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In cell biology, time-resolved fluctuation analysis of tracer particles has recently gained great importance.
One such method is the local mean-square displacement (MSD) analysis, which provides an estimate of two
parameters as functions of time: the exponent of growth of the MSD and the diffusion coefficient. Here, we study
the joint and marginal distributions of these parameters for Brownian motion with Gaussian velocity fluctuations,
including the cases of vanishing correlations (overdamped Brownian motion) and of a finite negative velocity
correlation (as observed in intracellular motion). Numerically, we demonstrate that a small number of MSD
points is optimal for the estimation of the diffusion measures. Motivated by this observation, we derive an
analytic approximation for the joint and marginal probability densities of the exponent and diffusion coefficient
for the special case of two MSD points. These analytical results show good agreement with numerical simulations
for sufficiently large window sizes. Our results might promote better statistical analysis of intracellular motility.
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I. INTRODUCTION

The analysis of single-particle-tracking experiments is im-
portant to reveal valuable information about intracellular trans-
port processes and the complex dynamics of the cytoskeleton.
Here, mean-square displacement (MSD) is often used to char-
acterize intracellular transport phenomena. Organelles inside
eukaryotic cells are transported in two ways (two motility
modes): (i) pulled by molecular motors along intracellular
filaments and (if not bound to a filament) (ii) pushed around
by cytoskeletal components. Recent experimental [1,2] and
theoretical papers [3] suggest that intracellular transport can
be described as a combination of free (sub)diffusion and
phases of active transport; for a more detailed picture, see
the recent review in Ref. [4]. In most other cell types,
tracer particles (comparable in size to organelles) switch
stochastically between the two motility modes on a subsecond
time scale, possibly optimized for the transport task at hand [3].
Such switchings cannot be resolved by a standard global MSD
analysis, which extends over a time scale of seconds or longer.

Recently, a novel technique called the local MSD analysis
has been introduced [1,2]. Here, the MSD is measured over a
comparatively small averaging time window, and the resulting
MSD curve is fitted to a power law,

�R2 ∼ tα (1)

(details of the fitting procedure are discussed below), and the
parameters of the fit are related to the diffusion coefficient and
the exponent of MSD growth, respectively. In particular, the
value of α defines the type of motion [5,6]: For α significantly
below 1, the particle performs subdiffusion, whereas, α greater
than 1 implies superdiffusion with the limiting ballistic case
of α = 2.

The values of diffusion coefficient and exponent are
assigned to a reference point (preferably the midpoint)
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of the averaging time window; by sliding the window over
the trajectory, one obtains (temporally) local information on
the diffusive or transport behavior. Using the time series
of the exponent α, one can distinguish typical phases of
intracellular motion: phases of subdiffusion and phases of
directed transport.

In general, even if the vesicle or bead is restricted to
perform only one kind of motion, subdiffusion, for instance,
the parameters resulting from the local MSD algorithm will
be statistically distributed. Put differently, because we use a
temporal finite-size average of the trajectories, the resulting
time series for the diffusion coefficient and the exponent are
still stochastic. The probability densities of these exponents of
growth and of the diffusion coefficient (related to the prefactor
of the fitting law A) will be shaped not only by the properties of
the cytoplasm, but also by the MSD algorithm itself. When ex-
ploring the properties of the cytoplasm, it is certainly desirable
to entangle and to separate these two factors. A good starting
point in this regard seems to be the calculation of the statistics
for model systems, such as a simple Brownian motion. In a
recent paper, we showed that a simple model with correlated
Gaussian velocity fluctuations could reproduce the statistics
of the MSD parameters of experimental data on intracellular
bead motion [7]. Here, we explore this model theoretically and
derive approximate expressions for the probability densities
of the motion parameters. More specifically, we calculate
the joint and marginal densities for the MSD exponent and
effective diffusion coefficient. We start with the comparatively
simple case of an overdamped Brownian motion (uncorrelated
Gaussian velocity fluctuations) and then derive formulas for
the more interesting case of a correlated Gaussian velocity
leading to transient subdiffusion. For the latter case, we also
compare the local MSD analysis to the characteristics of
subdiffusion as seen in the long-time MSD average. Our results
may contribute to a proper interpretation of the local MSD
analysis as it is used by experimental groups.

Our paper is organized as follows. First, we discuss the
local MSD algorithm in detail. Then, we present our stochastic
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model: a random motion with Gaussian velocity fluctuations,
the correlation function of which is given. We discuss results
for this model for two specific choices of the correlation
function: (i) uncorrelated velocity noise, corresponding to an
overdamped Brownian motion and (ii) a negative exponentially
decaying correlation [antipersistent motion (AP)] similar to
that found in experiments on intracellular motion. We derive
and compare approximation formulas for the case of two
MSD points to numerical simulations. We also explore using
numerical simulations, the more involved case of more than
two MSD points and discuss our results in comparison to
the exact MSD obtained by a long-time average. The paper
concludes with a summary and discussion of our findings.
Details of the analytical derivations are discussed in the
Appendix.

II. LOCAL MSD ALGORITHM

The conventional method of analyzing experimentally
recorded trajectories is based on estimates of the MSD. For a
trajectory of time length T , the MSD is approximately given
by

�R2
t (τ ) = 1

T − τ

∫ T −τ

0
ds[R(t + s + τ ) − R(t + s)]2. (2)

For the case of Brownian motion, the time average shown in
Eq. (2) can be replaced by an ensemble average taken over
a large number of trajectories (this is not necessarily true for
subdiffusive motion as has been observed in a number of recent
papers [8–10]). More important for the current paper is that, for
a finite time window, the resulting estimate of the MSD is still
noisy. How these finite-size fluctuations affect the fluctuations
of the motion parameters is the topic of our paper.

For a discretized trajectory xl
i = xl(t + i �t) with i =

0, . . . ,M (sampling step �t) and l = 1, . . . ,d (where d is
the number of spatial dimensions), this average of overlapping
segments reads

�R2
t (τ = k �t) = 1

M − k + 1

M−k+1∑
i=1

d∑
l=1

(
xl

i+k−1 − xl
i−1

)2
.

