1996), Brunel (2000), and Dummer et al. (2014))
and their effects on information transmission (Chance et al.
2002; Chacron et al. 2003; Wolfart et al. 2005; Vilela and
Lindner 2009b; Sceniak and Sabo 2010) have been exten-
sively studied in the last decades, while the effects of neural
heterogeneity have come into focus only more recently
(Chelaru and Dragoi 2008; Osborne et al. 2008; Homstron
et al. 2010; Marsat and Maler 2010; Mejias and Longtin
2014; Metzen and Chacron 2015).

Intrinsic neural noise can be understood as the dynamic
stochastic variations in the membrane voltage of neurons or
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as the source of these variations, e.g. channel fluctuations
or random synaptic input from other neurons. Theoretical
work has shown that noise in nonlinear systems is not
necessarily detrimental for signal encoding, one example of
which is the well-known stochastic resonance (SR) effect
(Gammaitoni et al. 1998; McDonnell and Ward 2011).
SR refers to the enhancement of the response to a weak
signal by a nonlinear system when a non-zero amount
of intrinsic noise is present. SR was first proposed in
the early 1980s in climate research (Benzi et al. 1981;
Nicolis 1982) and has been found in nonlinear systems
of different fields including single neurons (Longtin 1993;
Wiesenfeld and Moss 1995; McDonnell and Ward 2011).
A particular case of SR that applies to systems of multiple
parallel nonlinear units was discovered by Stocks (2000):
the stochastic suprathreshold resonance (SSR) effect. This
is a general phenomenon found in nonlinear systems of
several feed-forward parallel units that receive the same
input stimulus; SSR has been studied more recently in a
number of systems (Stocks and Mannella 2001; Das et al.
2009; Ashida and Kubo 2010; Durrant et al. 2011). A certain
non-zero amount of independent noise on each unit can
improve the transmission of the signal by the system, but in
contrast to classical SR, the SSR effect applies as well to
the cases of strong input signals or suprathreshold systems,
i.e. structures formed by units that emit a response even if
no signal or noise is present. It has been observed in various
neural systems such as multilevel threshold units (Stocks
2000), populations of non-interacting FitzHugh-Nagumo
(FHN), leaky integrate-and fire (LIF) or Hodgkin-Huxley
model neurons (Stocks and Mannella 2001; Hoch et al.
2003; Nikitin et al. 2010; Hunsberger et al. 2014).

Neuronal heterogeneity, understood as some type of
parametric variability within a certain population of
neurons, is neglected in many biophysical network models,
yet it is ubiquitous in the nervous system (for a recent
experimental study of neural heterogeneity, see Harrison
et al. (2015)). The most intensely studied aspect regarding
heterogeneity is the large differences between the firing
rates of neurons of the same population. This variability
of the firing rates has been found to be long-tailed and
non-Gaussian distributed for neural populations in sensory
neurons (Gussin et al. 2007) and several cortical structures
(Shafi et al. 2007; Hromádka et al. 2008; O’Connor et al.
2010). However, the general effects of this heterogeneity are
difficult to determine from a theoretical point of view, and,
in particular, the comparison of dynamical noise and static
disorder is not easily feasible.

Several theoretical studies have addressed specific
features related to heterogeneity in the last decade.
Already in the first work on SSR (Stocks 2000), the
threshold variability in independent parallel devices was
analytically studied as a way of optimizing the information

transmission. Regarding neural coding, heterogeneous
populations generally increase the encoded information
(Padmanabhan and Urban 2010; Shamir and Sompolinsky
2006), which is optimized at finite levels of heterogeneity
(Mejias and Longtin 2012; Tripathy et al. 2013). In
particular, heterogeneity, which is sometimes also denoted
as frozen or quenched disorder, has been studied in models
of cortical networks with special focus on its implications
on synchronization (Golomb and Rinzel 1993; Ostojic et al.
2009b; Olmi et al. 2010). More recently, Hunsberger et al.
(2014) compared the benefits of noise and heterogeneity
on neural coding by including both variability sources
simultaneously on populations of FHN and LIF neurons.

The goal of our study is to compare in a systematic
way the information processing of a time-dependent signal
by two simple neural populations of uncoupled neurons: a
homogeneous population whose units receive independent
noise and a heterogeneous population of deterministic
neurons (a system with static disorder); Alijani and
Richardson (2011) make use of two similar systems as
limit cases to study analytically the rate response of
exponential integrate-and-fire neurons. As an essential
novelty in our study, we present a criterion in the design of
the two systems, namely the statistical distribution of the
interspike intervals, that allows to compare quantitatively
the signal-response behavior of both homogeneous and
heterogeneous populations. This approach is similar in spirit
to the comparison of different neuron models, which are
constraint by their firing rate and spiking variability (Vilela
and Lindner 2009a, b).

Although the comparatively simple case of uncoupled
neurons studied here may look rather restrictive, it
includes important examples for neural populations in
the sensory periphery, e.g. vertebrate and invertebrate
auditory afferents, vestibular afferents, olfactory afferents
and electroreceptor afferents. These receptor populations
vary considerably in their reliability and heterogeneity (e.g.
vestibular: Sadeghi et al. (2007), electroreceptors: Grewe
et al. (2017)). Moreover, the comparison between the effects
of intrinsic noise and heterogeneity is much simpler than
it would be in a recurrent network, in which the strongest
source of variability are the input currents from many other
cells. Our results thus provide insights about fundamental
features of population coding in the sensory periphery.

