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Abstract – We study how well a generalized fluctuation-dissipation theorem (GFDT) is suited
to test whether a stochastic system is not Markovian. To this end, we simulate a stochas-
tic non-equilibrium model of the mechanosensory hair bundle from the inner ear organ and
analyze its spontaneous activity and response to external stimulation. We demonstrate that
this two-dimensional Markovian system indeed obeys the GFDT, as long as i) the averag-
ing ensemble is sufficiently large and ii) finite-size effects in estimating the conjugated vari-
able and its susceptibility can be neglected. Furthermore, we test the GFDT also by looking
only at a one-dimensional projection of the system, the experimentally accessible position vari-
able. This reduced system is certainly non-Markovian and the GFDT is somewhat violated
but not as drastically as for the equilibrium fluctuation-dissipation theorem. We explore suit-
able measures to quantify the violation of the theorem and demonstrate that for a set of
limited experimental data it might be difficult to decide whether the system is Markovian
or not.

Copyright c© EPLA, 2017

Introduction. – The equilibrium fluctuation-
dissipation theorem (FDT) relates the response of
an equilibrium system to an external perturbation to the
spontaneous fluctuations of the system. The classical
result reads [1]

Sxx(ω) =
2kBT

ω
�(χxF (ω)), (1)

where Sxx is the power spectrum of the variable x(t)
in the absence of external forcing, χxF is the linear re-
sponse function (i.e., its Fourier transform, the suscep-
tibility) with respect to a weak external force F (t), and
�(·) denotes the imaginary part. The FDT can be used
to determine the response function of the system from a
measurement of its spontaneous power spectrum Sxx.

Another interesting implication of the theorem regards
the distinction of equilibrium and non-equilibrium sys-
tems: the theorem provides a simple and model-free test
whether a given system operates in thermodynamic equi-
librium or not. If a system does not obey the theorem, it
cannot be in equilibrium (a conclusion that, unfortunately,

cannot be reversed). The latter idea has been applied in
biological systems, for instance, in the mechanosensory
hair bundle [2] and in cytoskeletal networks of biological
cells [3]. Both systems show severe violations of the equi-
librium FDT.

Despite the violation of the equilibrium FDT in
non-equilibrium systems, there exist non-equilibrium
generalizations of the theorem that are obeyed by systems,
described by a set of variables x̄(t) with a steady-state
probability distribution P0(x̄) and Markovian dynamics.
Importantly, the set of variables x̄(t) constitutes a
continuous-time Markov process (such a set will be said
to give a complete Markovian description of the system’s
evolution). The generalized fluctuation-dissipation theo-
rem (GFDT) was derived in the 1970s [4] (reviewed early
in detail in [5]) but has more recently attracted renewed
attention from a number of theoreticians [6,7] and exper-
imenters [8,9]. To apply the theorem, a conjugated vari-
able z(x̄) is defined for a certain kind of perturbation F (t)
(which has not to be a force then). This variable is ob-
tained from the following derivative with respect to a static
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(time-independent) external perturbation F0:

z(x̄) =
∂

∂F0
ln P0(x̄;F0)

∣∣∣
F0=0

, (2)

which can be also regarded as the derivative of an effective
potential Φ(x̄) = − ln P0 with respect to the parameter F0.
For the observable z(x̄) (essentially a nonlinear transfor-
mation of the original variables), the GFDT, connecting
the spontaneous fluctuations of z(t) and its response to a
time-dependent forcing F (t), reads

Szz(ω) =
2
ω
�(χzF (ω)) (3)

and is thus formally very close to the equilibrium FDT
(even the missing factor of kBT could be restored by
rescaling the variable, but this is not common).