(3)

A local MSD is the same as Eq. (2), but the average is taken
over a small local time window T for different values of the
time increment τ . The resulting data are then reduced to pure
numbers by dividing distances by a length scale �, e.g., simply
the length unit � = 1 μm [for our choice of � in our numerical
examples, see below after Eq. (5)], and time by a reference
time τ0. The local MSD at mτ different values (number of
MSD points) of τ is then fitted to a power law,

�R2
t (τ )

�2
= A

(
τ

τ0

)α

. (4)

The exponent α carries information about the motion type [5]:
α < 1 implies subdiffusion, α ≈ 1 implies normal diffusion
(Brownian motion), α > 1 implies superdiffusion, and α ≈
2 implies ballistic motion. The prefactor A has no physical
dimension. The diffusion coefficient is directly proportional
to the prefactor A. More specifically, if we set the time lag τ

equal to the reference time τ0, we obtain

D = �R2
t (τ0)

2 dτ0
= A�2

2 dτ0
= AD0, (5)

where d is the number of spatial dimensions and D0 =
�2/(2 dτ0) is a parameter that carries the physical dimension
of a diffusion coefficient and is set by our time and length
scales. In the examples inspected below, we work with
nondimensional units and set � and �t such that the numerical
value of D0 = 1. We also set the reference time τ0 equal to the
maximal lag time (i.e., τ0 = mτ�t , where mτ is the number
of MSD points). For general applicability of our formulas,
however, we keep D0, �, τ0, and �t in all formulas as free
parameters.

The fit to the power law is performed by linear regression
in a double logarithmic plot of the data. To this end, the mτ

pairs,[
ln(k/mτ ), ln

(
�R2

t (k �t)/�2
)]

, k = 1, . . . ,mτ (6)

are fitted to

f (ln(k/mτ )) = ln A + α ln(k/mτ ), (7)

by the well-known formulas of linear regression [11] yielding
the slope α and the prefactor ln A related to the diffusion
coefficient by A = D/D0 according to Eq. (5),

α =
∑

k ln
(
�R2

t (k �t)/�2
)

ln(k/mτ ) − 1
mτ

∑
k,j ln

(
�R2

t (j �t)/�2
)

ln(k/mτ )∑
k(ln(k/mτ ))2 − 1

mτ

( ∑
k ln(k/mτ )

)2 , (8)

ln A = 1

mτ

∑
k

[
ln

(
�R2

t (k �t)/�2
) − α ln

(
k

mτ

)]
. (9)

Here, the index k (and also j ) runs from k = 1, . . . ,mτ . Sliding
the time window T = M �t over the entire trajectory [cf.
Fig. 1(a)], the motion parameters D(t) and α(t) can be
extracted as functions of time. Because one uses a small time

window T in order to obtain temporally local information, the
resulting finite-size noise is not small, and consequently, D(t)
and α(t) will be stochastic processes, i.e., random functions of
the time t as illustrated in Figs. 1(b) and 1(c).
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FIG. 1. (Color online) Illustration of the local MSD algorithm.
(a) Trajectory of a Brownian particle is analyzed locally in a time
window of M points (trajectory inside the dotted rectangle): The
squared displacement for mτ points is averaged over these M points
and is fit by a linear relationship in log-log space [see inset of (a)]. The
resulting slope (exponent) and intercept (proportional to the diffusion
coefficient) are assigned to the midpoint of the window. By sliding
the window over the trajectory, in this way, we obtain a time series
of the exponent (b) and the diffusion coefficient (c). The circular dots
in each (b) and (c) are the values obtained in (a). The trajectory
is obtained using Eq. (10) for overdamped Brownian motion.
Parameters used here are as follows: mτ = 15, M = 60, �t = 10−3,
and D = kBT /γ = 1.

The local-MSD algorithm has two parameters: M , the
number of points in the time window and mτ , the number of
values of τ used in the power law fit. How M and mτ influence
the statistics of the estimated values of α and D is a question
of foremost interest in our paper. For simple illustrations of
our results, in this paper, we will exclusively consider the
one-dimensional case. For the model introduced in the next
section, the generalization of our analytical approximations to
the multidimensional case is straightforward.

III. MODEL WITH PRESCRIBED VELOCITY
FLUCTUATIONS

In our model, the dynamics of the displacement of a vesicle
or bead is described by

ẋ = v, (10)

where the velocity is assumed to be a stationary Gaussian
stochastic process with vanishing mean value and correlation
function,

〈v(t)v(t + τ )〉 = C(τ ), (11)

where 〈·〉 denotes the ensemble average.
In discrete time [xi = x(i �t) with time step �t], a

trajectory (sample path) of the process can be simulated by
the simple map,

xi+1 = xi + vi�t. (12)

The correlation of the increments vi = [xi+1 − xi]/�t can be
related to the continuous correlation function C(τ ) as follows:

Ck = 〈vi+kvi〉

=
∫ �t

0
dτ [C((k − 1)�t + τ )

+C((k + 1)�t − τ )]
τ

(�t)2
. (13)

For a sufficiently small time step (within which the correlation
function does not change much) but large k with T = k �t ,
the integrand can be approximated by 2C(T )τ/(�t)2, and one
obtains the intuitive result,

Ck ≈ C(k �t), �t � C(k �t)/Ċ(k �t). (14)

In this limit, the discrete correlation agrees with the continuous
correlation.

Traditionally, the time-continuous Eq. (10) with the correla-
tion function Eq. (11) is regarded as the model to be considered.
Equivalently, we can, however, consider the map Eq. (12) and
the discrete correlation function as our starting point. This is
practical in two respects. First, to simulate a sample path of the
system, we need a temporal discretization in any case. Second,
the velocity correlation might be obtainable from experimental
data only in a discretized version, so typically, we know Ck

but not C(τ ). In this paper, we will solely use the discrete
version as our starting point. We now discuss how to simulate
sample paths and introduce two simple variants that are used
as numerical examples.

We assumed above that the noise has Gaussian statistics.
Under these circumstances, the velocity process can be
simulated as an autoregressive (AR) process [11] as follows:

vi =
p∑

k=1

dkvi−k + gi, (15)

where gi are uncorrelated Gaussian random numbers with
mean zero and variance σ 2

g . The coefficients dk of this AR
process can be obtained from the experimental incremental
correlation function by the formula,

d = P−1C/σ 2
v , (16)

where d = (d1,d2, . . . ,dp) is the vector of unknown coef-
ficients, C = (C1,C2, . . . ,Cp) is the vector of the discrete
correlation function, and the matrix P is given by

P =

⎡
⎢⎢⎢⎢⎣

1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

...
...

