Superprotected n-point functions of local operators in $\mathcal{N}=4$ supersymmetric Yang-Mills

Jan Plefka

Humboldt-Universität zu Berlin

joint work with Nadav Drukker
arXiv:0812.3341, arXiv:0901.3653

DAMTP Cambridge, 19. February 2009

Motivation: $\mathcal{N}=4$ super Yang Mills

- Gluons $A_{\mu}, 6$ scalars $\Phi_{I}, 4$ gluinos $\left(\psi_{\alpha}^{A}, \psi_{\dot{\alpha}}^{A}\right)$ in adjoint rep. of $S U(N)$:

$$
S=\frac{1}{g_{\mathrm{YM}}{ }^{2}} \int d^{4} x \operatorname{Tr}\left[\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left(D_{\mu} \Phi_{i}\right)^{2}-\frac{1}{4}\left[\Phi_{I}, \Phi_{J}\right]\left[\Phi_{I}, \Phi_{J}\right]+\text { ferm. }\right]
$$

- Planar limit: $N \rightarrow \infty$ with $\lambda=g_{\mathrm{YM}}{ }^{2} N$ fixed.
- Most symmetric 4d gauge theory! Symmetry: psu(2,2|4) $\in s o(2,4) \otimes s o(6)$ Conformal: $P_{\mu}, K_{\mu}, J_{\mu \nu}, D \quad$ R-symmetry: $R_{I J} \quad I=1, \ldots 6$ Susy: $Q_{A}^{\alpha}, \bar{Q}_{A}^{\dot{\alpha}} \quad$ Superconformal: $S_{\alpha}^{A}, \bar{S}_{\dot{\alpha}}^{A} \quad A=1, \ldots, 4$
$\Rightarrow 16+16=32$ supersymmetries
- Dual to $A d S_{5} \times S^{5}$ superstring theory.
- Tremendeous advances in our understanding of $\mathcal{N}=4$ SYM due to AdS/CFT intergability

Motivation: Local operators

- Class of observables: Correlation functions of local gauge invariant operators, e.g scalars $\mathcal{O}_{I_{1} I_{2} \ldots I_{n}}(x)=\operatorname{Tr}\left[\Phi_{I_{1}} \Phi_{I_{2}} \ldots \Phi_{I_{n}}\right]$
- Form of two-point functions determined by conformal symmetry:

$$
\left\langle\mathcal{O}_{\alpha}\left(x_{1}\right) \mathcal{O}_{\beta}\left(x_{2}\right)\right\rangle=\frac{\delta_{\alpha \beta}}{\left(x_{1}-x_{2}\right)^{2 \Delta_{\alpha}(\lambda)}}
$$

AdS/CFT Integrability: Close to exact knowledge of $\Delta_{\alpha}(\lambda)$ via Bethe Eqs.

- Question: What can be said for three and higher-point correlators?

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}(\lambda)}{x_{12}^{\Delta_{1}+\Delta_{2}-\Delta_{3}} x_{23}^{\Delta_{2}+\Delta_{3}-\Delta_{1}} x_{31}^{\Delta_{3}+\Delta_{1}-\Delta_{2}}}
$$

- 4 and higher point function very complicated!

1/2 BPS "protected" chiral primary operators I

- Simplest' class of operators: $\mathcal{O}_{\mathrm{CPO}}=\operatorname{Tr}\left[\Phi_{\left\{I_{1} \ldots \Phi_{\left.I_{n}\right\}}\right]}\right.$ with $_{\{\ldots\}}$: sym, tracel.
- Introduce $Z_{u}(x)=u^{I} \Phi^{I}(x)$ and write $\mathcal{O}_{\mathrm{CPO}}=\operatorname{Tr}\left[Z(x)^{J}\right]$ with $u^{I} \in \mathbb{C}$ and null condition $u \cdot u=0$.
[Arutyunov,Dolan,Osborn,Sokatchev]

$$
\begin{aligned}
& \text { Susy: } \quad \delta \Phi^{I}=\bar{\psi} \gamma^{5} \rho^{I}\left(\epsilon_{0}+\gamma_{\mu} x^{\mu} \epsilon_{1}\right) \\
& \Rightarrow \quad \delta Z(x=0) \stackrel{!}{=} 0 \quad \Leftrightarrow \quad u^{I} \rho^{I} \epsilon_{0}=0 \quad \Leftrightarrow \quad u \cdot u=0
\end{aligned}
$$

Preserves 24 supercharges (8 super-Poincaré and 16 superconformal).

