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First published December 4, 2014; doi:10.1152/jn.00354.2014.—The en-
coding and processing of time-dependent signals into sequences of
action potentials of sensory neurons is still a challenging theoret-
ical problem. Although, with some effort, it is possible to quantify
the flow of information in the model-free framework of Shannon’s
information theory, this yields just a single number, the mutual
information rate. This rate does not indicate which aspects of the
stimulus are encoded. Several studies have identified mechanisms
at the cellular and network level leading to low- or high-pass
filtering of information, i.e., the selective coding of slow or fast
stimulus components. However, these findings rely on an approx-
imation, specifically, on the qualitative behavior of the coherence
function, an approximate frequency-resolved measure of informa-
tion flow, whose quality is generally unknown. Here, we develop
an assumption-free method to measure a frequency-resolved infor-
mation rate about a time-dependent Gaussian stimulus. We dem-
onstrate its application for three paradigmatic descriptions of
neural firing: an inhomogeneous Poisson process that carries a
signal in its instantaneous firing rate; an integrator neuron (sto-
chastic integrate-and-fire model) driven by a time-dependent stim-
ulus; and the synchronous spikes fired by two commonly driven
integrator neurons. In agreement with previous coherence-based
estimates, we find that Poisson and integrate-and-fire neurons are
broadband and low-pass filters of information, respectively. The
band-pass information filtering observed in the coherence of syn-
chronous spikes is confirmed by our frequency-resolved informa-
tion measure in some but not all parameter configurations. Our
results also explicitly show how the response-response coherence
can fail as an upper bound on the information rate.

information transmission; information filter; neural variability; sto-
chastic spike trains

SENSORY SYSTEMS SEND INFORMATION about external stimuli to the
brain in the form of spike trains (Rieke et al. 1996; Borst and
Theunissen 1999). Identifying what features of signals are
selected by a neuron or neural population is important for
understanding the functional physiology of any neural circuit.
A basic classification scheme arises in the frequency domain:
how much information does a neuron encode about fast or slow
components of a stimulus? Put differently, does a neuron select
information about high- or low-frequency bands of a time-
dependent signal? Such a form of information filtering has
been studied in the vestibular (Sadeghi et al. 2007; Massot et
al. 2011), auditory (Rieke et al. 1995; Marsat and Pollack
2004), visual (Warland et al. 1997; Reinagel et al. 1999;

Passaglia and Troy 2004), and electrosensory systems (e.g.,
Chacron et al. 2003; Middleton et al. 2009; Neiman and
Russell 2011). Theoretical studies have suggested different
mechanisms for information filtering with respect to frequency
components of stimuli at the cellular (Stein et al. 1972; Oswald
et al. 2004; Vilela and Lindner 2009b; Lindner et al. 2009;
Droste et al. 2013) and the network level (Middleton et al.
2009; Sharafi et al. 2013).

Selecting information with respect to frequency is particu-
larly relevant if a neuron is subject to several sensory stimuli
with power in different frequency bands, as, for instance, in the
electrosensory system of electric fish. Information filtering in
this case means that a neuron preferentially encodes informa-
tion about a specific signal; Chacron et al. (2003) showed how
this selectivity may be a primary sensory computation involved
in distinguishing between communication signals by conspe-
cifics and environmental signals such as generated by prey.
Auditory receptors of grasshoppers encode preferentially lower
frequency components of call-like signals (Machens et al.
2001), and also retinal ganglion cells were shown to act as
low-pass information filters (Warland et al. 1997). In the
vestibular system, sensory afferents can be classified based on
the variability of the resting discharge. Sadeghi et al. (2007)
point out that the distinction between regularly firing and
irregularly firing afferents also corresponds to different infor-
mation-filtering properties: regular afferents do not exhibit
appreciable information filtering with respect to frequency
whereas irregular afferents serve as high-pass information
filters.

These results are based on an approximate measure of
information transfer, the spectral coherence function. For
Gaussian input signals, the coherence function can be used to
extract a lower bound on the mutual information rate (MIR)
(Bialek et al. 1993; Gabbiani 1996). The MIR is a rigorous way
of quantifying the information transmission from a stimulus
into a spike train without assumptions on the nature of the
encoding. Strong et al. (1998) developed a procedure, the
so-called “direct method,” to estimate the MIR from neural
data. Besides some practical issues, large data sets are needed
and the numerical calculation is tricky (Paninski 2003), it does
not indicate whether slow or fast components are preferentially
encoded because it gives just a single number of bits per
second. In contrast, the coherence-based lower bound approx-
imation is a function of frequency. This property makes the
spectral coherence alluring as a measure of information filter-
ing. However, by using the coherence for the detection of
information-filtering effects, researchers have tacitly assumed
that the approximation works for all frequency bands equally
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well (or equally poorly), such that the filtering effects seen in
the coherence are meaningful for the true information transfer.
This assumption has never been previously justified. Moreover,
it is not clear how to define “information filtering” without
resorting to the coherence and the lower bound approximation.
Here, we demonstrate the possibility of measuring the MIR in
a frequency-resolved way. The numerical scheme we propose
is based on the direct method (Strong et al. 1998) but allows us
to determine how the number of bits per second the neuron
transmits is distributed among different frequency bands of a
Gaussian signal.

We apply this scheme to three model systems. We start
with an inhomogeneous Poisson process (a broadband filter
of information) for which we know analytical results (Bi-
alek and Zee 1990) that we can compare to. For this system,
our algorithm gives results in excellent agreement with the
theoretical prediction. We then inspect the information fil-
tering in the stochastic leaky integrate-and-fire (LIF) neu-
ron. The LIF model is widely used in theoretical and
simulation studies as a model for an integrator neuron, and
it was shown that, in the lower bound approximation, it is a
low-pass filter of information (Stein et al. 1972; Vilela and
Lindner 2009b). Our results confirm the qualitative picture
of these previous results, i.e., the LIF model transmits
preferentially low-frequency components of a broadband
stimulus. We then study information filtering in the spikes
fired in synchrony by two uncoupled LIF neurons driven by
a common Gaussian stimulus. This setup represents a simple
yet general cartoon for coincidence detection, an informa-
tion-processing scheme relevant both in sensory systems
detecting temporal information (Carr 1993) and in higher
processing stages (König et al. 1996). In the lower bound
approximation, the synchronous output encodes information
preferentially on an intermediate frequency range, thus
acting as a band-pass filter of information (Middleton et al.
2009; Sharafi et al. 2013). Our findings agree with these
previous results in some but not all parameter settings. We
also compare our results to another frequency-resolved
spectral measure, the response-response (RR) coherence,
often used in the experimental literature (Borst and Theunis-
sen 1999; Passaglia and Troy 2004; Marsat and Pollack
2004; Middleton et al. 2006; Krahe et al. 2008; Middleton et
al. 2009; Massot et al. 2011; Neiman and Russell 2011;
McGillivray et al. 2012) as an upper bound to the mutual
information. However, the RR coherence is a true upper
bound only under very restrictive assumptions on the nature
of the noise in the system and also on the coding scheme
(Borst and Theunissen 1999; Roddey et al. 2000). The use of
the RR coherence as an upper bound was already criticized
by Rozell and Johnson (2004), who illustrated its failure in
a simple model (for another example, see Borst and
Theunissen 1999). Our results show that the RR coherence
can fail as an upper bound on the information transmission
in the case of more realistic neuron models. Finally, we
verify that our findings do not hinge on the particular
choice of the LIF model by comparing it with the biologi-
cally more realistic exponential integrate-and-fire (EIF)
model. The qualitative picture remains unchanged in all
considered cases.

MATERIALS AND METHODS

Established Measures of Information Transmission

Spike trains and spectral measures. We consider a single spike
train x(t) encoding a time-dependent stationary input stimulus s(t). A
particular neural response is completely characterized by specifying
the spike times ti. A convenient mathematical representation of a spike
train x(t) is a sum of Dirac delta functions centered at the spike times
(Gerstner and Kistler 2002):

x�t� � �
i�1

n

��t � ti� . (1)

For the analysis of frequency-resolved information transmission Fou-
rier transforms are typically employed, in particular those of the spike
train and the signal:

x̃� f� � �0

T
dt x�t�e2�ift, s̃� f� � �0

T
dt s�t�e2�ift, (2)

where T is the time window. The frequency-dependent correlations
between signal and spike train are measured by the coherence func-
tion:

Cxs� f� � lim
T→�

�� x̃� f�s̃ * � f���2

��x̃� f��2���s̃� f��2�
, (3)

the angular brackets indicate averaging over repeated trials. The limit
T ¡ � means in practice that the measurement time needs to be
sufficiently long. The spectral coherence is the squared linear corre-
lation coefficient between stimulus and response in the frequency
domain and obeys 0 � Cxs(f) � 1. For Gaussian signals, the spectral
coherence provides a lower bound on the MIR between s(t) and x(t);
see Eq. 7 below. For a linear noiseless system, the coherence is equal
to 1 for all frequencies and thus a perfect transmitter of information.
Smaller values of Cxs(f) can be due to nonlinearities or noise, both of
which are present in neurons.

Information theory and the direct method. The information theory
by Shannon (Shannon 1948; Papoulis and Pillai 2002) has been
applied to quantify in a general and rigorous way the information
transfer from an external stimulus into the neural code (Rieke et al.
1996; Strong et al. 1998; Borst and Theunissen 1999). In this section
we briefly review first the central information measure of information
theory, the MIR, and then the so-called “direct method,” a procedure
to compute the MIR directly from spike trains (Strong et al. 1998).