... · · · ...

ρp−1 ρp−2 ρp−3 · · · 1

⎤
⎥⎥⎥⎥⎦, (17)

where

ρk = Ck/C0 (18)

is the normalized correlation coefficient.
The variance can be found from

σ 2
g = C0 −

p∑
k=1

dkCk. (19)

Thus, for known σ 2
v , we can calculate σ 2

g .
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We will consider two simple special cases in this paper.
First, for uncorrelated velocity fluctuations, the map Eq. (12) is
just the discrete version of overdamped Brownian motion [12],

CWN(τ ) = 2
kBT

γ
δ(τ ) → CWN

k = 2
kBT

γ �t
δk,0 (20)

[WN stands for white noise]. Here, kB is the Boltzmann
constant, T is temperature, and γ is the Stokes friction
coefficient. In this case, all the coefficients dk in Eq. (15)
are zero, and the variance in the driving fluctuations reads

〈
v2

i

〉 = 〈
g2

i

〉 = C0 = 2
kBT

γ �t
. (21)

For the white-noise case, the mean-square displacement is
given by a pure diffusive law,

〈
�x2

k

〉
:= 〈(xi+k − xi)

2〉 = k(�t)2C0 = k �t
kBT

γ
. (22)

In our second example, we will consider a finite discrete
correlation that is negative at all finite lags and decays
exponentially,

CAP
k = (C0 − C1e

1/kd )δk,0 + C1e
−(k−1)/kd , (23)

where, with C0 > 0 and C1 < 0, the correlations are the
characteristics of an anti-persistent (AP) type of motion. Such

correlations have been recently observed experimentally for
different kinds of organelles and particles [7,13]. We note that,
on physical grounds, C1 cannot take arbitrary values but has
to obey

|C1| � (e1C0)/2, (24)

where e1 = (1 − e−1/kd ). The exact mean-square displacement
for this motion can be calculated [14] and reads

〈
�x2

k

〉 = �t2

[
k

(
C0 + 2C1

e1

)
− 2C1

e2
1

(1 − e−k/kd )

]
. (25)

Interestingly, the MSD grows linearly with time at small times,

〈
�x2

k

〉
small k ≈ k �t2

(
C0 + 2C1(e1 − 1/kd )

e2
1

)
, (26)

and asymptotically at large times [as long as in Eq. (24) the
equality does not hold],

〈
�x2

k

〉
large k

≈ k �t2

(
C0 + 2C1

e1

)
. (27)

In between these asymptotics, there exists a transition region
characterized by a subdiffusive behavior [cf. Fig. 2(f)].
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FIG. 2. (Color online) The statistics of the overdamped Brownian motion [(a), (c), and (e)] and antipersistent motion [(b), (d), and (f)] in
discrete time. The probability density of the increments is Gaussian, as shown in (a) and (b) (the black lines are the corresponding fits). The
normalized correlation functions of the increments are either δ correlated (overdamped Brownian motion) or negatively correlated at nonzero
lag (antipersistent motion) as shown in (c) and (d), respectively (the zero-lag point is not shown); the line in (d) is the normalized form of
Eq. (23). Panels (e) and (f) show the exact mean-square displacement of both velocity models for long times according to Eqs. (22) and (25);
symbols are the results of numerical simulations with a large value of M (here, the algorithm is not local in time anymore). For both models,
standard parameter values as given in Sec. IV B were used.
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Assuming kd � 1, the condition for this range reads

ε
C0

|C1| � k � 1/e1

ε[C0e1/(2C1) − 1]
, (28)

where ε is the relative deviation of the respective asymptotic
expression from the exact result, e.g., for the small-k asymp-
totics,

ε = 〈�x2〉small k − 〈�x2〉
〈�x2〉 � 1. (29)

Simple Brownian motion is a special case with C1 = 0
in which the two asymptotic regimes coincide and there
is no transition region of subdiffusion. For finite negative
correlations (C1 < 0), the region of subdiffusion is not entirely
determined by the correlation time of the increments kd�t , but
also by the strength of the negative correlations, which is set
by 2C1/(e1C0).

We emphasize that we consider a situation in which the
full mean-square displacement is not considered because we
have only a short (temporally local) sample of the particle’s
trajectory. Below, in Sec. V, we will compare the statistics to
that of the full mean-square displacement curve.

IV. THE STATISTICS OF THE LOCAL MSD PARAMETERS

We know that the increments (estimates of the instanta-
neous velocity) are Gaussian distributed and that their linear
correlation is given by the function Ck . The calculation of the
statistics of a finite-size MSD (the square of a sum of correlated
Gaussian variables or, more generally, a quadratic form) is
a classical problem in the theory of stochastic processes
(see Ref. [15] and references therein). However, what enters
into the local MSD algorithm, in general, are sums over
logarithms of such squared sums of Gaussian increments, i.e.,
a strongly nonlinear function of the simple Gaussian variables
that we start with. Apart from special cases, it is difficult to
calculate statistical distributions of such nonlinear functions
of sums of Gaussians, and so, we are forced to use reasonable
approximations. One such approximation for the case of only
two MSD points but a large number of averaging points M will
result in a Gaussian distribution of α and ln(D/D0) [where,
according to Eq. (5), A = D/D0] because, in forming these
numbers, we effectively add up many sufficiently independent
random numbers, i.e., in the limit of large M , the central
limit theorem applies. Under the assumption of a Gaussian
distribution, it remains to calculate mean values and second-
order moments (variances and covariances) of ln(D/D0) and
α. In the Appendix, this is performed in the general case of
a correlated Gaussian velocity noise with discrete correlation
function Ck . We obtain

〈α〉 =1 + ln(1 + ρ1)

ln 2
, 〈ln(D/D0)〉= ln

[
(C0 +C1)�t

2D0

]
,

σ 2
α = s1 + ρ2

1g2
Ms2 − 2ρ1gMs3

[(C0 + C1)(M − 1) ln 2]2
,

σ 2
ln(D/D0)

= s1 + s2 + 2s3

[(C0 + C1)(M − 1)]2
− 1,

σ
α ln(D/D0) = s1 − ρ1gMs2 + (1 − ρ1gM )s3

[(C0 + C1)(M − 1)]2 ln 2
, (30)

where gM = 1 − 1/M and we have further abbreviated

s1 = M
(
C2

0 + MC2
1

)
gM

+ 2
M−2∑
i=1

(M − i − 1)
(
C2

i + Ci−1Ci+1
)
,

s2 = M(M + 1)C2
0gM + 4MgM

M−2∑
i=1

(M − i − 1)C2
i , (31)

s3 = M(M − 2)C0C1gM

+ 2
M−2∑
i=1

[2(M − i) − 1]CM−i−1CM−i .

