Verteidigung der Masterarbeit

IMPLEMENTIERUNG EINER STEUERUNG FÜR EIN QUANTUM KEY Distribution (QKD) Experiment Inklusive Postprocessing

Robert Riemann

Institut für Physik – Humboldt-Universität zu Berlin

rriemann@physik.hu-berlin.de

22. März 2013

Klassische Kryntographie	Einführung ●0000000	Experimenteller Aufbau 0000	Postprocessing 00000000000	
Nassische Kijptographie	Klassische Kryptographie			

Kryptographie

Abbildung: Cäsar-Verfahren mittels Chiffrier-Scheibe um 1460¹ Abbildung: Kryptographie heute mit dem neuen e-Personalausweises²

¹http://www.chip.de/bildergalerie/ Die-Geschichte-der-Kryptographie-Galerie_38410733.html, März 2013 ²http://www.reiner-sct.com/presse/fotoarchiv/, März 2013

Einführung ⊙●○○○○○○○	Experimenteller Aufbau 0000	Postprocessing 00000000000	
Übersicht			

1 Einführung

- Klassische Kryptographie
- Unconditional Security
- Quantum Key Distribution
- 2 Experimenteller Aufbau
 - Optischer Aufbau
 - Steuerung und Datennahme

3 Postprocessing

- Error Correction
- Privacy Amplification
- Authentifizierung
- Details der Implementierung und Benchmarks

4 Ausblick

Postprocessing

Klassische Kryptographie

Klassifizierung

Symmetrische Kryptographie

- Schlüssel: privat
- Verschlüsselung und Entschlüsselung ist method. symmetrisch
- mathematisch effizient

Abbildung: Cäsar-Verfahren (③)

Asymmetrische Kryptographie

- Schlüssel: privater und öffentl. Teil
- Verschlüsselungsfunktion nicht trivial umkehrbar, daher asymmetrisch
- vergleichsweise ineffizient
- Schlüsseltausch öffentlich
- Schlüssel wiederverwendbar
- Sicherheit zweifelhaft

Einführung	Experimenteller Aufbau	Postprocessing	
⊃○○●○○○○○	0000	00000000000	
Inconditional Security			

Unconditional Security, One-Time Pad

Sicherheitskonzept, welches

- eine beliebige Verkleinerung des Restrisikos erlaubt
- mathematisch vollständig bewiesen ist
- keine weiteren Voraussetzung verlangt

Beispiel One-Time Pad (Symmetrische Verschlüsselung)

- Kombination bitweise
- Entschlüsselung wie Verschlüsselung
- Sicherheit bewiesen³

³C. Shannon, Bell System Tech. J. **28**, 656 (1949)

Steuerung und Postprocessing für ein QKD-Experiment (R. Riemann)

Einführung		
00000000		
Unconditional Security		

Problemverlagerung

Problem

- Schlüsseltausch bei klassischer, symmetrischer Kryptographie schwer realisierbar
- Fundamentale Sicherheitsprobleme in asymmetrischer Kryptographie

Lösung: wir verwenden das One-Time Pad

Problem der sicheren Nachrichtenverschlüsselung (Cypher) ↓ Problem des sicheren Schlüsselaustausches

Einführung ○○○○○●○○○	Experimenteller Aufbau 0000	Postprocessing 00000000000	
Quantum Key Distribution			

QUANTUM KEY DISTRIBUTION

Fundamentale Idee:

- Codierung und Übertragung der Schlüsselbits in einzelnen Quantenobjekten
- Erster Vorschlag einer Implementierung: BB84⁴

Ausnutzung der Gesetzmäßigkeiten der Quantenmechanik

- Jede Messung verändert das System.⁵
- Quantenobjekte in unbekannten Zuständen können nicht kopiert werden (No-Cloning Theorem⁶).

⁴C. H. Bennett und G. Brassard. Proc. of IEEE Int. Conf. on Computers, Systems, and Signal Processing, 175 (1984)

⁵mit der Ausnahme von Systemen im Eigenzustand der Messung
 ⁶W. K. Wootters und W. H. Zurek, Nature **299**, 802 (1982)

Einführung	Experimenteller Aufbau	Postprocessing	
0000000000			
Quantum Key Distribution			

BB84 Protokoll I

	1	0	
0 +	(\ ()	$\overset{\circlearrowright}{\leftrightarrow}$	•

- Sender (Alice) sendet polarisierte Photonen (4 Zustände möglich)
- Empfänger (Bob) misst Polarisation
 (2 Basen möglich)
- falls Basen übereinstimmen:
 Ergebnis zu 100 % korreliert, andernfalls zu 0 %.

