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Transport on intermediate time scales in flows with cat’s eye patterns

Patrick Pöschke,* Igor M. Sokolov, and Michael A. Zaks
Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin, Germany

Alexander A. Nepomnyashchy
Department of Mathematics, Technion, Haifa, 32000 Israel
(Received 8 August 2017; published 18 December 2017)

We consider the advection-diffusion transport of tracers in a one-parameter family of plane periodic flows
where the patterns of streamlines feature regions of confined circulation in the shape of “cat’s eyes,” separated
by meandering jets with ballistic motion inside them. By varying the parameter, we proceed from the regular
two-dimensional lattice of eddies without jets to the sinusoidally modulated shear flow without eddies. When a
weak thermal noise is added, i.e., at large Péclet numbers, several intermediate time scales arise, with qualitatively
and quantitatively different transport properties: depending on the parameter of the flow, the initial position of
a tracer, and the aging time, motion of the tracers ranges from subdiffusive to superballistic. We report on
results of extensive numerical simulations of the mean-squared displacement for different initial conditions in
ordinary and aged situations. These results are compared with a theory based on a Lévy walk that describes the
intermediate-time ballistic regime and gives a reasonable description of the behavior for a certain class of initial
conditions. The interplay of the walk process with internal circulation dynamics in the trapped state results at
intermediate time scales in nonmonotonic characteristics of aging not captured by the Lévy walk model.
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I. INTRODUCTION

In hydrodynamics, the global transport properties of com-
plicated flow patterns are derived from (often nontrivial)
spatial averages over the local geometry of the velocity
field. Regions of circulation (eddies, vortices) and the far-
reaching jets belong to the basic building blocks of many
two-dimensional flow patterns. In laminar jets, the tracer
particles are advected over large distances. In contrast, a
tracer captured inside an eddy stays localized for a long time
(in the absence of molecular diffusion, forever). In 1880,
Lord Kelvin (Sir William Thomson) described the inviscid
plane vortex street flanked by regions of translational motion.
He portrayed a pattern in which two stripes with opposite
directions of translational velocities were “separated [. . . ] by
a cat’s eye border pattern of elliptic whirls” [1]. In the context
of two-dimensional transport, it is convenient to replace a
single vortex street by a spatially periodic stationary pattern
of vortices and jets. Below we use for this purpose the “cat’s
eye flow,” introduced in Ref. [2] for studies of hydromagnetic
effects. This model allows us to vary, by means of the single
parameter, the relative areas occupied by the eddies and by the
jets. In the limit of shrinking jets, the pattern turns into the pure
cellular flow, i.e., a periodic arrangement of eddies divided by
the separatrices connecting stagnation points. The separatrices
form the cell borders: As long as molecular diffusion is ne-
glected, they stay impenetrable for the tracers. With diffusion
taken into account, all flow regions become accessible for
tracers, and their transport possesses a hierarchy of time scales:
The short and intermediate times at which the starting position
of a tracer (near the eddy center, close to a separatrix, etc.)
matters, and the final asymptotic state in which information
about the starting configuration has been effectively erased
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by diffusion. For the case of very small molecular diffusion,
a formal mathematical distinction between intermediate time
scales was suggested in Ref. [3], where transport in absence
of mean drift was viewed as a superposition of an appropriate
random continuous martingale process and the nearly periodic
fluctuation. Two characteristic times were introduced: the
“martingale time,” defined as the ratio of the variance of
fluctuation to the effective diffusivity, and the “dissipation
time” at which the increments of the martingale become
approximately stationary. Over long times, the martingale
component dominates the behavior: “the longer the timescale,
the less anomalous the scaling is” [3]. Physically, different
characteristic times are related to typical time scales of deter-
ministic circulation as well as to average durations of diffusive
passages across various building blocks of the flow pattern.

Cellular flows often serve as prime examples of systems
showing subdiffusion for intermediate times, see Refs. [4,5]
and references therein. From the point of view of transport,
these systems have much in common with combs where
one-dimensional motion along the backbone or spine is in-
terrupted by motion along the teeth in the transverse direction.
Movement along the backbone is modeled by continuous time
random walks (CTRW) with power-law waiting time densities.
If the stages of propagation along the teeth as well as of
circulation inside the eddies are regarded as time intervals
spent in a trapped state, then diffusion in cellular flows corre-
sponds to combs with finite tooth length and to CTRW with
power-law waiting time distributions possessing exponential
cutoffs. These upper cutoffs originate in the typical maximal
time needed to diffuse across an eddy. Like in other CTRW
models with power-law waiting times, the properties of the
diffusion depend on the aging time and the initial conditions.