2Model andmeasures of interest

We consider two populations of N uncoupled leaky
integrate-and-fire (LIF) neurons receiving a common stimu-
lus s(t). The voltage dynamics of each neuron i is given by

v̇i = −vi + μi + √
2Di ξi(t) + s(t), (1)
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where μi and Di are the mean and noise intensity of
the input current intrinsic to the neuron. Noise sources
are correlated as

〈
ξi(t)ξj

(
t ′
)〉 = δij δ

(
t − t ′

)
. When the

voltage variable vi(t) crosses the threshold vT , a spike is
emitted, the voltage variable is kept at the reset voltage vR

for a refractory period τref and released from this value
afterwards. The stimulus s(t) is the same for all neurons in
both populations and is defined as a band-limited Gaussian
process with standard deviation σs and cutoff frequency fc.
The spike train of each neuron is given by a sum of delta-
functions xi(t) = ∑

k δ
(
t − ti,k

)
, where ti,k corresponds

to the time of the k-th spike of neuron i. Unless specified
otherwise, the following parameter values are fixed for all
simulations : vT = 1, vR = 0, τref = 0.1.

A useful approach to characterize the neural firing is to
study the statistics of the interspike interval (ISI), which are
the time differences between two subsequent spike times,
Tk = ti,k − ti,k−1. The ISI probability density of a LIF
neuron, ρLIF (T ; μ,D), is equivalent to the first passage
time distribution of an Ornstein-Uhlenbeck process (OUP)
with an absorbing barrier, and can be analytically expressed
in the Fourier domain as (Darling and Siegert 1953)

ρ̃LIF (f ; μ,D) = e�+i2πf τref

Di2πf

(
μ−vR√

D

)

Di2πf

(
μ−vT√

D

) , (2)

� := v2R + v2T + 2μi (vT − vR)

4D
,

where Da (b) is the parabolic cylinder function.
The homogeneous population consists of statistically

equivalent neurons, i.e. the mean input curent and noise
intensity to all neurons are the same: μhom

i = μhom and
Dhom

i = Dhom for i = 1, . . . , N . On the contrary, neurons
of the heterogeneous population are not subject to any
intrinsic noise, Dhet

i = 0, and each neuron receives a
different mean input current, μhet

i = μi , which is sampled
from a certain probability density P(μ). Note that for
every trial of the signal, we resample the N values of

μ and thus we deal with a system that slowly changes
its parameters (comparable to the situation addressed by
Alijani and Richardson (2011)) rather than a system in
which the N input currents, μi , are fixed for all times and,
in particular, across trials.

In the following, the population size is assumed to
be large enough (N � 1) so that deviations between
the probability density P (μ) and the distribution of
the N samples are small. We will not use, however,
excessively large values of N because our setup with the
common time-dependent stimulus implies that we deal
with a subpopulation of neurons with strongly overlapping
receptive fields. As a standard value, we use N = 300 (see
e.g. Maler (2009) for typical numbers in an electrosensory
system).

The goal of this study is to analyze how much
information of the common stimulus is contained in the
population output. For simplicity, the output function
considered is the (unfiltered) population activity,

x(t) = 1

N

N∑

i=1

xi(t) . (3)

In order to quantify information transmission, it is relevant
to introduce the output power spectrum and the input-output
cross-spectrum. Given the output function x(t) and the input
stimulus s(t), they are defined as

Sxx (f ) = lim
TW →∞

〈x̃∗(f )x̃(f )〉
TW

and

Sxs (f ) = lim
TW →∞

〈x̃∗(f )s̃(f )〉
TW

, (4)

where x̃(f ) = ∫ TW

0 ei2πf tx(t)dt is the Fourier transform
over a time window of length TW , the asterisk indicates
the complex conjugate and the angle brackets denote the
average over trials and stimuli. The power spectrum of the
band-limited Gaussian signal is flat by construction and
different from zero only up to the cutoff frequency: Sss =
σ 2

s

2fc
	 (fc − |f |). The output power spectrum of a single LIF

neuron can be expressed analytically as (Lindner et al. 2002)

SLIF
xixi

(
f ; μ,D, τref

) = 1

〈T 〉μ,D

·
∣∣∣Di2πf

(
μ−vT√

D

)∣∣∣
2 − e2�

∣∣∣Di2πf

(
μ−vR√

D

)∣∣∣
2

∣∣∣Di2πf

(
μ−vT√

D

)
− e�ei2πf τref Di2πf

(
μ−vR√

D

)∣∣∣
2
, (5)

for frequencies f > 0.
The input-output cross-spectrum of a single neuron

cannot be determined analytically in the general case.
However, it can be approximated applying linear response
theory assuming that the stimulus is weak compared to the
intrinsic noise. In that regime, the average response function

of neuron i is described as the convolution of the input
signal with a linear filter, which is expressed in the Fourier
domain as

〈x̃i (f )〉 = χ
(
f ; μ,D, τref

)
s̃ (f ; σs, fc) ; f > 0. (6)
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A closed analytical form of the Fourier transform of the
linear response kernel (the susceptibility χ ) exists for LIF
neurons (Brunel et al. 2001; Lindner and Schimansky-Geier
2001). It reads

χLIF

(
f ; μ,D, τref

) = 1

〈T 〉μ,D

· 2πif/
√

D

2πif − 1
·
D2πif −1

(
μ−vT√

D

)
− e�D2πif −1

(
μ−vR√

D

)

D2πif −1

(
μ−vT√

D

)
− e�D2πif

(
μ−vR√

D

) . (7)

Making use of these spectral measures, the input-
output correlation can be quantified in a frequency-resolved
manner by the spectral coherence function

C (f ) = |Sxs (f )|2
Sxx(f )Sss(f )

, (8)

which can attain values between zero (no linear correlation
whatsoever) and one (perfect linear and noiseless signal
transmission) for a given frequency component of the
stimulus and the output. Finally, based on these spectral
statistics, the efficiency of information transfer of a certain
system is assessed in this study by the coding fraction γ .
The coding fraction is a normalized measure of the quality
of the optimal linear reconstruction of the stimulus from the
output signal (Gabbiani et al. 1996)

γ = 1 −
√

ε2

σ 2
= 1 −

√∫
df Sss (f ) (1 − C (f ))

∫
df Sss (f )

, (9)

where ε2 is the mean squared error between stimulus and
linear reconstruction (Wessel et al. 1996), and σ 2 is the
variance of the input. Thus, the coding fraction is zero when
the optimal reconstruction performance is at chance level
and one for a potentially perfect reconstruction.