Using these values, the Gaussian approximations of the
joint probability density and the marginal densities are com-
pletely determined. They are given by

P (α) = 1√
2πσ 2

α

exp

[
− (α − 〈α〉)2

2σ 2
α

]
, (32)

P (D) = (D0/D)√
2πσ 2

ln(D/D0)

exp

[
− [ln (D/D0) − 〈ln(D/D0)〉]2

2σ 2
ln(D/D0)

]
,

(33)

P (D,α) =
√

4ab − c2

2(D/D0)π
exp

[ − a(ln (D/D0) − 〈ln(D/D0)〉)2

− b(α − 〈α〉)2 − c(α − 〈α〉)
× (ln (D/D0) − 〈ln(D/D0)〉)]. (34)

The coefficients (a,b,c) appearing in Eq. (34) are derived
using the first and second moments. In this paper, we
plot P̂ (ln(D/D0),α) instead of P (D,α) because the former
function is more symmetric with respect to its arguments,

P̂ (ln(D/D0),α) =
√

4ab − c2

2π
exp

[ − a(ln(D/D0)

−〈ln(D/D0)〉)2 − b(α − 〈α〉)2

− c(α − 〈α〉)(ln(D/D0) − 〈ln(D/D0)〉)].
(35)

In the following section, we discuss these formulas and com-
pare them to numerical simulations for the two special cases
(overdamped Brownian motion and antipersistent motion).

A. Results for an overdamped Brownian motion

The general formulas derived above reduce to quite simple
expressions if the velocity is uncorrelated over a finite lag time
(Ck = 0 for k > 0),

〈α〉 = 1, 〈ln(D/D0)〉 = ln

(
kBT /γ

D0

)
, (36)

σ 2
α = 1

(M − 1)(ln 2)2
, σ 2

ln(D/D0)
= 3

(M − 1)
, (37)

σ
α ln(D/D0) = 1

(M − 1) ln 2
. (38)
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FIG. 3. (Color online) Marginal distributions of (a) α and (b) D

resulting from the local MSD algorithm for overdamped Brownian
motion; data sets differ by the size of the rolling window as indicated.
The number of local MSD points for all simulation data (symbols) is
mτ = 2; theoretical approximations Eqs. (32) and (33) are shown by
lines.

The coefficients for the joint probability distribution are
given by

a = (M − 1)

4
, b = 3(M − 1)

4
(ln 2)2, c = − (M − 1)

2
ln 2.

(39)

In the following, we set D = kBT /γ = 1 in our simulations
(this completely determines the physics of the process) and
vary only the parameters of the local MSD algorithm. The
time step for integration is taken as �t = 10−3. The analytical
approximations for the first and second moments can be
obtained from Eq. (30).

In Fig. 3, we compare the marginal distributions of α (a
normal distribution) and D (a lognormal distribution) with
numerical simulations. The quality of our approximation
depends strongly on the number of points in the sliding
window. Whereas, for M = 10, there is a finite discrepancy
between simulation and theory, the agreement for M = 100
is very good. The values of α are equally distributed around
the expected mean of 1, and the distribution of the estimated
D is much more skewed, in particular, for smaller values
of M .

In Fig. 4, we show the joint probability density of α and
ln(D/D0) for simulation data and analytical approximations
side by side. According to our analytical calculation, this
should be a two-dimensional Gaussian (corresponding to
ellipsoid contour lines) with a clear correlation between the
variables. The correlation is indeed evident for all values of
M; the simulation data for M = 10, however, do not show
the symmetry of a Gaussian (contour lines are not perfect
ellipsoids). For larger M , the probability is confined to a

α

α

α
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(M=10)

Theory
(M=10)

Simulation
(M=20)

Theory
(M=20)

Simulation
(M=60)

Theory
(M=60)

α
Simulation

(M=100)
Theory
(M=100)

ln(D/D0) ln(D/D0)

FIG. 4. (Color online) Joint distribution of α and ln A for an
overdamped Brownian motion and two MSD points (mτ = 2): left
column: simulation results compared to right column: theory Eq. (34)
for various numbers of points of the rolling window as indicated.

much smaller range of α and ln(D/D0) but also becomes
more symmetrically distributed.

Why do the two parameters show such a strong positive
correlation? This could have the following reason. Consider
all the points on the straight line (the true MSD curve in
a double logarithmic plot) and then add an independent
noise of equal amplitude to each point along the line. The
intercept (corresponding to the diffusion coefficient) is given
by the right-most point in the MSD curve (the MSD value
at maximum lag time), and the exponent is given by the
slope of the line. It is not hard to estimate that the resulting
correlation between slope and intercept is positive. The value
of this positive correlation, however, is much smaller than the
correlation evident in the joint density. The strong positive
correlation relies on the fact that the noise along the MSD
curve is positively correlated, leading to an additional positive
correlation in additive constant and slope.

Next, we discuss the marginal distributions as a function of
the MSD points (Fig. 5); the number of points in the sliding
time window is set to M = 60. One interesting question here is
whether the variability of the estimated parameters decreases
or increases if we take more than two MSD points into account.
For once, every estimation of the MSD slope should become
better by having more points. On the other hand, the points that
we add are more noisy than the first two points, so our estimate
should become more noisy. As apparent from the simulation
results shown in Fig. 5, the latter effect dominates, and thus,
the distributions (of both α and diffusion coefficient D) for
larger numbers of MSD points are generally more variable
than those for two MSD points.