In cellular flows with weak molecular diffusion, see
Refs. [6–10], the intermediate and the final asymptotics are
of the main interest. The final asymptotics, as predicted by
homogenization theory [11], is diffusive, and here the recent
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effort has been put into the quantitative description. In flows
without jets, like in Ref. [6] or in the eddy lattice flow [12], the
intermediate asymptotics is subdiffusive [13,14]. In flows with
jets (“channels” in terminology of Ref. [15]), this intermediate
asymptotics corresponds to Lévy walks interrupted by rests.
Before addressing the complex geometry of experimentally
available flows [16–18], it seems reasonable to perform
a thorough study of a simpler variant: a two-dimensional
periodic flow pattern of the “cat’s eye flow” [1,2,15]. Below,
similarly to our previous work on the eddy lattice flow [12],
we report on the results of extensive numerical simulations
of particle transport in the flow. We demonstrate that for
tracers starting on the edge of the jet, the transport by this
flow pattern for intermediate times can indeed be modeled
as a Lévy walk (LW), with eddies playing the role of traps
and jets viewed as a transport mode in the LW scheme
(see Ref. [19] and references therein). This conclusion is
corroborated by comparison of theoretical estimates with
results of our extensive numerical simulations. However, due
to the presence of internal circulation dynamics in the trapped
state, the model based on the flow possesses a richer behavior
than a simple Lévy walk model would suggest, which is
manifested in its very different aging properties. In contrast
to the well-understood aging in LW [20,21], the cat’s eye flow
displays strong dependence on the initial conditions and a set
of unusual aging behaviors. This finding reflects the fact that
aging in the Lévy walk scheme interrupted by rests is related to
the evolution of the particle’s coordinate during a single step,
from the beginning of observation to the first renewal event
afterwards. While in the genuine Lévy walk interrupted by
rests this evolution corresponds either to ballistic motion at a
constant speed or to rest, the behavior in the flow is much more
complex: Like in the eddy lattice, transport by the flow is richer
than its random walk representation. We are aware neither of
existing extensive numerical simulations of this system nor of
a comparison of numerics with theoretical predictions.

In Sec. II we discuss and illustrate the basic features of the
cat’s eye flow pattern. Section III focuses on the different time
scales for the mean-squared displacement of tracer particles
in the system. In Sec. IV we present and discuss the results
of numerical simulations. Finally, in Sec. V, we sum up
our findings. Some details of the theoretical description are
contained in the appendix.

II. THE FLOW

Dynamics of a tracer in the plane cat’s eye flow obeys the
stochastic differential equation

ṙ = rot (0,0,ψCat(r)) +
√

2Dξ (1)

with the two-dimensional [22] stream function

ψCat(x,y) = u a

[
sin

(
x

a

)
sin

(
y

a

)
+ A cos

(
x

a

)
cos

(
y

a

)]
,

(2)

where u is the characteristic velocity, D is the molecular
diffusivity, and ξ = (ξx,ξy) is a vector of Gaussian noises
with zero mean, and 〈ξx(t)ξx(t ′)〉 = 〈ξy(t)ξy(t ′)〉 = δ(t ′ − t).
The deterministic part of the flow pattern is periodic with

respect to both coordinates and consists of elementary cells
of the length and width πa. On taking a as the spatial unit,
a2/D as the unit of time, and introducing the Péclet number
Pe = u a/D, the equations turn into

ṙ = Pe rot (0,0,�Cat(r)) +
√

2ξ , (3)

�Cat(x,y) = sin x sin y + A cos x cos y. (4)

Thus the system is governed by two dimensionless parameters
A and Pe. We concentrate on the case Pe � 1. The determin-
istic velocity components of the flow (4) are

Pe−1ẋ = ∂�Cat

∂y
= sin x cos y − A cos x sin y, (5)

Pe−1ẏ = −∂�Cat

∂x
= − cos x sin y + A sin x cos y.

This flow pattern can be imposed in a layer of incompressible
fluid with kinematic viscosity ν that obeys the Navier-Stokes
equation by applying a spatially periodic force, e.g., F =
4ν sin x cos y (ex + Aey).