Vorteil der Vorgehensweise:

 Abhören durch Dritte (Eve) nicht unbemerkt möglich, da die Messung den Zustand zerstört und Kopieren unmöglich ist

Einführung

Experimenteller Aufbau

Postprocessing

Ausblick

Quantum Key Distributior

BB84 Protokoll II

Abbildung: Kompatible Basen

Abbildung: Inkompatible Basen

Unterscheidung der Zustände durch Polarisierende Strahlteiler und $\lambda/4$ -Plättchen.

Einführung		
00000000		
Oversture Key Distribution		

Beispiel-Übertragung

Alice Basis	Alice Bit	Bob Basis	Bob Bit	Resultat
0	1	\bigcirc	1	1
\bigcirc	1	+	0	×
\bigcirc	1	+	1	\checkmark
+	0	+	0	\checkmark
+	0	\bigcirc	1	×
\bigcirc	1	\bigcirc	0	!

Tabelle: Messergebnisse für einzelne Bits. In der 3. Zeile ist das Ergebnis zufällig richtig. In der Letzten wurde das Bit manipuliert.

Messungen mit inkompatiblen Basen sind nicht deterministisch und müssen verworfen werden (Sifting).

Steuerung und Postprocessing für ein QKD-Experiment (R. Riemann)

Einführung	Experimenteller Aufbau	Postprocessing	
	• 0 00		
Optischer Aufbau			

Optischer Aufbau (Schema)

Abbildung: PH Lochblende, Pol Polarisator, EOM Elektro-Optischer Modulator, PBS Polarisierender Strahlteiler, APD Avalanche-Photodiode

Einführung

Experimenteller Aufbau

Postprocessing

Ausblick

ptischer Aufbau

Optischer Aufbau (Photo)

Abbildung: Maße 1,2 m \times 0,5 m

Einführung	Experimenteller Aufbau	Postprocessing	
00000000	○○●○	00000000000	
Steuerung und Datennahme			

Echtzeitsteuerung durch Field-Programmable-Gate-Array (FPGA)

Demonstrationsexperiment:

keine räumliche Trennung der Steuerung von Sender & Empfänger

Abbildung: Flussdiagramm der FPGA-Prozesse

Einführung	Experimenteller Aufbau	Postprocessing	
00000000	○○○●	00000000000	
Steverung und Datennahme			

BINÄRFORMAT DER MESSDATEN

B_A Basis von Alice

- *b*_A Bit von Alice
- B_B Basis von Bob
- b_B reserviert, ungenutzt –
- *m*¹ Photon in Detektor I gemessen
- *m*₂ Photon in Detektor II gemessen

Einführung Experimenteller Aufbau		Postprocessing ●0000000000	
Überblick			

Nach der Quantenübertragung

 In idealem Experiment (Detektionseffizient 100%, kein Angreifer, keine exp. Fehler) Raw Key nach Sifting einsatzbereit

Warum Postprocessing

- Raw Key nach Sifting nicht identisch, wegen
 - Detektorrauschen, Güte optischer Elemente, Streulicht, ...
 - Abhörversuche durch Eve
- Fehleranalyse und Fehlerkorrektur notwendig
- Löschen öffentlicher Information aus dem Schlüssel notwendig
- Kommunikation f
 ür Postprocessing öffentlich und klassisch

Einführung 00000000 Postprocessing

Übersicht der Teilschritte des Postprocessings

Abbildung: Flussdiagramm zum Postprocessing des Raw Key.

Postprocessing

ÜBERSICHT ÜBER ERROR CORRECTION

- Error Estimation durch stichprobenartige Vergleiche
- Error Correction⁷ bestehend aus
 - einem stochastischem Fehler-Test Parity Check
 - einem Korrekturverfahren BINARY
 - einer Vorschrift Cascade zur Wiederholung der Parity Checks um die Fehlerwahrscheinlichkeit zu senken

⁷G. Brassard and L. Salvail. Advances in Cryptology EUROCRYPT '93. 1994.