Because the theorem assumes the Markovianity of the
underlying dynamics, it is suitable to test this property
in non-equilibrium systems. Again, as for the distinc-
tion between equilibrium and non-equilibrium, the con-
clusion goes only one way: if a system does not obey the
GFDT, the conclusion is permitted that the observed dy-
namics does not constitute a Markovian dynamics, i.e.,
that the set of observables does not constitute the full set
of variables necessary for a complete Markovian descrip-
tion. This holds true even if the dynamics is a (multidi-
mensional) Markovian system but we use only a subset of
variables to test the GFDT. This is so because a lower-
dimensional projection of a Markovian system is gener-
ally non-Markovian. In summary, the violation of the
GFDT is a sufficient but not a necessary condition for
non-Markovianity.

The above-mentioned hair bundle system with its ac-
tive properties [10–12] is an excellent test case for non-
equilibrium statistical physics. There exist quantitatively
accurate stochastic models of the single hair bun-
dle [13,14], which have been used to model and analyze
the response features of the basilar membrane [15–18], in
the dynamics of which coupled hair bundles play an es-
sential role. The GFDT was tested by Dinis et al. [9]
for an isolated hair bundle from the bullfrog’s sacculus.
These authors were able to find a rough confirmation of
the GFDT but also observed some deviations that were
attributed to the limitations of the experimental accuracy
and the computational approximations. However, Dinis
et al. also raised the question if some degree of non-
Markovianity may have affected their results.

Generally, the different limitations are difficult to disen-
tangle in experiments on a biological system, which pro-
vides only a limited amount of data and is always prone
to weakly non-stationary behavior. In this paper, we ad-
dress how efficiently the GFDT can be used to test the
Markovianity of the system. We employ the stochastic
hair bundle model and use either both dynamical vari-
ables of the model (the full Markovian dynamics) or only
the (experimentally accessible) position variable.

Model and measures. –

The hair bundle model and the conjugated variable.
For studying the fluctuation-dissipation theorem, we

use an established stochastic description of the hair bun-
dle based on [13] in a simplified two-dimensional ver-
sion [14,15] with the specific parameters from [18]. This
model is given in terms of the hair bundles tip position X
and the position of molecular motors, Xa, and reads

λẊ = −KGS(X − Xa − Dpop) − KSP X + F (t) + ξ(t),

λaẊa = KGS(X−Xa−Dpop)+Fmax(Spop − 1) + ξa(t).
(4)

In the above equations, λ is the viscous friction parameter
of the bundle, D the gating swing, KGS the gating spring
constant, KSP the pivotal stiffness, F (t) a (possibly time-
dependent) force applied externally to the bundle’s tip,
Fmax the maximal force that can be exerted by adaptation
motors, S the feedback strength of the calcium concentra-
tion on motors. The equations above may look linear but
they are not due to the function pop = pop(X−Xa), which
is the probability of the transduction channels to be open:

pop(x) =
[
1 + exp

(
NeΔG + KGSD2/2 − KGSDx

NekBT

)]−1

,

(5)
where Ne is the number of transduction channels and
ΔG is the energy difference between the open and the
closed state of the channel. Finally, we note that ξ(t)
and ξa(t) are independent white-Gaussian-noise sources
with correlation functions 〈ξ(t)ξ(t + τ)〉 = 2λkBTδ(τ)
and 〈ξa(t)ξa(t + τ)〉 = 3λakBTδ(τ). Because of active
forces in the system due to molecular motors, the system
is kept far from thermodynamic equilibrium and the hair
bundle-model performs spontaneous noisy oscillations (see
fig. 1(a), (b) for a sample trace) as seen also in the experi-
ment [2,10]; for a detailed biophysical interpretation of the
model, see [13].

The model has been used to study the effects of mechan-
ical coupling of hair cells on signal transmission [15,16]
and even was employed in a hybrid experiment, in which
it was mechanically coupled to a real hair bundle [17].
Although originally developed for a specific type of hair
bundle, namely the one in the sacculus of bullfrog, it has
been generalized (by only modifying parameters) to hair
bundles in other animals (including mammals) [14]. Ana-
lytical inspections of the model reveal that it is definitely
beyond thermodynamic equilibrium and behaves as a re-
laxation oscillator [19]. Here we use the model as a reason-
ably simple description of a real-world system, for which
the different kinds of (equilibrium and non-equilibrium)
FDT have been experimentally tested [2,9].

