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Statistics of a neuron model driven by asymmetric colored noise
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Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-
fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses
a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise).
Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-
time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of
the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum
of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give
approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate
the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when
Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise

and signals in nerve cells shape neuronal firing statistics.
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I. INTRODUCTION

Excitable systems driven by noise play an important role
in various fields, such as laser physics, biophysics, physical
chemistry, and neuroscience [1]. In essence, an excitable
system remains silent after a weak stimulus but responds to a
sufficiently strong perturbation by a stereotypical pulse (spike).
A main objective of theory is to develop methods to calculate
the statistics of these spikes for various cases of stochastic
forcing.

In particular, stochasticity in excitable neural systems has
attracted a lot of attention because it may play a functionally
important role in the processing of information [1-4]. On
the level of single neurons, fluctuations stem from intrinsic
noise in the processing of action potentials, such as synaptic
unreliability [5] and ion channel noise [6]. On the network
level, cortical neurons receive input from several thousands of
other neurons, which can be mimicked by an effective random
input [7,8].

Most studies of stochastic neuron models have focused
on uncorrelated Gaussian input (for a review, see [9,10]).
Different types of neuron models driven or perturbed by
Gaussian noise with short or vanishing correlation time have
been thoroughly studied, and statistical properties have been
derived analytically [1,11,12]. However, neuronal input is in
general neither temporally uncorrelated (it is a colored and
not a white noise) nor does it possess Gaussian statistics. Pro-
nounced input correlations in time arise because of temporally
correlated input stimuli, presynaptic refractoriness or bursting,
network up-down states, or short-term synaptic plasticity.
Correlated and non-Gaussian random inputs are usually more
difficult to treat analytically. Most studies on correlated noise
have focused on low-pass-filtered Gaussian inputs [11-17] (for
an exception with band-pass-filtered Gaussian noise, see [18]).
Analytical studies on temporally uncorrelated non-Gaussian
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stimuli in the form of white shot noise can be found in
Refs. [7,19-21].

To our knowledge, Markovian dichotomous noise is one of
the rare analytically accessible cases of a temporally correlated
non-Gaussian neural input [16,22,23]. Such noise (also known
as the telegraph process) jumps between two discrete states
with constant rates and has been used in physics for a long
time to study the effect of noise correlations on nonlinear
dynamical systems [24-29]. It can also be used to test the
influence of an asymmetry of the input noise on the statistics
of the driven system.

The aim of this paper is to better understand the effect
of non-Gaussian correlated noise on neuronal firing. We use
the perfect integrate-and-fire (PIF) neuron model driven by
dichotomous noise to investigate the influence of correlations
and asymmetry in the input on the statistics of the output spike
train. The PIF model adequately describes the statistics of
some neurons in the tonically firing regime [18,30,31]. Due
to its simple dynamics, the PIF model allows us to derive
closed expressions for its statistical properties, a feature that
integrate-and-fire models do not have in general.

In the neurobiological context, dichotomous noise is partic-
ularly suitable to mimic up-down state input. Up-down states
are activity patterns of neural populations that are found in
the cortices of many mammalian species [32-34]. They are
characterized by alternating periods of neural spiking (up
state) and virtually no firing (down state). Of course, a pure
two-valued input is a gross oversimplification of any neural
input. Hence, we also take weak uncorrelated fluctuations
around the two states into account.

The output spike train of a neuron can be described by
various statistics. In this paper, we focus on three measures:
(1) The probability distribution of the interspike interval (ISI),
(ii) the correlation coefficient among ISIs, and (iii) the power
spectrum of the spike train.

In Ref. [16], the probability density and correlation coef-
ficient of the ISI was derived analytically for a PIF neuron
driven by a symmetric dichotomous noise (equal transition
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rates). Here, we extend this analytical framework in two ways:
First, we consider asymmetric dichotomous noise that can have
two different transition rates. On average, it thus stays longer in
one preferred state than in the other one. This generalization is
of special interest because neural input such as that resulting
from network up-down states is in general not symmetric.
Second, we examine the effect of a mixture of dichotomous
and Gaussian noise on the ISI statistics. The use of additional
Gaussian white noise is motivated by the presence of intrinsic
noise and by deviations of real input from an ideal two-state
process.

This paper is organized as follows: In the second section, we
introduce the PIF neuron model and the statistical measures. In
the following sections, we discuss the ISI distribution, the ISI
correlations, and the power spectrum. Each of these sections
starts with an analytic derivation of the respective measure for
the case of driving with pure dichotomous noise. Subsequently,
we discuss the results and illustrate characteristic features.
For the ISI density and ISI correlations, we also introduce
approximations for additional white noise. All of our analytical
results are compared with stochastic simulations. We conclude
with a brief discussion of our results.

II. NEURON MODEL AND STATISTICAL MEASURES

This paper considers the perfect integrate-and-fire neuron.
It belongs to the model class of integrate-and-fire neurons,
which describe a neuron only by its membrane voltage v.
Instead of an active spike generation mechanism, the model
has a spike-and-reset rule. Accordingly, the model registers a
spike whenever the membrane potential reaches a threshold
voltage vr. Then, the voltage is reset to the reset potential vg.
A first-order differential equation describes the dynamics of
the membrane voltage. This equation becomes a stochastic
differential equation if a noise process drives the neuron
model.

To simplify notation, we set the membrane time constant
T, = 1. The time is therefore measured in units of 7,. A
combination of a constant input current u, a dichotomous
noise process 1(t), and white noise with intensity D drive the
PIF model. For this setup, the stochastic differential equation
describing the voltage dynamics reads

v(t) =+ n(t) + V2DE(), (1

where &(r) is Gaussian white noise with autocorrelation
(E()E(")) = 8(t — t). To keep the equations simple, we set
the reset potential to zero. Because the right-hand side of
Eq. (1) is independent of v, we can shift v such that vg =0
without reformulating the problem. The threshold voltage too
could be rescaled such that vy = 1. For the generality of our
final formulas, we keep the parameter vy in the following
calculations.