Steuerung und Postprocessing für ein QKD-Experiment (R. Riemann)

Einführung 00000000	Experimenteller Aufbau 0000	Postprocessing	
Error Correction			

Parity

Definition

Die Parity einer Bitkette $D = \{D_1, ..., D_n\}$ ist definiert als die Verknüpfung aller Bits durch XOR:

$$c(D) = \bigoplus_{i=1}^n D_i$$

Abbildung: Beispiel für Parity Berechnung

Einführung 000000000 Experimenteller Aufbau

Postprocessing

BINARY KORREKTURVERFAHREN

Parity Bit von Alice

Cascade Algorithmus zur Fehlerkorrektur

Einführung	
000000000	

Postprocessing

PRIVACY AMPLIFICATION

Nach der Schlüsselkorrektur

Schlüssel nur partiell geheim, da

- Parity-Austausch bei Error Correction Teilinformationen offenlegt
- Eve in reallem Experiment endliche Wahrscheinlichkeit hat unerkannt Schlüsselteile zu messen

Definition

Das Destillieren eines hochsicheren Schlüssels aus einem längeren, weniger sicheren Schlüssel wird Privacy Amplification genannt.

Vorgehensweise bei der Privacy-Amplification

- maximale öffentliche Information über den Schlüssel in bit:
 - $t = 2 \cdot n \cdot p + n_{\text{parity}}$
 - n: Schlüssellänge in Bit nach Sifting u. Fehlerabschätzung
 - p: experimentell ermittelte Übertragungsfehlerrate pro Bit
 - *n*_{parity}: Anzahl übertragener Parity-Bits für Fehlerkorrektur

• Kompression via $g: \{0,1\}^n \to \{0,1\}^r$, mit r = n - t - s

- s: Sicherheitsparameter
- spezielle Wahl der Funktionen-Klasse für g
- Kompressionsfunktion wird zufällig bestimmt

Almost-Strongly Universal $_2$ Hash-Funktionen

Spezielle Klasse(n) von Funktionen \mathbb{H} , die:

- \blacksquare eine Menge $\mathbb M$ auf eine Menge Token $\mathbb T$ ($|\mathbb T|\leq |\mathbb M|)$ abbildet
- nur wenige Funktionen umfassen und daher effizient sind
- genügend Funktionen umfassen um Vorhersagen fast unmöglich zu machen
- Kriterien der Unconditional Security erfüllt: Sicherheit skaliert mit $\propto 2^{-s}/\ln 2$, mit Sicherheitsparameter s

Einführung 00000000	Experimenteller Aufbau 0000	Postprocessing	

Authentifizierung

- Authentifizierung sämtlicher öffentlicher Kommunikation und somit Absicherung gegen Man in the middle-Angriffe
- Validierung durch Token, die durch Kompression mittels Almost-Strongly Universal₂ Hash-Funktionen erzeugt werden

 g_a (Postprocessing-Daten) = Token, *a* Schlüssel

- Auswahl der Kompressions-Funktionen durch vorab geteilten privaten Schlüssel a!
 Quantum Key Growing (QKG) Verfahren statt QKD
- Sicherheit skaliert mit Tokenlänge

Einführung 000000000 Experimenteller Auft

Postprocessing

Details der Implementierung und Benchmarks

Implementierung der Software

Postprocessing

- vollst. Implementierung des Postprocessing-Stacks inkl. Authentifizierung
- Klassische Kommunikation mit TCP/IP
- Austauschformat: binäre Dateien
- für: Linux, Mac, Windows (und Embedded Devices)
- verwendet 01 Bibliothek, http://qt-project.org

Abbildung: QKD Client nach Postprocessing

Einführung	Experimenteller Aufbau	Postprocessing		
00000000	0000	○○○○○○○○○		
Details der Implementierung und Benchmarks				

Messergebnisse

	$f_{\rm [Hz]}[{\rm kHz}]$	p _{error} [%]	raw rate [1/ks]	$q_{ m conversion}$ [%]	$q_{\rm used}$ [%]	sec. rate [1/ks]
NV	1000	$3,0 \pm 0,1$	4,32	64,0	$1,4\pm0,4$	2,77
NV	800	$3,2 \pm 0,1$	3,35	66,o	$_{1,5}\pm 0,4$	2,21
SiV	1000	$3,3 \pm 0,1$	1,57	65,8	$3{,}5\pm1{,}0$	1,03
Tabelle: Auswertung der Messungen						