Finally, we would like to directly compare the approximated
mean values and standard deviations to those obtained by
simulations of the overdamped Brownian motion. Mean values
and standard deviations of (a) and (c) α and (b) and (d) D are
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FIG. 5. (Color online) Marginal distributions of (a) α and (b) D

resulting from the local MSD algorithm for overdamped Brownian
motion. Data sets differ by the number of MSD points mτ as indicated
but have the same window size of M = 60 points.

discussed in Fig. 6 as functions of (a) and (b) the window
size M and (c) and (d) the number of MSD points. Looking at
mean α, we observe an underestimation of the true exponent
of 1 for both small M and a large number of MSD points.
At the same time, the variance in the α distribution drops

strongly with M . Furthermore, it undergoes a minimum if
the number of MSD points is varied; this shallow minimum
is attained at mτ = 4, and the minimum’s value does not
differ much from what we observe for two MSD points (the
analytically tractable case). These observations indicate that a
few tens of points in the rolling window and a small number
of MSD points (preferably: 2) are recommendable for a
reliable estimation of an overdamped Brownian motion’s MSD
exponent.

The results are for the mean and standard deviation of the
diffusion coefficient’s estimate point, although not as strongly,
in the same direction. The mean of the diffusion coefficient
does neither depend strongly on M nor on the number of MSD
points. The standard deviation, however, drops strongly with
M and increases with the number of MSD points. So, also
for a reliable estimate of the diffusion coefficient, the case of
large M and minimal number (=2) of MSD points seems to
be optimal. This highlights the importance of the case that we
are able to treat analytically.

B. Results for an antipersistent motion

Now, we tackle the more involved but interesting extension
of a correlated velocity process with correlation function
Eq. (23). Here, the increments are negatively correlated
in qualitative accordance with recent experimental findings
[7,13]. Our general result can be simplified for this specific
correlation function because the parameters s1, s2, and s3,
which determine the variances and covariances of α, can be
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FIG. 6. (Color online) Mean values and standard deviations of (a) and (c) α and (b) and (d) ln A for the overdamped Brownian motion as
functions of the (a) and (b) rolling window’s size M and (c) and (d) the number of MSD points.
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recast into the following forms:

s1 = MC2
0 + (M2 + 3M − 2)C2

1 + 2(M − 1)C0C1e
−1/kd + 4C2

1 [e−2(M−2)/kd + (M − 2)e2/kd − (M − 1)]

(e2/kd − 1)2
, (40)

s2 = M(M + 2)C2
0 + 4C2

1e
2/kd [e−2(M−1)/kd + (M − 1)e2/kd − M]

(e2/kd − 1)2
, (41)

s3 = (M2 + 3M − 2)C0C1 + 2C2
1e3/kd

[e−2(M−1)/kd + e−2M/kd + (1 − 2M)e−2/kd + (2M − 3)]

(e2/kd − 1)2
. (42)

Parameters of the correlation function are chosen as follows:
C0 = 0.1/�t2, C1 = −0.01/�t2, and kd = 4, yielding incre-
ment correlations similar to those observed experimentally in
Ref. [7]. We choose the time step �t = 45 × 10−3 such that
the mean diffusion coefficient for mτ = 2 is unity.

In Fig. 7, we show marginal distributions of α and D for
various sizes M of the rolling window. As in the white-noise
case, the agreement with our theory becomes better for
increasing M and is remarkably good for a time window of
about M = 100 points. In general and as expected, both kinds
of distributions become less variable when M is increased.
However, in contrast to the case of overdamped Brownian
motion (shown in Fig. 3), the mean value of α also depends
strongly on the size of the window. In particular, the mean
value for all M shown here is consistently lower than 1. This
is an effect of the negative increment correlations.

For the joint distribution, we observe effects very similar
to the white-noise case (see Fig. 8). The parameters α and
ln(D/D0) are positively correlated for the same reasons as
discussed in the previous subsection. Furthermore, the joint
density for small M shows some asymmetry that is inconsistent
with our Gaussian approximation. This asymmetry becomes,
however, less pronounced for increasing window size M .
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FIG. 7. (Color online) The marginal distributions of the MSD
exponent α and the diffusion coefficient D for negatively correlated
increments (antipersistent motion). Various sizes of the rolling time
window are indicated; simulation and analytical results are shown by
symbols and lines, respectively.

We turn again to the marginal distributions, inspecting
now, by numerical simulation, the case of more than two
MSD points (see Fig. 9). Clearly, as in the white-noise case,
more than two MSD points increase the variability of the
distributions. In marked contrast to the white-noise case, the
number of MSD points also has a drastic effect on the estimated
mean exponent of MSD growth and on the mean diffusion
coefficient. Both decay strongly with increasing numbers of
MSD points.

This aspect of the data becomes clearly visible in Fig. 10
where again, we show the mean values and standard deviations
of α and D as functions of window size M and number of MSD
points. The behavior of the standard deviation is similar to the
white-noise case (cf. Fig. 6). However, the mean exponent’s
decay with the number of MSD points as well as its saturation
for increasing M at a value below 1 is a clear consequence
of the negative increment correlations and very different from
what we observed for the overdamped Brownian motion.

The decrease in the mean exponent with an increasing
number of MSD points is in line with the behavior of the
exact MSD as a function of lag time: With increasing mτ , we
take more points from the subdiffusive transition region of
the MSD curve into account and—being far away from the
long-time asymptotic diffusive limit—this results in a drop in
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FIG. 8. (Color online) The joint distribution of α and ln A for
various sizes M of the rolling window as indicated. Left column:
simulation results and right column: theoretical prediction according
to Eq. (34).