The dichotomous noise process 7(¢) is characterized by two
discrete states. Without loss of generality, we consider in this
paper a process that jumps between the values +o and —o;
two arbitrary values o, and o_ can always be shifted by a
constant ¢ such that oy = ¢ + o, and ¢ can be lumped into
. In the following, we limit the analysis to the case in which
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u > o > 0, and thus
uxo>0. )

This implies that the voltage can cross the threshold in both
states of the dichotomous noise. The case in which the voltage
can pass the threshold only in the 4o state is tractable [23] but
less interesting because serial correlations vanish (see below).

The dichotomous process jumps between the states with
two different transition probabilities (rates). The transition
rates are labeled A4 for jumps from the plus to the minus
state and A_ vice versa. If A, % A_, the mean residence times
7+ = 1/A4, i.e., the mean time between a jump into a state
and the following jump out of it, differ. This results in an
asymmetry between the two states. Therefore, this process
is called asymmetric dichotomous noise. If the two rates are
equal, the mean residence times are the same and we call the
process symmetric dichotomous noise.

To quantify the asymmetry between the rates, we introduce
the parameter u that can take values between —1 and 1 and is
defined as

Ao —Ag
U=—-.
Ao+ Ag
This parameter helps to shorten notation and thus appears in
the following calculations. By setting # = 0, we can recover
the special case of symmetric dichotomous noise.

The asymmetry u is closely related to the mean and the
variance of the asymmetric dichotomous process:

(An?) = o*(1 — u?). )

3

(n) = uo,
Furthermore, the skewness of the dichotomous noise ypy is
given by
—2u

VDN = —F——.

V1 —u?

The stationary dichotomous process is characterized by an
exponentially decaying autocorrelation function [24]

C(r) = (Nt + 1)) — (N(1)* = o*(1 —uP)e ™™ (6)

However, the higher-order correlation functions of dichoto-
mous noise differ from those of exponentially correlated
Gaussian noise, i.e., the Ornstein-Uhlenbeck process. The
correlation time 7, appearing in Eq. (6) is proportional to the
inverse of the mean transition rate A,

&)

= —

21

and, together with the variance, determines the intensity of the
dichotomous noise defined as Dpy = 7. {An?).

Figure 1 shows a realization of dichotomous noise and the
corresponding voltage trajectories of the PIF model with and
without white noise. In the absence of white noise [Fig. 1(b)],
the voltage has only two different slopes corresponding to
the two noise states. Figure 1(c) shows the effect of additional
Gaussian white noise on the voltage for the same realization of
dichotomous noise. Figure 2 illustrates different asymmetries
of the dichotomous noise and their effect on the voltage and
the spiking.

The statistics of the point process generated by the model
can be characterized in different ways. Neuroscientists often

1
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FIG. 1. (Color online) Illustration of the voltage dynamics of the
PIF model. (a) Realization of dichotomous noise. (b) Simulation of
the voltage driven by this realization. (c) As (b) but with additional
weak Gaussian white noise (D = 0.01). The spikes (horizontal lines
exceeding vy, red) were added for a better illustration of spike times.
Parameters: 0 = 0.7,A = u = vy = 1,u = —0.5.

consider the statistics of the interspike intervals (ISIs) 1; =
tj; —tj_1,in which ¢; is the time instant of the jth spike. More
generally, we may also consider sums of n subsequent ISIs or
nth-order intervals [7], defined as 7)) = Z;(l) I 4. In the next
sections, we derive analytical expressions for the probability
distribution of the nth-order interval and its moments. By
setting n = 1, we obtain the distribution and moments for
the ISI.

Another statistic of interest is the correlation among ISIs
that can be quantified by the serial correlation coefficient

_ jadj) — (L)L)
(17) = (1)

; ®)

which measures correlations between two intervals with lag k,
i.e., thatare (k — 1) ISIs apart. The serial correlation coefficient
(SCC) is normalized to values between —1 and 1. A positive
SCC indicates that on average long ISIs follow long ones
and/or short ISIs short ones. A negative SCC points at a statistic
where short ISIs succeed long ones and/or vice versa.

Instead of interval statistics, we may also consider the
statistics of the spike train, x(r) = ), §(t — 1;), in particular
its power spectrum, which describes the frequency distribution
of the variance,

St = i HE, ®

Here %#(w) = fOT dt x(t)e'® is the Fourier transform of the
spike train, and the angular brackets indicate an ensemble
average over all noise processes involved.
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FIG. 2. (Color online) Different asymmetries of the dichotomous
noise process. (a) Positive asymmetry u = 0.6. (b) Symmetric
dichotomous noise u = 0. (c) Negative asymmetry u = —0.6.
Remaining parameters as in Fig. 1(c).

In the following, we provide detailed derivations of analyt-
ical expressions for the nth-order interval distribution, the ISI
correlations, and the power spectrum.

III. PROBABILITY DENSITY OF
THE NTH-ORDER INTERVAL

For the simple PIF model, the determination of the
nth-order interval distribution constitutes a first-passage-time
(FPT) problem for the voltage variable. Put differently, this
distribution equals the probability density of the time needed
to reach the threshold for the first time after starting at the reset
value. The nth-order interval density can be calculated because
the dynamics of the PIF model [Eq. (1)] is independent of the
membrane voltage v itself. Therefore, the time the voltage
needs to go n times from the reset vg = 0 to the threshold
v = vy with the reset mechanism in place is equivalent to
the time it takes to go one time from the reset to the threshold
v = nvr [16]. This property allows us to compute the nth-order
interval distribution by solving the first-passage-time problem
with the threshold nvy. We start with the problem in the
absence of white noise (D = 0), for which we denote the
probability density of the nth-order interval by Jp ,(7;) (D in
the index stands for the dichotomous noise). At the end of the
section, we will also present an approximation of the density
Jp+w.»(T,) in the presence of both dichotomous and Gaussian
white noise.

