Distributed Protocols at the Rescue for Trustworthy Online Voting ICISSP 2017 in Porto

Robert Riemann, Stéphane Grumbach

Inria Rhône-Alpes, Lyon

19th February 2017

1 Voting in the Digital Age

- 2 Distributed Online Voting
- 3 Review and Taxonomy

Distributed Online Voting

Review and Taxonomy

Outlook

Impact of Technology on Voting I

Figure: Digital Natives. (Flickr/antmcneill CC by-sa)

Figure: Paper-based Voting. (Flickr/coventrycc CC by-nc-nd)

Impact of Technology on Voting II

Impact on Expectations

- comfort on a par with other online services
- flexibility
- automation for cost efficiency

Impact on Security

- hidden body cameras
- invisible ink
- fingerprint databases
- DNA analysis

Generic Paper-based Voting

Preparation Phase

central voter registry issues list of eligible voters, prints undistinguishable voting ballots

2 Casting Phase

on-site, public supervision, voting station(s) run by citizens

3 Aggregation Phase tallying of casted ballots

4 Evaluation Phase

computation of the voting outcome from public tally

5 Verification Phase

observation during the vote (eye-sight), recounts

Challenge: Conflicting Protocol Properties

Ensure set of security properties at the same time:

- unconditional secrecy of the ballot
- universal verifiability of the tally
- eligibility of the voter

Achievable only with unrealistic assumptions¹: **compromise required**

Distributed Protocols at the Rescue for Trustworthy Online Voting (Robert Riemann, Stéphane Grumbach)

¹B. Chevallier-Mames et al. "On Some Incompatible Properties of Voting Schemes". In: Towards Trustworthy Elections: New Directions in Electronic Voting. Springer, 2010.

/oting in the Digital Age ○○○○●○	Distributed Online Voting	Outlook

Online Voting

Online Voting

remote electronic voting

- no chain of custody verifiable per eye-sight
- electronic signals are easy to duplicate

Need for new concepts to ensure security properties.

Classical Online Voting Security Concepts

Trusted Authorities

essentially give up secrecy and correctness

Anonymous Voting assume unlinkability of distinct communication channels

Random Pertubation

assume shuffle of encrypted votes before their decryption

Homomorphic Encryption

assume aggregation of encrypted votes before decryption

Identified Issues

- concentration of power (assumed trust)
- concentration of data

Distributed Protocols

Without consensus on trusted authorities, it is reasonable to omit authorities altogether.

Compare development to:

Bitcoin

gold, fiat money, online banks, Bitcoin

BitTorrent

circulating disks, FTP (web server), Bittorrent

Voting in the Digital Age	Distributed Online Voting ○●○	Outlook
_		

Empowerment of Voters

Assumption of a Distributed Online Voting Protocol

no authority

equally privileged, equipotent voters

Promises

- reflects democratic principle of equally powerful voters
- all voters are potential voting officers
- all voters responsible to enfore policy of protocol
- with no weakest link, promise of improved resiliance against DDoS attacks
- balance of knowledge among voters

Notions of Distribution in Online Voting

- **1 Degree of Specialisation** from equipotent voters to specialised authorities
- 2 **Topology** of communication/responsabilities from centralised over decentralised to distributed
- 3 Phase

consider phases that are actually distributed

Notions of Distribution in Online Voting

- 1 Degree of Specialisation from equipotent voters to specialised authorities
- 2 **Topology** of communication/responsabilities from centralised over decentralised to distributed
- **3** Phase

consider phases that are actually distributed

Fully distributed Protocol

- equipotent voters, no authorities,
- distributed topology
- in all phases (but the registration)

From Centralised to Distributed Online Voting

What if all voters become authorities?

- reuse existing protocols with: distributed key generation and threshold decryption
- fits the purpose of small board room votings
- does not scale

Voting in the Digital Age	Distributed Online Voting	Review and Taxonomy	Outlook	
		000		
Review of Distributed Online Voting				

- Secure Multi-party Computation (SMC) communication in $O(n^2)$, for board room votings
- Distributed Polling (DPol) secret sharing scheme applied to groups aligned in a circle
- Secure and Private Polling (SPP) SMC and threshold decryption applied to groups in a tree
- Blockchain-based Voting Bitcoin to aggregate votes (coloured coins)

Taxonomy of Distributed Online Voting

Protocol	Degree of Special.	Topology	Distrib. Phases
Paper-based	none (flexible)	distributed	all
Helios, ²	selected authorities	centralised	verification
SPP, ³	random authorities	structured, tree	aggregation
DPol, ⁴	none	structured, ring	all
Blockchain-based	none (flexible)	distributed	all

²B. Adida. "Helios: Web-based Open-Audit Voting." In: USENIX Security Symposium 17 (2008), pp. 335–348.

³S. Gambs et al. "Scalable and Secure Aggregation in Distributed Networks". In: (2011). DOI: 10.1109/SRDS.2012.63.

⁴R. Guerraoui et al. "Decentralized polling with respectable participants". In: Journal of Parallel and Distributed Computing 72.1 (Jan. 2012), *Unitar* pp. 13–26. DOI: 10.1016/j.jpdc.2011.09.003.

Taxonomy of Distributed Online Voting

Protocol	Degree of Special.	Topology	Distrib. Phases
Paper-based Helios	none (flexible) selected authorities	distributed centralised	all verification
SPP	random authorities	structured, tree	aggregation
Blockchain-based	none (flexible)	distributed	all

Remarks:

- Blockchain-based protocols are most promising for their similarity with paper-based voting
- To our knowledge: no publication yet on Blockchain-based protocols

Voting in the Digital Age	Distributed Online Voting	Outlook ●○
Ongoing Work		

Novel fully distributed Online Voting Protocols

- different compromise between secrecy and verifiability
- probabilistic definitions: confidentiality and individual verifiability
- probabilistic results: almost correct with high probability
- assume that voters are always connected (cf. IoT)
- assume trust in technology (instead of in authorities)

A proposition for such a protocol has been submitted.

Open Questions

- defense against adversaries (Byzantine fault-tolerance, 51% attack)
- proofs of properties are not streight-forward
- interesting legal issues due to probabilistic approach