C BERLIN

Einführung 00000000	Experimenteller Aufbau 0000	Postprocessing 00000000000	Ausblick
Verbesserungen			

Verbesserungen

Verbesserungen des experimentellen Aufbaus

- strikte Trennung von Sender (Alice) und Empfänger (Bob)
- Miniaturisierung durch eigenes FPGA-Board (Arbeit von Georg)
- Verwendung einer Glasfaser-Verbindung (Time-Bin-Encoding⁸)
- höhere Datenübertragungsrate

Verbessungen des Postprocessings

- Optimierung der TCP/IP Bandbreitennutzung
- Implementierung von Adaptive Cascade zur Effizienzsteigerung

⁸P. D. Townsend et al. Electron. Lett, 29(7):634–635, April 1993.

Steuerung und Postprocessing für ein QKD-Experiment (R. Riemann)

Vielmals danke ich denjenigen, die mich und meine Arbeit unterstützt haben. Insbesondere:

- Marcel G. (Praktikant; Projekt Messdatensimulation)
- Tim Schröder (Messaufbau)
- Valentin Métillon (Praktikant; Messaufbau, Messung)
- Friedemann G. (Einzelphotonenquelle, Messaufbau, Messung)
- Matthias Leifgen (Betreuung)

Kryptographie

Definition

Kryptographie ist die Wissenschaft, die sich allgemein mit dem Thema Informationssicherheit, also der Konzeption, Definition und Konstruktion von Informationssystemen befasst, die widerstandsfähig gegen unbefugtes Lesen und Verändern sind.⁹

Die Quantenkryptographie vereinigt Elemente der klassichen Kryptographie mit den inherenten quantenmechanischen Eigenschaften.

⁹http://de.wikipedia.org/wiki/Kryptographie?oldid=113655328

Steuerung und Postprocessing für ein QKD-Experiment (R. Riemann)

EINSATZGEBIETE KLASSISCHER KRYPTOGRAPHIE

- Authentifizierung von digitalen Nachrichten (z.B. Finanztransaktionen)
- Abhörsichere Kommunikation (z.B. diplomatische Korrespondenz)
- Internet (Onlinebanking, Chat, Skype, etc.)

PROBLEMATIK KLASSISCHER KRYPTOGRAPHIE

Symmetrische Kryptographie

- privater Schlüssel muss zuvor getauscht werden
- unconditional security beweisbar,
 - z.B. One-Time Pad
- kaum eingesetzt

Asymmetrische Kryptographie

- privater Schlüsseltausch unnötig
- Sicherheit abhängig von fehlendem Existenzbeweis für unumkehrbare Funktionen
- im Praxiseinsatz

ostprocessing

Implementierung der Software I

Quantenkanalmessungen

- computergestützte Steuerung sämtlicher Hardware
- SmarAct-USB-Interface für Einzelphotonenquelle
- FPGA-PCI-Karte für Laser, EOM, APD
- Programmierung mit LabVIEW

Abbildung: FPGA Software GUI

Implementierung der Software II

Daten-Evaluation

- Software zur Messdaten-Verifikation
- Bestimmung der Fehlerrate
- Synthetisierung von Messdaten aus echten Zufallszahlen (Arbeit von Marcel G.)

Abbildung: Measurement Analyzer

Backup ○○○○○●○	
Postprocessing	

Abnahme der Schlüssellänge

Abbildung: Abnahme der Schlüssellänge nach Messung. Es verbleiben nach der Authentifizierung schließlich 31 %.

Backup 0000000

Postprocessing

SIMULATION ZUR HASH-FUNCTION

Hash-Funktion

$$\mathcal{H} = \{ \mathbf{g}_{\mathbf{c}} : \mathbf{x} \to [(\mathbf{c} \cdot \mathbf{x}) \bmod 2^r] \in \{0,1\}^r \mid \mathbf{x}, \mathbf{c} \in \{0,1\}^n, \mathbf{c} \text{ ungerade} \}$$

Steuerung und Postprocessing für ein QKD-Experiment (R. Riemann)