By Py(v,t) we denote the probability density to find the
system at time ¢ in the plus or minus state around the voltage
v. Then, Eq. (1) without white noise (i.e., D = 0) has the
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FIG. 3. (Color online) Illustration of the first-passage-time prob-
lem in state space at one point in time. The probability distributions
P_ and P, evolve in time according to Egs. (10) and (11). Apart from
drifting in the v direction, probability can also flow from P, to P_
and vice versa. The first-passage-time distribution corresponds to the
probability current at the threshold nvr.

following associated master equations [35]:
Py =AP_— Ay Py —(u+0)0y Py, (10)

QP =A, P —A_P_—(u—0)dP-. (11)

The resulting time evolution of the probability densities P, and
P_ isillustrated in Fig. 3. The first-passage-time problem from
v = 0 to v = nvy is associated with the solution of the above
master equation in the presence of an absorbing boundary at
v = nvr. More specifically, given the correct initial conditions,
the nth-order interval distribution Jp ,(7},) is equivalent to the
probability current in the v direction,

J(,t) =(u+0o)PL(v,t) +(u —0)P_(v,1), (12)
taken at the absorbing threshold v = nvr,
Jou(T,) = J(nvr,Ty). (13)

The initial conditions for this problem have to fulfill two
characteristics: (i) At r = 0, all trajectories start at the reset
voltage vg = 0. (ii) For a stationary spike train, the probability
for the initial value of the noise has to be self-consistent, i.e.,
the initial distribution of noise states at the reset has to be
equal to the distribution of the noise at the threshold (noise
upon firing), pr(n).

The stationary probability ppn 4 to find the dichotomous
noise in either the plus or the minus state is

pon+ = 5(1 £ u). (14)

The probability to cross the threshold is higher when the
dichotomous noise is in the plus state because in this state
the voltage moves faster toward the threshold. Thus, the
probability density of the noise upon firing is proportional
to the velocity of the voltage in the respective noise state. We
obtain after normalization

uto
Wt o DPDN, +- (15)

In line with the assumption Eq. (2), trajectories always
move in the positive v direction. Hence, the voltage cannot
cross the threshold multiple times, and the evolution of the
probability density in the presence of an absorbing boundary
is the same as that in the absence of such a boundary. Put
differently, we may use the freely evolving solution of the
equation.

pr(£o) =

PHYSICAL REVIEW E 91, 022718 (2015)

Equations (10) and (11) can be reduced to a second-order
equation,

(7 + 228, + 2149,0, + 2A(1 + uo)d, + (u* — 03, | Py
=0, (16)

where we have used for notational ease the mean transition rate
A and the asymmetry parameter u of the dichotomous noise
[cf. Eq. (4)]. To find a solution of Eq. (16), we first transform
the equation via the Galilean transformation v — v — ut to
a frame of reference where u = 0. Second, as was done
previously in Ref. [36], we remove the asymmetry by applying
a Lorentz transformation known from special relativity:

vV =y —uot), t’:y(t—ﬂ), (17)
o

A 1 A
)\., = —, '}/ = = .
y N—w Jar
Ultimately, we arrive at the second-order differential equation
known as the telegrapher’s equation,

(18)

(37 +21'9y — 0”0, ) Px = 0. (19)

The general solution of this equation for arbitrary initial
conditions can be found in [37, p. 868]. For our purpose,
we need the conditional probability densities P, ,(v,#|0,0)
denoting the probability to find a trajectory at time ¢ around
v and in the noise state = £o provided it was at time zero
at v = 0 and the dichotomous noise was in state 19. To this
end, we have to transform the solution of Eq. (19) back to the
original variables # and v. The normalized probability densities
read

Pay i (1,1]0,0) = eM’%[a(v o)

N A0 (o1 £ )l (ka(v,t))]
2yoa(v,t) or=vih yo ’

(20)

ra(v,t)
(I Fu)ly < > . (2D
yo

where a(v,t) = vo2t2 —v? and ® = 0(ot — |v|) with the
Heaviside step function 6(x). §(x) is the Dirac delta function
and I, (x) denotes the modified Bessel function of the first kind
and order b.

Applying the Galilean back transformation simply replaces
v by v — ut in these expressions. The initial states are
distributed according to the noise upon firing, so that

A0
20

Pia,q:(r(v,t|0,0) = 67)‘([7%)

Pe(v.t) =Y pr(no)Pyy+s(v — put,t0,0).  (22)

No

Together with Eq. (12), the nth-order interval distribution is
then given by the following sum over initial and final noise
states:

Jon(Ty) = Z(M + 1) Pyop(nvr — T, T,10,0)pr(no).  (23)

No,n
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When plugging the probability densities Egs. (20) and (21)
into this expression, we finally obtain

% )uz

JD,n(Tn) =

exp{—A [T, —u (nvy — uT,)/ol}

o 1+u n 1—u _
X [ = 0L, —-T )+ ——68T,—-T,)
A\ pu—o n+o

nv u
+ (— [1+L(1+“—)}
2 uw—+uo o

ﬂD La(T,)/y] Io[Ol(Tn)/J/]]
y a(T,) y2 ’

— ATn|:l +

o

(24)

with &(7;,) = /o \/02T? — (nvr — uT,)2. This equation for
the nth-order interval is valid for 7," < T, < T, with T =
:ﬂr The nth-order interval density is zero for shorter and
longer times 7;,. To shorten notation, we have introduced the

parameter

2 vr( + uo)
V= —r"7——.

o @s)

If u = 0, Eq. (24) reduces to the expression found in [16].

Although we assumed o < p for our calculations, it is
possible to take the limit 0 — u in the expression for the ISI
density [Eq. (24)]. In this case, the increase of the voltage is
zero when the dichotomous noise is in the minus state. Thus,
the threshold is always reached in the plus state. The limit
yields an expression in which the second § peak and the term
proportional to [y vanish.

In the following, we discuss the obtained result and
compare it with numerical simulations. Because higher-order
distributions do not differ qualitatively, we restrict ourselves
to the illustration of the ISI distribution (corresponding to
the first-order interval, i.e., n = 1). Figure 4 displays the ISI
distribution [Eq. (24)] for different mean transition rates. The
distribution consists of two § peaks and a continuous part;
in a binned version of the histogram as shown in Fig. 4, the
8 peaks turn into peaks of finite height while the continuous
contribution changes only a little. The § peaks correspond to
realizations of the dichotomous noise in which no switching
between noise states occurs while the voltage rises from the
reset to the threshold. A short calculation shows that these
peaks are weighted with the exponential factor pp (o )e =+ Ir
Hence, the distribution is clearly bimodal if the transition
rates are small (A < 1) and the asymmetry is not pronounced
(Ju] < 1/2).Inthe case of high transition rates, the exponential
weights become so small that only a negligible fraction of the
total probability is contained in the § peaks. The continuous
part becomes more and more peaked around the mean with
increasing transition rates. In the limit of high transition
rates, the distribution approaches an inverse Gaussian. This
corresponds to the ISI distribution if Gaussian white noise
drives the model (see below).