021926-8



DISTRIBUTIONS OF DIFFUSION MEASURES FROM A . . . PHYSICAL REVIEW E 86, 021926 (2012)

0 0.5 1 1.5 2
α

0

1

2

3
P 

(α
)

mτ = 2
mτ = 15
mτ = 30
Theory
(mτ = 2)

0 0.5 1 1.5 2
D

0

1

2

3

4

P 
(D

)
(a)

(b)

FIG. 9. (Color online) The marginal distributions of the MSD
exponent α and the diffusion coefficient D for negatively correlated
increments (antipersistent motion). Here, the number of MSD points
is varied as indicated; theory is only plotted for mτ = 2.

the mean exponent as estimated by the local MSD analysis.
With respect to this behavior, the question about the optimal
mτ is more complicated. From the statistical point of view,
it is certainly recommendable, as in the case of overdamped
Brownian motion, to choose a rather small number of MSD
points. In order to catch the subdiffusive behavior, however,

one would rather favor a larger value of mτ that yields a
mean exponent more distinctly from 1. Looking at Fig. 10(c),
a value with much smaller 〈α〉 but still comparably small
fluctuations would be given at about a quarter of M , here,
mτ = 15 = M/4. This is also the value that has been used in
different applications of the MSD analysis [1,7].

V. SUBDIFFUSION ON LONGER TIME
SCALES FOR M → ∞

So far, we have focused on small (local) time windows for
the determination of the motion parameters α and D. This is
relevant in the situation in which these parameters change over
time as is the case, e.g., for the intracellular motion of vesicles.
It is, however, instructive, to compare our results of the local
MSD analysis to the exact MSD curve and its derivative for
a long-time window (M → ∞). We focus here solely on the
exponent α in order to obtain some intuition for time scales
for which this statistics reflects subdiffusional behavior. We
reiterate that the situation considered in this section (M → ∞)
is not a common one in which one would apply the local MSD
algorithm.

In the limit M → ∞, the finite-size estimate of the MSD
used in Eq. (8) becomes an exact average (�x2 → 〈�x2〉 as
M → ∞). In this limit, the value of α approaches the noiseless
quantity,

α∞ =
∑mτ

k=1 ln
(〈
�x2

k

〉)
ln

(
k

mτ

)− 1
mτ

∑mτ

k,j=1 ln
(〈
�x2

j

〉)
ln

(
k

mτ

)
∑mτ

k=1

[
ln

(
k

mτ

)]2 − 1
mτ

[ ∑mτ

k,j=1 ln
(

k
mτ

)]2 .

(43)
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FIG. 10. (Color online) Mean values and standard deviations of (a) and (c) α and (b) and (d) ln A for the antipersistent motion as functions
of (a) and (b) the rolling window’s size M and (c) and (d) the number of MSD points mτ .
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For the white-noise case, inserting the exact MSD according
to Eq. (22) into Eq. (43) yields α∞ = 1 as can be expected.
Hence, the deviations that are seen in Fig. 6(c) at large values
of mτ are due to the finite sample estimation of the MSD �x2

k ,
i.e., the deviations become severe if mτ does not differ much
from M , here, for M = 60, this is true for mτ � 20. Before
we discuss α∞ for the correlated velocity process, we would
like to recall the behavior of the exact MSD for this case.

In Fig. 11(a), we show the exact MSD according to
Eq. (25) [this was already shown in Fig. 2(f)] together
with the asymptotic results (dashed lines) for small and
large k’s, i.e., Eqs. (26) and (27), respectively. The range of
subdiffusion is in agreement with Eq. (28) roughly given by
log10 k �t ∈ (−1.3,1.3) (here, we used ε = 0.1) and coincides
with the range for which the slope of the MSD curve [see
Fig. 11(b), solid line] is significantly smaller than 1. The
latter derivative attains a minimum and, in this way, indicates
a most subdiffusive behavior that is determined by the
temporal extension as well as by the strength of the negative
correlations.

The function α∞ for the correlated velocity process can be
obtained by inserting the exact MSD Eq. (25) into Eq. (43). As
shown in Fig. 11(c) by the green line, it also attains a minimum,
although at a value of mτ�t that is larger than the time k �t

at which the slope of the exact MSD becomes minimal. This
is not surprising because Eq. (43) takes into account all MSD
values up to the maximal lag mτ (more specifically, it is a
weighted sum of these values). In contrast, the derivative in
the MSD-log-log plot takes into account only local features
of the MSD curve. To better compare 〈α〉 to the local slope
of the MSD curve [solid line in Fig. 11(b)], we can associate
α∞ with the mean time scale of the whole window, which we
may take approximately as half the maximum time. If we plot
the α∞ against log10(mτ�t/2) [dashed line in Fig. 11(b)], we
obtain a curve with a minimum close to that of the derivative
of the MSD. It is important that the time scale of maximal
subdiffusion can be recovered by the algorithm in this way,
provided the time window is long enough to cover the time
range of sublinear MSD growth.

For finite values of M , we illustrate the finite-size noise
effect of the numerically measured 〈α〉 for M = 60 (blue line)
and M = 500 (orange line). Both curves follow the exact mean
value until they start deviating due to the effect of the finite-size
estimation of the MSD. This illustrates that one cannot trust
values of α that are determined for a number of MSD points
only marginally smaller than the averaging window.

The results of this section also illustrate the simple point
that we cannot extract subdiffusive behavior at time scales that
are equal to or larger than the size of the averaging window.
Still, the local MSD analysis already can show, for comparable
small time windows, that the motion is qualitatively distinct
from overdamped Brownian motion.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have calculated the statistics of a local
MSD algorithm in the special limit of two MSD points and a
large averaging window. Our results for the joint and marginal
probability densities revealed good agreement. Moreover,

further numerical simulations for larger numbers of MSD
points indicated that the limit case we studied was important,
giving, for our simple examples, the most reliable and unbiased
mean values and the smallest variance in the distributions
of MSD exponent and diffusion coefficient. However, we
also discussed that a larger number of MSD points might be
favorable to show a more distinct subdiffusive behavior of the
motion.

In this paper, we also demonstrated how negative correla-
tions between increments of the motion (antipersistent motion)
yields subdiffusive behavior (α < 1) on the small time scale
of the local MSD algorithm. In the aforementioned special
case of two MSD points, we could characterize this apparent
subdiffusion analytically.

The case of antipersistent motion presented here shows
transient subdiffusive behavior: At small and long time scales,
the motion is diffusive. This is in contrast to persistent
subdiffusion that has been observed previously in single cell
tracking experiments with motion statistics similar to those
of either a continuous time random walk (CTRW) [16,17] or
a fractional Brownian motion (FBM) [13,17–19]. Identifying
the underlying mechanism that leads to anomalous diffusion
(CTRW or FBM) is an important open question and has
been raised before in several papers wherein new trajectory
analysis tools [20–22] were introduced to address this issue.
The analysis presented in this paper does not address these
questions.

