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Hysteresis of dynamos in rotating spherical shell convection
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Bifurcations of dynamos in rotating and buoyancy-driven spherical Rayleigh-Bénard con-
vection in an electrically conducting fluid are investigated numerically. Both nonmagnetic
and magnetic solution branches comprised of rotating waves are traced by path-following
techniques, and their bifurcations and interconnections for different Ekman numbers are de-
termined. In particular, the question of whether the dynamo branches bifurcate super- or sub-
critically and whether a direct link to the primary pure convective states exists is answered.
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I. INTRODUCTION

It is generally accepted that dynamo action is responsible for the existence of large-scale magnetic
fields in diverse astrophysical objects [1–3]; examples are found in the outer core of the earth or in
the convection zone of the sun. A dynamo arises if an electrically conducting fluid flows in such a
way that electromagnetic induction can maintain and enhance a magnetic field.

We study the idealized model consisting of an electrically conducting fluid in a rotating spherical
shell that is buoyancy driven by a radial temperature gradient in the presence of a radially directed
gravity field. This is one of the classical models of the earth’s dynamo, which has been numerically
proven to be able to generate and maintain a global magnetic field [4–12]. Depending on the
parameter values, the dynamo may operate in different regimes [13–15].

One aspect that is believed to be important in the earth’s core is the distinction between so-called
weak- and strong-field dynamos. Weak-field dynamos are those for which the Lorentz force is only
changing the fluid flow relatively little in comparison to the nonmagnetic regime, whereas strong-field
dynamos are those for which the Lorentz force switches the entire system to a completely different
solution branch [16,17]. Multiple solution branches like this are believed to arise in rapidly rotating
systems due to different ways in which the Taylor-Proudman constraint can be broken; see, for
example, the reviews in Refs. [3,18,19].

An almost inevitable consequence of having such multiple solution branches is that the system can
become vulnerable both to runaway field growth, where it suddenly switches from the weak to the
strong branch, and to a so-called dynamo catastrophe, in which the entire dynamo process suddenly
switches off. This latter event can occur when the strong-field branch is so strongly subcritical that
it exists for Rayleigh numbers below the initial onset of the weak-field branch and possibly even
below the initial onset of any convection at all. See, for example, [20,21] where externally imposed
fields were used to study the resulting extreme sensitivity of some of these solution branches.

A proper understanding of these multiple solution branches and where in parameter space
either the runaway field growth or the dynamo catastrophe is likely to occur would therefore
require mapping out the entire bifurcation structure of all branches, ideally even including unstable
solutions connecting different branches. The work presented here is a step in this direction. We
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apply path-following techniques to the magnetohydrodynamic (MHD) equations that allow us to
compute branches of stationary and rotating wave solutions more systematically. In addition to the
time-asymptotic attractors, unstable solutions can also be determined, which helps to elucidate the
bifurcation structure.

Although we are not able to reach rotation rates so rapid that distinct weak- and strong-field
branches emerge, the branches we obtain already exhibit at least some degree of subcritical behavior,
indicating that the bifurcation diagrams are remarkably rich even at modest rotation rates and that
path-following techniques will be crucial in mapping out the full sequence of bifurcations throughout
the entire parameter space. Path-following techniques have already been applied to nonmagnetic
spherical shell convection in different parameter regimes; see, e.g., [22–26].

A benchmark [27,28] dynamo solution for prescribed parameters and initial condition is the
starting point for this work. In the benchmark, a rotating wave (RW) with a fourfold symmetry, which
corresponds to the cyclic Z4 group, is formed as the time-asymptotic magnetic solution. Starting from
this solution, the stable branch of the dynamo can in principle be obtained by simulations via changing
the Rayleigh number in small steps. However, there exists a lowest critical Rayleigh number at which
the dynamo disappears at a finite amplitude, a feature that supports the conjecture that it originates in
a saddle-node bifurcation. The question of whether these dynamos bifurcate sub- or supercritically
from the primary pure convective states is of general interest in the literature [29,30]. Here we
address this question for the benchmark situation corresponding to an Ekman number of Ek = 10−3.

Multistability is commonly observed in hydrodynamic configurations, such as convectively driven
rotating fluid systems. This has been demonstrated for the nonmagnetic spherical shell convection in
Refs. [25,31] and we extend these investigations to dynamos in this work. Multistability of dynamos
has been found hitherto by Simitev and Busse [32] and by Morin [33]. Depending on the control
parameters, there generally exists a large number of qualitatively different solution branches, but
only a few of them are stable and hence observable.