Figure 5 illustrates how the asymmetry u changes the ISI
distribution: We see that a positive asymmetry shifts the peak of
the distribution to shorter ISIs and makes it more pointed. This
results from an increase in the mean input of the neuron model.
A negative asymmetry has the contrary effect. Additionally, the
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FIG. 4. (Color online) ISI distribution for different mean transi-
tion rates A and dichotomous input only (D = 0). The theory (solid
lines) is compared to stochastic simulations (black circles). Note that
we use a temporally discretized histogram version of Eq. (24) (bin
width equal to that of simulation data), in which § peaks turn into
peaks of finite height. Parameters: u = vy = 1.0,u = —0.4,0 = 0.5.

asymmetry increases the probability contained in one of the
6 peaks while reducing it in the other. Thus, a pronounced
asymmetry leads to a more skewed distribution.

To focus only on the effect of asymmetry, we compare
ISI distributions with different # while keeping the mean and
variance of the total input constant. Figure 6 shows that the
asymmetry of the noise changes the asymmetry of the ISI
distribution. The latter becomes more skewed to one direction.

12 :

o o simulation
= theory
10 E

J(Ty)

FIG. 5. (Color online) As Fig. 4 but for different asymmetries
1 and a mean transition rate A = 10. When holding u constant, a
decreasing asymmetry shifts the distribution to the right.
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FIG. 6. (Color online) ISI distribution for different asymmetries
u and a mean transition rate A = 10. To illustrate only the effect of the
asymmetry, we keep the mean and the variance of the input current
constant: i + uo = 1 and o>(1 — u?) = 0.25.

In the next section, we quantify this effect by the skewness
parameter of the ISI density.

Let us consider how the probability density of the nth-order
interval changes as we include additional white noise input
[D > 0in Eq. (1)]. At the level of the density equation, this
leads to additional second-order derivatives of P, (v,t) and
P_(v,t)in Egs. (10) and (11) as well as to a different boundary
condition. An exact solution of this much more complicated
problem (if possible at all) is beyond the scope of this paper,
so we only discuss in the following an approximation of the
nth-order interval density denoted by Jw.p (7).

Our approximation is based on the assumption that the
effects of the dichotomous noise and the white noise are
separable, which should be valid for weak white noise and
slow dichotomous driving. If the PIF model is driven by
Gaussian white noise only, the solution for the probability
density of the nth-order interval is equivalent to the first-
passage-time density of an overdamped Brownian particle in a
heat bath and subject to a constant force, which was solved by
Schrodinger [38] and discussed in the neurobiological context
by Gerstein and Mandelbrot [30]. The solution is given by the
so-called inverse Gaussian distribution with mean nth-order
interval 7, = nvy/u and variance 2Dnvy /i,

nvr (nvr)2(t — T,)? 26)
€X — = .
NZEINE P 4DT?t

This formula also applies to our setup with both dichoto-
mous and Gaussian noise if the dichotomous noise remains
constant during the entire nth-order interval; the state of the
dichotomous noise controls then the value of 7, but does not
change the variance of the interval. For a very slow switching
between the two states, the probability density could be
approximated by a weighted sum of the two contribution cor-
responding to o leading to the respective extremal intervals

JW,n(ta Tn) =

PHYSICAL REVIEW E 91, 022718 (2015)

3.0 . ‘ .
o o simulation
— approximation with D=0.005
2.5¢ - - approximation with D=0.05 |7
theory for D=0
2.0
& 15)
'ﬁ
1.0}
0.5
o i ’
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35

FIG. 7. (Color online) ISI distribution for a PIF neuron driven by
Gaussian white noise and dichotomous noise. Stochastic simulation
results (black circles) are compared to the approximation of Eq. (27).
The § peaks broaden with increasing noise intensity D. The plot
shows examples for D = 0.005 and 0.05 and the model parameters
A=01,pu=vr=10,0 =0.5 and u = —0.6.

T, = TF = nvr/(n £ o). The weight factors are exactly
given by the probability density of the ISI in the absence of
white noise, i.e., the prefactors of the é functions in Jp ,(T).
Generalizing the idea of the weighted sum also to intervals in
between the limits leads us to the following integral formula for
the probability density of the nth-order interval in the presence
of both dichotomous and Gaussian white noise,

00
JW+D,11(Tn) = / JW,n(TnaTn)JD,n(Tn)dTn (27)
0

By definition, this approximation is positive for every 7, > 0
and normalized to 1. The integral cannot be solved analytically,
but numerical integration shows that the ISI density actually
approximates the results of stochastic simulations very well
if the mean transition rate A is small. Figure 7 shows
the approximation for a specific choice of parameters and
compares it to the driving with dichotomous noise only. The
8 peaks of the distribution without white noise broaden into
inverse-Gaussian-shaped peaks. The continuous part of the
distribution remains at the same height when adding weak
white noise (D = 0.005). With stronger additional white noise
(D = 0.05), both peaks show an increasing overlap such that
the distribution loses its bimodal nature. For transition rates A
in the order of 1 or larger, there are significant deviations of
the approximation from the simulations (not shown). We note
that in both limit cases A — oo and A — 0, our approximation
for the nth-order interval density Eq. (27) becomes exact.

IV. MOMENTS OF THE ISI DISTRIBUTION
AND ISI CORRELATIONS

In this section, we derive the moments of the nth-order
ISI distribution and use them to calculate the mean, variance,
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and skewness y, of the ISI. Furthermore, we derive an
expression for the serial correlation coefficient. Again, we start
by considering dichotomous input only.