Our results are interesting for applications in biological
experiments in two respects. First of all, our results may
be used to check the reliability of experimental estimates of
the local MSD properties. For instance, one may discuss for
which size of the rolling window it is meaningful to talk about
subdiffusion once one observes mean exponents below 1. The
results for the correlated Gaussian velocity process studied in
this paper give orientation regarding this question.

Second, in comparing to the simple limit case of over-
damped Brownian motion, experimentalists may distinguish
how strongly the local MSD properties are influenced by the
nonequilibrium environment of the cell. To this end, one may
compare our simple formulas for the marginal densities for two
MSD points to the statistics observed experimentally. In one
specific example [7], this yielded the insight that the variability
of the estimated parameters for intracellular data (motion
of a bead internalized by Dictyostelium discoideum cells)
is comparable to that obtained for simple Brownian motion,
hence, this variability cannot be ascribed to specific biological
properties of the cytoplasm in the living cell. Such conclusions
may now also be possible for the study of intracellular motion
in other cell types, such as neurons, cancer, and immune
cells.

From a theoretical point of view, we have highlighted the
importance of velocity correlations for the properties of the
estimated MSD parameters. Besides more complicated models
of subdiffusion, this suggests another class of Langevin-type
models for the velocity that generates Gaussian fluctuations
with correlations characteristic for an antipersistent motion,
i.e., correlation functions with a pronounced negative tail.
Although it is not complicated to generate higher-order
Markov processes (i.e., an n-dimensional Ornstein-Uhlenbeck
process) that is Gaussian and possesses such a correlation
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FIG. 11. (Color online) Comparison of the
exact MSD, its derivative, and the mean value
of α for M → ∞. (a) Solid line: exact MSD
Eq. (25) for the correlated velocity process and
its asymptotic limits for small [Eq. (26)] and
large times [Eq. (27)]. (b) Derivative of the MSD
log-log plot, i.e., d log10[〈�x2(t)〉]/d log10(t) is
compared to the mean value of α for M → ∞
plotted vs the logarithm of half the maximal time
window log10(mτ�t/2). (c) Mean value of α for
various values of M as indicated vs maximal lag
time mτ�t .

function, relating such a model to the biophysical situation in
the cell is still not fully understood (for a notable exception,
see the recent Ref. [13]) and is certainly worth further study.
Another unexplored venue is what kind of statistics the
local-MSD algorithm yields for non-Gaussian velocity fluc-
tuations, such as, for instance, in models of active Brownian
motion [23] or coupled molecular motors [24], which have
obvious significance for intracellular motility [25]. This leaves
numerous exciting questions for future investigations.
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APPENDIX: THE STATISTICS OF THE MOTION
PARAMETER FOR TWO MSD POINTS (mτ = 2)

Substituting the expression for the discrete-time trajectory
[Eq. (12) but in d dimensions] in the local-MSD algorithm
[Eq. (3)], the estimate of the MSD, in terms of the velocity
fluctuations, is given by

�R2
t (k �t) = �t2

(M − k + 1)

M−k+1∑
i=1

d∑
l=1

⎛
⎝ k∑

j=1

vl
i+j−1

⎞
⎠

2

. (A1)

Dividing by �2 and taking the logarithm on both sides,
Eq. (A1) becomes

ln

(
�R2

t (k �t)

�2

)

= ln

⎡
⎣ �t2/�2

M − k + 1

M−k+1∑
i=1

d∑
l=1

⎛
⎝ k∑

j=1

vl
i+j−1

⎞
⎠

2⎤
⎦. (A2)

For the special case of d = 1, Eq. (A2) becomes

ln

(
�x2

t (k �t)

�2

)
= ln

⎡
⎣ �t2/�2

M − k + 1

M−k+1∑
i=1

⎛
⎝ k∑

j=1

vi+j−1

⎞
⎠

2⎤
⎦.

(A3)

To determine the intercept ln A and slope α according to
Eq. (7), we use the mτ pairs [ln(k/mτ ), ln(�R2

t (k �t)/�2)] in
the formulas of linear regression, yielding Eqs. (8) and (9). The
latter equations express the desired quantities in terms of a sum
of logarithms of sums of correlated Gaussian variables. In other
words, the statistics of ln A = ln(D/D0) and α is determined
by highly nonlinear and lengthy functions of the Gaussian
velocity fluctuations. It is, thus, generally quite difficult to
relate the probability functions of α and D to those of the
velocity fluctuations, in particular, if mτ � 3. However, for
the case of two MSD points (mτ = 2), approximate analytical
expressions for the marginal and joint distributions of α and
D can be derived.

For two MSD points mτ = 2 and d = 1, using Eq. (8), the
exponent α is given by

α = 1

ln 2

[
ln

(
�x2

t (2 �t)/�2
) − ln

(
�x2

t (�t)/�2
)]

. (A4)

Using Eq. (A3) in Eq. (8), this can be written as

α = 1 + 1

ln 2

⎡
⎣ ln

⎛
⎝ �t2/�2

2(M − 1)

M−1∑
i=1

(vi + vi+1)2

⎞
⎠

− ln

⎛
⎝�t2/�2

M

M∑
i=1

v2
i

⎞
⎠

⎤
⎦. (A5)
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Similarly, using Eq. (A3) in Eq. (9), the diffusion coefficient
is given by

β = ln(D/D0) = ln

⎛
⎝�x2

t (2 �t)

�2

⎞
⎠

≡ ln 2 + ln

⎛
⎝ �t2/�2

2(M − 1)

M−1∑
i=1

(vi + vi+1)2

⎞
⎠, (A6)

where we use, in the following, β as a shortcut for the logarithm
of the diffusion coefficient. Note that, in the special case

mτ = 2, the estimate of the diffusion coefficient (but not that of
the exponent α) corresponds to a quadratic form of a Gaussian.
For the latter problem, there exist alternative analytical
methods to approximate the probability distribution (see,
e.g., Ref. [15] and references therein) than presented in the
following.