Previous studies (Hunsberger et al. 2014; Stocks and
Mannella 2001) quantified the encoding efficiency of
dynamic stimuli by the mutual information between the
response and the signal at a fixed time, thereby ignoring
possible delayed responses that also encode information
about the signal. In addition, in order to derive the
necessary (joint) probability densities of the input and
output processes, the signal and response were quite broadly
binned making them effectively discrete processes with
few possible states. These preprocessing steps to calculate
the computationally more costly mutual information delete
information content and bias the estimation (Strong et al.
1998). The coding fraction, although only sensitive to linear
correlations between input and output, eludes the problem
by taking into account all delays of the response and does
not require any discretization. Therefore, it constitutes an
unambiguous measure of the transmission performance, that
can be universally applied to time-dependent input signals.

3 How to compare different kinds
of variability

Population encoding of time-dependent stimuli is the
process of conveying information about a time-dependent
signal to a set of spike trains. A decisive aspect of this
process is the number of spikes available to store the
information of the stimulus per unit of time in a certain
population. Accordingly, we force the number of available
spikes per unit of time to be the same in both populations
when there is no stimulus present. Moreover, we constrain
this criterion even further so that not only the population’s
mean interspike interval needs to have the same value,
but also the whole ISI distributions of both systems must
be equal. In other words, we set the ISI density of both
populations in the absence of stimulation to be equal in
order to compare them.

The ISI density ρ(T ) of a neural population is here
understood as the probability density function of a random
interspike interval to take on a certain value across the
whole pool of intervals and neurons of the population. The
criterion we set in order to make the homogeneous and the
heterogeneous populations comparable then reads

ρhom (T ; Dhom, μhom)
!= ρhet (T ; P (μ)) , (10)

where ρ(T ) is the probability density of the interspike
intervals T of a certain neural population and all the
parametric dependencies are explicitly specified.

Neurons of the homogeneous population are indistin-
guishable from each other by definition, which makes the
ISI density of the homogeneous population identical to the one
of any single neuron of the population, ρhom (T ) = ρLIF (T ).
The ISI density of a single neuron ρLIF (T ) is obtained by
computing the inverse Fourier transform of Eq. (2).

For the heterogeneous system, the ISI density of the
population ρhet (T ) is the average of the ISI densities of the
single neurons weighted by their corresponding firing rate

ρhet (T , P (μ)) =
∫

dμP (μ) T −1
μ ρLIF (T ; μ,D = 0)

∫
dμ′ P (μ′) · T −1

μ′
,

(11)
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where T −1
μ is the firing rate of a noiseless LIF neuron with

mean input current μ. The weighted average is necessary to
obtain the same number of spikes per unit of time in both
populations, avoiding the over-representation of interspike
intervals coming from neurons with stronger input current
and the underrepresentation of long interspike intervals by
neurons with weaker inputs (known as the biased-sampling
problem in the statistical literature, see e.g. the textbook by
Cox and Lewis (1966)).

The interspike interval of the noiseless LIF neuron is
obtained as the (deterministic) passage time from reset
voltage to threshold voltage

Tμ = τref + ln

(
μ

μ − 1

)
. (12)

Unperturbed heterogeneous neurons fire at constant
intervals Tμ, so that the ISI densities ρLIF (T ; μ,D = 0)
of the heterogeneous neurons are δ-functions. For simplicity
we can map the probability distribution expressed in
μ to the variable T := Tμ, P (μ) dμ = P̂ (T )dT ,
because the function that relates both variables, Eq. (12), is
monotonically decreasing. Making use of the fact that the

ISI densities of heterogeneous neurons are delta distributed
and applying Eqs. (10) and (11) we obtain

ρhom (T ; Dhom, μhom)
!= P̂ (T )T −1

∫
dT ′ (T ′)−1 P̂ (T ′)

. (13)

The r.h.s above is a probability density function (denoted as
Q(T ) in Fig. 1A), which must be equal to the homogeneous
ISI density. Introducing Eq. (12) in the expression above and
solving for P (μ) we obtain

P (μ) =
(

τref + ln
μ

μ − 1

) ρhom

(
T = τref + ln μ

μ−1

)

μ (μ − 1) 〈T 〉hom

,

(14)

where 〈T 〉hom denotes the mean interspike interval of
the homogeneous population. This equation prescribes
the distribution of mean inputs for a heterogeneous
population of deterministic LIF neurons that displays the
same population’s ISI density as the given homogeneous
population (see Fig. 1B and C for an illustrative example).
For the heterogeneous population, the input probability
density P (μ) is defined only for μ > 1, since neurons
that do not fire spontaneously are not included in our
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Fig. 1 Homogeneous and heterogeneous populations with same
population’s ISI density. A Mapping of the probability density of
input currents P (μ) of the heterogeneous system to a given homo-
geneous ISI density Q(T ). The ISI probability Q(T ) (blue curve,
left panel) is multiplied by T and then normalized to unbias the
sampling (dashed line). The new density is mapped to the variable
μ using Eq. (12) (central panel) to obtain the corresponding P (μ)