- Two-point functions receive no radiative corrections!

$$
\begin{aligned}
& \left\langle\operatorname{Tr} Z_{1}^{J}\left(x_{1}\right) \operatorname{Tr} Z_{2}^{J}\left(x_{2}\right)\right\rangle=\left\langle\operatorname{Tr} Z_{1}^{J}\left(x_{1}\right) \operatorname{Tr} Z_{2}^{J}\left(x_{2}\right)\right\rangle_{0} \\
& \quad=\left\langle\operatorname{Tr}\left[u_{1} \cdot \Phi\left(x_{1}\right)\right]^{J} \operatorname{Tr}\left[u_{2} \cdot \Phi\left(x_{2}\right)\right]^{J}\right\rangle_{0}=J(\underbrace{\frac{u_{1} \cdot u_{2}}{4 \pi^{2}\left(x_{1}-x_{2}\right)^{2}}}_{=:[12]})^{J}
\end{aligned}
$$

- $\operatorname{Tr} Z_{1}^{J}\left(x_{1}\right)$ and $\operatorname{Tr} Z_{1}^{J}\left(x_{2}\right)$ share 16 supercharges.

1/2 BPS "protected" chiral primary operators II

- Three-point functions:

$$
\left([i j]:=\frac{u_{i} \cdot u_{j}}{4 \pi^{2}\left(x_{i}-x_{j}\right)^{2}}\right)
$$

$$
\begin{aligned}
& \left\langle\operatorname{Tr} Z_{1}^{J_{1}}\left(x_{1}\right) \operatorname{Tr} Z_{2}^{J_{2}}\left(x_{2}\right) \operatorname{Tr} Z_{3}^{J_{3}}\left(x_{3}\right)\right\rangle= \\
& \quad C_{123}[12]^{J_{1}+J_{2}-J_{3}}[23]^{J_{2}+J_{3}-J_{1}}[13]^{J_{3}+J_{1}-J_{2}}
\end{aligned}
$$

Also no radiative corrections! All three operators share at least 8 supercharges.

- Four-point functions are notrivial:

$$
\begin{aligned}
& \left\langle\operatorname{Tr} Z_{1}^{k}\left(x_{1}\right) \operatorname{Tr} Z_{2}^{k}\left(x_{2}\right) \operatorname{Tr} Z_{3}^{k}\left(x_{3}\right) \operatorname{Tr} Z_{4}^{k}\left(x_{4}\right)\right\rangle= \\
& \quad \operatorname{tree}+\mathcal{R} \sum_{m+n+l=k-2} \mathcal{F}_{m n l}^{(k)}(s, t, \lambda) \mathcal{X}^{m} \mathcal{Y}^{n} \mathcal{Z}^{l}
\end{aligned}
$$

Receive loop-correction. Generically share no supersymmetries.

- Would like to attribute the complexity of the 4-point function to this.

Structure of 4-point functions

- The 4 -point function is very complicated

$$
\begin{aligned}
&\left\langle\operatorname{Tr} Z_{1}^{k}\left(x_{1}\right) \operatorname{Tr} Z_{2}^{k}\left(x_{2}\right) \operatorname{Tr} Z_{3}^{k}\left(x_{3}\right) \operatorname{Tr} Z_{4}^{k}\left(x_{4}\right)\right\rangle \\
&=\operatorname{tree}+\mathcal{R} \sum_{m+n+l=k-2} \mathcal{F}_{m n l}^{(k)}(s, t, \lambda) \mathcal{X}^{m} \mathcal{Y}^{n} \mathcal{Z}^{l}
\end{aligned}
$$

where

$$
\mathcal{X}=[12][34], \quad \mathcal{Y}=[13][24], \quad \mathcal{Z}=[14][23] .
$$

- Conformal invariant cross ratios

$$
s=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad t=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2} .
$$

- Universal prefactor

$$
\begin{aligned}
\mathcal{R}=s \mathcal{X}^{2}+\mathcal{Y}^{2}+ & t \mathcal{Z}^{2}+(s-t-1) \mathcal{Y} \mathcal{Z} \\
& +(1-s-t) \mathcal{X} \mathcal{Z}+(t-s-1) \mathcal{X} \mathcal{Y}
\end{aligned}
$$

$\mathcal{F}_{m n l}^{(k)}(s, t, \lambda)$ is known to two loop order.