Formally, the parameter A can assume arbitrary real values
of either sign. However, it is sufficient to restrict analysis to
the interval 0 � A � 1. A transformation x → π − x (or y →
π − y) is equivalent to the change of the sign of A, whereas a
shift x → x + π/2, y → y + π/2 with simultaneous rescal-
ing of time units by the factor A is equivalent to the transfor-
mation A → 1/A. For numerical investigations, we take the
following values of A: 10−3, 10−2, 10−1, 0.25, 0.5, 0.75, 0.9,

and 1.
Regardless of the value of A, the flow possesses stagnation

points at (x = πm, y = πn), and at (x = π/2 + πm, y =
π/2 + πn), m,n = 0, ± 1, ± 2, . . . . At |A| < 1, the former
points are hyperbolic fixed points (saddles) and the latter
ones are elliptic fixed points (centers). At |A| > 1, the reverse
configuration of equilibria takes place. Exchange of stability
between stagnation points occurs in the course of degenerate
global bifurcation at |A| = 1. At this parameter value, the
straight lines y = x + πn, n = ±1, ± 2 . . . turn into invariant
continua of stagnation points, see straight red lines in Fig. 1(a).
In that case the system is transformed into a shear flow: The
plane is partitioned into alternating regions of ballistic motion
in opposite directions. At A = 0, in contrast, the jets are absent
and the entire plane is covered by cells with closed streamlines:
the eddy lattice flow [12]. Isolines of the stream function (4)
for several typical values of A are presented in Fig. 1. The
dashed curves, obtained by shifting by multiples of π in both
directions the curve

y(x) = arctan [−A cot(x)], (6)

for x ∈ [0,π ], are the midlines of the jet regions in which
ballistic motion takes place: Along them, �Cat(x,y) vanishes.
These jet regions are separated from the closed elliptic orbits
by the isolines |�Cat| = A: The separatrices are obtained by
translating

y±(x) = arccos

[
A2 cos x ± √

1 − A2 sin2 x

A2 cos2 x + sin2 x

]
(7)

for x ∈ [0,π ] along both coordinates with π periodicity,
cf. the red curves that delineate cat’s eyes in Fig. 1. Here
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FIG. 1. Contour plot of streamfunction (4) for (a) A = 1, (b) A = 0.9, (c) A = 0.5, (d) A = 0.25, (e) A = 10−1, and (f) A = 10−3. Yellow
closed streamlines, e.g., lower left vortex, denote counterclockwise motion. Blue closed streamlines denote clockwise motion. For A → 1
separatrices (red) between jets and eddies merge pairwise, the eddies cease to exist, and a shear flow with the sinusoidal velocity profile
emerges. For A → 0 pairs of separatrices (red) merge with the midline of the jet (black dashed) and become the edges of square cells.

the plus (respectively, minus) sign corresponds to the lower
(respectively, upper) boundary of the “cat’s eye.” At nonzero
small values of A the narrow curvy jets with alternating
directions of unbounded motion are formed between the cells
[Fig. 1(f)]. As A grows, these jets become thicker [Fig. 1(e)
and Fig. 1(d)].

The flow is anisotropic: It possesses an axis of faster
transport (shortened to “the axis” throughout this paper). Its
direction corresponds to rotation of the coordinate system
(x,y) around the origin by π/4. In the rotated reference frame,
the equations of motion are simplified: In terms of x± = x ± y,

their deterministic part turns into

ẋ+ = −Pe (1 + A) sin x−,

ẋ− = Pe (1 − A) sin x+. (8)

At A = 1 the value of x− becomes an integral of motion,
and the plane gets foliated into the continuum of invariant
straight lines. The velocity of motion along each of these
lines is sinusoidally modulated across the continuum. In the
presence of diffusion, the (longitudinal) motion along x+
has both deterministic and diffusive components, whereas the
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FIG. 2. Coordinate parallel to the axis of the system at Pe = 104

and A = 0.5 for a tracer starting at the separatrix at intermediate
time scales: t1 	 t < t3 ≈ t2. Inclined straight segments: ballistic
motion. Plateaus: trapping events. To resolve the trajectories optically
at small values of t , a fictitious vertical shift between them has been
introduced.

(transverse) motion along x− is purely diffusive. In contrast,
at A = 0, the pattern (8) turns into the conventional cellular
flow. In terms of x+ and x−, the separatrix (7) becomes

x− = ± arccos

[
(1 − A) cos x+ + 2A

1 + A

]
, (9)

hence the maximal width of the “eye,” in terms of original
coordinates x and y, is

√
2 arccos

3A − 1

1 + A
.