(bottom panel). Bi Rasterplots of the firing activity. Homogeneous
neurons (blue) fire stochastically in an unsynchronized manner. Het-
erogeneous neurons (green) fire at different rates that stay constant
throughout the whole recording. For illustrative purposes, the neurons
have been sorted according to their spike count.Bii ISI densities for the

homogeneous (blue histogram) and heterogeneous populations (green
histogram) obtained from the data shown in Bi. The solid line shows
the analytical ISI density of a homogeneous neuron, Eq. (2). Note the
deviations due to finite size effect, which are larger for the heteroge-
neous population. C Comparison of the changes in the ISI histogram
when the signal is turned on (colored lines) to the analytical expres-
sion when no signal is present (dashed black lines) for three levels
of variability for the homogeneous (Ci) and the heterogeneous popu-
lation (Cii). Parameters μhom = 1.3, N = 300. In panels A and B,
Dhom = 0.1; in panel C, Dhom = 1.8 · 10−4 (blue), 2.7 · 10−2(orange)
and 1.3 (green); signal standard deviation in C is σs = 0.3
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heterogeneous population model. In the following, the mean
input current to the homogeneous neurons is held constant
unless specified. Consequently, the noise intensity Dhom

is the only parameter that controls the stochasticity of the
homogeneous neurons as well as the level of heterogeneity,
so that an increasing value of Dhom implies stronger
noise and disorder in the homogeneous and heterogeneous
systems, respectively.

The criterion links the two types of variability when there
is no input signal present. However, in order to reasonably
compare the information transmission properties of these
two neural ensembles, the ISI densities should still share a
high degree of similarity when the input signal is turned on.
For low levels of variability, the input signal considerably
alters the ISI density (compare blue with dashed black line
in Fig. 1C). Nevertheless, the population ISI densities of
both systems are modified in a very similar way (compare
blue lines in Fig. 1Ci and Cii). For populations with
stronger variability, the changes in the ISI density are less
pronounced in the two studied systems (cf. orange lines in
Fig. 1C), and approach the unperturbed ISI density as the
variability is even stronger (green lines, Fig. 1C).

4 Signal transmission in the face of dynamic
noise or disorder (heterogeneity)

Information transmission in the homogeneous and hetero-
geneous systems critically depends on the amount of vari-
ability that is present. In line with the classical findings on
suprathreshold stochastic resonance (Stocks and Mannella
2001; McDonnell et al. 2007), we qualitatively identified
three different behaviors for low, medium and high intensity
of the noise/disorder based on two properties of the response
function: the variability across neurons in the population
(variability in the activity in the vertical lines of the raster-
plots in Fig. 2) and the variability across trials upon repe-
tition of the stimulus (difference between colored lines in
the output panels of Fig. 2). Trial-to-trial variability comes
about because on each trial new realizations of dynami-
cal noise are generated in the homogeneous population and
N new values of μi are drawn from the distribution P(μ)

for the heterogeneous population. For weak noise or small
heterogeneity level the whole population conveys almost
the same information as a single neuron (Fig. 2 top), since
almost all neurons fire perfectly in synchrony. The repetition

Fig. 2 Effects of noise and
disorder on the population
firing rate. Population raster
plot of one trial and three
different trials (colored lines) of
the filtered population activity
(output function) of the
homogeneous (left panel A) and
heterogeneous (right panel B)
populations for three different
equivalent noise/heterogeneity
level intensities
(Dhom = 3.4 · 10−5 (i), 2.7 ·
10−2 (ii) and 6.9 (iii) ).
Populations are stimulated by
the same signal; on every trial,
dynamical noise for the
homogeneous population and
static input currents μi for the
heterogeneous population are
independently generated and
drawn from P(μ), respectively.
The initial voltage values of
neurons in both populations are
initiated at random values
(uniformedly distributed
between -0.1 and 0.9). An initial
time window of T = 10 is
discarded to avoid transient
effects. (iv). In the raster plots,
the neurons have been sorted by
their spike count. Remaining
parameters: μhom = 1.3,
fc = 4.0, σs = 0.3, N = 300
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of a frozen stimulus also leads to the same population
response. For intermediate noise intensities, the variability
gives rise to moderately different spike trains of the neu-
rons. Therefore, the population response, which averages
over all these different responses, is able to convey more
information about the stimulus. The trial-to-trial variability
stays low, so that the population response is reliable (Fig. 2,
middle). Finally, high intensities of dynamic noise or hetero-
geneity result in a strong neural variability that overcomes
the averaging of the response, so that the system transfers less
information about the stimulus (Fig. 2, bottom).

Despite these common properties between dynamic noise
or disorder, clear differences can also be observed especially
at high variability levels. A wide distribution of the mean
input current in the heterogeneous population implies that
some neurons hardly emit any spikes while others are firing
at very high rates. The almost silent heterogeneous neurons
barely convey any information at all, reducing the effective
size of the population, and the very active neurons fire
constantly, barely influenced by the stimulus, introducing
signal-unrelated information in the population’s response.
Strong dynamic noise influences the response straightaway,
by provoking the effective disappearance of the input
signal, such that the intrinsic noise sources dominate the
output.

In the following, we systematically quantify by means
of the coding fraction how the transmission of information
in the two scenarios is affected by the stimulus properties
(amplitude and cutoff frequency) and by the properties of
the population (size and firing regime of single neurons).

