Distributed Protocols at the Rescue for Trustworthy Online Voting

Launch Talk at HIIG

Robert Riemann, Stéphane Grumbach

Inria Rhône-Alpes, Lyon

19th July 2017

Outline

- 1 Voting in the Digital Age
- 2 Distributed Online Voting
- 3 Review and Taxonomy
- 4 ADVOKAT

Generic Paper-based Voting

- Preparation Phase central voter registry issues list of eligible voters, prints undistinguishable voting ballots
- Casting Phase on-site, public supervision, voting station(s) run by citizens
- Aggregation Phase tallying of casted ballots
- Evaluation Phase computation of the voting outcome from public tally
- Verification Phase observation during the vote (eye-sight), recounts

Challenge: Conflicting Protocol Properties

Ensure set of security properties at the same time:

- unconditional secrecy of the ballot
- universal verifiability of the tally
- eligibility of the voter

Achievable only with unrealistic assumptions¹: compromise required

¹B. Chevallier-Mames et al. "On Some Incompatible Properties of Voting Schemes". In: Towards Trustworthy Elections: New Directions in Electronic Voting. Springer, 2010.

Impact of Technology on Voting I

Voting in the Digital Age

Figure: Digital Natives. (Flickr/antmcneill CC by-sa)

Figure: Paper-based Voting. (Flickr/coventrycc CC by-nc-nd)

Impact of Technology on Voting II

Impact on Expectations

- comfort on a par with other online services
- flexibility
- automation for cost efficiency

Impact on Security

- hidden body cameras
- invisible ink
- fingerprint databases
- DNA analysis

Online Voting

Online Voting

remote electronic voting

- no chain of custody verifiable per eye-sight
- electronic signals are easy to duplicate

Need for new concepts to ensure security properties.

Classical Online Voting Security Concepts

- Trusted Authorities essentially give up secrecy and correctness
- Anonymous Voting assume unlinkability of distinct communication channels
- Random Pertubation assume shuffle of encrypted votes before their decryption
- Homomorphic Encryption assume aggregation of encrypted votes before decryption

Identified Issues

Voting in the Digital Age

- concentration of power (assumed trust)
- concentration of data

Distributed Protocols

Without consensus on trusted authorities, it is reasonable to omit authorities altogether.

Compare development to:

- Bitcoin gold, fiat money, online banks, Bitcoin
- BitTorrent circulating disks, FTP (web server), Bittorrent

Empowerment of Voters

Assumption of a Distributed Online Voting Protocol

- no authority
- equally privileged, equipotent voters

Promises

- reflects democratic principle of equally powerful voters
- all voters are potential voting officers
- all voters responsible to enfore policy of protocol
- with no weakest link, promise of improved resiliance against DDoS attacks
- balance of knowledge among voters

Notions of Distribution in Online Voting

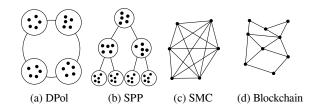
- 1 Degree of Specialisation from equipotent voters to specialised authorities
- Topology of communication/responsabilities from centralised over decentralised to distributed
- Phase consider phases that are actually distributed

Notions of Distribution in Online Voting

- Degree of Specialisation from equipotent voters to specialised authorities
- **Topology** of communication/responsabilities from centralised over decentralised to distributed
- Phase consider phases that are actually distributed

Fully distributed Protocol

- equipotent voters, no authorities.
- distributed topology
- in all phases (but the registration)


From Centralised to Distributed Online Voting

What if all voters become authorities?

- reuse existing protocols with: distributed key generation and threshold decryption
- fits the purpose of small board room votings
- does not scale

Review of Distributed Online Voting

- Secure Multi-party Computation (SMC) communication in $\mathcal{O}(n^2)$, for board room votings
- Distributed Polling (DPol) secret sharing scheme applied to groups aligned in a circle
- Secure and Private Polling (SPP)
 SMC and threshold decryption applied to groups in a tree
- Blockchain-based Voting
 Bitcoin to aggregate votes (coloured coins)

Taxonomy of Distributed Online Voting

Protocol	Degree of Special.	Topology	Distrib. Phases
Paper-based	none (flexible)	distributed	all
Helios, ²	selected authorities	centralised	verification
SPP, ³	random authorities	structured, tree	aggregation
DPol, ⁴	none	structured, ring	all
Blockchain-based	none (flexible)	distributed	all

²B. Adida. "Helios: Web-based Open-Audit Voting." In: USENIX Security Symposium 17 (2008), pp. 335–348.

³S. Gambs et al. "Scalable and Secure Aggregation in Distributed Networks". In: (2011). DOI: 10.1109/SRDS.2012.63.

⁴R. Guerraoui et al. "Decentralized polling with respectable participants". In: Journal of Parallel and Distributed Computing 72.1 (Jan. 2012), pp. 13–26. DOI: 10.1016/j.jpdc.2011.09.003.

Taxonomy of Distributed Online Voting

Protocol	Degree of Special.	Topology	Distrib. Phases
Paper-based Helios	none (flexible) selected authorities	distributed centralised	all verification
SPP	random authorities	structured, tree	aggregation
DPol Blockchain-based	none none (flexible)	structured, ring distributed	all all
DIOCKCIIaiii-baseu	Hone (Hexible)	uisti ibuteu	all

Remarks:

- Blockchain-based protocols are most promising for their similarity with paper-based voting
- To our knowledge: no publication yet on Blockchain-based protocols

Ongoing Work

Novel fully distributed Online Voting Protocol:

ADVOKAT²

- different compromise between secrecy and verifiability
- probabilistic definitions: confidentiality and individual verifiability
- probabilistic results: almost correct with high probability
- assume that voters are always connected (cf. IoT)
- assume trust in technology (instead of in authorities)

²Aggregation for distributed voting online using the Kademlia DHT

ADVOKAT Tree

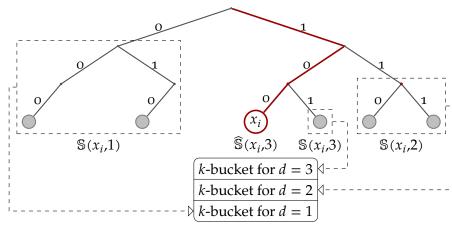


Figure: Kademlia Tree