In order to test the fluctuation-dissipation relation from
eq. (3), first the conjugated variable z(x̄) has to be deter-
mined. The steady-state probability density P0(X,Xa;F )
is measured in the absence (F (t) = 0) and in the presence
of a weak static force (F (t) = F0). The stationary density
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Fig. 1: Trajectories (sample traces) of the system variables
((a), (b)) and of the conjugated variable (c), determined via
eq. (6). The two coupled stochastic differential equations (4)
were simulated using a stochastic Euler method with a time
step of dt = 0.1 ms and a time window of 1 s per trial (all other
parameters are as in [18]).

for F = 0 is plotted in fig. 2(a) and reveals a crater-like
shape with two pronounced peaks. This density is some-
what biased if the weak static force F0 is applied (not
shown). The negative logarithm of the density (shown
in fig. 2(b)) can be regarded as an effective potential, al-
though the relaxation oscillator described by eq. (4) is
obviously not a potential system in the classical sense [1].
As an estimate of the conjugated variable for our specific
system we can use

z(X,Xa) = − ∂

∂F0
Φ(X,Xa;F0)

≈ ln P0(X,Xa;F0) − ln P0(X,Xa; 0)
F0

. (6)

We note already at this point that a too large value of the
bias force F0 may lead later on to a violation of the GFDT,
because the function z(X,Xa) will not be the correct con-
jugated variable. We illustrate the dependence of z on X
and Xa in fig. 2(c) and show a typical time course of the
conjugated variable (extracted via eq. (6) from simulated
time series X(t),Xa(t)) in fig. 1(c).

Spectral measures. Once we can determine time se-
ries of the conjugated variable z(t) in a time window
t ∈ (0, Tw), we can measure its power spectrum:

Szz(ω) =
〈z̃(ω)z̃(ω)∗〉

Tw
, (7)

where 〈·〉 indicates an ensemble average (different realiza-
tions of white Gaussian noise).

To verify the fluctuation-dissipation theorem from
eq. (3) in the next step, the susceptibility has to be
estimated. To this end, F (t) is taken to be a band-limited
white Gaussian noise with power only inside a specified

Fig. 2: (Colour online) (a) Probability density of the two-
dimensional hair bundle dynamics. The probability density
is measured for F (t) = 0 and F (t) = F0. Both densities
display roughly the same shape but are slightly shifted with
respect to each other. (b) The effective potential Φ(X, Xa) =
− ln[P0(X, Xa)]. (c) The conjugated variable, approximated
by the two probability densities for F = 0 and F = F0 using
eq. (6).

frequency band:

SFF (f) = 2ε2/fc, for |f | < fc. (8)

Here, ε is by definition the standard deviation of the ex-
ternal perturbation and the cut-off frequency fc is set to
30Hz. Single realizations of the stochastic force are cre-
ated drawing random numbers in the Fourier domain and
transforming the resulting random spectrum to the time
domain [20]. Applying these F (t) to the hair bundle and
measuring the cross-spectrum between the force and the
conjugated variable

SzF =
〈z̃(ω)F̃ ∗(ω)〉

Tw
(9)
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Fig. 3: (Colour online) The generalized fluctuation-dissipation
theorem (GFDT) is tested on the conjugated variable
z(X, Xa). From the spectrum of spontaneous fluctuations
Szz(ω) (a) and the systems response to a small external
perturbation quantified by the imaginary part of the suscep-
tibility �(χzF (ω)) (b), the fluctuation-response ratio (FRR)
is determined as a function of frequency (c). The theoretically
correct ratio is FRR = 1 (red dashed line). Parameters:
F0 = 0.1 pN, ε = 0.05, number of realizations = 107.

the susceptibility is given by

χzF (ω) =
SzF (ω)
SFF (ω)

. (10)

Of course, we again should use values of the stimulation
standard deviation ε as small as possible, because the
GFDT involves only the linear response. Too small values,
though will result in a very noisy estimate of the suscep-
tibility, which is, of course, likewise undesirable.