The local velocity vs along the separatrix is given by

v2
s (x+) = 2Pe2(1 − A) (10)

× [(A − 1) cos2 x+ − 2A cos x+ + A + 1].

We take for the width of the jet channel the distance between
the separatrices of adjacent saddle points, measured along
the local normal direction to the midline �Cat = 0 of the jet,
yielding a lengthy expression. As a function of the coordinate
x+, along the axis, the jet width oscillates between the sharp
maximum

wmax = 1√
2

arccos
1 − 3A

1 + A
(11)

and the minimal value

wmin = 1 + A√
1 + A2

arcsin
2A

1 + A
(12)

measured in units of the original coordinates. Both reproduce
the exact width π/

√
2 of the jet for A = 1.

At small values of A the width displays a broad plateau
around its minimal value. There, the minimum

wmin ≈ 2A + A3

3
+ . . . (13)

can be used as a “typical” jet width. The linear approximation
suffices for our purposes. At A = 1 the deviation is 22%. For
A � 0.9 it is 4% or less, fitting better for smaller values of A.

III. MEAN-SQUARED DISPLACEMENT

A. Characteristic times

We start from the analysis of the characteristic times
involved in the motion of the particles. The treatment is
analogous to the case of eddy lattices [12], and the notation
used is similar. In comparison to the eddy lattices with their
two characteristic times:

(1) t1, the characteristic time of the deterministic transport
over a single eddy,

(2) t2, the characteristic time to diffuse across one periodic
unit with length of order πa,

here the third time,
(3) t3, the characteristic maximal time spent in a jet,
comes into play, making the picture more complex.
The estimates for the two first times are the same as in the

eddy lattice flow, see Ref. [12]. Expressed in units of Eq. (3),
they are

t1 � 1

Pe
(14)

and

t2 � 1 (15)

and are interrelated via the Péclet number: t1 = t2/Pe. The
third characteristic time is

t3 � t2w
2, (16)

where w is the characteristic width of the jet measured in
units of a, i.e., the parameter w itself is dimensionless. In
dimensional units the characteristic times have the forms t1 =
a/u, t2 = a2/D, and t3 = w2a2/D. Note that

t3 = w2 ≈ 4A2 (17)

in our normalized units. Also note that t3 is always either of
the order of t2 or smaller.

The waiting times in an eddy are given by a power-
law probability density function (normal Sparre-Andersen
behavior)

φ(t) ∝ t−3/2 (18)

between t1 and t2 with cutoffs both at short and at long times.
The waiting time in a jet is given by a similar power law,
but with the upper cutoff time t3. The time t1 corresponds
essentially to the time resolution of the random walk scheme:
Behavior at shorter times is dominated by the local dynamics.

B. Transport regimes

When starting at the separatrix of the flow, three transport
regimes can be observed. Here we describe them qualitatively;
quantitative details are relegated to the subsequent section that
presents the numerical simulations of the motion.

At short times t < t1, a particle starting anywhere close
to the separatrix, except for the immediate vicinity of the
hyperbolic stagnation point, moves along the streamline with
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FIG. 3. Temporal evolution of MSD for ensembles of tracers starting on the separatrix between the jet and the vortex at, respectively,
A = 10−3 (lowest curve), A = 10−2, A = 10−1, A = 0.25, A = 0.5 (center curves), and A = 0.75 (uppermost curve), compared to the
asymptotic theory, Eq. (19) (black continuous). Time t3, Eq. (17), is indicated by vertical lines in the same style as the curves they belong to.
(a) 104 walks at Pe = 104. (b) 103 walks at Pe = 105. Velocity in both plots varies slightly with A around v ≈ 0.75 Pe. The intermediate ballistic
regime occurs only if t3 � t1 = 1/Pe. Note that the curves in (a) are the black dashed lines in Figs. 5 and 6.

the local velocity close to vs and the average velocity v of
the order of Pe. This motion does not depend on whether
the instantaneous position of the tracer is inside the jet or
inside the eddy. The regime of motion is therefore ballistic:
The mean-squared displacement (MSD) of a particle grows as
〈(
R)2〉 � v2t2. The simulations confirm that at large Péclet
numbers the typical velocities when moving close to the
separatrix in the jet and in the eddy coincide, and are close
to Pe: v ≈ Pe.