Outline

We pose and answer two questions:

- Are there ways to choose four operators or more so that they share SUSY?
- Will the n-point function be protected?

Plan:

(1) Trivial example
(2) Example I

- Four-point function
- Symmetry
(3) Example II
(3) Side result: General one-loop insertion formula
(3) Some five and six-point functions
(0) Outlook

Trivial example

- Take $u^{I}=(1, i, 0,0,0,0)$ so $Z_{u}=\Phi^{1}+i \Phi^{2}$
- $\operatorname{Tr} Z^{J}(0)$ preserves 8 super-Poincaré charges $(Q \mathrm{~s})$ and all 16 superconformal ones (the $S \mathrm{~s}$). At a different position $\operatorname{Tr} Z^{J}(x)$ will no longer preserve the $S \mathrm{~s}$, but it will still preserve the same eight Q
- Indeed n-point function is protected

$$
\left\langle\operatorname{Tr} Z^{J_{1}}\left(x_{1}\right) \operatorname{Tr} Z^{J_{2}}\left(x_{2}\right) \cdots \operatorname{Tr} Z^{J_{n}}\left(x_{n}\right)\right\rangle=0
$$

This is a rather trivial example, as the R-symmetry charges are not balanced.

Example I

- Central idea: Make $u^{I}=u^{I}(x)$ space-time-dependent!
- Choose following combination of the 6 real scalars: [de Mederios, Hull, Spence, Figuero-O- Farrill]

$$
C(x):=2 i x_{\mu} \Phi^{\mu}(x)+i\left[1-\left(x_{\mu}\right)^{2}\right] \Phi^{5}(x)+\left[\left(1+\left(x_{\mu}\right)^{2}\right] \Phi^{6}(x)\right.
$$

I.e. $u^{I}=\left(2 i x_{\mu}, i\left(1-x^{2}\right),\left(1+x^{2}\right)\right.$. For example

$$
C(0) \propto \Phi^{6}+i \Phi^{5}, \quad C(\infty) \propto \Phi^{6}-i \Phi^{5}=C(0)^{\dagger}, \quad C(1,0,0,0) \propto \Phi^{6}+i \Phi^{1}
$$

- Crucial property:

$$
[12]=\left\langle C\left(x_{1}\right) C\left(x_{2}\right)\right\rangle_{0}=\frac{-4 x_{1}^{\mu} x_{2}^{\mu}-\left(1-x_{1}^{2}\right)\left(1-x_{2}^{2}\right)+\left(1+x_{1}^{2}\right)\left(1+x_{2}^{2}\right)}{4 \pi^{2}\left(x_{1}-x_{2}\right)^{2}}=\frac{1}{2 \pi^{2}}
$$

Constant independent of x_{1} and x_{2} !
(similar to circular Wilson-loops)

4-point function of $C(x)^{J}$

- We have the general result

$$
\begin{aligned}
& \left\langle\operatorname{Tr} C^{k}\left(x_{1}\right) \operatorname{Tr} C^{k}\left(x_{2}\right) \operatorname{Tr} C^{k}\left(x_{3}\right) \operatorname{Tr} C^{k}\left(x_{4}\right)\right\rangle \\
& \quad=\operatorname{tree}+\mathcal{R} \sum_{m+n+l=k-2} \mathcal{F}_{m n l}^{(k)}(s, t) \mathcal{X}^{m} \mathcal{Y}^{n} \mathcal{Z}^{l}
\end{aligned}
$$

- Recall $\mathcal{X}=[12][34], \quad \mathcal{Y}=[13][24], \quad \mathcal{Z}=[14][23]$.
- But for our $C(x):[i j]=$ const! Hence $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=1 / 4 \pi^{4}$, so

$$
\begin{aligned}
\mathcal{R}= & s \mathcal{X}^{2}+\mathcal{Y}^{2}+t \mathcal{Z}^{2}+(s-t-1) \mathcal{Y} \mathcal{Z} \\
& +(1-s-t) \mathcal{X} \mathcal{Z}+(t-s-1) \mathcal{X} \mathcal{Y}=0
\end{aligned}
$$

No one-loop corrections to the 4-point function!