In any practical application, spike trains are sampled with a finite
time precision. If the time resolution is small enough that at most one
spike falls into a single time bin, we deal with bit sequences or
“words” wi of binary symbols (see Fig. 1A). If the probability of each
word wi is pi, the Shannon entropy of the ensemble of sequences is
defined as

H�x� � ��
i

pilog2 pi, (4)

where the sum runs over all possible words. These and other condi-
tional probabilities used below can be in principle estimated from the
frequencies of occurrence of the words, i.e., the relative frequencies of
all possible bit sequences. If H(x,T) indicates the entropy of a
discretized spike train of length T, then the entropy per unit time in the
long time limit, i.e., the entropy rate of the output spike train, is:

H ' �x� � lim
T→�

H�x, T�
T

. (5)

The MIR between s and x is defined as (Shannon 1948; Papoulis and
Pillai 2002):

I ' �s, x� � H ' �x� � �H ' �x�s��s, (6)

where H=(x|s) is the entropy rate given a particular signal s. Averaging
over all possible signals yields the term �H'�x�s��s, i.e., the entropy rate
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of the output given a frozen stimulus, averaged over the stimulus
ensemble (noise entropy rate).

The basic idea of the direct method is simple: first, the probability
distribution of all possible output bit sequences of length T � L�t is
sampled from a large data set obtained by presenting different input
stimuli (Fig. 1B). This probability distribution is used to estimate the
entropy for different word lengths. The extrapolation for an infinite
time window gives the first term in Eq. 6. To estimate the noise
entropy rate, the same procedure is applied to a data set obtained by
the repeated presentation of the same frozen stimulus, as in Fig. 1C.
This gives H=(x|s), which can be averaged over many frozen stimuli
yielding the noise entropy �H'�x�s��s, i.e., the second term in Eq. 6.

Despite the simplicity of the basic idea, the practical implementa-
tion of the direct method is affected by some technical difficulties and
requires large data sets. Further details on these issues and on our
implementation of this method can be found in the APPENDIX.

Lower bound on the information rate. The direct method requires
large data sets and the analytical calculation of the MIR is in most
cases intractable. Thus, in many studies, a lower bound on the MIR
(Bialek et al. 1993; Gabbiani 1996; Rieke et al. 1996; Borst and
Theunissen 1999), which requires the sole calculation of the second-
order statistics, is used instead:

I 'LB�x, s� � ��0

fc df log2�1 � Cxs� f�� . (7)

This lower bound on the MIR is valid if the statistics of the input
signal are Gaussian and is solely given in terms of the spectral
coherence function in Eq. 3.

The integrand of Eq. 7 is sometimes treated as a MIR density and
plotted as representing the efficiency of information transfer vs.
frequency (see, for example, Rieke et al. 1995; Reinagel et al. 1999;
Passaglia and Troy 2004; Marsat and Pollack 2004; Sadeghi et al.
2007; Chacron et al. 2007; Krahe et al. 2008; Massot et al. 2011;
Deemyad et al. 2012). We will denote this lower bound density with
iLB(f):

iLB� f� � �log2�1 � Cxs� f�� . (8)

Otherwise, the spectral coherence itself is used as a measure of
information transmission at a particular frequency (for example, by
Stein et al. 1972; Chacron et al. 2003; Oswald et al. 2004; Middleton
et al. 2006, 2009, 2011; Lindner et al. 2009; Neiman and Russell
2011; McGillivray et al. 2012; Sharafi et al. 2013). This can be done
because iLB(f) represents just a monotonic deformation of the spectral
coherence and features in the shape of the coherence are reflected in
the shape of iLB(f). The accuracy of this lower bound is unclear for
most spiking neurons (Rozell and Johnson 2004) and in most appli-
cations the use of iLB(f) represents just the only available option. In

particular, it cannot be proven that the goodness of the lower bound
approximation is independent of the frequency. Only in this case
qualitative features in the lower bound would be meaningful for the
true information transfer.

RR coherence. The RR coherence is used in the literature as another
measure of information transmission with respect to frequency. The
RR coherence is defined as the spectral coherence between two
independent responses (indicated with x1 and x2) to the same stimulus:

Cx1x2
� f� � lim

T→�

�� x̃1� f�x̃2
�� f���2

��x̃1� f��2���x̃2� f��2�
, (9)

where the same conventions as in Eq. 3 apply. The RR coherence
quantifies the fraction of the output power spectrum that can be
reconstructed by means of an optimal (possibly nonlinear) model
(Roddey et al. 2000). Note that the RR coherence at a specific
frequency is not only affected by the signal power and the system’s
response at this frequency but also by global features of signal and
response, such as overall signal strength and bandwidth. Furthermore,
it is in general non-zero outside the frequency band of the signal.

Under the restrictive assumptions the RR coherence can be used to
calculate an upper bound on the MIR (Borst and Theunissen 1999):

I ' RR�x, s� � ��0

�
df log2�1 � �Cx1x2

� f�� . (10)

In addition to technical assumptions on the statistics of the noise, this
formula is a true upper bound on the MIR only if the system encodes
information exclusively by the mean conditional response (Borst and
Theunissen 1999). It is not clear how this assumption can be justified
in general (Rozell and Johnson 2004), but because the RR coherence
is used in experimental studies we compare our results to it as well.

Numerical Methods

Generation of input signals. Both the lower bound density formula
and the frequency-resolved MIR, which we introduce in the first part
of RESULTS, require the use of input signals with Gaussian statistics
and a prescribed power spectrum Sss(f). The power spectrum of a
signal indicates how its variance is distributed among frequencies and
is defined as

Sss� f� � lim
T→�

��s̃� f��2�
T

, (11)

where T is the duration of the signal. Signals with prescribed power
spectrum can be generated in the frequency domain and then trans-
formed back into the time domain (Press et al. 2007). For every point
in the frequency domain, the real and imaginary parts of the Fourier

A

B                                            C

Fig. 1. Illustration of the direct method (Strong et al. 1998). A:
a time-dependent signal s(t) is encoded into a spike train,
identified by the spike times {ti}. The encoding is not deter-
ministic, because noise 	(t) is present in general. Spike trains
are converted into binary sequences by introducing a time
discretization. Segments of length T � L�t correspond to
words of length L. In this example, L � 10 and the 210 �
1,024 possible words are labeled from 0 to 1,023, according to
the binary number the string represents. IF, integrate-and-fire.
B: estimation of the spike train entropy. Many stimuli are
presented and the occurrences of each word are counted. A
good estimate of the probability distribution for large L
requires a very large data set. The entropy for a fixed word
length is then calculated from Eq. 4. Finally, the entropy has
to be calculated for increasing word length to calculate the
entropy rate. Finite-size effects are difficult to treat as dis-
cussed in the APPENDIX. C: estimation of the noise entropy.
The same frozen stimulus is presented multiple times. The
entropy rate is then calculated as in B. This procedure has to
be repeated for different frozen signals and then the average
over the entropy rates has to be taken.
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transform of the signal are independently drawn from a Gaussian
distribution with variance T·Sss(f)/2. This ensures that Eq. 11 holds.

Generation of spike trains. Spike trains are represented as discrete
arrays. In entropy calculations, they can be represented as sequences
of any binary symbols (see APPENDIX). In calculation of spectral
measures, a spike is represented as 1/�t, so that the fundamental
property of the delta function is preserved and the time integral of a
spike train gives the spike count. All neural models were implemented
by self-developed C�� routines.

The Poisson neuron. The first considered model is a Poisson
process encoding the signal into its time-dependent firing rate. The
probability of observing k spikes in a short time interval �t is given by
the Poisson distribution e�r(t)�t[r(t)�t]k/k! [assuming that the rate r(t)
does not vary significantly within the time bin]. If r(t)�t �� 1, the
expansion in series can be truncated at the first order so that r(t)�t
represents the probability of observing a spike in a time bin. The
probability of finding more than one spike in a time bin is of higher
order and is neglected. The spike trains can be simulated by generat-
ing a uniformly distributed random number 0 � 	 � 1 at every
simulation time step. If 	 � r(t)�t, a spike is generated.

In our simulations, the instantaneous firing rate was set to r(t) �
r0[1 � 
s(t)] where s(t) is a Gaussian random input signal with zero
average and unit variance and 
 is a nondimensional parameter
controlling the signal strength. To have some resemblance with a
spike train we use the time resolution �t � 1 ms, which is the minimal
duration of an action potential. The MIR in this model turns out to be
the very small difference of two large numbers, and this leads to
problems in the numerical evaluation. Because the MIR is an increas-
ing function of r0, we chose a high but not completely unrealistic
mean firing rate r0 � 100 Hz. This also means that the condition
r(t)�t � 0.1 �� 1 is not completely fulfilled, and we expect to see
small deviations from the known formulas for the Poisson process.
Our model can be considered a Bernoulli process with time-dependent
probability or an inhomogeneous Poisson process with “finite-bin-
size” corrections. For each frequency band, 100 different partial
signals of �2 s were repeated 75 million times.