With the power spectrum and the susceptibility avail-
able the generalized fluctuation-dissipation theorem from
eq. (3) can be tested. To this end, one usually computes
the fluctuation-response ratio (FRR), which is expected to
be equal to one whenever the GFDT holds true:

FRRz =
ωSzz(ω)

2�(χzF (ω))
. (11)

Deviations from unity can occur in numerical estimation of
this ratio even when the system itself should exactly obey
the theorem. Reasons are limitations i) of the averaging
ensemble (insufficient statistics); ii) in the correct estima-
tion of the conjugated variable (finite static force for esti-
mating P0(X,Xa;F0)); iii) in the correct estimation of the
susceptibility, i.e., the system’s linear response (any finite-
amplitude force F (t) will evoke both linear and nonlinear
response contributions because our system is nonlinear).
An interesting question is whether we can distinguish the
caused deviations from others that are due to a potential
non-Markovianity of the system.

Verification of the generalized FDT in the hair
bundle model. – In fig. 3 we show results from numerical
simulations of the spectral measures. Both spontaneous

power spectrum and susceptibility of the conjugated vari-
able reveal peaks around 8Hz, similar to the statistics
seen for the variable X in experiment [2] and theory [13].
In particular, the FRR shown in fig. 3(c) confirms the
GFDT with a satisfying accuracy. This agreement does
not emerge easily but results from a very large averaging
ensemble and small values of the static bias force (needed
to determine the conjugated variable z(X,Xa)) and of the
stimulus standard deviation ε (needed for determining the
susceptibility).

In experiments, typically, we have fewer data than we
used in the extensive numerical simulations for fig. 3.
Hence, even when the system obeys the GFDT, devia-
tions may occur because of the three reasons mentioned
above. As a measure of how well the GFDT is obeyed,
we use the integrated squared deviation between denomi-
nator and numerator of the FRR and normalize it by the
integral over squared denominator:

Δ2 =

∫ fc

0
(ωSzz(ω) − 2�(χzF (ω)))2 dω∫ fc

0
(2�(χzF (ω)))2 dω

. (12)

This can be interpreted as a relative error and is used to il-
lustrate that a faithful adjustment of external parameters
such as F0 and ε is necessary for a quantitative confirma-
tion of the GFDT. For instance, if the external random
force is too strong (high values of ε in eq. (8), leading to
an inaccurate estimate of the linear response function),
the mean-square deviation stagnates after the number of
trials reaches some characteristic value, i.e., further av-
eraging does not improve the results. Naively, one may
expect that the measure decays without bound with in-
creasing averaging ensemble sizes but this is only true if
at the same time the values of F0 and ε are lowered as well.

We illustrate this in fig. 4(a), where we plot Δ2 vs.
the number of realizations (i.e., the size of the averag-
ing ensemble) for three different values of the stimulus
strength ε. The dependence is certainly non-trivial. For a
thousand of realizations, for instance, the strongest signal
will lead to the smallest deviation. Here the measurement
noise in the numerical determination of the susceptibility
is smallest and this is the dominant contribution to Δ2 at
this point. If we, however, have a much larger averaging
ensemble (N = 107), the relation between the curves is re-
versed and the smallest signal amplitude yields the small-
est deviation between the different spectral measures that
should be equal according to the GFDT.