Supersymmetry analysis

- Require: $\delta C(x)=\bar{\psi} \gamma^{5} u_{C}^{I}(x) \rho^{I}\left(\epsilon_{0}+\gamma_{\mu} x^{\mu} \epsilon_{1}\right)=0$ for $\epsilon_{0} \& \epsilon_{1}$ independent of x^{μ} :

$$
\Rightarrow \quad\left(\gamma^{\mu \nu}+\rho^{\mu \nu}\right) \epsilon_{0}=0 \quad \epsilon_{1}=i \gamma^{1} \rho^{16} \epsilon_{0}
$$

- $\epsilon_{0}=\left(\epsilon_{0}^{+\alpha}{ }_{A}, \epsilon_{0}^{-\dot{\alpha}}{ }_{A}\right)$ in $(\mathbf{2}, \mathbf{1}, \mathbf{4}) \oplus(\mathbf{1}, \mathbf{2}, \overline{\mathbf{4}})$ rep of $s u(2)_{L} \times s u(2)_{R} \times s u(4)$.

Break R-symmetry to $s u(2)_{A} \times s u(2)_{B}$ and decompose $\mathbf{4} \rightarrow(\mathbf{2}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{2})$, i.e split $A=(a, \dot{a})$.

- Above condition solved for $\epsilon_{0}^{+\alpha}=\delta_{a}^{\alpha} \epsilon_{0}^{+}$and $\epsilon_{0}^{-\alpha}=\delta_{\dot{a}}^{\dot{\alpha}} \epsilon_{0}^{-}$
$\Rightarrow 2$ supercharges $\mathcal{Q}^{ \pm}$preserved:

$$
\left\langle\mathcal{Q}^{ \pm}\left(\operatorname{Tr} C^{J_{1}}\left(x_{1}\right) \operatorname{Tr} C^{J_{2}}\left(x_{2}\right) \ldots \operatorname{Tr} C^{J_{n}}\left(x_{n}\right)\right)\right\rangle=0
$$

$\Rightarrow \quad \mathrm{n}$-point function of $\operatorname{Tr} C^{J}(x)$ is $1 / 16$ BPS.

Twisted conformal symmetry

- Bosonic symmetries act on field Φ^{i} of scaling dimensions Δ :

$$
\begin{gathered}
P_{\mu} \Phi^{i}=-i \partial_{\mu} \Phi^{i}, \quad K_{\mu} \Phi^{i}=-i\left(x^{2} \partial_{\mu}-2 x_{\mu} x^{\nu} \partial_{\nu}-2 \Delta x_{\mu}\right) \Phi^{i}, \\
D \Phi^{i}=-i\left(x^{\mu} \partial_{\mu}+\Delta\right) \Phi^{i}, \quad M_{\mu \nu} \Phi^{i}=-i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \Phi^{i}, \\
R_{i j} \Phi^{k}=-i\left(\delta_{i}^{k} \Phi_{j}-\delta_{j}^{k} \Phi_{i}\right) .
\end{gathered}
$$

- Our operator $C(x)$ transforms covariantly under the twisted generators

$$
\begin{aligned}
\tilde{P}_{\mu} & =P_{\mu}+R_{5 \mu}+i R_{6 \mu} \\
\tilde{M}_{\mu \nu} & =M_{\mu \nu}+R_{\mu \nu} \\
\tilde{D} & =D+i R_{56} \\
\tilde{K}_{\mu} & =K_{\mu}-R_{5 \mu}+i R_{6 \mu} .
\end{aligned}
$$

with twisted scaling dimensions $\tilde{\Delta}=0$.

- Explains two-point function $\langle C(x) C(y)\rangle_{0}=$ const

Proof of protectedness of $\operatorname{Tr} C^{J}$ n-point functions

- Topological field theory description: Action was shown to be BRS-exact w.r.t. $\mathcal{Q}^{ \pm}$

$$
S=\left\{\mathcal{Q}^{ \pm}, \Psi^{ \pm}\right\} \quad \text { with suitable fermion field } \Psi^{ \pm}
$$