We present the equations and numerical methods in Sec. II. Starting from the benchmark
parameters, Sec. III shows that, in addition to the benchmark solution with a Z4 cyclic symmetry,
two other dynamo branches with Z5 and Z3 symmetry appear to be stable over a finite interval of
the Rayleigh number. In Sec. IV we discuss the bifurcation-theoretic origin of dynamo solutions
at a nearby Ekman number at which a codimension-2 bifurcation generates two convective RW
branches. In Sec. V we compute the magnetic solution branches for different Ekman numbers and
determine their stability ranges. Finally, Sec. VI presents some details concerning the codimension-2
bifurcation to convective RWs.

II. GOVERNING EQUATIONS AND NUMERICAL METHODS

We study Rayleigh-Bénard convection of an electrically conducting fluid in a spherical shell
rotating with a constant angular velocity � = �ez. The fluid is heated from within by imposing
a constant temperature difference �T between inner and outer spheres of radius ri and ro and is
buoyancy driven by the action of a radial directed gravity force. Rescaling the length by the gap size
d, time by the viscous time d2/ν (ν is the kinematic viscosity), temperature by �T , pressure by ρ0ν�

(ρ0 is the reference density), and the magnetic field by
√

ρ0μη� (μ is the magnetic permeability
and η is the magnetic diffusivity), the MHD equations can be written in nondimensional form as

Ek

[
∂u
∂t

+ u · ∇u − ∇2u
]

= −∇p − 2ez × u + Ra T
r
r0

+ 1

Pm
(∇ × B) × B, (1a)

∂ B
∂t

− ∇ × (u × B) = 1

Pm
∇2 B, (1b)

∂T

∂t
+ u · ∇T = 1

Pr
∇2T , (1c)

∇ · u = 0, ∇ · B = 0. (1d)
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The nondimensional parameters in these equations

Ek = ν

d2�
, Ra = α�Tgod

�ν
, Pr = ν

κ
, Pm = ν

η
, χ = ri

ro

(2)

are the Ekman number, a modified Rayleigh number (α is the thermal expansion coefficient), the
Prandtl number (κ is the thermal diffusivity), the magnetic Prandtl number (η is the magnetic
diffusivity) and the radius ratio of the spherical shell. We imposed rigid and thermally perfectly
conducting boundary conditions, corresponding to

u = 0 at r = ri,ro, (3a)

T =
{

1 at r = ri

0 at r = ro,
(3b)

and electrically insulating boundary conditions for the current density j = ∇ × B,

er · j = 0 at r = ri,ro, (4)

on the spherical surfaces (er is the radial unit vector). This last equation provides the condition that
the poloidal magnetic field can be extrapolated as a potential field into the insulating regions.

Following the benchmark study in Ref. [27], in this work we fix Pr = 1, Pm = 5, and the aspect
ratio χ = 0.35 (ro = 20/13 and ri = 7/13 so that ro − ri = 1). Here Ek and Ra are the remaining
control parameters that will be varied in this study. We will use the kinetic and magnetic energy
densities Ekin and Emag, respectively, averaged over the volume Vs of the spherical shell

Ekin = 1

2Vs

∫
Vs

u2d3r, (5a)

Emag = 1

2VsEkPm

∫
Vs

B2d3r, (5b)

as well as a mixed quantity E = Ekin + 0.25Emag as global functions in our bifurcation diagrams.
We choose the arbitrary weighting factor 0.25 in order to be able to present magnetic and pure
convective solution branches in the same bifurcation diagram.

In our numerical treatment we extend the spectral code developed by Hollerbach [34] by
implementing a Newton solver for stationary states and rotating waves in order to trace the
dependence of the solution branches on the Rayleigh or Ekman number. The Newton solver uses
Stokes preconditioning and the matrix-free biconjugate gradient stabilized (BiCGSTAB) algorithm
[35] to solve the linear systems. This approach of using a standard time-stepping code and adapting
it to carry out Newton’s method was originally developed by Mamun and Tuckerman [36] and has
been successfully applied to a variety of fluid problems [22,25,37]. See these references for more a
detailed exposition.