After the time t1, provided both times t2 and t3 are
considerably larger than t1, i.e., Pe w2 � 1, the second
transport regime sets in. Like a preceding regime, this is
still a ballistic transport, but a slower one: the prefactor is
reduced to a quarter of its original size. At these times the
particle might travel over several lattice cells. The translational
motion in the jet corresponds to the transport mode of a
Lévy walk scheme, whereas the confined motion in an eddy
corresponds to the trapping event. Both stages can be visually
identified in the trajectories in Fig. 2. The waiting time
densities in the trapped and in the transport modes follow the
same power-law asymptotics φ(t) ∝ t−3/2. Such a Lévy walk
scheme corresponds to the ballistic motion and the analysis
within the Lévy walk formalism (see Appendix) yields the
expression for the growth of MSD:

MSD(t) = 1

4
v2t2. (19)

Subsequent regimes of ballistic transport for various values
of A are presented in Fig. 3. The crossover between them is
visualized in Fig. 4, where it can be seen that the theoretical
estimate for the change in the prefactor, given by Eq. (19),
is well matched by simulations. The MSD is dominated by
the longitudinal motion along the axis of the system. The
(anomalous) transport in the system is strongly anisotropic
since the motion in direction normal to the axis still takes place
within just one eddy or jet. This motion cannot be captured
by a coarse-grained random walk model and will be discussed
further on the basis of numerical results.

The time dependence of the MSD between the two times
t3 and t2 is nonuniversal; see the two different intermediate

slopes in Fig. 3. In contrast, the terminal diffusion regime that
sets in at long times t > t2 is universal and does not depend on
initial conditions. In the remainder of this section we reproduce
the estimates for directional coefficients of diffusion in the
terminal regime, derived by Fannjiang and Papanicolaou [15].

At time and length scales corresponding to the terminal
regime, the flow structure can be considered as a layered
one, a parallel arrangement of jets and rows of eddies whose
particular form practically ceases to play a role: The terminal
diffusion coefficients are dominated by the times spent in the
corresponding structures. A simple estimate is based on the
assumption of constant thickness for those parallel layers:
The exact form and the thickness modulation influence only
numerical prefactors. For small A the eddy lattice (EL) layers

FIG. 4. Crossover in prefactor of MSD between two regimes of
ballistic transport for Pe = 104. Rescaled curves from Fig. 3(a) for
A = 0.25 (dotted), A = 0.5 (dash-dotted), and A = 0.75 (dashed).
Horizontal lines indicate the values: 0.58, 0.54, 0.145, and 0.135. The
MSD during the intermediate ballistic regime is about one quarter of
its value during the initial ballistic regime t < 10−4, as predicted by
theory, Eq. (19).
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FIG. 5. Temporal evolution of MSD for 104 walks at Pe = 104. Solid lines: Total MSD, dashed lines: MSD parallel to the jet, dotted lines:
MSD orthogonal to the jet. Starting positions are denoted by coloring: central streamline of a jet (light cyan), center of an eddy (magenta),
flooded (dark red), and the separatrix between jet and eddy (black). (a) A = 10−3, (b) A = 10−2, (c) A = 10−1, and (d) A = 0.25. Note that in
(a) and (b) the jet region is so thin that the MSD for the first and last initial condition (cyan and black) almost coincide. For (a) the parallel and
the perpendicular components of the MSDs are almost equal, and the eddy lattice flow [12] is being reproduced. Note also that in (d) the MSD
for the flooded case (red) and the start on the separatrix (black) are very similar.

show isotropic diffusion with the diffusion coefficient

DEL �
√

uaD = D Pe1/2. (20)

The diffusion in the channel (jet) is strongly anisotropic. In the
direction normal to the axis

D⊥ = D (21)

holds, whereas in the parallel direction we have

D‖ � u2t3 = u2 a2w2

D
= D Pe2w2. (22)

The terminal diffusion coefficient in the direction per-
pendicular to the axis is given by the harmonic mean of
the corresponding local coefficients, i.e., it corresponds to a
sequential switching of diffusivities (conductivities in electric
terms)

D∗
⊥ � [

D−1
EL (1 − w) + D−1

⊥ w
]−1 = D

w + (1 − w)Pe−1/2 .