In principle, for D = 0 the ISI moments can be calculated
by integrals over the probability density Eq. (24). However, the
Bessel functions in this formula are difficult to integrate ana-
lytically. Therefore, we derive the moments of the distribution
from its Laplace transform,

J(v,s) = /oo e J(v,1)dt. (28)
0

We recall that (i) the nth-order interval distribution is
equivalent to the probability current Eq. (12) at v = nvr;
(i) P, and P_ are solutions of the master equation (16).
Because J(v,?) is just a weighted sum of P, and P_, J(v,?)is
a solution of Eq. (16) too. We can derive the following ordinary
differential equation of second order by Laplace transforming
the master equation:

J"+2AJ 4+ BJ = Cs(v) + 8 (v), (29)
where we have used the initial condition for the current,

J@,0)=[(n+0)pr(o) + (u—0)pr(0)]8(v).  (30)

In Eq. (29), the prime denotes the derivative with respect
to v. A, B, and C are functions of the Laplace transformed
variable s:

Als) = A —i—zua);i—usv B(s) = s(s —1—2);)’
ur—o n?
_ 20 + uo) s(u2 +o24 2uuc)
€= w* —o? (u+uo)(p?—o?)’ GD

Equation (29) is solvable by standard methods. Requiring
that J(v <0)=0 and J'(v < 0) =0 fixes the integration
constants. The final solution reads

R 1 C—-A
J(v,5) = e VATVAI=B) (— — —> O(v)
2 2JA2—-B

CWA_VAT_B C -
+eTvAVA >< +2\/T>9(v). (32)

From this expression, we can derive the kth moment of the
ISI distribution by using the following property of the Laplace
transform:

o .
(Ty)= (—l)kﬁJ(nvr,s) (33)

s=0

Simplification of the formula for k = 1,2,3 leads to explicit
expressions for the mean, the variance, and the third central
moment:

nvr
(Ty) o (34)
(ATn2> = <Tn2) —(T,)?
_ nvro?(l —u?) [e™ — 1
AMu +uo)’ [ vn + 1i| ’ (35)
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<AT"3) = (Tn3) - 3<Tn>(AT,12) — <Tn)3
_ 3nvpo’(l — u?)o? + puo)

22(u+uo)’

X [i(e”” —D+e™+ lj|. (36)
vn

From these expressions, we can derive other statistical
measures of the neuron model, such as the stationary firing
rate ro and the coefficient of variation c,:

1

= — = ke (37)
T1 (%
o2(1 — u?)

\/ AT e’ —1
cy = +1]. (@38
v
A shape measure that quantifies the asymmetry of the ISI
distribution is the skewness y;. It is given by

(ATy)

Figure 8 illustrates how a varying asymmetry u of the
dichotomous input changes the asymmetry of the ISI distri-
bution. In the plot, we hold the mean and variance of the
input constant while changing u. Because the theory requires
i > o, there is a maximal u for which this condition still holds
if we keep the mean and variance constant. Figure 8 shows
the monotonic increase in the skewness with increasing u.
Furthermore, we can see that the skewness is more pronounced
for small mean transition rates A than for large ones.

Avr (4 uo)

Vs = (39)

o o simulation
= theory

Vs

0 el

_—41.0 -0.8 -06 -04 -0.2 0.0 0.2 0.4

u

FIG. 8. (Color online) Skewness of the ISI distribution y; as a
function of the asymmetry u of the dichotomous noise. The theory
(colored lines) is compared to simulations (black circles) for different
A. u is varied while holding the mean ¢ + uo = 1 and the variance
o2(1 — u*) = 0.25 of the input constant. Note that there is an upper
limit for u because of the constraint of the theory u > o.
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— theory for D=0
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2,
S
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—-1F
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FIG. 9. (Color online) Skewness of the ISI distribution y; as a
function of the input skewness ypy and the effect of additional white
noise on it (theory, continuous line; simulations, black circles for
D = 0; black squares, otherwise). The mean u + uo = 1 and the
variance o >(1 — u?) = 0.25 of the input are kept constant. The theory
requires 4 > o, which results in a minimal input skewness.

A comparison to the skewness of the ISI distribution of a
PIF neuron driven by Gaussian white noise with equivalent
noise intensity D = Dpy,

2D
YN =3 [ =, (40)
nur

reveals that for u = 0, y; is always smaller than y VN (not
shown). With higher mean transition rates A, the skewness
approaches this value even for u # 0 because the slope of the
u dependence becomes smaller. From Egs. (35) and (36) it
can be shown that the skewness diverges to oo in the limits
u— +l1.

To plot the relationship between the asymmetries of
the dichotomous input and of the resulting ISI distribution
differently, we can relate u to the skewness of the dichotomous
noise ypn via Eq. (5). Figure 9 illustrates the dependence
of the skewness of the ISI distribution on the skewness of
the dichotomous input. This time, there is a minimal value
corresponding to the constraint that u > o. Clearly, the ISI
skewness decreases monotonically with the skewness of the
noise. A bias toward smaller (larger) values of the dichotomous
process is associated with a positive (negative) skewness of the
input noise and leads to a preference of longer (shorter) ISIs,
which in turn results in a negative (positive) ISI skewness.
Figure 9 also demonstrates the effect of additional white noise.
In general, additional Gaussian white noise decreases the slope
of the function but does not change the monotonic decline of
the IST skewness with increasing noise skewness. The change
in slope is more pronounced for the larger noise intensity.

To capture deviations of the skewness from a PIF model
driven only by white noise, we rescale the skewness such that
it is 1 for an inverse Gaussian. The skewness of an inverse
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FIG. 10. (Color online) The rescaled skewness «; plotted over
the constant input current u for different values of the noise
asymmetry u. The black circles indicate simulations without white
noise, which are in perfect agreement with the theory. The black
squares are simulations with additional white noise D = 0.01.
Remaining parameters: A = vy = 1.0, 0 = 0.5.