Our numerical spectral discretization uses 36 wave numbers for the spherical harmonics in both
the latitudinal and longitudinal directions and up to a degree of 36 Chebyshev polynomials in the
radial direction. Below we will use the term mode number m in order to refer to the corresponding
longitudinal components in the spectral decomposition of the variables.

III. DYNAMOS AT THE BENCHMARK ROTATION RATE

As stated in Sec. II, the gap size and thermal and magnetic Prandtl numbers have been set to the
benchmark values. The benchmark was carried out for the special Ekman and Rayleigh numbers of
Ek = 0.001 and Ra = 100 (cf. in Refs. [27,28]). Starting from the initial conditions described there,
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FIG. 1. Magnetic RWs for Ek = 0.001 of the m = 3, 4, and 5 dynamos. The star marks the benchmark
example at the m = 4 branch and open circles mark supercritical Hopf bifurcations. Solid (dashed) lines denote
stable (unstable) solutions.

i.e., a quiescent fluid, a temperature field with fourfold azimuthal symmetry and an azimuthally
homogeneous magnetic field, a dynamo with a dominant m = 4 mode evolves as a time-asymptotic
solution. The generated pattern drifts along the azimuthal direction as a rotating wave, i.e., without
changing its shape. One motivation for this work is to study the origin of this solution branch and to
search for further qualitatively different dynamos. Fixing the Ekman number to Ek = 0.001, varying
the Rayleigh number, and using different initial conditions, we found empirically two other dynamo
branches with dominant m = 3 and m = 5 modes. These solutions are apparently stable because
they were obtained as time-asymptotic solutions by simulations. Taking them as initial conditions
for the path-following procedure, the corresponding solution branches, stable and unstable, can be
traced. The resulting bifurcation diagram of the magnetic-field branches is presented in Fig. 1.

Imposing small perturbations and computing growth rates along the branches and then
interpolating in the vicinity of the expected critical points, the stability regions of the magnetic
RWs can be accurately determined. Surprisingly, in particular for the m = 4 and m = 5 solutions,
they are rather narrow. Note that if the branches are traced by simulations ramping the Rayleigh
number in small steps, a very long simulation time is required to reach the asymptotic states. The
growth rates of the unstable modes are very small and hence the stability interval is in practice
often overestimated. This demonstrates the advantage of our approach of first fixing the RWs by the
Newton method and then calculating the leading eigenvalue by interpolating between the growth
rates along the computed branches.

As can be seen in Fig. 1, the three magnetic RWs appear and attain stability via saddle-node
bifurcations. At higher Rayleigh numbers, each of them in turn loses stability via a supercritical
Hopf bifurcation. Hopf bifurcations of RWs in SO(2) equivariant systems generate modulated RWs
(MRWs) (see also [38,39]), which are simply time-periodic solutions in coordinate frames moving
with the speed of the corresponding wave. In addition, they possess a spatiotemporal symmetry that
can be classified by methods of equivariant bifurcation theory [40]. In Ref. [31] we classified the
MRWs that bifurcate from the pure convective RWs for Ek = 0.001, the same value as studied here.
The same convective MRWs exist and are stable for the present problem, but for more details the
reader is referred to [31]. The classification of the spatiotemporal symmetry for the magnetic MRWs
that appear is straightforward, but is outside the scope of this work.
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FIG. 2. Contour plots of the radial velocity for the nonmagnetic solution (a) in the equatorial plane and
(c) in the middle of the spherical gap at Ek = 0.001 and Ra = 100. (b) and (d) Same for the dynamo solution. In
each plot the color is normalized to the maximum (red) and minimum (blue) of the presented field component.

Corresponding to each magnetic branch in Fig. 1 there exists a pure convective branch with the
same cyclic symmetry, not shown here but extensively discussed in Ref. [31] (in particular cf. Fig. 3
contained therein). Since each of the considered magnetic branches is stable over a certain interval
of Ra together with the convective branch of the same symmetry, a high degree of multistability can
be observed.

There is still the question of whether all lower magnetic branches are linked to the primary
convective branches via subcritical bifurcations. We did not detect any magnetic instability along the
stable portions of the convective branches; they become unstable via secondary nonmagnetic Hopf
bifurcations. For m = 4 we were able to compute the whole magnetic branch and found the link
to its primary convective branch at Ra = 139.1. The convective branch is already unstable at this
Rayleigh number. Since the path-following procedure for the low Ekman number of the benchmark
is very time consuming, we will discuss the question how the dynamo solutions are generated and
how they are stabilized in more detail for slightly higher Ekman numbers in the following sections.