- Then radiative corrections to n-point correlator vanish:

$$
\begin{aligned}
& \frac{\partial}{\partial g_{Y M}^{2}}\left\langle\operatorname{Tr} C^{J_{1}}\left(x_{1}\right) \operatorname{Tr} C^{J_{2}}\left(x_{2}\right) \cdots \operatorname{Tr} C^{J_{n}}\left(x_{n}\right)\right\rangle \\
& \quad=\frac{i}{g_{\mathrm{YM}}{ }^{4}}\left\langle\left\{\mathcal{Q}^{+}, \Psi^{+}\right\} \operatorname{Tr} C^{J_{1}}\left(x_{1}\right) \operatorname{Tr} \cdots \operatorname{Tr} C^{J_{n}}\left(x_{n}\right)\right\rangle \\
& \quad \propto \mathcal{Q}^{+}\left\langle\Psi^{ \pm} \operatorname{Tr} C^{J_{1}}\left(x_{1}\right) \cdots \operatorname{Tr} C^{J_{n}}\left(x_{n}\right)\right\rangle=0
\end{aligned}
$$

- Hence $\left\langle\operatorname{Tr} C^{J_{1}}\left(x_{1}\right) \ldots \operatorname{Tr} C^{J_{n}}\left(x_{n}\right)\right\rangle=\left\langle\operatorname{Tr} C^{J_{1}}\left(x_{1}\right) \ldots \operatorname{Tr} C^{J_{n}}\left(x_{n}\right)\right\rangle_{0}$

Example II

- Restrict local operators to plane in \mathbb{R}^{4}.
- Introduce complex coordinates $w=x_{1}+i x_{2}$ and $\bar{w}=x_{1}-i x_{2}$ in \mathbb{R}^{2} :

$$
Z=i\left(1-\bar{w}^{2}\right) \Phi^{1}+\left(1+\bar{w}^{2}\right) \Phi^{2}-2 i \bar{w} \Phi^{3}
$$

Not the same as C restricted to \mathbb{R}^{2} !

- Susy analysis: Break $s u(4) \rightarrow s u(2)_{A^{\prime}} \times s u(2)_{B^{\prime}}$ and now decompose $\mathbf{4} \rightarrow(\mathbf{2}, \mathbf{2})$. Generically four supercharges are preserved $\Rightarrow 1 / 8$ BPS correlation functions.
- Now the two-point function is

$$
[12]=\left\langle Z\left(w_{1}\right) Z\left(w_{2}\right)\right\rangle_{0} \propto \frac{\left(\bar{w}_{1}-\bar{w}_{2}\right)^{2}}{\left|w_{1}-w_{2}\right|^{2}}=\frac{\bar{w}_{1}-\bar{w}_{2}}{w_{1}-w_{2}}
$$

Same as a ($N \times N$ matrix valued) 2 d conformal field of weight $\left(\frac{1}{2},-\frac{1}{2}\right)$.

Four-Point function

- Parametrize the complex cross ratio differently

$$
\text { (recall } \left.x_{12}^{2}=w_{12} \bar{w}_{12}\right)
$$

$$
s=\mu \bar{\mu}, \quad t=(1-\mu)(1-\bar{\mu}), \quad \mu=\frac{w_{12} w_{34}}{w_{13} w_{24}} \in \mathbb{C} .
$$

- Universal prefactor then

$$
\mathcal{R}=(\mu(\mathcal{X}-\mathcal{Z})+\mathcal{Z}-\mathcal{Y})(\bar{\mu}(\mathcal{X}-\mathcal{Z})+\mathcal{Z}-\mathcal{Y})
$$

- Now

$$
\frac{\mathcal{X}}{\mathcal{Y}}=\frac{\bar{\mu}}{\mu}, \quad \frac{\mathcal{Z}}{\mathcal{Y}}=\frac{1-\bar{\mu}}{1-\mu} \quad \Rightarrow \quad \mu(\mathcal{X}-\mathcal{Z})+\mathcal{Z}-\mathcal{Y}=0
$$

- Again there are no quantum corrections to the four-point functions! Topological theory?
- First step \Rightarrow Test protectedness for higher point functions at one-loop!