4.1 Dependence on stimulus amplitude and cutoff
frequency

In Fig. 3 we plot the coding fraction vs the system variability
for various values of the stimulus strength. Weak noise
or low disorder leads to a low coding fraction value
which is very similar in both systems. At intermediate
levels of noise or heterogeneity the coding fraction reaches
a maximum. Finally, for strong noise or high disorder
the transmission efficiency reduces again the coding
fraction values. This resonant-like behavior of the encoding
efficiency as a function of noise/disorder is observed for a
large range of stimulus amplitudes. The amount of noise
intensity/heterogeneity required to maximize the coding
fraction increases with stimulus strength (Fig. 3i). However,
there are differences between noise and heterogeneity with
respect to the dependence on the amplitude. A larger input
amplitude corresponds systematically to a higher coding
fraction value at the optimal (dynamic) noise intensity. This
is not the case for very disordered systems, where stronger
stimuli do not always yield a larger optimal coding fraction
(cf. blue and orange lines, Fig. 3Bi).

The actual value of the coding fraction in nonlinear
systems also depends strongly on the properties of the input
stimulus, such as the cutoff frequency. In Fig. 3Aii there
is a factor two between the maximal coding fraction of
the homogeneous population for a low cutoff frequency
and a high cutoff frequency stimulus. This suggests that
high frequencies are less well encoded in the population
activity of the homogeneous system, which is in line with

Fig. 3 Dependence of the
coding fraction curves on the
stimulus parameters.
Input-output coding fraction as a
function of the noise intensity in
the homogeneous system (A)
and of the level of heterogeneity
in the heterogeneous system (B).
(i) Results for different standard
deviations σs of the input signal.
Cutoff frequency fc = 15.0. (ii)
Influence of cutoff frequency:
Broad-band stimulus (circles)
and low-frequency stimulus
(triangles). Parameters:
μhom = 1.3, N = 300
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Fig. 4 Dependence of the
coding fraction curves on the
mean input current and the
population size. (i) Comparison
of the coding fraction for mean
input current far above threshold
(circles) and close to threshold
(triangles), for A homogeneous
and B heterogeneous systems.
(ii) Coding efficiency for
different population sizes and an
input signal of standard
deviation σs = 0.5. Parameters:
μhom = 1.3, fc = 15.0, and in
panels Ai and Bi N = 300
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the finding that LIF neurons act as low-pass filters of
information (Vilela and Lindner 2009b; Lindner 2016).
In the heterogeneous population, a similar relation in the
coding fraction between low- and high-frequency stimuli
is observed. However, the coding fraction varies in shape,
since the decay after the maximum coding fraction is
much steeper for higher cutoff frequencies. This implies
that heterogeneity affects more the processing of stimulus
components in higher frequency bands.

4.2 Dependence on mean input current and system size

Two opposite effects influence the coding fraction when the
mean input current μhom is varied. On the one hand, for low
mean input currents (close to but slightly above threshold)
and sufficiently strong stimuli, the negative parts of the
signal are able to silence the network temporarily, so that
no spikes are emitted in the whole system. For that reason,
a lower mean input current reduces the coding fraction in
both systems if the amplitude is large enough (Fig. 4i, dark
blue above dark brown curves). On the other hand, if the
input signal is not that strong, input currents μhom closer to
threshold increase the relative strength of the input stimulus.
Consequently, as shown above, weaker stimuli can be more
easily conveyed by both populations, increasing the coding
fraction (Fig. 4Ai and Bi, lighter brown above light blue
curves).

The considered output function, the population activity,
can be regarded as an average over the different units of the
population. The resonant-like effect in the coding fraction

depends on the trial-to-trial variability and variability across
the population, so that the size of the system influences the
curves (Fig. 4Aii and Bii) in a similar way for both noisy
homogeneous and deterministic heterogeneous populations.
For the single mean-driven neuron, there is no resonance
effect. For groups of neurons, the suprathreshold stochastic
resonance effect emerges and becomes more pronounced
with increasing population size.

4.3 Comparing and combining both kinds of variability

It is possible to compare the encoding efficiency of noise
and disorder by subtracting the coding fraction of the
homogeneous system from the heterogeneous one. This
difference is plotted as a heatmap (Fig. 5) with axes: the
noise intensity/level of heterogeneity Dhom (x-axis) and the
standard deviation of the stimulus σs (y-axis). Note that
the map does not indicate how well these two systems
perform at encoding the signal but how much better one
system performs compared to the other one for given level
of noise/heterogeneity and a given signal strength. For
a neural population receiving weak stimuli (σs < 0.2,
Fig. 5A), heterogeneity is always more beneficial for the
information flow than intrinsic noise. With dynamic noise,
the time-dependent stimulus competes directly with the
noise stimulus in affecting the system’s dynamics and this
competition makes it more difficult to faithfully encode
a weak stimulus. The heterogeneous population can still
convey information about these weak stimuli because the
mean input current distribution acts in a more indirect way at
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Fig. 5 Comparison of noise
and heterogeneity. A
Comparison of the coding
performance in the presence of
either just noise or just disorder.
Difference between the coding
fraction of the two systems,
γhet − γhom. Blue colors: the
homogeneous system encodes
better the information (negative
sign), red colors: the
heterogeneous population
encodes better (positive sign).
The color intensity denotes the
absolute magnitude of this
difference. B Coding fraction of
a neural population combining
both noise and heterogeneity.
White stars mark the maximum
coding fraction for the
combination of noise and
disorder, just for heterogeneity
and just for noise (on x- and
y-axis correspondingly). White
dashed lines joining the stars are
guides to the eye. Parameters:
μhom = 1.3 and fc = 15.0 and
N = 300

A

B

desynchronizing the neurons. As a consequence, very high
levels of disorder are less harmful than very strong noise for
encoding weak time-dependent signals.