The stochastic LIF model. In this simple yet widely used model, the
subthreshold dynamics of the membrane potential include only the
voltage-independent membrane leak conductances (for reviews, see
Fourcaud and Brunel 2002 and Burkitt 2006). The subthreshold
dynamics are governed by:

�mv̇ � �v �  � �2Dc�s�t� � �2D�1 � c��n�t� . (12)

The model is complemented by the fire-and-reset rule:

v�t� � vT) 	spike at t

v�t � �abs� � vR

where �abs is the absolute refractory period. The constant  in Eq. 12
sets the resting potential of the model. The independent Gaussian
processes �s(t) and �n(t) denote input signal and the neuronal noise,
respectively. Both �s(t) and �n(t) have zero average, unit noise inten-
sity, and a flat power spectrum; the parameter D sets the overall noise
intensity. While for �s(t) a cutoff frequency of 500 Hz was chosen, for
�n(t) no cutoff frequency was used. The parameter c is constrained to
0 � c � 1 and represents the relative strength of the signal. We use
nondimensional units for the membrane potential v and choose vT � 1 for
the threshold and vR � 0 for the reset point (Vilela and Lindner 2009a).

A stochastic Euler procedure was used to integrate Eq. 12. The
integration time step was set to a hundredth of the membrane time
constant �m, for which the biologically plausible value of 10 ms was
chosen. The integration time step was always kept at 0.1 ms indepen-
dently of the choice of the time resolution for signal and spike trains.
To approximate the stationary state, the initial value for the voltage
was set equal to the last value of the previous trial. For the first trial,
a random value between zero and one was drawn. Although the
stationary voltage distribution is not uniform, the influence of this

initial condition extends only to the first interspike intervals of the first
spike train, where the total number of interspike intervals generated in
a simulation ranges from 108 to 1010. The noise entropy was calcu-
lated by averaging on 105 different partial signals of �2.4 s. Each
signal was repeated 7 to 14 million times, about ten times fewer than
in simulations of the Poisson model.

EIF model. The EIF model (Fourcaud-Trocmé et al. 2003) differs
from the LIF model in the subthreshold dynamics:

�mv̇ � �v � �Texp
 v � 1

�T
� �  � �2Dc�s�t�

� �2D�1 � c��n�t� . (13)

The additional exponential term models the dynamics of sodium
channels. The additional parameter �T indicates the steepness of the
activation, and for �T ¡ 0 the EIF model converges to an LIF model.
We chose �T � 0.1, which is close to the value used by Badel et al.
(2008), to reproduce the voltage traces of a pyramidal cell stimulated
in vitro. In the EIF model, the spike is defined as a divergence of the
voltage variable. In numerical simulations, the integration is inter-
rupted at a finite value vT and reset. We used vT � 2 and repeated each
signal of 3.3 s 12 million times.

Coding by synchrony. Two uncoupled stochastic LIF or EIF models
driven by a shared Gaussian white noise input are simulated as
described in the two previous paragraphs, and then the spikes fired in
synchrony are extracted. To this end, one of the two spike trains was
chosen as a reference spike train and a small coincidence time window
�s was used as the coincidence criterion (Middleton et al. 2009). For
every spike at ti in the reference spike train, a function looks into the
other spike train. If a spike is also present in the time bins within [ti 	
�s/2], a synchronous spike is registered. All spikes used to generate
this synchronous spike are then deleted, so that repeated assignments
of the same spike of the reference spike train are prevented. The size
of �s influences the fraction of spikes of the reference spike train that
is kept in the synchronous output. To have a good trade-off between
coherence height (enhanced by a large �s) and peakedness (enhanced
by a small �s), the standard choice for the simulations was �s � 5 ms.
This value is also not very different from the typical duration of a
postsynaptic potential generated by a fast excitatory synapse (Koch
1999), and it is therefore reasonable as a choice for the integration
timescale for the generation of the synchronous output. For each
frequency band of each simulation, 105 different partial signals
(length 2 to 3 s) were repeated 11 to 15 million times.

Numerical calculation of entropy rates. Entropy rates are calculated
from the spike trains via the direct method (Strong et al. 1998). Further details
on our implementation of this method can be found in the APPENDIX.

RESULTS

A Frequency-Resolved Mutual Information

In the following, we present a scheme to measure information
transmission in neural models driven by a Gaussian stimulus. It
possesses the generality of the direct method, and it is frequency
resolved as the lower bound derived from the spectral coherence.
This scheme is only applicable if the stimulus ensemble is Gauss-
ian, but this limitation is also valid for the lower bound formula
and Gaussian noise stimuli are very frequently used in experimen-
tal and theoretical applications.

Any continuous time function (signal) lasting a time T and
containing frequencies up to a cutoff frequency fc can be repre-
sented by the 2Tfc real-valued coefficients of its decomposition as
a Fourier series. For a Gaussian process, all Fourier components
are statistically independent and the joint distribution factorizes
(Stratonovich 1963) for a sufficiently long time window. The
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entropy of the ensemble is therefore the sum of the entropies of
the distributions of each component. In other words, the frequency
components of the signal can be considered independent sources
of information. By exploiting this property, one can think of the
signal as of a compound of many independent partial signals

s�t� � �
k

sk�t� (14)

and separately measure the MIR between each partial signal
sk(t) and the spike train x(t) while all other partial signals sk=(t)
with k= 
 k are present. To this end, the entropy rate of the
response is computed keeping the vector components belong-
ing to the frequency band [fk � �fBW/2, fk � �fBW/2] of the
partial signal sk(t) frozen, while the rest [those associated with
sk=(t), k= 
 k] is randomly varied (Fig. 2A).

If averaging over many partial signals is performed, a
frequency-dependent partial noise entropy rate is obtained:

Nk � �H ' �x�sk��sk
. (15)

If this partial noise entropy rate is subtracted from the full
entropy rate, we obtain the MIR between the full output and a
subset of the input signal, the frequency band �fBW centered
around fk. To compare this measure to the lower bound density
defined in Eq. 8, we divide the frequency-resolved MIR by the
partial stimulus bandwidth:

ik �
H ' �x� � Nk

�fBW
· (16)

The shorthand name of MIR density will be used in the
following to indicate the MIR per unit frequency Eq. 16, in
analogy to the lower bound density iLB(f). The MIR density ik
is bounded from below by iLB,k, the lower bound density
averaged in the k-th frequency band

iLB,k �
�1

�fBW
�

fk��fBW⁄2

fk��fBW⁄2

df log2�1 � Cxs� f�� . (17)

Note that the range of integration (0, fc) is replaced by the
limits of the k-th frequency band, because outside of it the

partial signal has no power and therefore the SR coherence is
zero by definition. The difference between ik and iLB,k indicates
how good the coherence-based approximation is within the k-th
frequency band. To compare ik to the information rate estimate
based on the RR coherence, we define

iRR,k �
�1

�fBW
�
0

�

df log2�1 � �Cx1x2
� f�� . (18)

Here x1 and x2 are two independent responses to the same
partial signal sk(t) and not to the total signal s(t). The infinite
integration boundary in Eq. 18 reflects the fact that information
about the signal from the k-th frequency band can be nonlin-
early encoded in all frequency bands of the output. Further-
more, note that in particular the integrand of Eq. 18 may
drastically differ from the commonly plotted RR coherence
obtained by using the total signal.

As an illustration of how the method of decomposing the signal
in effective signal and effective noise works in practice, consider
a flat spectrum with cutoff frequency fc � 100 Hz and take the
frequency band 0–20 Hz as effective signal (Fig. 2). In the first
realization all coefficients are randomly generated as described
above. All coefficients of the part of the spectrum chosen as signal
are stored and reused in the next realizations, while the rest of the
Fourier transform is randomly generated from scratch. Four real-
izations of this procedure are plotted in Fig. 2B. The partial iLB,k
signal (common part to all stimuli) is plotted in red.

Both ik and iLB,k will in general depend on �fBW, the
bandwidth of the partial signals, i.e., the frequency resolution
of our method. This �fBW can be adapted to the features shown
by the coherence function. However, practical difficulties limit
�fBW. The principal reason is that �fBW is inversely propor-
tional to the correlation time of the effective signal.1 The signal
correlation time has also an impact on the correlation time of

1 One possible definition of the correlation time is the integral of the squared

normalized correlation function �corr � �
0

�

d�C2��� ⁄ C2�0�, where the autocor-

relation function C(�) � �x�t � ��x�t�� � �x�t��2 is connected to the power
spectrum by the Wiener-Khinchin theorem. With this definition of correlation
time one finds �corr � 1/(2�fBW) for a box-shaped spectrum.

Fig. 2. A Gaussian input signal can be regarded as a superposition of independent frequency components. All components in the considered frequency band [fk �
�fBW/2, fk � �fBW/2] form the partial stimulus sk(t) (repeatedly presented to the system), while the rest (grey) is treated as effective noise (randomly varied at
each trial). A: visualization of the procedure in the frequency domain. B: visualization of the procedure in the time domain. Four realizations of band-limited
Gaussian white noise, cutoff frequency of 100 Hz (black thin lines). The frequency band 0–20 Hz is kept frozen so that the partial signal sk(t) (red thick line)
is repeatedly presented.
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the output spike trains. Longer correlation times in the output
also require longer time windows in the extrapolation step of
the direct method. Longer time windows require larger data
sets and this means that a narrow �fBW causes the computa-
tional cost to grow significantly. A narrow �fBW also implies
that Nk is very close to H=(x), so that the relative error on ik is
larger. Because of these practical limitations, 30 Hz was the
smallest �fBW we used in the simulations. In addition, on the
functional level it is plausible that neural systems in many
cases make only a coarse distinction between fast and slow
stimuli and cannot separate different frequency components
down to the single Hertz.