(23)

For large Pe it is dominated by the first term in the denominator,

D∗
⊥ � D/w � D/A. (24)

This effect takes place for w > Pe−1/2, which in the units
u = a = 1, used in Ref. [15], translates precisely into

A >
√

D. The final diffusion coefficient in the direction
parallel to the axis is the one for parallel switching of the
diffusivities (conductivities),

D∗
‖ � DEL(1 − w) + D‖w = D[Pe2w3 + Pe1/2(1 − w)].

(25)

For large Pe this is dominated by the first term provided w >

Pe−1/2 again, resulting in

D∗
‖ � DPe2w3, (26)

i.e.,

D∗
‖ � DPe2A3. (27)

In this way, the result of Ref. [15] is reproduced; since in that
paper Pe ≡ 1/D, it follows that D∗

‖ � A3/D.
The simple reasoning above does not allow us to analyze

the aging phenomena that strongly depend on the nontrivial
dynamics inside the flow structures. This task can be accom-
plished numerically.

IV. NUMERICAL SIMULATIONS

By numerically integrating the Langevin equation (3), we
obtained trajectories r(t) = (x,y) of tracer particles. These
trajectories were used to compute the MSD from the initial
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FIG. 6. Same as Fig. 5 with (a) A = 0.5, (b) A = 0.75, (c) A = 0.9, and (d) A = 1. Note that in the flow pattern of (d) there are no eddies,
and the corresponding initial condition has converged to the one for a start at the separatrix (black).

position, as well as the MSD parallel (respectively, per-
pendicular) to the axis. Integration was performed by the
stochastic Heun method: an efficient algorithm for integration
of stochastic differential equations with additive noise [23].
The size of the time step was chosen sufficiently small to ensure
that the deviations of the deterministic part of (3) from its exact
solution are negligible. Note that without noise the stream
function � is conserved. Choosing a time step 
t = 10−3Pe−1

turned out to be sufficient for all parameter values in all regimes
of interest, until the maximum simulation time tmax = 10. The
simulations were done in the range of Péclet numbers from 103

to 105. Below, we focus mainly on the results for Pe = 104.
We consider the following four initial conditions: (a) start-

ing at the center of a cat’s eye, i.e., at (x,y) = (π/2,π/2); (b)
“flooded,” i.e., with equal probability in the periodic cell of the
two-dimensional space; (c) starting on the central streamline
of the jet, i.e., with x drawn with equal probability from [0,π ]
and obeying (6); and (d) starting from the separatrix between
jet and cat’s eye, i.e., with x ∈ [0,π ] equally distributed and
obeying Eq. (7). Results for different values of A are plotted
in Figs. 3 to 6. For most situations the component of the MSD
parallel to the axis dominates. Only for small values of A or
when starting inside the cat’s eye for short time intervals are
the two components approximately equal.

A. Starting from the separatrix

When starting from the separatrix the MSD shows an initial
and an intermediate ballistic regime, see Fig. 3. One can clearly
see that the intermediate ballistic regime occurs only if t3 �
t1 = 1/Pe.

In the other case, when A is very small so that the flow
pattern is very close to the cellular flow, the intermediate
diffusion exponent is 1/2 [13,14].

B. Other initial conditions

For the other examined initial conditions the MSD is very
similar, except for a start at the center of a cat’s eye, see
Figs. 5 and 6. For this initial condition an initial regime of
normal diffusion turns after a short superballistic transient
into a final regime of normal diffusion. Additionally, there is an
intermediate regime of normal diffusion for moderate values of
A, i.e., if 0.25 � A � 0.9. For most initial conditions at not too
small A the overall MSD is almost identical to MSD parallel
to the axis: The MSD perpendicular to the axis is negligible.
Both components of the MSD display normal diffusion for
times t � t2. Our simulations confirm the observation that the
corresponding final diffusion coefficients D∗

‖ and D∗
⊥ indeed

possess functional dependencies derived above, see Ref. [15]
and Sec. III. The simulations indicate that these relations hold
not only for A 	 1 but approximately also in the broader range
A � 0.5.