In experiments, one often has a long time window of
data, which is typically split into N different trials (re-
alizations) of length Tw. The length of the time win-
dow sets the frequency resolution of the spectral measures
(Δf = 1/Tw), and thus has to be chosen such that the
relevant time scales in the system can be resolved. In
fig. 4(b) we show results for Tw = 0.1 s (resolution 10Hz)
and Tw = 10 s (resolution 0.1Hz) in addition to the stan-
dard value of Tw = 1 s used in fig. 4(a). With the very
short time window and a 10Hz resolution, we are unable to
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Fig. 4: (Colour online) Quantification of the deviations from
the GFDT. The mean-square deviation, eq. (12), is shown as a
function of the number of trials, N , (realizations) used to com-
pute the spectral measures. (a) Effect of stimulus amplitude,
ε (Tw = 1 s). Ideally, Δ2 should decay to zero as N increases
in the linear response regime. However, larger values of ε lead
to a partly nonlinear response and thus even in the limit of
many trials, we observe small remaining deviations from the
GFDT for the large ε. Contrariwise, at a smaller number of
trials (N < 104), a larger amplitude might be better, because
it leads to a less noisy numerical estimate of the susceptibil-
ity. (b) Effect of the length of the time window of the single
trial, Tw (ε = 0.05). Longer time windows (Tw = 10 s, brown
triangles) result in a refined frequency resolution but do not
change much the deviation from the GFDT (black circles are
close to brown triangles). A too short time window (Tw = 0.1 s,
green plus), however, leading to a too coarse frequency resolu-
tion, results in a drastic increase of the deviations. In addition,
because the averaging effect of the frequency integration is re-
duced (we sum over fewer frequency bins), fluctuations strongly
increase. The dashed green line indicates an average over ten
repetitions of the procedure and is closer to the expected mono-
tonic drop with increasing N .

capture all the relevant time scales of the system (oscilla-
tion frequency is around 8Hz) and thus the error saturates
at a non-vanishing level even in the limit of a large number
of realizations. In addition, because we integrate over a
few points only, the averaging effect of the frequency inte-
gration is weak and thus strong fluctuations in the curve
emerge that can be reduced by further averaging (dashed
line). In contrast to these observations, a further increase
of the time window to Tw = 10 s does not change the
statistics much, compared to the standard window size of
Tw = 1 s. In summary, this illustrates that, in the inter-
est of a correct statistics but also a maximal number of
realizations, experimental data sets should be subdivided
into windows of sufficient length (covering the relevant
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Fig. 5: (Colour online) Determination of the conjugated vari-
able neglecting the position of the adaptation motors Xa.
(a) In the first step the probability densities are measured for
two small external bias forces, e.g., F (t) = 0 (black line) and
F (t) = F0 (red line). (b) The effective potential. (c) The ap-
proximation from eq. (6) is applied to compute the conjugated
variable z1d(X).

time scales) but not excessive length (which would lead to
a reduced number of trials N).

In our numerical approach, we deal by assumption with
a (two-dimensional) Markovian system. In experiments
on real hairbundles, however, only one of the variables
(the bundle’s tip position, X(t)) is accessible [9]. Even if
one could measure the motor variable, it is uncertain, that
the experimental system is completely Markovian. Put
differently, we cannot be sure that all dynamical variables
are captured and that all fluctuations are sufficiently
well described by white noise (a precondition for the
driven system to be Markovian). How does an omission
of one Markovian variable affect the results when testing
the GFDT?

Neglecting the second variable —a non-
Markovian test case. – In fig. 5 we apply the procedure
of extracting the conjugated variable to the time series
X(t) alone —ignoring the motor variable completely. This
is exactly the situation in the experiment (unless one at-
tempts to extract the hidden variable by other means as
done in [9]).

We first estimate the probability densities for a van-
ishing and a small non-vanishing value of the static bias
force (black and red lines in fig. 5(a), respectively). We
again interpret the logarithm appearing in the defini-
tion of the conjugated variable as an effective potential
(fig. 5(b)); this potential is bistable in accordance to the
bimodal probability density of the relaxation oscillator.
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spontaneous fluctuations and the systems response can be mea-
sured and compared using the FRR. The fluctuation-response
ratio shows moderate deviations from unity (red dashed line),
i.e., the GFDT is somewhat (but not drastically) violated.