Frequency-resolvable and synergetic parts of the MIR. In
general, the sum of the single ik�fBW (i.e., the information rates
for the single frequency bands) is not equal to the total MIR I=.
This means that there is a limit to the fraction of the MIR that
can be ascribed to single frequency bands. This fraction de-
pends on the bandwidth of the partial signals

���fBW� �
�k ik�fBW

I '
. (19)

The trivial case of a single frequency band or the nontrivial
case of a Gaussian channel both imply � � 1, i.e., the total
information rate can be resolved with respect to the frequency
bands. In general, for a nonlinear system 0 � � � 1. If � � 1,
the missing information is encoded in the synergy between
different bands and cannot be ascribed to any particular band.
Therefore, the difference I= � I=LB between the total MIR and
the lower bound is made up of two contributions: the intraband
discrepancy between the lower bound and the frequency-
resolved MIR

���fBW� �
�k �ik � iLB,k��fBW

I ' �ILB
' , (20)

and the synergy between bands

���fBW� �
I ' ��k ik�fBW

I ' �ILB
' . (21)

Both � and � are normalized with respect to the difference I=�
I=LB, such that � � � � 1.

Frequency-Resolved Information Transfer of the Poisson
Model

Before studying systems whose nonlinear encoding proper-
ties are unknown, all algorithms were tested by considering a
model for which analytical expressions are available. In the
time coding framework (the whole discretized spike train
identifies the response of the system), a suitable result is a
formula for a Poisson neuron model with firing rate modulated
by Gaussian noise, derived by Bialek and Zee (1990). The
result is expressed as an expansion in series whose leading
term is an integral over the signal power spectrum and coin-
cides with the lower bound in Eq. 7.

Although the Poisson process keeps no memory of its own
history, the time bins forming the system response are in
general correlated because of the signal autocorrelation and
this makes the analytical calculation of entropy rates difficult.
However, if the signal cutoff frequency equals the maximum
resolvable frequency 1/(2�t), the signal is effectively white

and consecutive time steps are completely uncorrelated. In this
special case, the time dependence can be ignored. This reduces
the system to a Gaussian random number with uniform thresh-
old, a simplified version of the setup of Stocks (2000).

Given a particular signal value s, the probability of observ-
ing a spike is p1|s � r0�t(1 � 
s) if s � [�
�1, (1 � r0�t)/(r0�t

)], while p1|s � 0 and p1|s � 1 if s is left or right from this
interval, respectively (see Generation of spike trains). Further-
more, the probability of no spike is p0|s � 1 � p1|s. The MIR
can be then expressed as:

I ' �x, s� �
1

�t �
��

��

ds�p1�slog2
 p1�s

p1
�

� p0�slog2
 p0�s

p0
� e�s2⁄2

�2�
, (22)

where p1 and p0 indicate the probability of the presence or
absence of a spike regardless of the signal value, respectively.
They can be explicitly calculated by using that p0 � �dsp0|s

e�s2 � 2ds

p0 � �
��

�1⁄


ds1 ·
e�s2⁄2

�2�
� �

�1⁄


1�r0�t

r0�t


ds�1 � r0�t�1 � 
s��

e�s2⁄2

�2�
� �

1�r0�t

r0�t


��

ds0 ·
e�s2⁄2

�2�

�
1

2
erfc
 r0�t � 1

�2r0�t
��1 � r0�t� �
1

2
r0�t erfc
 1

�2

�

�
r0�t


�2�

exp��

1

2
1 � r0�t


r0�t �2 � exp��
1

2

�2� (23)

where we used the definition of the complementary error
function (p1 can be determined from p1 � 1 � p0). For an
arbitrary value of the signal strength parameter 
, the MIR Eq.
22 can be integrated numerically. For 
 ¡ 0, the boundaries of
the middle interval of integration go to infinity and we can
expand all logarithms and integrate the resulting series term by
term. To the lowest significant order in 
 one finds:

I ' �x, s� �
r0
2

2 ln 2
1 �
r0�t

�1 � r0�t�� , (24)

which reduces to the result for the Poisson process by Bialek
and Zee (1990) in the limit r0�t ¡ 0 (i.e., if our Bernoulli
process approaches a true Poisson process). While Eqs. 22 and
24 rest on the assumption of a completely white signal, the
derivation by Bialek and Zee (1990) does not make assumptions
on the temporal structure of the signal. Therefore, we expect

ikn

→0

iLB,k (25)

and ik � iLB,k for any weak Gaussian signal.
The situation of a weak signal was considered first. The

signal strength parameter was set to the value of 
 � 0.2. If the
bandwidth of the effective stimulus spans the entire frequency
range up to the Nyquist frequency, we can compare the MIR
calculated via the direct method, which was 3.259 	 0.02
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bits/s, to the value resulting from numerical evaluation of the
analytical expression Eq. 22 of 3.269 bits/s. The two values are
thus consistent with each other.

The signal was then split in 10 partial signals to measure the
MIR in a frequency-resolved way. In Fig. 3A the relevant
information measures are plotted. In this case iRR,k was omitted
because it perfectly overlaps with iLB,k. It can be seen that ik �
iLB,k as expected. In particular, we see that the Poisson neuron
does not introduce any information filtering; all frequency
components are equally well encoded and we can regard the
Poisson process as a broadband information filter.

If the MIRs of the separate frequency bands are added up,
we obtain the value �kik�fBW � 3.233 	 0.024 bits/s, which is
slightly lower than the total MIR found in the previous simu-
lation, which used the whole frequency range as bandwidth of
the effective stimulus. Discussion of this is postponed to the
case of a stronger signal, in which this effect is more evident.

Another simulation was performed with a Gaussian “col-
ored” noise: a modified Ornstein-Uhlenbeck process with a
sharp cutoff at f � fc, whose power spectrum is

Sss� f� � �
2D

1 � �2��f�2 if� f� � fc

0 if� f� � fc

. (26)

Here � is the correlation time (which was set to 1 ms) and D is the
noise intensity, which was set equal to ��·[2 arctan(2fc��)]�1 so
that s(t) has unit variance. In this case, the low-pass shape of the
signal power spectrum is also reflected by iLB(f) (Fig. 3B). For
both simulations it can be seen that ik � iLB,k within the error bars
as expected from Eq. 25.

A stronger white stimulus (
 � 0.8) is used in the next
simulation while the other parameters are unchanged. Integra-
tion of the exact expression Eq. 22 gave a value of 47.72 bits/s
for the total MIR, which agrees with the result of the numerical
simulation 47.65 	 0.18 bits/s. Integration of the lower bound
yields 40.73 bits/s. The variance of the total signal is large

(0.64), and the lower bound is not as tight as in the previous
case.

Next, the stimulus was split in five frequency bands. For
each of the partial signals, the lower bound is much tighter than
for the global one (not shown). Also, in this case the sum of the
MIRs of the single frequency bands is smaller than the MIR of
the total signal, a synergetic effect: other frequency bands are
always present, but using them as signal rather than as noise
increases the information transmission rate beyond the sum of
the signal components, even if these signal components are
independent (and their entropy is additive). This can be ex-
plained by noting that the unconditioned signal components are
independent but not necessarily independent if conditioned on
the spike train, as we show below. The MIR between the signal
s and the spike train x can be defined in three ways (Shannon
1948; Papoulis and Pillai 2002):

I ' �s, x� � H ' �x� � �H ' �x�s��s � H ' �s� � H ' �x�
� H ' �s, x� � H ' �s� � �H ' �s�x��x, (27)

The direct method is based on the first definition used until this
point. However, in the following discussion of synergetic
effects, it is more convenient to use the third definition in Eq.
27: the MIR defined as the entropy of the signal minus the
entropy rate of the signal given a spike train, averaged over
spike trains. Consider now the situation of a signal that can be
decomposed into just two partial signals sA and sB, so that s �
(sA; sB). In this case, the MIR between the signal and the output
can be written as:

I ' �x, s� � H ' ��sA;sB�� � �H ' ��sA;sB��x��x � H ' �sA�
� H ' �sB� � �H ' ��sA;sB��x��x (28)

where in the second equality we used that sA and sB are
independent. Nothing can be said in general about the condi-
tional independence, so that from the general property of the
joint entropy (Shannon 1948) it follows

�H ' ��sA;sB��x��x � �H ' �sA�x��x � �H ' �sB�x��x

and inserting this into Eq. 28 yields

I ' �x, s� � I ' �x, sA� � I ' �x, sB� . (29)

This effect is visualized in Fig. 4A. The area of each colored
bar represents the MIR of a single signal of bandwidth ranging
from 0 to �fBW, while the dashed bars are the MIRs for each
partial signal of bandwidth 100 Hz. It is clear that the area of
each colored signal is larger than the sum of the partial signals
in the same frequency range. These results also show why the
MIR density should be intended just as a shorthand name for
MIR per unit frequency, because it lacks the fundamental
property of a true density. If the data of Fig. 4A are integrated
with respect to frequency, the data shown in Fig. 4B are
obtained. It can be seen that the MIR of each colored signal
(blue squares) grows more rapidly than the cumulative sum of
each partial signal (red circles), which remains very close to
the lower bound (black crosses).

Frequency-Resolved Information Transfer of the
Integrate-and-Fire Model

We now turn to the simple but biophysically more realistic
LIF model. First numerical calculations of the coherence func-
tion for a LIF model stimulated by white Gaussian noise go
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Fig. 3. The results for a Poisson neuron confirm the predictions of the theory.
In A, the signal has a flat spectrum while in B the signal power is low-pass
filtered and there is a sharp cutoff at fc. In both cases, the mutual information
rate (MIR) density is equal to the lower bound, as expected in case of a weak
simulation (see text). Parameters: A: 
 � 0.2, fc � 500 Hz; B: 
 � 0.2, fc �
300 Hz, � � 1 ms, D � 1.45  10�3 s.
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back to the 1970s (Stein et al. 1972); for a more recent study,
see Vilela and Lindner (2009b). These studies showed that the
coherence, and hence iLB(f), attain a global maximum at zero
frequency. This seems to be so regardless of whether the
neuron fires irregularly like a Poisson process or regularly like
a pacemaker cell. To test if this is also true for the frequency-
resolved MIR, we use extensive simulations of the model
(typically 1010 spikes or more are generated) to determine the
information rate of each partial signal of bandwidth �fBW � 50
Hz. We first consider a bias current  � 1 such that the
deterministic model (D � 0) would not fire at all and in the
stochastic model, consequently, all spikes are elicited by fluc-
tuations (noise-driven regime).