When the parameter A approaches unity, the flow turns into
a shear flow with a sinusoidal velocity profile. At A = 1, the
equations of motion in terms of the coordinates x+ = x + y

and x− = x − y become

ẋ+ = Pe sin x− +
√

2 (ξx + ξy), (28)

ẋ− =
√

2 (ξx − ξy). (29)
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FIG. 7. Aged MSD for 104 walks starting at the eddy center at Pe = 104. Solid lines: total MSD; dashed lines: MSD parallel to the jet;
dotted lines: MSD orthogonal to the jet. Aging times: ta = 0 (magenta), ta = 10−3 (blue), and ta = 10−2 (black). (a) A = 10−3, (b) A = 10−2,
(c) A = 10−1, and (d) A = 0.25. For ta � t2 the MSD converges to the flooded case (red dashed) [respectively, to its orthogonal part (red
dotted)]. In (a) the jet region is so thin that the eddy lattice flow is reproduced. Here the parallel and the orthogonal components are approximately
the same.

In the stripe where sin x− ≈ x− this is approximately the linear
shear flow [24]. Note that this is the case for t 	 t2. The MSDs
along both coordinates are well known [25] and read in our
notation (note that D = 1)

MSD‖ = 1

2
〈x2

+〉 = 8

3
Pe2t3, (30)

MSD⊥ = 1

2
〈x2

−〉 = 2t. (31)

Indeed, numerics show that for Pe = 103 to 105 the MSDs
are well fitted by MSDsim

‖ = 2Pe2t3 and MSDsim
⊥ = 2t . This

means that for A = 1 the system is close to a linear shear flow.
Note that for tracers starting close to the separatrix at

A → 1, the final normally diffusive regime is preceded by
a superballistic one: A transition towards the shear flow
MSD‖ ∝ t3, see Eq. (30) and Figs. 6(c) and 6(d), is being
established.

C. Aging

For the initial position of tracers at the center of the cat’s
eye we also considered the aged MSD: starting at (x,y) =
(π/2,π/2), letting the tracers evolve for the aging time ta ,
and then commencing the observation. Figures 7 and 8 show
these aged MSDs. Note that the slopes are the same as in
Figs. 5 and 6. The MSDs for other initial conditions are already
close to that for the flooded case and thus do age a lot less.

Recall that for A = 1 there are no eddies anymore; their former
centers, as well as the former hyperbolic points, lie exactly
on the separatrix which, in its turn, becomes a straight line
that entirely consists of degenerate stagnation points. For this
situation we show in Fig. 8(d) the process of aging for starting
on that straight line.

For A �= 1 the aged MSD as a function of time is oscillating.
As shown in Ref. [12], for sufficiently small A and not-too-
large values of times and aging times t,ta 	 1, the leading
terms for the aged MSD are given by

MSD(t,ta) ≈ 8(t + ta) + 8(t + ta)

[1 + (2� t(t + ta))2]2

×{[(2� t(t + ta))2 − 1] cos(� t)

− 4� t(t + ta) sin(� t)}, (32)

where the frequency of oscillations � ≈ Pe
√

1 − A2 is a
monotonically decreasing function of A. For this approxima-
tion to work well, the aging time should strongly exceed one
period: ta � 2π/�.

V. CONCLUSIONS

We considered the advection-diffusion problem for tracer
particles in the cat’s eye flow. This two-dimensional flow
consists of jet regions having a shape of meandering strips,
and eddies having a shape of cat’s eyes. The family of the
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FIG. 8. Same as in Fig. 7 with (a) A = 0.5, (b) A = 0.75, (c) A = 0.9, and (d) A = 1. Note that at A = 1 there are no eddies. Their former
centers lie on the straight lines which consist of degenerate equilibria. Here aging for tracers that start on these lines is shown.

cat’s eye flows is parametrized by a single parameter and
interpolates between the eddy lattice flow (without jets) and
a shear flow with sinusoidal velocity profile (without eddies).
In the absence of molecular diffusion, the tracers are either
carried away ballistically by jets or stay trapped in eddies.
Adding small thermal noise makes possible the transitions
between eddies and jets and, at long times, leads to anisotropic
diffusion with the diffusion coefficient in the jet’s direction
much larger than the one in the perpendicular direction.
This long time regime seems to be the only one which was
discussed theoretically in considerable detail. At intermediate
time scales the transport can be modeled by a stochastic
scheme corresponding to Lévy walks interrupted by rests. The
transport phase of the walk corresponds to the motion in a
jet, and rests to trapping in eddies. This scheme, however,
only applies for the initial conditions corresponding to starting
close to the separatrix. The behavior for other initial conditions
may be vastly different.