General structure of one loop n-point functions of chiral primaries

- Study the general n-point problem @ 1-loop: $\quad \mathcal{O}_{k}^{u}(x):=\operatorname{Tr}\left[(u \cdot \Phi(x))^{k}\right]$

$$
\left\langle\mathcal{O}_{k_{1}}^{u_{1}}\left(x_{1}\right) \mathcal{O}_{k_{2}}^{u_{2}}\left(x_{2}\right) \mathcal{O}_{k_{3}}^{u_{3}}\left(x_{3}\right) \ldots \mathcal{O}_{k_{n}}^{u_{n}}\left(x_{n}\right)\right\rangle_{\text {1-loop }}=\text { ? }
$$

- Relevant integrals

$$
\begin{aligned}
I_{12} & =\frac{1}{(2 \pi)^{2}\left(x_{1}-x_{2}\right)^{2}}, \\
Y_{123} & =\int d^{4} w I_{1 w} I_{2 w} I_{3 w}, \\
X_{1234} & =\int d^{4} w I_{1 w} I_{2 w} I_{3 w} I_{4 w}, \\
H_{12,34} & =\int d^{4} u d^{4} v I_{1 u} I_{2 u} I_{u v} I_{3 v} I_{4 v} .
\end{aligned}
$$

with $X_{1234}=\frac{\pi^{2} \Phi(s, t)}{(2 \pi)^{8}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{4}\right)^{2}}, \quad Y_{123}=\lim _{x_{4} \rightarrow \infty}(2 \pi)^{2} x_{4}^{2} X_{1234}$
$\Phi(s, t)$ is explicitly known scalar box integral.

General one-loop insertion formula

- Established plug-in formulas to 'dress' tree-graphs:

- Important relation

$$
\begin{aligned}
F_{12,34} & =\frac{\left(\partial_{1}-\partial_{2}\right) \cdot\left(\partial_{3}-\partial_{4}\right) H_{12,34}}{I_{12} I_{34}}=\frac{X_{1234}}{I_{13} I_{24}}-\frac{X_{1234}}{I_{14} I_{23}}+G_{1,34}-G_{2,34}+G_{3,12}-G_{4,12} \\
G_{1,34} & =\frac{Y_{134}}{I_{14}}-\frac{Y_{134}}{I_{13}} .
\end{aligned}
$$

Dressing technique

Approach: Dress tree level graphs with insertion vertices

- Dressed two-gons: Cancel!
- Dressed three-gons: Cancel!
- Dressed $(n>3)$-gons: Cancelation of two and three-point insertions. Only effective four-point interaction survives:

$Y_{i j k}$ functions cancel in effective vertex.

General one-loop insertion formula

- Reduction of general one-loop n-point function to tree-level disc amplitudes:

$$
\begin{aligned}
\left\langle\mathcal{O}_{J_{1}}^{u_{1}} \cdots \mathcal{O}_{J_{n}}^{u_{n}}\right\rangle_{1 \text {-loop }}= & \sum_{i, j, k, l} J_{i} J_{j} J_{k} J_{l} D_{i j k l} \\
& \left\langle\mathcal{O}_{J_{i}-1}^{u_{i}} \mathcal{O}_{J_{j}-1}^{u_{j}} \mathcal{O}_{J_{k}-1}^{u_{k}} \mathcal{O}_{J_{l}-1}^{u_{l}} \mid \mathcal{O}_{J_{1}}^{u_{1}} \cdots \mathcal{O}_{J_{n}}^{u_{n}}\right\rangle_{\text {tree, disc }}
\end{aligned}
$$

with

- Cancelation may only occur within set $i j l m$ of 4points points via identity $D_{i j l m}+D_{i l j m}+D_{i j m l}=0$

Sample calculation

Computed a selection of four, five and six point functions at one loop:

- Simplest example $\langle 2| 2|2| 2\rangle$:

$$
\begin{aligned}
& \left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}}\right\rangle_{1 \text {-loop }}=16\left(D_{1234}\left\langle\mathcal{O}_{1}^{u_{1}} \mathcal{O}_{1}^{u_{2}} \mathcal{O}_{1}^{u_{3}} \mathcal{O}_{1}^{u_{4}}\right\rangle_{\text {tree, disc }}\right. \\
& \left.\quad+D_{1324}\left\langle\mathcal{O}_{1}^{u_{1}} \mathcal{O}_{1}^{u_{3}} \mathcal{O}_{1}^{u_{2}} \mathcal{O}_{1}^{u_{4}}\right\rangle_{\text {tree, disc }}+D_{1243}\left\langle\mathcal{O}_{1}^{u_{1}} \mathcal{O}_{1}^{u_{2}} \mathcal{O}_{1}^{u_{4}} \mathcal{O}_{1}^{u_{3}}\right\rangle_{\text {tree, disc }}\right) .
\end{aligned}
$$