Gaussian is equal to 3c,, so that the rescaled skewness «; is
defined as [39]

oy (AT
%= 30, T AT @0

In the absence of white noise, we can compute a; from
Eqgs. (34)—(36). Figure 10 shows the change in the rescaled
skewness o, with increasing base current w. The increase or
decrease in o at large values of u is directly related to the
asymmetry u. In the limit of large u, the curve approaches the
asymptotic straight line,

2auc vy + 302 2u
o~ . 42
S R ST T (42)

In some parameter regimes, however, «; shows a nonmono-
tonic dependency on w at small values u (not shown).
Although additional white noise diminishes the effect of
dichotomous noise on the skewness (cf. squares in Fig. 10),
the qualitative dependence remains the same even for D > 0.

In an experiment, one could inject a constant current into
a cortical cell receiving input from a presynaptic population
showing up-down states. This corresponds to a change in the
parameter u of the model. A monotonic change in the rescaled
skewness then may indicate an asymmetry in the presynaptic
input.

We now turn to the calculation of the serial correlation
coefficient p; for the output spike train. To do so, we make use
of the following relation between the variance of the nth-order
interval var(7,) and the SCC [16]:

var(Ty_1) + var(Ty_y) — 2 var(T})

Pr= 2var(Ty) ' (“43)
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¢ o simulation

0 20 40 60 80 100

FIG. 11. (Color online) Serial correlation coefficient obtained by
simulations (black circles) compared with the theory (colored lines)
for pure dichotomous noise (D = 0) [Eq. (44)]. The curves show
the SCC for different mean transition rates A. Remaining model
parameters: u = vy = 1.0, 0 = 0.5, and u = 0.8.

Using the variance Eq. (35), Eq. (43) yields, after some
simplifications, a simple expression for the SCC,

2sinh?(v/2) _,,
TV _1ger’
This expression has the same form as the SCC for symmetric
dichotomous noise found in [16]. The only difference is that
the asymmetry u appears in the parameter v [cf. Eq. (25)].
Figure 11 shows that the theory agrees with numerical
simulations. In the limit o — u discussed above, v goes to
infinity and thus the correlations become zero. This result
agrees with the consideration that the noise cannot carry
memory from one ISI to the next if the threshold is only reached
in one of the two noise states [40].

To obtain an approximation for the ISI correlations in
the case of driving with both dichotomous and Gaussian
white noise, we can make use of the approximation discussed
in the preceding section. Additional white noise decreases
the correlations. Because all correlations result from the
dichotomous noise, it is reasonable to assume that the major
contribution to the expected decorrelation comes from an
increased variance in the denominator of Eq. (43). The
approximation Eq. (27) allows us to calculate the increase
of the variance due to additional white noise to linear order
in D:

Pk (44)

2 2D,
var(Tpnawn) = (ATHN) + v_z(TDN>’ (45)
T
where (TSN) is the third moment of the ISI distribution
with only dichotomous noise given in Eq. (36). Using this
approximation, we obtain the following expression for the
serial correlation coefficient:

DN+WN :01? N B = 2(TSN>

~ . = DN 46
Pr I+ gD (AT (46)
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FIG. 12. (Color online) Serial correlation coefficients (for lag
k=1,5, 10, and 20) normalized by the respective SCC without
white noise and plotted over different white noise intensities. The
dots represent stochastic simulations, whereas the solid line shows
the approximation of Eq. (46) with model parameters A = 0.01,
u=vr =1.0,0 =0.5and u = 0.6.

Numerical simulations (Fig. 12) at small switching rates
confirm the prediction of the correlation reduction by white
noise quantitatively. In particular, the reduction seems to be
independent of the lag k: Fig. 12 shows the SCC for different
lags k normalized by the respective SCC without white noise,
resulting in data points that are on top of each other and agree
well with the theoretical formula. The figure further suggests
that, at least for strong ISI correlations induced by a slow
dichotomous noise, the approximation is valid for quite large
noise intensities D.

V. POWER SPECTRUM

We now turn to the calculation of a second-order spike-
train statistics, the power spectrum of x(¢). The starting
point of our consideration is the correlation function C(t) =
(x()x(t + 7)) — (x(¢))?, which can be expressed [41] by
C(t) =rolé(r) + m(r)] — rg. Here ry is the stationary firing
rate and m(t) denotes the spike-triggered rate, i.e., the condi-
tional probability density to observe a spike at time ¢ 4 T given
that there was (another) spike at time ¢. The power spectrum,
defined in Eq. (9), is related to the correlation function by a
Fourier transformation (Wiener-Khinchin theorem), and hence
it follows that [7,41,42]

S(w) = ro(1 + 2 Re(m(w))), (47)

with the stationary firing rate ry and the one-sided Fourier
transform of the spike-triggered rate

m(w) = / ” e“"'m(t)dt. (48)
0

This quantity is the transform of a real valued function and
thus obeys m*(w) = m(—w). In the following, we mark all
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quantities that are one-sided Fourier transforms with a tilde.
For a shorter notation, we use angular frequencies @, which
readily transform to normal frequencies f = w/(2m).

In principle, we know m(¢) already and could calculate the
spectrum from Egs. (48) and (47): the spike-triggered rate is
given by the sum over all nth-order interval densities [7]

mt) =Y Jpalt). (49)

n=1

However, the summation over the Bessel functions and the
Fourier transformation of the result are difficult. Here we use
another method, which is based on the Fourier transformation
of the master equations and is similar to the method outlined
in Ref. [42] for the case of a white-noise-driven IF model.

To calculate 71(w) for the case of purely dichotomous noise,
we start with the master equations (10) and (11). To capture
all spikes and not only the first spike, we have to include terms
that describe the absorption and reset of the voltage trajectory,

8Py = A_P_ =2y Py — (400, Py +mi()f ), (50)

P =2 Pr— A P —(u—0)P-+m_(1)f(v), (51)

with f(v) = é(v) — §(v — vr). Here, we have split m(t) =
m(t) + m_(t)into two parts, m_ (¢) and m_(t), corresponding
to spikes that occur during the plus and minus states,
respectively. Both functions are not yet known (in fact, our
consideration only serves the purpose of calculating them),
but their Fourier transforms can be found as outlined in
the following. Initial conditions for Egs. (50) and (51) are
as above for the first-passage-time problem, i.e., P+(v,0) =
pr(Eo)é(v).