The results of the simulations in Fig. 5A1 show that ik �
iLB,k for moderate signal intensity, indicating that the lower
bound approximation works very well. In the simulation shown
in Fig. 5A2, the firing regime is the same, but the signal is very
strong. It can be seen that at low frequencies the information
transfer is �20% larger than the lower bound, while at high
frequencies the match is still close. In particular, a low-pass
information filtering is still observed, being even more pro-
nounced than in the lower bound approximation. Considering
the high signal-to-noise ratio in the input (c � 0.98), the
agreement of the lower bound with the true frequency-resolved
MIR is still surprisingly good. The RR estimate of the infor-
mation rate, iRR,k, shows in all cases the same low-pass shape
as the lower bound density iLB,k. For moderate signal strength,
iRR,k is close to the lower bound, whereas for strong signal
amplitude it exceeds both the lower bound and the true MIR
density, specifically at low frequencies.

Next, we study the effects of changing the time resolution
used to sample the spike train and the input signal (not the time
step used in the simulation of the neuron, which was always
kept constant in all simulations). In Fig. 5B1 the sampling rate
for spike trains and signals was �t � 1 ms, whereas in Fig. 5B2

the sampling rate was set to �t � 2 ms. To prevent more than
one spike to fall into the same time bin, a refractory period
�abs � 2 ms was introduced in both simulations; in addition, we
chose a value of the signal strength that was in between the
values used in Fig. 5, A1 and A2. On closer inspection it can be
seen that both lower bound and MIR density are slightly lower
for the coarser time resolution (Fig. 5B2), but the two plots in
Fig. 5, B1 and B2, are barely distinguishable. This suggests that
for this parameter choice the system is making little use of the
timing precision on the millisecond scale. The plot in Fig. 5, B1
and B2, also serves a consistency check: doubling the time
resolution allows to use time windows for the extrapolation to
infinite time, which is also almost twice as large. The fact that
the results are consistent with each other represents a further
control on the validity of the used numerical procedure.

Another question to explore is whether an interaction be-
tween different subsignals is present in the LIF model, similar
to the one we observed in the case of the Poisson neuron. In
Fig. 6, A1 and B1, the bandwidth of one subsignal is progres-
sively increased from 50 to 300 Hz. Other parameters are as in
Fig. 5, A1 and A2, respectively. The MIR of this single signal
is plotted with blue squares as a function of its bandwidth
�fBW. The red circles represent the cumulative sum of the MIR
of the subsignals covering the same frequency range (from 0 to
�fBW). This can be obtained from the integration of the MIR
density ik in Fig. 5, A1 and A2, respectively. The black crosses
correspond to the integral of iLB(f) in the range from 0 to �fBW.
For a moderate signal (Fig. 6A1), the synergetic effects are
very small and all curves are very close to each other. For a
strong signal (Fig. 6B1), the synergetic effects become evident:
the total MIR (blue squares) grows more rapidly than the
cumulative sum of the MIR (red circles). The difference
between the lower bound and the cumulative frequency-re-
solved MIR is mostly due to the lowest frequency band. Note
that the ratio between the total MIR and the lower bound for
the total range up to 300 Hz is �1.4, a value on the same order
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Fig. 5. Information transmission in a single leaky integrate-and-fire (LIF)
model in the subthreshold regime is well described by the coherence-based
approximation and does not depend much on time resolution. A1: weak signal.
A2: strong signal. B1: intermediate signal strength, fine time resolution. B2:
same as B1 with coarser time resolution. Parameters:  � 0.75; A1 and A2:
�abs � 0 ms; B1 and B2: �abs � 2 ms; A1: D � 6  10�4 s; A2: D � 3.3 
10�3 s; B1 and B2: D � 7.6  10�4 s; A1: c � 0.34; A2: c � 0.98; B1 and
B2: c � 0.53; A1, A2, and B1: �t � 1 ms; B2: �t � 2 ms. Error bars are within
line thickness.
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Fig. 4. Illustration of how the interaction between different bands carries
synergetic information. A: MIR density ik for each partial signal (black dashed
line) of bandwidth 100 Hz and for a single band spanning the frequency range
up to the k-th band (boxes of various colors). Each single band has an area (the
MIR) that is larger than the sum of the areas of the partial signals within the
same frequency band. B: squares represent the MIR for a single band spanning
the frequency range up to the k-th band (integral of the boxes of various colors
from A). Circles represent the cumulative sum of the MIR for single partial
signals of bandwidth 100 Hz in the same frequency range (integrated MIR
from the dashed boxes in A). Parameters: 
 � 0.8, fc � 500 Hz.
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of magnitude observed in experimental studies (see Table 2 in
Aldworth et al. 2011).

An important issue is how much of the total MIR can be
resolved with respect to frequency. This fraction �, defined in
Eq. 19, is shown in Fig. 6, A2 and B2, by diamonds. In the case
of a moderate signal (Fig. 6A2) the fraction is always above
97% (� � 0.97). For a strong signal (Fig. 6B2), synergy is
higher and � drops. Still, the fraction of frequency-resolvable
MIR is always larger than 3/4 and is �80% for �fBW � 50 Hz
(the case plotted in Fig. 5A2). The difference between the full
MIR I= and the full lower bound ILB

' consists of two contribu-
tions: on the one hand the sum of the differences between the
frequency-resolved MI density ik and the lower bound iLB,k, on
the other hand the synergetic information between frequency
bands. We express these two contributions in terms of � and �,
defined in Eqs. 20 and in 21 and plotted in Fig. 6, A2 and B2,
by circles and squares, respectively. For small frequency band-
width and strong signal (Fig. 6B2), � seems to tend to zero (for
weak stimuli, used in Fig. 6A2 the values of � and � at small
�fBW are unreliable and therefore not shown). This would
imply that for this model and in this limit the frequency-
resolvable part of the MIR converges to the lower bound and
the discrepancy between the lower bound and the total MIR is
solely due to synergetic information. We note that the variance
of the partial signal decreases with decreasing �fBW and thus in
the limit �fBW ¡ 0 the assumptions of linear response theory
for the transmission of one partial signal are perfectly matched
(Vilela and Lindner 2009b) (the transmission of the total
nonweak stimulus is still nonlinear).

So far, we have only considered the noise-induced firing
regime of the stochastic LIF model. Results in the suprathresh-
old regime ( � 1) are very similar to the above findings. We
have tested two different values of the baseline current  � 1.3
and  � 2 and two values of the relative signal strength c �
0.34 and c � 0.98. For all inspected parameter sets, the lower
bound yields a very reasonable approximation to the frequency-

resolvable MIR (Fig. 7). In particular, we recover the low-pass
information filtering found in the lower bound approximation.
The RR estimate of the information rate, iRR,k, shows a very
similar behavior to the subthreshold case, being close to both
MIR density and to the lower bound.

To summarize the results of this section, the performed
simulations suggest that the linear encoding hypothesis and the
lower bound approximation are reasonable for the LIF model
driven by white Gaussian noise even in the case of a nonweak
stimulus. In particular, the fraction of frequency-resolvable
MIR is high and the model can be regarded as a low-pass filter
of information. The RR estimate of the information rate is
found to be close to the lower bound density and to the MIR.
This suggests that a single LIF neuron encodes most of the
information about the stimulus into its instantaneous firing rate.

Frequency-Resolved Information Transfer for the
Synchronous Output of Two Neurons

Coincident, i.e., synchronous, spikes emitted by distinct
neurons in a population are important in sensory systems
detecting temporal information (Carr 1993) and seem to play
an important role also in higher processing stages in the cortex
(Koenig et al. 1996). Hence, in our context it is of interest how
information with respect to frequency is encoded in the syn-
chronous spikes of several neurons. An intriguing information-
filtering effect has been observed by Middleton et al. (2009) for
a population of neurons receiving a common stimulus: the
coherence between the common stimulus and the spikes that
neurons fire in synchrony is suppressed at low frequencies. The
coherence and iLB(f) attain then a peak at a nonzero frequency
fmax, and this means that, in the lower bound approximation,
these synchronous spikes seem to encode preferentially infor-
mation about higher frequency bands (a band-pass filter of
information). We would like to explore if such a peak is also
observed if the frequency-resolved MIR density is used as
information measure. To this end, we study the simplest setup
mimicking a postsynaptic cell acting as a coincidence detector
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Fig. 7. Information filtering in the suprathreshold regime of a single LIF does
not differ qualitatively from that in the subthreshold regime. A1: weak signal,
lower baseline current. A2: strong signal, lower baseline current. B1: weak
signal, higher baseline current. B2: strong signal, higher baseline current.
Parameters: �abs � 2 ms; A1 and A2:  � 1.3; B1 and B2:  � 2.0; A1 and B1:
D � 6  10�4 s; A2 and B2: D � 3.3  10�3 s; A1 and B1: c � 0.34; A2 and
B2: c � 0.98.
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D � 6  10�4 s; B: D � 3.3  10�3 s; A: c � 0.34; B: c � 0.98.
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rather than an input integrator: the synchronous spikes of two
uncoupled LIF units sharing the same input stimulus. A theory
explaining the band-pass filtering observed in the spectral
coherence of such a system has been put forward by Sharafi et
al. (2013).