In order to give an impression of the convection patterns and to demonstrate the feedback of the
Lorentz force on the flow, Fig. 2 shows contour plots of the radial velocity both for the nonmagnetic
solutions [Figs. 2(a) and 2(c)] and for the dynamo solutions [Figs. 2(b) and 2(d)], in the equatorial
plane and in the middle of the spherical gap, respectively. The bright color (red) corresponds to
strong positive radial velocities and can be interpreted as regions of warm ascending fluid and
dark color (blue) marks regions of cold descending fluid. In Figs. 2(b) and 2(d) one recognizes
the typical structure of convection rolls oriented along the rotation axis. The spiral structure of the
nonmagnetic convection rolls [Figs. 2(a) and 2(c)] is squeezed by the Lorentz force, leading to rolls
in the magnetic situation [Figs. 2(b) and 2(d)], which are less extended along the azimuthal direction.
Since the Lorentz force does not deform the flow substantially (the axial Z4 symmetry is retained)
the stable magnetic solutions can be classified as weak-field dynamos [17].

IV. BIFURCATIONS OF MAGNETIC BRANCHES FROM CONVECTIVE BRANCHES

In the study in Ref. [25] we determined by means of a linear stability analysis that at Ek ≈ 0.001 64
two nonmagnetic RWs with m = 3 and m = 4 bifurcate simultaneously from the conductive base
state. This degenerate situation, in which more than one mode is produced at a bifurcation, is also
referred to as a mode interaction [40–42]. Since codimension-2 bifurcations have a strong impact
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FIG. 3. Convective (primary) and magnetic (secondary) bifurcations of RWs for Ek = 0.001 64. On the
vertical axis, E = Ekin + 0.25 Emag. Thick lines mark the dynamo branches. The inset shows a close-up of the
m = 4 bifurcating magnetic branch.

on the surrounding parameter region, we carry out a more detailed study of the bifurcation scenario
at this Ekman number.

Figure 3 shows both the primary bifurcations leading to the pure convective branches (thin lines)
and the secondary bifurcations generating the dynamo branches (thick lines). In order to represent
the convective and magnetic branches together in one figure the global function on the ordinate axis
is chosen to be the sum of the kinetic and a quarter of the magnetic energy, E = Ekin + 0.25 Emag.

The conductive state becomes unstable at the double Hopf bifurcation of the m = 3 and m = 4
modes at a critical Rayleigh number RadH = 56.87, where two stable nonmagnetic RWs with cyclic
symmetry Z3 and Z4 are created. The kinetic energy should vary linearly with Ra at a supercritical
Hopf bifurcation and this is indeed the case. At RadH, the two branches are tangent and form a
cusp. Both branches are then destabilized by secondary supercritical Hopf bifurcations; the resulting
unstable parts of the branches are drawn as dashed lines in Fig. 3. The attractors emerging beyond that
point are convective MRWs, not depicted here. The next convective instabilities of the conducting
state are the m = 5 mode, which appears at Ra = 62.22 and remains unstable for all Rayleigh
numbers studied, and subsequently the m = 2 mode, which emerges at Ra = 64.08 and is not shown
in Fig. 3.

Corresponding to each of the convective RWs presented in Fig. 3, we have found an associated
magnetic branch with the same cyclic symmetry. Starting from the stable magnetic solutions at
Ek = 0.001 described in the previous section, we increased the Ekman number to EkdH. Starting from
these fields, both the stable and unstable magnetic branches, drawn as thick lines in the bifurcation
diagram, could be traced as functions of the Rayleigh number by means of the path-following scheme.

The magnetic branches appear at their lowest Rayleigh number via saddle-node bifurcations
similar to the situation at Ek = 0.001 in Fig. 1. We have traced the magnetic solutions back to
their original bifurcations from the pure convective branches. Figure 3 shows the bifurcations at
Ra = 126.87 for m = 4 and Ra = 114.09 for m = 5, at which these two dynamos are born. The
connection between the m = 3 dynamo and its original convective counterpart is not captured in
this figure. Unlike for Ek = 0.001 in Fig. 1, here both the convective and magnetic branches of the
m = 5 mode are unstable for all Rayleigh numbers.