From the master equations (50) and (51), we can obtain a
second-order partial differential equation for P, with the same
homogeneous part as Eq. (16). By virtue of the equation’s
linearity, we may instead write the same type of equation for
the total probability current J defined in Eq. (12) and for the
difference between the currents in the plus and in the minus
state,

Q=u+o)Py —(u—o0)P_. (52)

To determine the two quantities 7, and m_, we need to
compute the Fourier transforms of the two functions J and
Q. To do so, we perform a one-sided Fourier transformation
of the resulting differential equations for J and Q, which
reduces them to simpler ordinary differential equations:

LoJ = hyii_ + hifi, + hi, (53)
LoQ = hyii_ + hliiis +hi, (54)

where J and é as well as the inhomogeneities & are functions
of w and v, and L denotes the Fourier transform of the operator
of the resulting homogeneous equation,

~ d? d
L() = W + 2A(a))% + B(w), (55)
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AMu +uo)—iou
e 2 ’

Alw) = (56)

— 0o MZ_O-Z'

The inhomogeneities resulting from absorption and reset (h*)
and from the initial conditions (k') are given by

hy = CH @) f) + f'(v), (57)

h = Ci(@)8(v) +8'(v), (58)
hy = Cy(w)f(v)+ f(v), (59)
hi, = Ci()8(v) + D}8'(v), (60)

with the coefficients

—io(n + o)+ 2A(u + uo)
Clw) = s NG
u>—o
_ —io(pn —0)+2Mpu +uo)
C/ (@) = = . (62
w>—o
. 20 + uo) — M_‘:‘;g(uz + 0%+ 2uuo)
Ciw) = o L 63)
—io( + o)+ 2r0 (1 4+ £
CHw) = = 0+5) o
u>—o
_ io(n — o)+ 2xo (1 + &~
C;(w) = _ 2( ) )
w>—o
[, 200 (14 57) — 2oz [2p0 + u(i® + o))
Clw) = i . (66)
u*—o
. o Hu
D! = 1+—). 67
! M+M0< " 0) ©n

Because Eqgs. (53) and (54) are linear, we can construct the
full solutions from the solutions for only one inhomogeneity.
Specifically, J and Q can be expressed as the sums

T=m_J +m I+ 7T, (68)
O=m_0 +m 0"+ 0, (69)
where J* and OF are solutions of
LoJ* = nt, (70)
LyQ* = ik, (71)

with k = +, — ,i. We obtain them with standard methods by
using the conditions J*(v < 0,w) and Q*(v < 0,w) = 0. For
the inhomogeneities from the initial conditions, the solutions
are

Ji(v,0) = O(v)e V4@
Cj-(a)) — A(w)

X |: cosh[vF(w)] + Fo)

sinh[vF(a))]:|,

(72)
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0'(v.w) = 9(v)e‘”A<w)[D; cosh[vF ()]

Cy(®) — Dy A(w)
e smh[vF(w)]i|, (73)
with

F(®) = VA(w)? — B(w)

VA2 + uo)? = 2iwro (o + pu) — o2w? 4

= g (74)

[A(w) and B(w) were defined in Eq. (56)]. The differential

equations with inhomogeneities from absorption and reset
yield

P = (4 SOt
J (v,w) = (2 2P @) 04 (v)
1 Ci (@) — A)
+ (5 + %)w(v), (75)
5+ (1 G- A(a)))
0 (v,w) = <§ T(w) o+ (v)
1 Crw)— Aw)
+ (5 + %)w-(vx (76)
where
@1(v) = O(v)e VA@EF@T _ gy _ yp)em@mvDIA@EF @]
a7

Our aim is to calculate the Fourier transforms of the
spike-triggered rate m = i + m_. To do so, we can use the
boundary condition that J and Q have to vanish for v > vy
because all voltage trajectories are reset when they reach vr.
This condition allows us to determine the spike-triggered rates:

7o -0 7o - T

ﬁ7 - ﬁ, (78)
J-0+—Jt0- J-0+t—Jt0-

m, =
where the different J's and é’s are all taken at v > vy. In the
expressions for 7i_ and i, the v dependences cancel each
other out. _ _

Using the above expressions for J* and Q*, we find, after
substantial simplifications,

m(w) = (2{cosh[vr A(w)] — cosh[vr F(w)]})_1

A) + o
I:W Slnh[UT F(a))]
+ cosh[vr F(w)] — e”TA<w>]. (79)

This is the final result of this section, and together with Eq. (47)
it permits the calculation of the spike-train power spectrum.
Note that in general, F'(w) is a complex-valued function, which
as an argument of the hyperbolic functions introduces periodic
components into the power spectrum.

Figure 13 shows examples of the spike-train power spectra
of a PIF neuron with dichotomous driving and compares the
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FIG. 13. (Color online) The power spectrum S(w) from simula-
tions (blue dots) compared with the theory [red (light gray) solid line],
Egs. (47) and (79), for different mean transition rates A and purely
dichotomous input. Remaining parameters: 4 = vy = 1.0, 0 = 0.7,
u=-—04.

analytical result to those of numerical simulation. In particular,
at small values of the switching rate A, the shape is rather
unusual for a spike-train power spectrum (for some experi-
mental examples of power spectra, see [43]): the spectrum has
a clearly periodic part; in particular, this periodicity dominates
at large frequencies. There are two characteristic frequencies
and multiples thereof at which peaks occur in the spectrum,

nEto

wi =27 (80)

ur

These frequencies correspond to the two values at which §
functions occur in the ISI distribution, i.e., the realizations
where no switching occurs between reset and threshold. Math-
ematically, we can understand the occurrence of undamped
oscillations in the power spectrum by looking at Egs. (49)
and (47). The power spectrum given in Eq. (47) contains
the Fourier transform of a sum, Eq. (49), that contains §
peaks according to Eq. (24). The Fourier transform of a §
peak yields an undamped oscillation, which explains why
we observe such unusual periodicity in the spectrum. For
an alternative explanation, one may consider that the power
spectrum of a Dirac comb (a perfectly regular spike train with
random initial time) is again a Dirac comb [7], i.e., it exhibits
undampened periodicity. The spike train of our model can
be regarded as a sequence of time windows with perfectly
regularly spaced spikes, i.e., finite-duration “Dirac combs.”
Because the durations of the time windows are stochastic,
the resulting periodic structure in the power spectrum does
not contain § peaks as it would do for an infinite Dirac comb.
Hence, the particular features of the power spectrum rely solely
on the discrete support of the dichotomous noise.

