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Preface

It became a good tradition that Czechoslovak physjcists
interested in elementary particle physics meet together with
their colleagues from abroad at the Hadron Structurec confe-
rences evyry ycar. The present book represents the procecdings
of the Hadron Structure '87 conference which was held jn
Smolenice Castle pear Bratislava on November 16-20, this yecar.

The programme of the conference consisted of lecuoure:s
and short communjications. The main topics covered were:

- Nonperturbative calculations in field theory ( QCD in

particular )

- Particle production in hadron-nucleus and nucleus-

nycleys collisions and the quark-gluon plasma

- Trecent experimental results.

The arrangement of papers follows closely chronology of
talks as they were presented at the conference with the
exception that lectures (presented during morning sessions)
and short communications are grouped togcther scparately.

In the cont-ats we list all papers presented at the
conference Specifying those which were not made available
for publicatjion in the present volume.

The editors would like to thank all authors submitting
their papers fror printing in the camera recady form. he are
also grateful to the Ve la Publishing House for their interest
to publish this proceedings and for their assistance.

Editor



STATUS8 OF NONCOVARIANT SUPERGAUGEB+

(Lacture at "Hladron Structure 1987" , 16. - 20,11,1987,
Smolenice, CSSR)

W. KUMMER

Institut fUr Theoretische Physik
der Technischen Universitit Wien

Abstract:

Supersymmetric gauge theories can be sultably quantized in non-
supersymmetric gauges without abolishing the advantages of
supergraph techniques. The state of the art now encompasses the
proof of renormalization and of gauge~independence and super-~
symmetry for observable physical quantities,

Karlsplatz 13, A-1040 Wien

+Supported by "Fonds zur wissenschaftlichen Forschung",
Proj. Nr. 5485
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1. Introduction

The general superfield treatment of renormalization problem
in supersymmetric gauge-theories [1] cannot cvade the choize
of a gauge which breaks supcrsymmetry, at least softly (27.
This suggests the study of general noncovariant supergauges
which, on the other hand, allow the inclusion of celebrated
gauges like the Wess~-Zumino gauge [3,4,5] in a supergraph
formalism.

2, Gauge-~Superfield and Notation

The ordinary gauge-field Vi in supersymmetry becomes a
component of a hermitian superfield [6,7] V = vt

V(x, 9,@) mc +©@emG)v 4'615’-34-

) 2.1)
+[(E1) ¢ 46™ « 466D 4 he.] 2

which contains powers of the Lorentz 2~spinor Grassmann-varia-
bles 8, and 6&. (a, & = 1,2 ). The basic anticommutatér for
the Bpinor charges Qy and 6‘ in supersymmetry reads (1'-'m is
the generator of the translations)

(C, 0.} 2F,

(2.2)
Supersymmetric covariant derivatives ( '3.,: %x)
D.< - 'a.( - (a’é’a
By = 0T -5 4 i (69), @

anticommute with Q, and §; , but obey the same relation (2.2)
with Pm = 1am.

The supergraph-renormalization problem [2] is a consequence
of the (mass~) dimension zero of V which in turn follows from

12



the dimension 1 of the vector-ficld Ven and from the dimension

- % for A, The scalar component of V has dimension zero too
and, for purely dimensional reasons, the c-propagator must be-
have like 1/k?. Thus a ncw type of infrared (IR) divergence
appears, cxcept the “"unphysical® components of V are fixed
appropriately. Only Vi and one spinor-field are physical de-
greeg of freedom. Fixing the gauge in a way which does not
break supersymmetry will not provide a solution of this problem.
Sufficient for such a solution igs the choice of the Wess-Zumino
gauge [\] which eliminates all fields except v, A and
Such a gauge clearly breaks supersymmetry. Nevertheless, in
order to be able to still use the powerful modern versions of
supergraphs CB] it is desirable to extend the latter method
to such gauges.

3. Gauge Fixing in Supersymmetric Yang-Mills Theories

The Bupcrsymmetric Yang-tMills Lagrangian [6,7] is (the

facter D/g2 depends on the convention for the component fields

of v =riv}, qerird - g

13!
XYM. ® 9(463‘)-4 Te fdix+ W"\/\/“
W, = B* -8V D, eg\/ (3.1)

with the "chiral" gauge=-invariance (Af = A)

!
9\/ Y e"‘.Ar esv [A*

. e ’ (3.2)
For an infinitesimal change &A, , V' = V + 6V one arrives at
LY
( L Y = [xa[Y:""' fY.Y]]]
§V = lL’{{(Co%Lw)(JAQ'JAT\)* JAN‘;Aﬂ:

"

R(V) A, + R(V)IAT (3.3)



This implies for the vector component v, of V

) (3.4)
S = D (A ALY 4 ig [wa,4,4AT] + Oy

where A, 1is the scalar component of the chiral superfield 64,.
From (3.4) we see that V contains a vector-gauge-field whith
proper gauge-transformation properties, embedded linto a larger
set of supersymmetric transformations involving also the other
components of V. The gauge-function A, has 8 degreces of frec-
dom, allowing as many conditions for the components (c,Xx,M,v
A, D) in V. E.g. in the celebrated Wess-Zumino gauge the 8
conditions are

ml

" (3.5)
€= Yo = M e e"\rh'ao

" where ¢ is a fourvector which determines the (homogeneous)
gauge of v (Rm = 3, for the Landau-gauge, £ = n, for the
fixed fourvector in the homogenecus axial gauge etc.). This
gauge clearly breaks the supersymmetry. The (homogeneous} co-
variant supergauge is given by

D*V = Hva.o (3.6)

yielding for the component field ¢ the (spurious, but awkward)
infrared singularity of covariant supergauges referred to above.

Because some sort of supersymmetry breaking cannot be
avoided in the treatment of quantized superfields a general

gauge-breaking Lagrangian (3]

fgp. = T { { (B + BE)V -w BB} (3.7)



is considered, depending on-a nonsupersymmetric operator K
(BmK = 0) and on an auxiliary chiral field B. 1iIn the following
we consider the special case a = 0 in (3.7) of homogeneous
gauges [5] . This represents still a large gauge-family
parameterizéd by K and 1t contains also e.g. the Wess~Zumino
gauge (3.5). In that case alternative versions of (3.7) are

v

rg.(:. T er‘!f. Bﬁtkv the o

Te I,(r, (B+ Byl » V)V (3.8)

1"

The last equation follows from the vanishing of the cross-terms
BE_V and ﬁK_v in dax, because these expressions have fixed
chirality. It shows that the longitudinal part as prcjected by
P;, = P, +._ is rclevant for the determination whether X is
admissible or not. (3.8) implies the gauge conditions

DKY = D'KV =0 (3.9)

and hence by the standard argument the Faddeev-Popov Lagrangian
(u' and u are chiral anticommuting superfields)

¥f-?- - .r'_ figi ul DLK (JV){A‘PU. [ 4 k'f- P
(3.10)
> TT Sd_(x (\L‘K" D-'L()(P\K Qp:c)

(cf. (3.3)).

The total (bare) Lagrangian consisting of (3.1), (3.10), and
(3.12) depends on the breaking of Ssupersymmetry only through

the explicit appearance of K. This is a strong rem.nder of the
dependence on a fixed direction Nn in the axial gauge of
ordinary gauge theory. Although n breaks the Lorentz-invariance,
it is sufficient to carry it along in all expressions in order
to maintain formal Lorentz-covariance [9] . In the case of
supersymmetry with K, the situation is more complicated, because

N



(anti~) commuting K with the algebra of D-s and b-s an enlaryed
algebra is produced, whosc elements must be considered as well.

The subsequent derivations are greatly facilitated by a
supersymmetric generalization of the elegant compact notation
of dewitt Mo

. . P
{¢x o't a’yy — '@

X M *4
jd"xQ o of - a'a
_ (3.11)
E,af,

_(d"x.&".‘&: - O

Writing all fields (Yang-Mills-fields Vi, and matter fields
@, and ¢_ )} as components of one "vector"

Iy, ¢ o « )

dh - v 7)o (V) oo

with
" o d TAw . RAS §

44 = RAmgxt o RAFIA = RAS S (3.13)
and with €he definitions

BTk - k*

D)-K . K‘;" (3.14)

the total Lagrangian formally looks like the one in ordinary

gauge theory’

L= Lwe 4 BEKAPA 4 “'r KA RAT & (3.15)

16



the main difference being the nonpolyromial dependence R(V).
THis notation is also well suited for the evaluation of the V-
propagator., The (at most) quadratic part in V of (3.1) in
(3.18) is

o = {. 4,-& (D P")A.u ,t‘a P U5 ptA HA (3.16)

We take the propagator to be the negative inverse of I', the
“matrix" in (3.16):

A - rel - l Sw Qs )

. 3.17
\ Ay e (3.17)

We' know make the assumpticn that any admissible K must be such
that (KPLKT) har an inverse. In this case AT = -1 yilelds

4335 - O (3.18)
{no propagation of B !) and

Ny = PLKTU (3.19)
with a matrix Upo

w = U-T =~ (KPLKT)-4 (3.20)

and
A¥ = (40Y' (P ¢ BRRKTUKP 4 RKUKP ¢
FPKTUK P KTUK P ) (3.21)

Since the inversion (3.20) for U is relatively simple in
practical cases, the full knowledge of the algebra enlarged by
K is not required.