- For given ordering there are two planar tree diagrams with a pair of contractions: \mathcal{X}, \mathcal{Y} and \mathcal{Z}

$$
\begin{aligned}
\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}}\right\rangle_{\text {1-loop }} & =16\left(D_{1234}(\mathcal{X}+\mathcal{Z})+D_{1243}(\mathcal{Y}+\mathcal{X})+D_{1324}(\mathcal{Z}+\mathcal{Y})\right) \\
& =-16\left(D_{1234} \mathcal{Y}+D_{1243} \mathcal{Z}+D_{1324} \mathcal{X}\right)=-\frac{\lambda}{\pi^{2}} \Phi(s, t) \mathcal{R}
\end{aligned}
$$

Used $\left(D_{1234}+D_{1243}+D_{1324}\right)=0$.

Examples: 5-point functions

- $\langle 2| 2|2| 3|3\rangle$:

$$
\begin{aligned}
& \left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{3}^{u_{4}} \mathcal{O}_{3}^{u_{5}}\right\rangle_{1 \text {-loop }}= \\
& \quad \frac{9}{4}[45]\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle_{1 \text { loop }}+\frac{9}{2}[41][15]\left\langle\mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle_{1 \text {-loop }} \\
& +\frac{9}{2}[42][25]\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle_{1 \text { loop }}+\frac{9}{2}[43][35]\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle_{1 \text {-loop }}
\end{aligned}
$$

- $\langle 2| 2|2| 5|5\rangle$:

$$
\begin{aligned}
& \left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{5}^{u_{4}} \mathcal{O}_{5}^{u_{5}}\right\rangle=\frac{25}{4}[45]^{3}\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle \\
& \quad+\frac{75}{2}[35][35][45]^{2}\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle+\frac{75}{2}[25][25][45]^{2}\left\langle\mathcal{O}_{2}^{u_{1}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle \\
& \quad+\frac{75}{2}[15][15][45]^{2}\left\langle\mathcal{O}_{2}^{u_{2}} \mathcal{O}_{2}^{u_{3}} \mathcal{O}_{2}^{u_{4}} \mathcal{O}_{2}^{u_{5}}\right\rangle
\end{aligned}
$$

- In all the 12 examples we checked these can be written as the basic four$\langle 2| 2|2| 2\rangle$ and five-point functions $\langle 2| 2|2| 2|2\rangle$ times free contractions.
\Rightarrow No general proof yet.

Back to the "superprotected" operators

- Important relation:

$$
D_{1234}=\frac{\lambda}{2} \frac{X_{1234}}{I_{13} I_{24}}(2 \mathcal{Y}+(s-1-t) \mathcal{Z}+(t-1-s) \mathcal{X}) \propto \frac{\partial \mathcal{R}}{\partial \mathcal{Y}}
$$

- $\frac{X_{1234}}{I_{13} 124}$ is a transcendental function of the cross-ratios s and t, so cancelations should happen for each choice of four points independently.
- Indeed for example I: $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=$ const, so $D_{i j k l}=0$!
\Rightarrow Perurbative proof of vanishing of all n-point one-loop functions
- For example II this does not happen. Here have to use the modular property

$$
D_{1234}=-\frac{1}{\mu} D_{1324}=-\frac{1}{1-\mu} D_{1243} .
$$

We checked five and six-point functions with total weight ≤ 16 and found that the sum of these triplets always vanished for example II!

But: No general proof yet.

Conclusions and Outlook

- The answer is yes we can:
- One can choose more than three operators that share SUSYs.
- They seem to receive no perturbative corrections ("superprotected").
- Possible to combine with BPS Wilson loop operators, surface operators, etc.
- Many open questions:
- Prove that there are no quantum corrections.
- Do the strong-coupling supergravity $A d S$ calculation.
- Understand the twisted symmetry and its multiplets.
- Understand the topological theories.
- Calculate instanton corrections.
- Other examples: Any three $1 / 2$ BPS operators share eight supercharges. Should be possible to add more operators on the line. Use $\mathcal{R}=0$?
- Grand goal: Use these operators as the starting point to calculate n-point functions of general operators \Leftrightarrow Good ground states in a spin-chain picture?