At small transition rates A, the ratio between the height of
the two different peaks corresponds to the square of the ratio
between the probabilities of crossing the threshold in one of
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the noise states. Thus, the relative peak height is influenced
by the asymmetry of the driving process. With increasing A,
the peaks broaden until they overlap such that the spectrum is
almost constant for high frequencies. However, even for high
A, there remains a small oscillating part, which is related to the
survival of the § peaks in the nth-order interval density for any
finite value of A. This behavior clearly differs from the power
spectra of model neurons driven by white noise [44], where all
oscillations vanish at high frequencies and the power spectrum
approaches ry. In fact, even if the input noise is colored but
has a continuous support, we do not expect oscillations in the
high-frequency part of the power spectrum, which is in line
with previous results for a PIF neuron driven by an Ornstein-
Uhlenbeck process [15].

The limit @ — 0 of the power spectrum is linked to the
serial correlation coefficient by the general relation [45]

&)
ii_r)r})S(w):roci (1 +Zpk) = roFeo, 8D

k=1

where F, is the Fano factor in the limit of large spike count
windows. The Fano factor is defined as the variance over the
mean of the spike count in a specified time window and thus is
a relative measure of the count variability. Taking the limit as
well as performing the infinite sum yield the same expression
and thus shows that the results for the SCC and the power
spectrum are consistent. The resulting Fano factor is given by
the simple expression
2 2
o = M. (82)
vrA(p + uo)

Interestingly, this expression corresponds to the result for a
PIF neuron driven by white noise, for which the Fano factor is
given by Fo, = 2D /(vr ). Here, one has to replace the white
noise intensity D by the noise intensity of the dichotomous
noise, Dpx = T.(An(t)?).

How much of the peculiar spectral structure survives
if the neuron is additionally driven by white noise? For
the parameters from Fig. 13(b) we have inspected this by
numerical simulations (Fig. 14). With increasing white noise,
the spectral multipeaked structure is replaced by one with
fewer and broader peaks. When driving the model neuron
with both dichotomous and white noise, the periodicity of
the power spectrum is damped toward high frequencies. In
the limit w — oo, it saturates at the stationary firing rate. As
Fig. 14 shows, the periodicity decays stronger with higher
white noise intensities D and the peaks become wider. With
D = 0.1 there is hardly any periodic structure left.

VI. CONCLUSION

This paper explored the effect of correlations and asymme-
try of neuronal input noise on the firing statistics of a single
neuron. To get some analytical insights, we derived different
spike-train statistics for a perfect integrate-and-fire neuron
driven by asymmetric dichotomous noise: the ISI distribution,
the serial correlation coefficient, and the power spectrum. We
verified the analytical expressions with stochastic simulations.
We found a set of features that stem from the noise correlations
and the asymmetry in the dichotomous noise: In contrast to
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FIG. 14. (Color online) The simulated power spectrum S(w) of
a PIF neuron driven by dichotomous noise and Gaussian white
noise for different white-noise intensities D as indicated. Remaining
parameters as in Fig. 13(b).

the statistics of a neuron driven by uncorrelated noise, the I1SI
distribution is clearly bimodal for small transition rates of the
input noise. In the limit of high transition rates, the distribution
approaches an inverse Gaussian. A high asymmetry between
the rates of the dichotomous noise leads to a strongly skewed
distribution of interspike intervals.

The ISI correlations decay exponentially with the lag, as
previously found in [16] for symmetric dichotomous noise.
In our case, both the decay constant and the prefactor are
functions of the asymmetry, but asymmetric noise does not
lead to qualitatively different behavior. The power spectrum
shows periodic oscillations at high frequencies. In contrast to
the driving with Gaussian noise, the oscillations do not decay
at large frequencies.

We also gave approximations of the ISI statistics for a
model neuron driven by both slow dichotomous and Gaussian
white noise, which were confirmed by numerical simulations.
Here we focused on the case of slow dichotomous noise
because in this limit the effects of the non-Gaussian cor-
related noise process are most pronounced. We found that
white noise decreases the positive ISI correlations caused by
the dichotomous input by a factor independent of the lag.
Furthermore, numerical simulations of the power spectra show
that the periodic oscillations from the dichotomous noise are
damped due to additional white noise.

The theory can possibly be applied in experimental studies
of up-down states in the cortex. Because up-down states
are collective phenomena of neural populations, their mea-
surement requires a lot of experimental effort. The output
statistics of a neuron may allow us to infer properties of
this joint activity of a presynaptic neural population from the
firing statistics of a neuron receiving such two-state-like input
currents. For example, the ISI density can show features such
as bimodality that hint at dichotomous input. Furthermore,
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exponentially decaying ISI correlations are likely to stem from
exponentially correlated input. By injecting constant input
currents of varying amplitude, the rescaled skewness of the
ISI distribution could allow us to infer information about the
asymmetry of up-down state transitions via the parametric
dependence shown in Fig. 10. One assumption that has to be
met to apply our results in such investigations would be that
the considered neuron is in a mean-driven (tonically spiking)
regime, for which an approximation by a perfect IF model can
be meaningful [18,31].

The neural dynamics of the perfect integrate-and-fire model
is simple, but more elaborate models can show similar features.
Preliminary simulation results (not shown) suggest that the
results for the ISI distribution can approximate a leaky
integrate-and-fire (LIF) model in the tonically firing regime

PHYSICAL REVIEW E 91, 022718 (2015)

with a small leak. By rescaling the parameters of the PIF
model, we were able to approximate the ISI density of an
LIF (for a similar method in the case of driving with white
noise and adaptation current, see [46]). However, further
analysis is needed to investigate which of the features of
the spike statistics, analytically revealed in our study, are
preserved in biophysically more realistic neuron models with
a spike-generating mechanism.
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