The arguments of the logarithms in Eqs. (A5) and (A6)
are finite-size estimates of C0 = 〈v2

i 〉 and C0 + C1 (where the
latter term was C1 = 〈vivi+1〉); deviations from the true mean
values are expected to be small, and so, it is reasonable to
expand the logarithms around these values, yielding

ln

⎛
⎝�t2/�2

M

M∑
i=1

v2
i

⎞
⎠ ≈ ln

(
C0�t2

�2

)
+

⎛
⎝C−1

0

M

M∑
i=1

v2
i − 1

⎞
⎠, (A7)

ln

⎛
⎝ �t2/�2

2(M − 1)

M−1∑
i=1

(vi + vi+1)2

⎞
⎠ ≈ ln

(
(C0 + C1)�t2

�2

)
+

⎛
⎝ (C0 + C1)−1

2(M − 1)

M−1∑
i=1

(vi + vi+1)2 − 1

⎞
⎠. (A8)

Equations (A5) and (A6) are then given as

α = 1 + ln(1 + ρ1)

ln 2
+ (C0 + C1)−1

ln 2

⎛
⎝ 1

2(M − 1)

M−1∑
i=1

(
v2

i + v2
i+1 + 2vivi+1

) − (1 + ρ1)

M

M∑
i=1

v2
i

⎞
⎠, (A9)

β = ln

[
(C0 + C1)�t

2D0

]
+

⎛
⎝ (C0 + C1)−1

2(M − 1)

M−1∑
i=1

(
v2

i + v2
i+1 + 2vivi+1

)⎞⎠ − 1, (A10)

where ρ1 = C1/C0 is the correlation coefficient at lag 1. Using the fact that 〈∑M−1
i=1 v2

i /(M − 1)〉 = C0 and 〈∑M−1
i=1 vivi+1/(M −

1)〉 = C1, we obtain 〈α〉 and 〈β〉 from Eqs. (A9) and (A10),

〈α〉 = 1 + ln(1 + ρ1)

ln 2
, (A11)

〈β〉 = ln

[
(C0 + C1)�t

2D0

]
. (A12)

We calculate the second-order moments using Eqs. (A9) and (A10) and Eqs. (A11) and (A12) and neglecting terms ∼1/M2.
Defining σ 2

α = 〈α2〉 − 〈α〉2, σ 2
ln(D/D0)

= 〈β2〉 − 〈β〉2, σ
α ln(D/D0) = 〈(α − 〈α〉)(β − 〈β〉)〉, and gM = (1 − 1/M), we obtain

σ 2
α ≈ (C0 + C1)−2

[(M − 1) ln 2]2

⎡
⎣
˝⎛
⎝ M−1∑

i=1

vivi+1

⎞
⎠

2˛
+ ρ2

1g
2
M

˝⎛
⎝ M−1∑

i=1

v2
i

⎞
⎠

2˛
− 2ρ1gM

*
M−1∑
i=1

vivi+1

M−1∑
i=1

v2
j

+⎤
⎦, (A13)

σ 2
ln(D/D0)

≈ (C0 + C1)−2

(M − 1)2

⎡
⎣
˝⎛
⎝ M−1∑

i=1

v2
i

⎞
⎠

2˛
+
˝⎛
⎝ M−1∑

i=1

vivi+1

⎞
⎠

2˛
+ 2

*
M−1∑
i=1

vivi+1

M−1∑
i=1

v2
j

+⎤
⎦ − 1, (A14)

σ
α ln(D/D0) ≈ (C0 + C1)−2

(M − 1)2 ln 2

⎡
⎣
˝⎛
⎝ M∑

i=1

vivi+1

⎞
⎠

2˛
− ρ1gM

˝⎛
⎝ M−1∑

i=1

v2
i

⎞
⎠

2˛
+ (1 − ρ1gM )

*
M−1∑
i=1

vivi+1

M−1∑
i=1

v2
j

+⎤
⎦. (A15)

Equations (A13)–(A15) involve fourth-order moments, which can be simplified for Gaussian distributed random numbers by
expressing them by second-order moments as follows [26]:

〈A1A2A3A4〉 = 〈A1A2〉〈A3A4〉 + 〈A1A3〉〈A2A4〉 + 〈A1A4〉〈A2A3〉. (A16)
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After some algebraic manipulations, this yields, for the sums of velocity products in Eqs. (A13)–(A15),

s1 =
˝⎛
⎝ M−1∑

i=1

vivi+1

⎞
⎠

2˛
= M(C2

0 + MC2
1 )gM + 2

M−2∑
i=1

(M − i − 1)
(
C2

i + Ci−1Ci+1
)
, (A17)

s2 =
˝⎛
⎝ M−1∑

i=1

v2
i

⎞
⎠
˛2

= M(M + 1)C2
0gM + 4MgM

M−2∑
i=1

(M − i − 1)C2
i , (A18)

s3 =
*

M−1∑
i=1

vivi+1

M−1∑
i=1

v2
j

+
= M(M − 2)C0C1gM + 2

M−2∑
i=1

[2(M − i) − 1]CM−i−1CM−i . (A19)

Using these expressions in Eqs. (A13)–(A15), we obtain the expressions for variances and covariances stated in the main text,
Eqs. (30). It is straightforward to extract, from mean values, variances, and covariances, the parameters of a two-dimensional
Gaussian. For coefficients (a,b,c), we make the simplifying assumption that gM ≈ 1, which is justified for a sufficiently large
window size. This yields

a ≈ −1

2

M2
(
C2

0s1 + C2
1s2 − 2C0C1s3

)
M2

(
C2

0s1 + C2
1s2 − 2C0C1s3

) − s1s2 + s2
3

, (A20)

b ≈ 1

2

(MC0 ln 2)2[M2(C0 + C1)2 − (s1 + s2 + 2s3)]

M2
(
C2

0s1 + C2
1s2 − 2C0C1s3

) − s1s2 + s2
3

, (A21)

c ≈ M2C0 ln 2[C0s1 − C1s2 + (C0 − C1)s3]

M2
(
C2

0s1 + C2
1s2 − 2C0C1s3

) − s1s2 + s2
3

. (A22)
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