An essential feature of this configuration is that the bifurcations to magnetic branches occur at
Rayleigh numbers at which the convective branches are already unstable. However, some of the
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FIG. 4. The m = 4 dynamos for various Ekman numbers, which are labeled at the corresponding branches.
Thick (thin) lines mark stable (unstable) solutions.

magnetic branches eventually are stabilized via turning points, as demonstrated in Fig. 3 for the
m = 4 dynamo branch.

V. DYNAMO GENERATION FOR A VARIETY OF EKMAN NUMBERS

In this section we investigate how the m = 3 and m = 4 dynamos are influenced by the rotation
rates for a variety of Ekman numbers around the codimension-2 point, Ek = 0.001 64, discussed in
the preceding section.

In Fig. 4 the m = 4 dynamo branches are depicted for five Ekman numbers between 0.003 and
0.0015. All of these branches are created via saddle-node bifurcations in a narrow range of Rayleigh
numbers 95.8 < Ra < 97.4, but not all of them have a stable portion.

For the lowest rotation rate Ek = 0.003, the magnetic branch bifurcates at Ra = 116.8
subcritically from the corresponding nonmagnetic convective states with the same cyclic symmetry.
However, this primary convective state is already unstable, with two eigenvalues that have positive
real parts. This situation and the others presented in Fig. 4 are qualitatively similar to the case
extensively discussed in the preceding section (Ek = 0.001 64); that is, the primary convective
branches have already lost their stability via a Hopf bifurcation before the magnetic instability
occurs. For smaller Ekman numbers (Ek � 0.002) the generated magnetic branches are stabilized
at the final saddle-node bifurcations as shown, e.g., for the magnetic branch of the m = 4 mode in
Fig. 3. At Ek = 0.002 the bifurcation creating the magnetic solution is supercritical, with an adjacent
subsequent turning point, after which the magnetic solution has a single positive eigenvalue. This
remaining positive eigenvalue changes sign at the final saddle-node bifurcation, which produces a
stable dynamo.

For the smaller Ekman numbers in Fig. 4, Ek = 0.0018,0.001 64,0.0015, the generation of the
magnetic branches is more subtle. The bifurcations creating the magnetic branches are subcritical,
leading to branches that have three eigenvalues with positive real parts, and two subsequent adjacent
turning points stabilize the branches, so the third and final saddle-node bifurcation at Ra ≈ 95 leads
to stable dynamo solutions. Generally, we observe that under the increase of Ek (decrease of the
rotation rate) the point of the Hopf bifurcation on the upper solution branch in Fig. 4 moves to the
left and the stability interval for magnetic RWs gets shorter until it finally vanishes.
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FIG. 5. The m = 3 dynamo branches for the same Ekman numbers as in Fig. 4.

The bifurcation scenario for the m = 3 magnetic solutions has been computed for the same Ekman
numbers and is presented in Fig. 5. The magnetic branches appear again via saddle-node bifurcations
at comparable Rayleigh numbers, but the bifurcations from the pure convective branches are shifted
to higher Rayleigh numbers. The pure convective branches are all unstable at these points and a
sequence of subsequent adjacent turning points ensures that the magnetic solutions are stabilized by
the final saddle-node bifurcation. Although we did not compute these links explicitly in all cases,
there are strong indications that all the magnetic branches bifurcate from the corresponding pure
convective branches and the bifurcation points are shifted to higher Rayleigh numbers as the Ekman
numbers (rotation rates) decrease (increase).

VI. CODIMENSION-2 BIFURCATION

Section IV described the bifurcation diagram for EkdH = 0.001 64, at which two nonmagnetic
RWs, one with m = 3 and one with m = 4, bifurcate from the conductive state at RadH = 56.87
via a double Hopf bifurcation. Here we discuss this codimension-2 bifurcation in the framework of
normal forms.