We finally take the difference between the two potentials
as the estimate of the derivative, giving us an approxi-
mation z1d(t) = z1d(X(t)) of the true conjugated variable
z(t) = z(X(t),Xa(t)). In the following, the trials of the
hair bundles tip X(t) are transformed into trials of the
approximated conjugated variable z1d(t) and for the lat-
ter variable we can then determine the spontaneous power
spectrum (for F (t) ≡ 0) and the susceptibility (from the
cross-spectrum in the presence of the white-noise stimu-
lus F (t)). In fig. 6 we show the resulting spectra and the
fluctuation-response ratio.

We recall that if we use the deflection variable X(t) itself
in order to compute the FRR, i.e., if we test the equilib-
rium FDR, then this function attains very large and, for
low frequencies, even negative values [2,9]. In contrast
to these strong deviations from unity, the variable z1d(t)
shows only moderate deviations from one, and these are
also only seen, if a sufficiently large averaging ensemble is
used. This is surprising given the drastic reduction from
two to one dimension and the qualitative difference be-
tween those: a first-order differential equation driven by
white Gaussian noise cannot show the oscillatory behavior
that is the hallmark of the stochastic relaxation oscillator
under investigation. Remarkably, the FRR is close to one
for a frequency close to the oscillation frequency of the hair
bundle. The deviations from unity seen in the surround-
ing frequency bands are difficult to interpret. We also note
that the deviations that we see with our simple procedure
are still of the same order of magnitude as the deviations
that were obtained in [9] (typically, 0.5 < FRR < 1.5),
where the authors tried to reconstruct the unobservable
Markovian dimension by different means.

Considering finally the mean-square deviation for the
non-Markovian test case (see fig. 7), we find that it is
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Fig. 7: (Colour online) The mean-square deviation from
eq. (12) for the two-dimensional conjugated variable z(X, Xa)
and the one-dimensional z(X). The two-dimensional conju-
gated variable confirms the GFDT. The neglection of the sec-
ond Markovian variable leads to persistent deviations in the
FRR from one (saturation), which is interpreted as a violation
of the GFDT.

difficult to distinguish between finite-size (measurement
noise) constraints and the effect of non-Markovianity up
to ensemble sizes of N = 104. Only if we go to the ex-
cessive number of ten million realizations, we observe a
saturation in the mean square deviation that we unequiv-
ocally can ascribe to the neglect of the second variable.
Given the intrinsic limitations of doing prolonged experi-
ments on organelles like the hair bundle, such numbers of
trials will rarely be feasible.

Summary. – In the present paper, we have demon-
strated that the generalized fluctuation-dissipation theo-
rem is obeyed by a stochastic biophysical model of the
sensory hair bundle. We have inspected the numerical
effects of limited averaging, finite-amplitude estimates of
the conjugated variable and finite-amplitude of the time-
dependent driving.

For the present model we could, moreover, study,
whether an omission of one of the two variables in the
procedure would lead to a substantial violation of the
generalized fluctuation-dissipation theorem. Such a vio-
lation might be expectable, because considered in only
one dimension, the stochastic relaxation-oscillator–like
dynamics exhibited by the system cannot be in any
way the outcome of a one-dimensional Markovian sys-
tem. However, we found only a moderate deviation of
the fluctuation-response ratio from one. This is in marked
contrast to the strong violation of the equilibrium FDR,
i.e., the same relation when we use the original bundle po-
sition instead of its nonlinear transform. The deviations
are also of the same order of magnitude as the deviations
in the experiments on hair bundles from the bullfrog’s
sacculus once a reconstruction of the hidden second vari-
able was incorporated in the estimate of the fluctuation-
response ratio.

In principle, the GFDT can be used to test the Marko-
vianity of a set of variables. Our results, however, show
that this might be in many cases more difficult than previ-
ously thought and finite-size deviations of different kinds
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might dominate the test results instead of the absence or
presence of the Markov property.
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[18] Dierkes K., Jülicher F. and Lindner B., Eur. Phys.
J. E, 35 (2012) 37.

[19] Clausznitzer D., Lindner B., Jülicher F. and
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