If no refractory period is included in the model, the optimal
choice for  and D is a moderately strong baseline current and
a noise intensity that is smaller but still comparable to the value
used in the simulation of the last section.

The bandwidth of the partial signals was set to the value of
�fBW � 30 Hz, because a larger bandwidth would not allow to
resolve the peak. This bandwidth is the lowest value compat-
ible with the technical restrictions (see Numerical Methods). In
Fig. 8A, the results of the simulation for a weak (Fig. 8A1) and
a moderate signal (Fig. 8A2) are shown. A much stronger
signal was not considered, because it would cause the peak in
iLB(f) to disappear, as argued by Sharafi et al. (2013). In spite
of the small signal variance, the MIR density is significantly
above the lower bound in the frequency range 0–30 Hz for
both signal intensities. In the other frequency bands, the ik and
iLB,k are close. Differently from what was observed in all
simulations of a single LIF model, the profile of the MIR
density in Fig. 8A2 displays a qualitative difference from the
lower bound, namely a low-pass information filtering (no
peak). For the small intensity used for the data in Fig. 8A1, a
weak maximum is still present but the difference between the
first two bins is within the respective error bars. Interestingly,
the MIR in the lower frequency bands exceeds iRR,k. This
offers an example of how this spectral measure is not a general
upper bound on the information transfer.

Next, we explore the effect of adding an absolute refractory
period to the dynamics of the two LIF neurons. An absolute
refractory period also automatically prevents the rare, but
possible, event of more than one spike falling into the same
time bin and allows us to change the time resolution �t. In Fig.
8, B1 and B2, the results of the first simulation including a
refractory period are shown. In Fig. 8, B1 and B2, a time

resolution of 1 or 2 ms is used, respectively. The results look
different from those of Fig. 8, A1 and A2, because here a
definite peak is observed in the MIR density for a moderate
signal intensity, apparently due to the nonvanishing absolute
refractory period. Most information is encoded in the band of
30–60 Hz compared with any other single band. The informa-
tion-filtering effect, which was essentially absent for �abs � 0
in Fig. 8, A1 and A2, is now apparent but it is less sharp than
in the lower bound approximation. The similarity with the
previous plots is that the difference between ik and iLB,k is
largest for the low-frequency bands. In Fig. 8A2, this differ-
ence was large enough to cause the peak to disappear, while
here it is just smoothed. In the lowest frequency band, the
actual information transfer is greater than what is predicted by
the RR estimate, which follows the lower bound rather closely
in this case. Doubling the time step has a small effect on the
overall information transmission, as already seen for the single
LIF model. Comparing Fig. 8, B1 and B2, shows that both ik
and iLB,k undergo a small global decrease but the relative
difference between the two quantities is almost unchanged.

Simulations of the system reveal that for �abs � 0, a more
pronounced peak in iLB(f) is observed for a higher baseline
current . However, the results in Fig. 9, A1 and A2, reveal that
this is not the case for the MIR density ik but quite to the
contrary there is no peak in ik at all. In Fig. 9, A1 and A2, we
display two simulation results with  � 2, which differ only in
the time resolution �t. In both cases the frequency-resolved
MIR density decreases monotonically. Hence, the band-pass
filtering effect is lost in this regime, and this finding does not
change by varying the temporal resolution. The different time
resolution causes a global decrease of the information trans-
mission. This decrease is larger than for a single LIF neuron
(cf. the red histogram in the first frequency bins of Fig. 5, B1
and B2), suggesting that the time precision is more important in
this encoding scheme. The results of these simulations dem-
onstrate that the presence of an absolute refractory period
enhances the suppression of the coherence at low frequencies
but is not always sufficient to cause a peak in the MIR density
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ik. The intensity of the baseline current also plays a role but in
a way that is difficult to interpret. The RR estimate looks
similar to the lower bound density and is strongly exceeded by
the MIR density in the lower frequency range. To find out if the
MIR density converges to the lower bound for decreasing
signal strength, simulations for both cases of  � 1.3 and  �
2.0 were carried out with a weaker stimulus and the results are
shown in Fig. 9, B1 and B2. Figure 9B1 displays the results for
the lower suprathreshold baseline current ( � 1.3). While the
qualitative picture is unchanged, the relative difference be-
tween ik and iLB,k in the lowest frequency band decreases to
slightly less than one-half of what is observed in Fig. 8B1. A
further study of this slow convergence would require a further
decrease in the signal strength, which would bring information
rates to values too small to be reliably measured in this setup
and the question of the convergence to the lower bound
remains open. Figure 9B2 shows the results for the case of a
higher baseline current ( � 2.0 as in Fig. 9A1) for the very
weak stimulus. The low-pass behavior of the MIR density is
still observed, and the relative difference between ik and iLB,k
in the lowest frequency band is even larger than for the
stronger signal. This suggests that the MIR density ik might not
converge to the lower bound iLB,k even for smaller and smaller
signal intensity. In both cases, iRR,k is close to the lower bound
density.

The plots in Fig. 10 summarize the synergetic effects in the
two parameters choices of Figs. 8B1 and 9A1. In both cases,
synergy between bands causes the MIR for a partial signal and
the cumulative sum of the contributions of single bands of
bandwidth 30 Hz to fork (Fig. 10A1 for  � 1.3 and Fig. 10B1
for  � 2.0). The lower bound, plotted with black crosses,
performs better for the case of the smaller baseline current
(Fig. 10A1). The ratio between MIR and the lower bound for
the total signal is 1.2 (1.6) in the case of the smaller (higher)
baseline current (cf. Fig. 10, A1 and B1). Figure 10, A2 and B2,
shows that the fraction of frequency-resolvable MIR is large in
both cases (�90% even for the finest frequency resolution) and
that the synergy between partial signals is lower than in the

case of a single LIF model for both parameter choices. The
plots also indicate that in this system � might not vanish, not
even in the limit of very small bandwidth, especially in the case
of the high baseline current (Fig. 10B2), i.e., that the lower
bound approximation would not be exact even in the limit of
weak signals.

The results of this subsection for the encoding by synchro-
nous spikes are not easy to decipher, because the information-
filtering properties of the system depend on the details. For
high values of the baseline current , a peak in the MIR density
at nonvanishing frequency did not occur, while for a smaller
value of , the peaks can be observed. On the one hand, it is
not completely unexpected that significant deviations from the
lower bound are observed, because the operation of sorting out
spikes from one spike train by looking at another one is
strongly nonlinear. On the other hand, this result is puzzling,
because it is not clear what is the difference between two
different values of a suprathreshold baseline current. To un-
derstand this behavior, further investigations are needed, but
extensive parameter scans are not a practicable option because
of the computational cost of every single simulation. It is
also difficult to cover all parameter combinations because of
the practical restrictions imposed by the correlation time of the
system: high firing rates and small noise intensities cause the
correlation time to grow beyond the values that are tractable in
our algorithm.

Frequency-Resolved Information Transfer for the EIF Model

To check if our findings hinge on the particular choice of the
LIF model, we performed extensive simulations of the EIF
model. In Fig. 11, A1 and A2, we show the results for a single
EIF neuron in the fluctuation-driven regime, that is for sub-
threshold values of the baseline current. In Fig. 11A1 (Fig.
11A2), the input signal has moderate (strong) intensity. As in
the case of the single LIF model, the lower bound approxima-
tion is very good and the frequency-resolved MIR exceeds the
lower bound approximation at lower frequencies in the case of
a strong signal. Results in the tonic firing regime (with baseline
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current larger than the spike initiation threshold) are similar to
the corresponding results for the LIF model: the information
filtering is low-pass and the lower bound is very close to the
frequency-resolved MIR (not shown).

In Fig, 11, B1 and B2, we plot the results for the synchro-
nous spikes of two EIF models driven by a common signal.
The baseline currents were adjusted to obtain values of the
synchronous firing rate (�27 Hz in Fig. 11B1; �64 Hz in Fig.
11B2) and coefficient of variation (CV; �0.9) similar to the
values of Fig. 8B1 (rate �28 Hz, CV �0.8) and Fig. 9A1 (�28
Hz, CV �0.8), respectively. As for the LIF model, the lower
frequencies are encoded nonlinearly. In the case of higher
firing rate, the excess of information is large enough to make
the frequency-resolved MIR look qualitatively different from
the lower bound approximation (low pass instead of band
pass).

DISCUSSION

In this study we have developed a method to resolve the
information transmission of time-dependent Gaussian signals
through neural systems with respect to their frequency. Gauss-
ian noise stimuli have statistically independent Fourier com-
ponents and can thus be regarded as a superposition of inde-
pendent information sources. More specifically, for a signal
with cutoff frequency fc and a desired frequency resolution
�fBW, we have fc/�fBW such sources. For each of these sources,
we can separately measure the mutual information with the
output of the neural system (e.g., a spike train) and ascribe a
certain fraction of the full MIR to the specific frequency band.
We compared this frequency-resolvable part of the information
rate to the predictions of the lower bound, which is based on
the spectral coherence function. In particular, we tested
whether the information transmission is still maximal where
the coherence is maximal, i.e., whether the lower bound mea-
sure at least qualitatively captures the information-filtering
character of the respective neuron or neural system. Further,
because we deal in general with nonlinear systems, only a
certain fraction of the total MIR can be actually frequency
resolved. We quantified the remaining synergetic part of the
total MIR that accounts for the difference between the full MIR
and the sum of MIR contributions from single frequency
bands. We also compared our results to the predictions based
on the square root of the RR coherence, which yields an upper
bound to the MIR under restrictive assumptions (Borst and
Theunissen 1999). Some of these assumptions are technical
(description of the effective noise in the system as Gaussian,
additive, and independent of the stimulus) and can be in
principle verified for the particular data set under investigation.
The most restrictive assumption, however, is the encoding
hypothesis, i.e., the premise that the information about the
input stimulus is exclusively encoded into the time-dependent
firing rate. It is not clear how this can be justified unless the
way the system encodes information is known a priori.