Both of the RW branches are stable at onset; this can be explained by the features of the double
Hopf point that are in turn determined by the governing amplitude equations. The SO(2) equivariant
normal form for the complex amplitudes zm and zn of a double Hopf bifurcation up to third order
(cf. [41,43]) is

żm = λmzm − (αm|zm|2 + βm|zn|2)zm, żn = λnzn − (βn|zm|2 + αn|zn|2)zn, (6)

where λ = σ + iω, α, and β are complex functions of Ra and Ek. The real parts of λm and λn

simultaneously vanish at the critical values EkdH and RadH. Numerical results indicate that in our
example the product of real parts of αm and αn is positive. This allows us to discard in the normal
form the quintic terms, which, in this situation, do not influence the topology of the bifurcation
diagram (see also [43–45]).

053902-8



HYSTERESIS OF DYNAMOS IN ROTATING SPHERICAL . . .

Decomposing the complex modes in terms of amplitudes and phases z = reiϕ , Eqs. (6) separate
into four real equations

ṙm = σmrm − (
αR

mr2
m + βR

mr2
n

)
rm, ṙn = σnrn − (

βR
n r2

m + αR
n r2

n

)
rn, (7)

φ̇m = ωm − (
αI

mr2
m + βI

mr2
n

)
, φ̇n = ωn − (

βI
nr2

m + αI
nr

2
n

)
, (8)

Eqs. (7) for the amplitudes and Eqs. (8) for the phases, where the upper indices R and I denote the
real and imaginary parts of the complex coefficients αm and βm. Our numerical simulations show
that both branches of rotating waves are born via supercritical Hopf bifurcations; they are observed
in the parameter region where the respective growth rates σm and σn are positive. Hence αR

m and
αR

n must also be positive and so the variables can be rescaled so that αR
m = αR

n = 1. Solutions with
constant amplitudes (rm,rn) of Eqs. (7) are the pure modes

Pm = (
√

σm,0), Pn = (0,
√

σn), (9)

which correspond to the two branches of rotating waves, and the mixed modes

Pmn =
(√

σm − βR
mσn

1 − βR
mβR

n

,

√
σn − βR

n σm

1 − βR
mβR

n

)
, (10)

which correspond here to unstable modulated rotating waves. The branch Pm is stable for σn < βR
n σm,

whereas Pn is stable for σm < βR
mσn. Thus, if

βR
mβR

n > 1, (11)

then there exists a range βR
n > σn/σm > 1/βR

m over which both pure modes are stable, which has
been shown to be the case by our numerical results. The basins of attraction of these stable branches
are separated by the stable manifold of the mixed mode states, i.e., the modulated rotating waves.
Equation (11) is a lower bound on the interaction coefficients between modes m and n. For the
opposite situation, i.e., unfolding of the double Hopf with a stable mixed mode (modulated rotating
wave) and unstable pure modes (rotating waves) see, e.g., [45] in the case of a driven flow in a
cylinder.

Away from the codimension-2 point, the m = 4 branch bifurcates first for Ek < EkdH, while the
m = 3 branch bifurcates first for Ek > EkdH; both branches exchange their stability at this point. In
each case, the branch that bifurcates for higher Ra is at first unstable and is stabilized in a secondary
bifurcation that produces the mixed-mode branch.

Although we have not computed the values of the normal form coefficients, we have deduced
some relations between them that follow from the dynamics of the configuration we have studied.

VII. CONCLUSION

The purpose of this work has been to study the general solution structure of convective driven
magnetic RWs in spherical shells over a wide range of Ekman numbers systematically by means
of path-following techniques. Corresponding to the benchmark problem with Ek = 0.001, we have
found three stable dynamo branches in the form of cyclically symmetric RWs with one dominant
azimuthal mode, m = 3, 4, or 5. All of them are subcritical in the sense that they first appear (at
their lowest values of Rayleigh number) via saddle-node bifurcations.

We have studied in detail the bifurcations of both the pure convective and the magnetic solutions
near the codimension-2 point at Ek = 0.001 64. At the onset of convection, two nonmagnetic RWs
bifurcate from the conductive state via a double Hopf bifurcation.

Another part of this work has been devoted to the dynamo generation in which both stable
and unstable branches were computed for a variety of Ekman numbers. In the parameter range
considered, it has been found that for each convective branch of the m = 3, 4, and 5 modes, a related
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dynamo with the same symmetry exists. They appear via saddle-node bifurcations and their stability
depends on the rotation rate. Both stable and unstable parts of the branches have been traced and, by
means of this approach, explicit links to the primary pure convection branches have been computed.
In this sense the dynamos bifurcate subcritically and are eventually stabilized over a subsequent
number of turning points.
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