For strong stimuli, dynamic noise is more helpful for
encoding than the same amount of disorder (heterogeneity)
up to a certain level, and beyond this optimal level, disorder
outperforms dynamic noise. Because for stronger signals
the heterogeneous system attains its maximum at a larger
level of input variability than the homogeneous system
with dynamic noise does (see Fig. 3Ai, Bi), the difference
between the two curves has to attain first negative and then
positive values. Note that in this case the maximum of the
coding fraction for the heterogeneous system is still slightly
larger than that for the homogeneous system (but attained at
larger input variability).

These complementary properties in processing different
stimuli suggest that a certain neural population might
optimize its levels of dynamic noise or disorder based on
the type of stimuli that they encode. Furthermore, most
systems exhibit a wide range of rate heterogeneity and
are subject to noise sources at the same time. Figure 5B
shows three examples of how the presence of both noise
and heterogeneity affect the coding performance, for three
different signal strengths. Hunsberger et al. (2014) stated
that both noise and heterogeneity share similar operating
mechanisms; both of them desynchronize the spike trains of
the different neurons and linearize the input-output transfer
function, so that the effects of those two types of variability
do not add up linearly. For that reason, when combining

dynamic noise and heterogeneity in a neural population,
the optimal combination of dynamic noise and disorder is
reached at a lower value of dynamic noise (left and right
panels in Fig. 5B) or even at both lower dynamic noise and
heterogeneity levels (Fig. 5B, middle panel).

Heterogeneity is not able to affect the signal processing
when there is already strong noise in the system (horizontal
rows at the top of the heatmaps, Fig. 5B). We can
also observe that the optimal combination of noise and
heterogeneity requires higher values of Dhom for stronger
signals, just as it happened when only one form of input
variability is present.

4.4 Analytically tractable limit cases

The input-output coding fraction for an arbitrary input sig-
nal and neural population cannot in general be expressed
in an analytical form. The coding fraction is determined by
the coherence function and the stimulus power spectrum.
The coherence itself depends on the output power spec-
trum of the population and the input-output cross-spectrum.
Unfortunately, these spectral properties of the homogeneous
and heterogeneous populations cannot be calculated ana-
lytically for arbitrarily strong inputs. Nevertheless, there
are two limit cases in which analytical approximations can
be obtained. In one case, given that the stimulus inten-
sity is small compared to the intrinsic noise intensity and
assuming that the stimulus is white and Gaussian (i.e. for
high cutoff frequencies), the single neuron power spectrum
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and cross-spectrum of the homogeneous population can be
approximated by linear response theory.

The population’s output power spectrum of the homoge-
neous population is fully determined by the single neuron
power spectrum Sxixi

(same for all neurons i) and cross-
spectrum between different neurons Sxixj

(same for any pair
of neurons in the homogeneous population) as

Sxx (f ) = 1

N

(
Sxixi (f ) + (N − 1) Sxixj (f )

)
, (15)

which is obtained by applying the definition of the power
spectrum, Eq. (4), and the output function, Eq. (3).

At the single neuron level, there is no difference
in the processing of noise or signal, both inputs are
added up. The signal is considered white with the same
intensity as the band-limited Gaussian noise, Ds =∫ ∞
0 dτ 〈s(t)s (t + τ)〉 = σ 2

s /(4fc). The single-neuron
power spectrum Sxixi

is then given by Eq. (5) where the
total input intensity D comprises both the noise and signal
contributions, D = Dhom +Ds . Using the definition Eq. (4)
and the linear response ansatz, Eq. (6), the cross-spectrum
between neurons reads (Ostojic et al. 2009a; Vilela and
Lindner 2009b)

Sxixj (f ) = lim
TW →∞

1

TW

〈χ∗s̃∗ ·χs̃〉 = |χ (f )|2 Sss (f ) . (16)

The cross-spectrum between input, s (t), and population’s
output, Eq. (3), is the same as the cross-spectrum between

input and single neuron spike train for the homogeneous
population:

Sxs (f ) = lim
TW →∞

1

TW

〈x̃∗s̃〉 = 1

N

N∑

i=1

lim
TW →∞

1

TW

〈x̃i
∗s̃〉

= χ∗ (f ) Sss (f ) . (17)

Finally, the coherence function can be analytically approxi-
mated in terms of the susceptibility, the power spectrum of
the stimulus and the spectrum of the single neuron output
using Eqs. (15), (16), (17) and the definition of coherence
in Eq. (8):

C (f ) = N |χ (f )|2 Sss (f )

Sxi ,xi (f ) + (N − 1) |χ (f )|2 Sss (f )
. (18)

The coding fraction can be obtained numerically
integrating the analytical expression above within the
stimulated frequency range. The coherence approximation,
however, only works for input signals whose intensity
is orders of magnitude smaller than the noise intensity
of the system (Fig. 6A, green line), i.e. in the regime
in which noise linearizes the signal transfer (Hunsberger
et al. 2014). For stronger stimuli or weaker noise, the
approximation completely fails at describing the features of
the coherence. First of all, the firing rate modulation itself
and thus the cross-spectrum between input signal and output
spike trains undergoes a nonlinear modification (Brunel
and Hakim 1999; Ostojic and Brunel 2011; Voronenko
and Lindner 2017). Secondly, the cross-spectrum between
neurons, Eq. 16, appearing in the power spectrum of the
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Fig. 6 Approximations of the coherence and coding fraction
curves. A Linear response theory approximations (dashed lines) of the
spectral coherence, Eq. (18), in comparison to simulation results (solid
lines) for the homogeneous population for three different noise inten-
sities. For moderate and low noise intensities, the theoretical curves
remain close to each other, although far away from the simulation
results. Intrinsic noise intensities Dhom = 1.9 · 10−4, 9.5 · 10−3 and
4.6 · 10−1 for weak, medium, and strong noise respectively. Stimulus
σs = 0.2, which corresponds to a noise intensity Ds = 6.6 · 10−4. B
Coding fraction curves of the homogeneous population: dashed lines