Let us first of all emphasize that despite the synergetic (not
frequency-resolvable) part of the information transfer, in all
cases considered here, the notion of frequency resolution still
represents a useful concept. The fraction of frequency-resolv-
able MIR for weak stimuli does not fall below 90% (see Figs.
6A2 and 10, A2 and B2) and even in the case of strong
stimulation it is rarely below 80% (see Fig. 6B2) of the total

MIR. In addition, this fraction also depends on �fBW, the
frequency resolution of the total MIR (the width of the result-
ing frequency bands). The question arises what are meaningful
values for this width of the frequency band for specific sensory
systems. As a proxy for a reasonable frequency resolution, we
can take the scale over which the coherence displays significant
changes. In the auditory systems of the bullfrog (Rieke et al.
1995) and of the cricket (Marsat and Pollack 2004) and in the
visual system of the cat (Passaglia and Troy 2004), for in-
stance, it has been found that the coherence varies over a few
tens of hertz, suggesting a frequency resolution similar to the
one we used in this article. However, there are also systems in
which the lower bound estimate varies over only a few hertz
(Massot et al. 2011).

The choice of the frequency resolution gains additional
importance in the special situation of different frequency bands
being associated with distinct sensory stimuli. A popular bio-
logical model system in this respect is the electrosensory
system of weakly electric fish (Kreiman et al. 2000; Krahe et
al. 2008). Behaviorally relevant prey signals have most power
below 20 Hz (Fotowat et al. 2013) while the likewise important
communication stimuli by other fish are distributed over a
frequency range of 20–120 Hz (Stamper et al. 2010). To
estimate whether a certain upstream neuron in the electrosen-
sory system encodes preferentially information of prey or
communication signals, it would be thus sufficient to look at
the MIR with a frequency resolution of 20 Hz.

The Poisson neuron was considered in the first place, be-
cause it is the only point process for which limited analytical
results are available. The numerical results confirmed both the
validity of the procedure and the practical limitations to its
applicability (the convergence of the biased estimators is slow
and the time scales of the system autocorrelations have to be
short-ranged). Although the Poisson neuron can encode signals
only in the time-dependent firing rate by definition, it showed
a nontrivial interaction between frequencies: despite the fact
that the information of the source (the entropy of the Gaussian
ensemble) is additive, the information transfer of the total
signal is strictly larger than the sum of its components.

Our results for the single white-noise driven LIF neuron
have shown for the first time that in the case of a weak signal
the lower bound on the MIR is a tight bound. This implies that
the coherence function of this popular neuron model gives a
fairly complete picture of the information transfer for small
stimulus amplitudes. Our results confirm, in particular, that the
LIF neuron is a low-pass filter of information, i.e., that most
information is encoded about low-frequency components of the
stimulus. Stimuli beyond the weak-stimulus paradigm seem to
add preferentially information at low frequencies for a single
LIF neuron and thus to strengthen the low-pass filtering of
information. How to calculate this nonlinear part of the infor-
mation rate analytically is still an open problem.

Although our results for the single LIF model have con-
firmed the kind of information filter that was predicted by the
lower bound estimate, we have also found counter examples.
For the simplest case of a synchrony code, a maximum of the
coherence at a nonvanishing frequency fmax does not necessar-
ily imply but also does not exclude that in a frequency band
around fmax, the frequency-resolved MIR is maximal. Varying
the baseline current makes the system switch from a frequency-
selective encoding to a broader low-pass information filtering.
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Because measuring the frequency-resolved MIR is computa-
tionally very expensive, extensive parameter scans could not
be easily performed and we could neither investigate the exact
point at which this transition occurs nor how it varies with
other system parameters. However, our results on the informa-
tion filtering by synchrony suggest that caution must be used
when interpreting results that are solely based on the coherence
function and the lower bound estimate. One should also be
careful in using the square root of the RR coherence as an
information transmission measure. While the risk of using this
measure as a general upper bound has been already pointed out
by means of a very simple model (Rozell and Johnson 2004),
our results give an explicit example of how the RR coherence
can fail as an upper bound in a more realistic setup. All our
findings are robust with respect to the substitution of the LIF
model with the EIF model both in the case of the single cell and
the spikes fired in synchrony.

Our result on the information filtering by synchrony has only
a preliminary character in other respects. First of all, the main
application of such synchrony code is certainly the firing of a
postsynpatic cell that acts as a coincidence detector, i.e., that
fires only if stimulated almost simultaneously by n presynaptic
cells. Here we have studied only the simplest yet not most
realistic case of n � 2. Although we found band-pass infor-
mation filtering in the lower bound estimate and (for some
parameter sets) also in the frequency resolved MIR, the fre-
quency-dependent differences were only modest. In other
words, the part of the total information rate that makes up the
difference between low-pass filter and high-pass filter is in the
considered case rather small. However, this does not neutralize
the fundamental importance of verifying whether a maximum
in the lower bound MIR density at fmax translates into a
maximum of the true MIR density. Typically, the number of
presynaptic neurons that have to fire in synchrony to make a
postsynaptic cell fire is higher than two. For n � 2 the question
of information filtering and whether it is correctly predicted by
the lower bound estimate may find a more unambiguous
answer than provided in our article for n � 2.

Regarding the differences between lower bound MIR and
true MIR density, we can only speculate. Certainly, the proce-
dure of sorting out synchronous spikes is a highly nonlinear
operation. The lower bound is essentially based on the linear
correlations between input and output (it uses the coherence
function, which is essentially a correlation coefficient in the
Fourier domain). The coherence measure is blind to nonlinear
correlations or higher order correlations. Hence, we could
expect that a part of the information that according to the lower
bound estimate is suppressed at low frequencies may be en-
coded in higher moments or higher order correlation functions
between input and output. More analytical efforts and in
particular tractable examples are needed to gain some intuition
in this matter and to clarify how much information can be
encoded beyond the time-dependent firing rate.

High-pass filtering of information has also been observed in
the vestibular system of primates, both in afferent neurons
(Sadeghi et al. 2007) and in higher order vestibular nuclei
(Massot et al. 2011). These properties are also reflected by a
model (Sadeghi et al. 2007) that comprises an integrate-and-
fire neuron with dynamical threshold mimicking an adaptation
mechanism and includes a prefilter for sensory stimuli (head
velocity). An application of our framework to this adaptive

neuron model could confirm or disprove this form of informa-
tion filtering.

Turning back to our method, we would like to remark that its
application to data from real neurons might look difficult,
given the huge amount of data that were generated to eliminate
the undersampling bias. However, the approach pursued here
was only guided by computational efficiency: the run time of
our algorithm grows linearly with the ensemble size, while the
computational needs of other more refined bias-reduction tech-
niques grow more rapidly. Therefore, the fastest way to reduce
the bias was to generate more data. In experiments the amount
of data is limited, but some bias reduction techniques seem to
give good results also if the ratio between histogram bins and
samples is of order one (Paninski 2003; Nemenman et al. 2004;
Panzeri et al. 2007), and this suggests that an application of the
method to experimental data may be possible. A first indication
about the feasibility of this application could be to investigate
whether the same results presented in this work can be repro-
duced on the basis of a more realistically sized amount of data
by using one of the mentioned entropy estimators with better
bias reduction performance. Another extension of our method
can be made by using alternative approaches for the estimation
of entropy rates (Shlens et al. 2007).

Our approach is not limited to a single time-dependent
output. Although in this study the output states were chosen to
be single spike trains, calculating entropy rates is possible with
any choice of output states. This permits, in principle, a
straightforward extension to the analysis of network population
data. In practice, neural population activity is represented by a
vector of spike trains, which makes the dimensional explosion
of the output space much more severe than for the case of a
single spike train. Nevertheless, a reduced description of the
output states may permit the investigation of information
filtering by neural populations.

Numerical estimation of entropy rates from neural data is a
field in constant development. We believe that our results
present a new and theoretically sound framework to use these
tools and that it will encourage other researchers to further
investigate information filtering in neural systems.

APPENDIX: NUMERICAL CALCULATION OF ENTROPY RATES

In this APPENDIX we report the details of our implementation of the
direct method (Strong et al. 1998) and on the procedures we used to
calculate all entropy rates.

Implementation of the Direct Method

In the following, we consider the output x to be a binary sequence
where, say, a 1 or a 0 stands for the presence or absence of a spike in
the corresponding time bin, respectively. Therefore, the time discret-
ization step �t has to be small enough that at most one spike falls into
a single time bin.