In the present work we provide results of extensive
numerical simulations of the particles’ transport by the cat’s
eye flow concentrating on the mean-squared displacement of
the particles from their initial positions in a broad time domain
and investigate its intermediate-time behavior, the influence
of initial conditions, and aging regimes, i.e., the behavior of
MSD between some intermediate time ta and final observation
time t > ta . The results of simulations confirm theoretical
results for the long-time behavior of MSD and the applicability
of the Lévy walk scheme for intermediate times, including
the prediction about the connection between the transport

velocities in the short- and intermediate-time ballistic regimes.
They also show a multitude of possible aging behaviors
(depending on initial conditions), including an oscillatory one
which is observed when particles start inside the eddies. This
oscillatory behavior is due to the particles’ rotation in an eddy
during the trapping phase and is not captured by the Lévy walk
scheme.
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APPENDIX: DERIVATION OF THE
INTERMEDIATE ASYMPTOTIC MSD

In this section we derive the asymptotic expression for the
MSD, Eq. (19), for intermediate times when starting at the
separatrix. Since the MSD is dominated by the longitudinal
motion along the axis of the system, a one-dimensional model
is adequate. We use Lévy walks interrupted by rests as a
theoretical description. The derivation follows [26].

Let P1(x,t) be the probability density of a tracer being at
position x at time t when starting in a ballistic mode and
alternating between ballistic motions with velocity ±v and
rests. Given the probability densities of waiting times inside
a jet (without index), for resting times (with index r) as well
as for the last, incomplete step (respectively, rest; upper-case
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symbols), we obtain

P1(x,t) = �(x,t) +
∫ t

0
φ(x,t ′)�r (t − t ′) dt ′

+
∫ ∞

−∞
dx ′

∫ ∞

0
dt ′

∫ t ′

0
dt ′′

×φ(x ′,t ′′)φr (t − t ′)�(x − x ′,t − t ′) + . . . , (A1)

respectively,

P1(k,s) = �(k,s) + φ(k,s)�r (s)

+ [φ(k,s)φr (s)]1�(k,s)

+ [φ(k,s)φr (s)]1φ(k,s)�r (s) + . . .

+ [φ(k,s)φr (s)]n�(k,s)

+ [φ(k,s)φr (s)]nφ(k,s)�r (s) + . . . (A2)

in Fourier-Laplace representation. By applying the geometric
series to odd and even terms separately and averaging the
result with the one from an analog calculation for starting in
the resting phase, we arrive at

P (k,s) = �(k,s)[1 + φr (s)] + �r (s)[1 + φ(k,s)]

2[1 − φr (s)φ(k,s)]
(A3)

for the probability density of being at time t at position x on the
axis Fourier-transformed in space and Laplace-transformed
in time. Numerics show that the waiting time densities of
a tracer inside a jet (respectively, a vortex) can roughly be
approximated by a power law ∝ t−3/2 if the parameter A is not
too small, as expected in theory. Hence we get

φr (s) = 1 − √
τs, (A4)

�r (s) =
√

τ

s
, (A5)

�(k,s) = Re

{√
τ

s + ivk

}

=
√

τ cos
(

1
2 arctan

(
vk
s

))
(s2 + v2k2)1/4

, (A6)

as well as

φ(k,s) = 1

2

√
τ

π

∫ ∞

τ/π

t−3/2 cos(kvt)e−st dt. (A7)

Writing the cosine complex one obtains

φ(k,s) = e− τ
π

s cos
( τ

π
kv

)

+
√

s + ikv

2

[
−√

τ + erf

(√
τ

π
(s + ikv)

)]

+
√

s − ikv

2

[
−√

τ + erf

(√
τ

π
(s − ikv)

)]
. (A8)

Substituting everything into (A3) and expanding both its
numerator and its denominator separately first in k until second
order and then in s until first order, keeping only the highest
order terms in s in each coefficient of the series in k, yields

P (k,s) = 4
√

τ
s

− 3
√

τv2

4s5/2 k2

4
√

τs +
√

τv2

4s3/2 k2
= 1

s

[
1 − 3

16

(
vk
s

)2]
[
1 + 1

16

(
vk
s

)2] , (A9)

i.e.,

P (k,s) = 1

s

[
1 − 1

4

(
vk

s

)2]
(A10)

in second order in k. From the probability density follows the
MSD,

MSD(s) = 1

2
v2s−3, (A11)

which according to Tauberian theorems for the inverse Laplace
transform corresponds to (19) in real time.
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