have been semi-analytically calculated with Eqs. (18) and (9); dots
correspond to the simulation results, color legend as in Fig. 3Ai (thin
gray lines serve only as visual guides).C Single-neuron approximation
for weak noise/disorder: analytical expression of the coherence func-
tion (black line) and numerically calculated coherence for a noiseless
homogeneous system (gray line) and for the noisy homogeneous and
heterogeneous systems (blue and green lines) with very low stochas-
ticity (Dhom = 1.5 · 10−5, σs = 0.5); inset: corresponding coding
fraction values. Common parameters in all panels: μhom = 1.3 and for
the numerically simulated data fc = 15.0, N = 300
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population, is largely underestimated, because the signal
synchronizes the neurons more than what linear response
theory would predict, leading to an overestimation of the
true coherence function (blue and orange in Fig. 6A).
As a consequence, this analytical approximation can only
describe the decay to zero of the coding fraction curve for
very large noise intensities. The emergence of a maximal
coding fraction is only explained by the nonlinearity and the
population finite-size effect (Fig. 6B).

A second limit case can be analytically calculated for
both populations: the case of noise or heterogeneity tending
to zero. Having (almost) no noise and no heterogeneity
in a population is equivalent to just one neuron, because
the spike trains of all neurons in the population become
identical if they are driven by exactly the same stimulus (no
intrinsic noise, no difference in the mean input). This single-
neuron limit case can already be conjectured in Figs. 3 and
4, where the coding fraction curves for a given stimulus
seem to tend to the same non-zero value in both populations.
In order to calculate this value, it is necessary to compute the
output power spectrum and the cross-spectrum. Assuming
again that the stimulus is described by a white Gaussian
noise process of intensity Ds , the output power spectrum
of the single neuron is given by Eq. (5) while for the
cross-spectrum one finds (Vilela and Lindner 2009b):

Sxs (f ) = 2Dsχ (f ; Ds, μhom) . (19)

The coherence can be thus calculated analytically (Fig. 6C,
black line) and integrated numerically according to Eq. (9)
to obtain the coding fraction of a single neuron stimulated
with white noise. In Fig. 6C, the analytical expression
of the coherence is compared to the homogeneous
and heterogeneous systems at low noise/disorder (blue
and green lines) and to the simulation of a noiseless
homogeneous population (gray line). The small deviation
between the analytical expression and the simulation of
a noiseless population can be ascribed to the effects of
a finite trial length. We note that without intrinsic noise,
long transients are required to see the convergence to
the same spike train (we recall that the system is started
with random initial conditions). This convergence was an
important assumption in identifying the system in this limit
with the single-neuron case. The single neuron limit case
constitutes a lower bound of the coding fraction for low
stochasticity levels, but the difference in coding fraction is
still considerable even for a small intrinsic noise.

In summary, we can state that the analytically tractable
limit cases strongly suggest the existence of optimal values
of the coding fraction. Signal transmission becomes worse
by increasing the noise intensity to large values (according
to the linear-response theory) but is rather small in the
limit of vanishing intrinsic noise (according to the single-

neuron theory). Unfortunately, the exact optimal value of
noise intensity or disorder parameter is difficult to assess
analytically. The regime of weak intrinsic noise for a neural
population with common time-dependent drive seems to be
especially difficult and constitutes a substantial challenge
for future theoretical efforts.

5 Summary

Dynamic noise and heterogeneity are present in most
neural systems. Both can be understood as a stochastic
variation, either in the dynamics of the input space or in
the parameter space. Here, we compared two populations
of uncoupled units: the homogeneous population, consisting
of identical neurons that receive independent additive noise
on top of the stimulus, and the heterogeneous population,
in which deterministic neurons receive the same stimulus
but different constant input currents. We achieved a fair
comparison between the different forms of input variability
by enforcing the same ISI density for both populations and
focussed on the coding fraction as a measure of information
transmission for time-dependent stimuli with a high cutoff
frequency.

Kind of neural populations considered and the validity
of our assumptions We made several assumptions that sim-
plify the mathematical description of the neural populations
while still accounting for essential properties of many sen-
sory feed-forward networks. First, we considered only pop-
ulations of uncoupled neurons receiving a common stimu-
lus. This approximates a common design of many peripheral
sensory systems, like for instance the auditory, vestibu-
lar, olfactory and electrosensory systems. The assumption
of uncoupled neurons allowed us to relate the theory of
suprathreshold stochastic resonance (based on parallel units
processing a common stimulus) to neural networks with a
strong feed-forward component. Obviously, recurrent neu-
ral networks of spiking neurons show a wider variety of
firing regimes (Abbott and van Vreeswijk 1993; Brunel
2000; Litwin-Kumar and Doiron 2012; Ostojic 2014). How
to quantitatively compare the effects of heterogeneity and
noise in such networks remains an open question. Even
in homogeneous recurrent networks, the noise level is
not a simple control parameter anymore because a strong
effective stochasticity arises from the nonlinear interaction
between many spiking neurons (Abbott and van Vreeswijk
1993; Brunel 2000). The intensity and correlation statistics
of this network noise strongly depends on cellular and net-
work parameters (Lerchner et al. 2006; Dummer et al. 2014;
Ostojic 2014; Wieland et al. 2015) in ways that are not yet
well understood.
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Another assumption of the model is that both populations
are composed exclusively of units in the supra-threshold
(mean-driven) regime. This is certainly not a very good
approximation for cortical neurons but it is consistent with
experimental observations of high firing rates and low CVs
in first-stage sensory populations, e.g. auditory fibers (Fisch
et al. 2012) or P-units and ampullary cells in weakly electric
fish (Grewe et al. 2017). For comparison of our (non-
dimensional) results with experimental data consider the
P-units in weakly electric fish (Grewe et al. 2017): assuming
a membrane time constant of 5 ms, typical firing rates
(r = 1.25 → 250 Hz) and stimulus cutoff frequencies
(fc = 2 → 400 Hz) in our model would be similar to the
values observed and used for the P-units (r = 50 − 450 Hz
and fc = 150 − 300 Hz, respectively).