Many stimuli are presented to the studied spike generator and spike
trains are recorded. A time resolution �t is set and spike trains are
converted to binary sequences whose length depends on the time step:
if a time segment of length T is considered, a bit sequence (a “word”)
of T/�t symbols identifies the system response, and there are 2T/�t of
such possible words. The probability of each word can be estimated
by counting its occurrences, although the exponential growth of the
set of possible words requires huge data sets if longer words are
considered (i.e., longer time windows T or a finer temporal resolution
�t). Computing H(x,T,�t), the entropy of the words of length T, from
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the estimated probability distribution is a tricky problem, because
plugging the estimated probabilities into the definition of entropy
always gives a negatively biased result (Paninski 2003). If the prob-
ability distribution is not well sampled, the bias can be very large and
the entropy estimate can be completely meaningless. Assume now that
a reliable estimate of H(x,T,�t) can be obtained from the estimated
probabilities for the words. To compute the entropy rate, the limit of
H(x,T)/T has to be computed (because the time resolution is fixed, the
dependence on �t will be dropped in the following). Under the
realistic assumption that the range of correlations in the response is
finite and extends up to a time Tc, for times larger than Tc the entropy
grows linearly:

H�x, T� � H�x, Tc� � �T � Tc�H ' �x�
�C � H ' �x� · T , (30)

where H(Tc) and C are in general unknown constants. Dividing by T
yields:

H�x, T�
T

� H ' �x� �
C

T
. (31)

Because the correlation time is usually unknown, the ratio H(x,T)/T is
plotted as a function of 1/T and the linear part of the curve, which is
correctly described by Eq. 31, has to be determined a posteriori from
the graph itself (as in the example of Fig. A1, red squares).

Deviations from linear behavior occur at small T because of
correlations and may be observed at large T, where a negative bias due
to undersampling sets in. The intercept of the linear regression is the
full entropy rate H=(x).

To compute the noise entropy, the same stimulus s has to be
presented many times. A particular spot t on the stimulus timeline is
marked, and only time windows of length T beginning at time t from
independent trials contribute to the calculation of H(x|s,T,t). Averag-
ing over t yields the noise entropy of words of length T:

H�x�s, T� � �H�x�s, T, t��t. (32)

The last expression was computed for other fixed stimuli and finally
averaged over the stimulus ensemble. Given the ergodic property of
Gaussian random functions, this last step would not be necessary if the
stimulus were long enough. However, it turned out to be numerically
more convenient to generate �100 signals of 2–3 s than a single long
signal. By means of the same extrapolation procedure as for the full
entropy, the noise entropy rate can then be extracted (example in Fig.

A1, black circles). Subtracting the noise entropy from the full entropy
rate gives the MIR

I ' ��t� � H ' �x, �t� � �H ' �x�s, �t��s (33)

where the dependence on the time resolution has been explicitly
indicated again.

An Efficient Scheme to Manage the System Output: Words
and Dictionaries

For the extrapolation to infinite time window to be accurate, the
system autocorrelation time has to be covered by the binary words,
and because the standard time resolution used in the simulations was
set to one millisecond (the minimal width of an action potential),
words of tens of symbols had to be considered. In the case of 30 bins
the number of possible words is 230 � 109. The extrapolation
procedure also requires to determine this high dimensional probability
distribution for different word lengths. The calculation of the noise
entropy additionally requires to have one of such sets of probability
distributions for each time segment the output is divided in. If the
spike train lasts a few seconds, a few hundreds of such sets of
probability distributions need to be stored. To effectively manage and
quickly fill up such a large number of probability arrays, an efficient
system to label word distributions is needed. A convenient way to
label words is to consider a binary sequence as a binary number read
from left to right. It is easy to convert each binary string into the
corresponding integer number in base ten. This can be used as the
index for the probability array. For example, in an array storing
the words of length five, the word 00000 is assigned the position 0, the
word 10000 is assigned the position 1, the word 00101 the position 20,
and so on. This is an efficient way of labeling words, and it is very fast
because it requires only few very fast operations (addition and
multiplication). However, the problem of the exponential explosion of
the number of possible words (and of the memory requirements)
remains. On the other hand, if the time resolution is on the millisecond
scale, spikes are sparse. This means that most of the 2T/�t possible
words have actually negligible probability and the binary number
assignment system has the downside that huge memory resources are
allocated just to store an enormous number of zeros and a few
interesting numbers. A simple observation is that words containing
much more spikes than the word length times the mean rate practically
never occur. This suggests a way to find a better assignment system,
in which first words with no spikes are considered, then words with

Table A1. Word indexing

Binary Words Key String Value

0 0 0 0 0 ¡ (5,0) ¡ 0
1 0 0 0 0 ¡ (5,1) ¡ 1
0 1 0 0 0 ¡ (5,2) ¡ 2
0 0 1 0 0 ¡ (5,4) ¡ 3
0 0 0 1 0 ¡ (5,8) ¡ 4
0 0 0 0 1 ¡ (5,16) ¡ 5
1 1 0 0 0 ¡ (5,3) ¡ 6
1 0 1 0 0 ¡ (5,5) ¡ 7
1 0 0 1 0 ¡ (5,9) ¡ 8
1 0 0 0 1 ¡ (5,17) ¡ 9
0 1 1 0 0 ¡ (5,6) ¡ 10
0 1 0 1 0 ¡ (5,10) ¡ 11
0 1 0 0 1 ¡ (5,18) ¡ 12
0 0 1 1 0 ¡ (5,12) ¡ 13
0 0 1 0 1 ¡ (5,20) ¡ 14
0 0 0 1 1 ¡ (5,24) ¡ 15

Left column: all the binary words up to the maximum expected spike count
m(L). In this example m(5) � 2. Middle column: list of the key string for the
map. Right column: value mapped by the dictionary. Number of entries � 16.
Number of possible binary words � 32. Compression ratio � 0.5.
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Fig. A1. Example of extrapolation to infinite time window. The data result
from the synchronous output of 2 LIF neurons driven by a Gaussian stimulus.
The intercept of the 2 regression lines gives the entropy rates. The noise
entropy is calculated for a partial signal corresponding to the frequency band
0–75 Hz. Parameters: �t � 1 ms,  � 2.0, D � 3.8  10�4 s, �abs � 2 ms,
c � 0.34.
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only one spike, then words with two spikes, and so on. An algorithm
goes through all words up to m(L) spikes per word of length L and
transforms the binary string into a decimal number, which is then
assigned a position in the compact indexing (Table A1). This corre-
spondence from the binary to the compact indexing is stored in an
associative array (a map). This map forms a “dictionary” that trans-
lates the fast but sparse binary indexing into the compact indexing,
computed only once for each word at the beginning of the simulation.
In the pedagogical example of Table A1, the compression ratio is
exactly one-half, but in a realistic scenario for the LIF model (L � 25
and m � 5) the compression ratio ranges from about 10�3 to 10�4. If
a sufficiently large refractory period (�abs � 2·�t) is included in the
model, the words containing spikes in neighboring bins can be
skipped. In this case, the compression ratio can be further reduced,
typically by an additional factor 1/2.

A nontrivial point is that m(L), the maximum number of spikes per
word of length L, which are included in the dictionary, has to be fixed
before the simulation starts. If m(L) is too small, the results of the
entropy calculation can be affected while large m(L) leads to a great
waste of computational resources, because the dictionary would be
unnecessarily large. A preliminary simulation determines the count
statistics for segments of length L. The smallest value with zero counts
should be m(L). However, it is still possible that few words of length
L with spike count k � m(L) occur and it is actually desirable to be
able to handle these words without having to increase m(L). These
“oversize” words are stored all together in the last positions in the
dictionary and are distinguished only by the spike count. Because of
the translational invariance, a roughly uniform distribution can be
assumed for words with a fixed spike count (this assumption is also
made by Strong et al. 1998 to justify the use of the Ma-entropy lower

bound). As there are 
L

k � possibilities for such words, the probability

of a coincidence is �1/
L

k �, and it is very likely that “oversize” words

are all different from each other, and so they are treated in the entropy
calculation. If a coincidence does happen, the entropy is overesti-
mated by 2/N, where N is the number of samples (in our simulations
N � 106 for the noise entropy, and N � 108 for the full entropy). The

expectation value of the overestimation is about 2/[N·
L

k �]. If the

number of oversize words makes the relative error on H(T)/T larger
than 10�6, the corresponding point (typically the largest time win-
dow) is not included in the extrapolation.

Entropy Estimators

If the estimated probabilities of a distribution are simply plugged
into the definition of entropy [the maximum likelihood estimator
(MLE), also called “naive” by Strong et al. 1998], it is a well-known
fact that an always negatively biased estimate of the entropy is
obtained (see for example Paninski 2003). Let q indicate the number
of bins of the histogram of the words and N the number of samples.
In the original direct method procedure (Strong et al. 1998) a qua-
dratic fit of the MLE calculated for data subsets of size N/2, N/3, and
N/4 is performed and the intercept of the quadratic fit is taken as the
value of the true entropy. In our simulations, this extrapolation tended
to be unstable (because N �� q, the variance of the points is of the
same order as the bias, see Paninski 2003) and this method was not
used. Several other methods have been developed to correct for this
bias (Paninski 2003; Panzeri et al. 2007). Simpler methods like the
Miller-Madow correction (Miller 1955) or the jackknifed (Quenouille
1956) version of the MLE perform well if many samples are available,
that is if N �� q. Other methods were recently developed to reduce
bias even in the undersampled regime N � q, like the BUB estimator
(Paninski 2003) or the coincidence-based NSB method (Nemenman et
al. 2004), which seems to have the best bias reduction performance

(Panzeri et al. 2007). These methods are extremely useful if data are
limited, as in real experiments. In the asymptotical regime, although,
their performance is comparable to the simpler methods described
above at a higher computational cost (Paninski 2003; Panzeri et al.
2007). Because in computer simulations a very large amount of data
can be generated, we used exclusively the Miller-Madow correction
and the jackknifed MLE.
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