A methodological reason for having purely supra-
threshold mean input currents is that the alternative choice
would complicate the comparison between the two setups:
in the heterogeneous system of deterministic neurons, a
subthreshold mean input current to a certain cell would
yield a spontaneous rate of exactly zero for this neuron,
and such silent cells could not have a counterpart in the
homogeneous population of neurons that are subject to
unbounded intrinsic noise (here the firing rate is always
strictly positive). To summarize, our setup is intended to
mimic populations in the sensory periphery with high firing
rates and low CV. How to extend the kind of comparison to
recurrent networks of irregularly spiking neurons with low
firing rates is an interesting yet highly non-trivial problem
for future research.

We would like to emphasize that our setup differs
substantially from the one considered previously by Stocks
and Mannella (2001) and Hunsberger et al. (2014) in
the context of suprathreshold stochastic resonance, which
used slow stimuli and considered the instantaneous mutual
information between the slow stimulus and a low-pass
filtered output variable. Remarkably, however, qualitatively,
we recover a number of results made in these previous
studies. Our numerical simulations of the two systems
revealed that finite levels of noise and heterogeneity clearly
optimize the information transmission process similar to
the results by Stocks and Mannella (2001) and Hunsberger
et al. (2014). Also, we showed that the simultaneous
combination of these two variability classes can improve
the coding properties. Moreover, we analyzed the effect of
modifying the input signal intensity, cutoff frequency and
mean input current, which significantly affect the coding
fraction. Two semi-analytical approximations capture our
numerical results in the limit cases of vanishing and large
intrinsic noise/heterogeneity, respectively. One is based
on linear response theory applied to the homogeneous
population, which holds true only for strong intrinsic noise.
Therefore it does not reproduce the resonance effect of

noise. The second approach sets a lower bound for the
coding fraction and coherence function for weak noise
intensities or small levels of heterogeneity. In that limit case,
the two populations behave in a similar way to a single
neuron, whose coding fraction for a given stimulus can be
semi-analytically computed. The combination of the two
approaches, supported by our simulation results, strongly
suggests the existence of an optimal noise level (potentially
also several ones). However, the calculation of the exact
value (or values) at which the coding fraction is optimized
is still an open theoretical problem.

Noise vs heterogeneity The resemblance of dynamic noise
and heterogeneity is manifest. Both variabilities can
enhance the transmission of information. In populations
of spiking neurons, independent dynamic noise desynchro-
nizes the spike trains of the population and linearizes the
transfer function of individual neurons (Hunsberger et al.
2014). The results presented in this study nonetheless reveal
that neural populations might preferably show a higher
level of heterogeneity or noise intensity depending on the
stimuli they process. Adding dynamic noise to a popula-
tion of heterogeneous neurons can improve the maximum
possible coding fraction if the stimulus amplitude is large
enough (Fig. 5B). This is in contrast to the original find-
ings reported for heterogeneous threshold arrays, where the
maximum mutual information obtained by adding dynamic
noise was always below the one obtained for an optimal
level of heterogeneity (Stocks 2000).

In a recent study, Grewe et al. (2017) found that two
cell populations in the electrosensory system of weakly
electric fish show differences both in the intrinsic noise
level (as becomes apparent in the single neuron’s coefficient
of variation of the interspike interval) and in the level
of heterogeneity (as becomes apparent in the population
distribution of firing rates): while the so-called P-units are
both variable with respect to firing rates and with respect
to intrinsic noise level, the ampullary cells have very little
noise and small heterogeneity (cf. in particular, Fig. 1D
and E in Grewe et al. (2017)). Hence, in this case it is a
combination of dynamic noise and population heterogeneity
that seems to be most beneficial for signal transmission.
How to relate the levels of intrinsic noise and heterogeneity
to the typical bandwidth and stimulus intensities of natural
electric stimuli is an interesting open problem.

Suprathreshold stochastic resonance in heterogeneous
systems Suprathreshold stochastic resonance (SSR) refers
to the effects of dynamic noise in certain nonlinear par-
allel multi-unit systems. It describes how a finite level of
independent noise in the parallel units optimizes informa-
tion transmission and has been observed in many different
systems. Many properties of SSR have also been found
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in heterogeneous systems. For instance, heterogeneity by
itself, without any other intrinsic noise sources, enhances
the amount of information transferred by parallel feed-
forward units (Stocks 2000). The magnitude of the ”reso-
nance” depends drastically on the number of neurons in the
population. The advantageous effects of heterogeneity apply
to both weak and strong stimuli, even though at different
scales.

In conclusion, heterogeneity renders similarly profitable
effects for neural populations as dynamic noise. We can then
affirm that suprathreshold stochastic resonance –understood
in the broadest sense of the term– is observed as well
in heterogeneous populations of sensory model neurons.
Therefore, the same reasons that suggest a decisive role for
dynamic noise in sensory systems apply to the presence of
heterogeneity.
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