We now turn to a discussion of different choices for K.
The simplest one is to make K a scalar superfield depending on
@ and ® only. E.g.

K= 4~ & g'a" (3.22)

has the property that (3.9) is the same as the covariant super-
gauge (3.6) with a change in the highest component of V

V = V.KV:V‘
Q> H- pke

Thus the c~field in this case propagates with mass u and any
mass=term for ¢ is an artefact of gauge-fixing, a result also
obtained in (2] . B "local” ansatz for,K like (3.22) is not
sufficient to produce a gauge like (3.5). We therefore consider
the most general "bilocal" K = K(0,8,0',8'). It is straight-
forward but length¥ to write down this expression which in fact
is just an N = 2 scalar superfield. An alternative way to write
‘K uses the derivative operator K = K(e,é,aﬂ 3; ). It clearly
has the same number of components and 1is, in fact, simply
related to K:

K= & o6 (3.23)

Historically, the first noncovariant supergauge was the "Ni
gauge" [3) . Deffning (n, is a fixed Lorentz-vector)

Ny = 3‘ - b(al(

A - (3.24)
M a 3¢ *‘ (1(0),

and XK = Nz, the algebra of the covariant derivatives is en-
larged in a very transparent manner. The superpropagator is
rather complicated for this gauge but the c-field-component

propagates with a mass n? and nmvm = 0 (axial gauge).

18



The advantage of the "FD-gauge" [47]
K= £¥ I
- (3.25)
ra(' ~t (’fe]n

is the simple set of new projection operators.

There are infinitely many choices of K ylelding the Wess-
Zumino gauge (3.5), but differing in the sector of the auxiliary
field B. A very simple Choice for K is [5']

Ky, 801+ (73 (e48)] (3.26)

Recently, Johanson 51] has proposed a K of a general chiral
type.

4. BRS-Invariance, Identities, Remarks on Renormalization
and Gauge-Independence

The similarity of (3.15) to the Lagrangian of ordinary

gauge theories immediately allows the introduction of a BRS-
transformation

EZ] with a special gauge transformation
e8P = iuPsaA

involving the Faddeev-Popov field and the anti-
commuting quantity &A%

§64 = i R4 VUt = 4 gt 8y

it - -4 foer uTuT M- A4t X
. (4.1
duR = -¢ BSJIA = Au'fS)\

§ B¢ 0

"

19



faBY = f&ﬁ; are the structure constants in our supercompact
notation. The invariance of :FQW t Xog s Xer under (4.1)

follows from the validity of the "group relation"”

A .
:-"—I;-BPRFP - (pe2e) = ¢ {fn R* (4.2)

Quantization proceeds through a generating functional with a
path-integral of the fields

Wi3d 8§ k) tpit -

(4.3)
= {(db d bl dB) epi (X %)
where the sources are contained in
1
¥ « ]Azb" $j"5’ v Efut « £, “g’ s
+ JEA RA¢ us ¢ -& Al {Qtt‘ utu® (4.4)

As usual, additional sources are introduced for the "composite
operators” in (4.1). The latter are BRS-invariant by themselves;
therefore, only ¥ breaks the invariance (4.1). A change of
variables (4.1) in (4.3) does not change W:

= W . {edw AW _ £¢ fw

This "Slavnov-Taylor" identity does not depend explicitly on K.
The second important identity obtains for the change B + B + &B
in (4.3):

i (4.6)
0=-cd%W . ku fw ¢
‘ sat K .‘555 tiwW

20



and the third one for the transformation u' =+ u' + &'

0= - £, W KA %ﬁA (4.7)

E.g. from (4.6) the "transversality" of all Green's functions
with respect to K follows immediately

Kf*ns_;:_‘\_/,__}j‘ -0 (4.8)
Jejenro

In a similar manner an identity for the change of W with
respect to an infinitesimal variation of K is derived.
A Legendre-transformation )

o= Z. - JAa‘ - (4.9)

with a, = 62‘./6JA etc., which does not involve k and ¢ however,
leads to the standard Lee-identity which is guadratic in the
functional I' of one-particle irreducible vertex functions:

Mo il 45, 4T §F
S(F) i + To &i,'o

(4.10)
P = F - z?‘(allf)
'L'A < ML Mtk QA
In order to make contact with previous proofs of renormalization
@) a crucial observation is that any K with bosonic gauge

parameters N, 5 (underlined indices mean no supercompact
notation) may be written as [4])

' - 102 A -
K = E: M:; 6;(nda) 05 G; (b, B, 2) (4.11)



raplacing formally
e"el —N wl = e\'é\ PR o (4.12)

with an external gauge-singlet field w', tht Ward-identity
for an arbitrary supersymmetric quantity A (Qa is the generator)

Ty A
GuA = Q') 2, (4.13)
may be extended to the present broken case. If, for a "physical
quantity" w-independence can be proved, supersymmetry follows.
The inclusion of the gauge-parameters Nii into the BRS
transformations (4.1) turns out to be very convenient:

4 M* = M , 4 M_f‘. -0 (4.14)

i

Further gauge parameters P; appear in supersymmetric gauge
theories because the dimensionless V may be redefined V -+ F(V,pi)
Writing Sp; = 2y » SZ; = 0 allows their inclusion in the
extended BRS-transformation as well.

Similarly also w in (4.12) acquires a corresponding BRS~trans-
form v. Both terms may be summarized by N(M) in (4.14). an

action which fulfills (4.1) and (4.14) is

> ] 'A

_ .. A 4,15

L <« £ M_.; we 2K $* -~ n AT 4
7&&5

where Ai(F) can be given explicitely &] . The generalization

of (4.10) contains two further terms:

S(B)y w20 ¥, wm of . (4.16)
f i it TE’; °

(25
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A
where [ is defined like L subtracting out Lgb' Then
renormalization can he reduced to the solution of the cohomolagy
problem of a nilpotent operator
& 5§ . 5f 51 4 Vs ;
ﬁ‘ [ — - $ YD == 3 6 é: IS Zo 4!>*nl
c - 4.1
£ e v e T omse THE et W)

even in the absence of a supersymmetric regularisation scheme
B] . It can be shown that all gauge-dependent counter-terms
are necessarily of the type Bl & - The cokamoloyy for the
rest has been done (under certain technical assumptions, ex-
cluding anomalies) in ref. [2] .

The proof of gauge-independence refers to an S-matrix-
element, consisting of an amputated Green's function, decorated
by "pelarization vectors" and renormalization factors at external
legs. The definition of "polarization vectors" (physical sources)
is not without problems in supersymmetric theories h3] .
Nevertheless, at least to *"o denree of rigour achieved in
ordinary gauge theories, the proot can be carried through. The
"extended" BRS transformation again is able to exhibit its
superiority to other techniques. As a by-product also the co-
variance of the S-matrix with respect to ( globally) supersymmetric
transformations can be shown ba] .
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COMPUTER MEASUREMENT OF THE YANG-MILLS
VACUUM (AND STRING) WAVEFUNCTIONALS

J. Groensite’

Physics and Astronomy Department
San Francisco State University
San Francisco, CA 04720 USA

ABSTRACT

A Monte Carlo simulation of the exact path-integral representation of the Yang-Mills vacuum
wavefunctional is carried out in three dimensions. The data for long-wavelength fleld conflgueations

is accurately fit by the lattice version of

¥[A] = Nup(—ﬂ/d’l"'[f'fz])

By insertion of Wilson lines into the path-integral representation it is also pomsible to meastre the
wavefunctional of a state containing heavy quark-antiquark charges. For large quark separations,
this state represents the QCD string. Preliminary numerical resulta are consistent with the " gluon-
chein” model of string formation,

* Work supported by the U.S. Department of Energy under Contract No. DE-AC03-81ER40009.
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The Hamiltonian formulation of quantum Yang-Mills theory is quite simple to express in tom-
poral gauge; the problem Is just 1o solve the Schrodinger wavefunctional equation

2
% / d”;(-b—fw + %F;}’]W[A] = EV[A] M

sbject to the Gauss Law constraint that W[A] be invariant under time-independent gauge transfor-
mations. Unfortunately, this equation is much ensier to formulate than to solys, It would, however,
be very interesting to know the solution of the equation for the QCD vacuum state, or for a meson
stata, of for an elongated siting state. Presumably a lot of interesting physica is contained in the
structute of the cortesponding wavelunctionnls.

For a theory of free photons (pure QED), the Schrodinger equation is soluble. ‘The solution for

the vacuum state is simply

V(4] = up(_#/d":d’yﬂ;(t)ﬂ!(v)zz—:l";ﬁ) @

hut for QCD, the corresponding solution is unknown. Some yecars ago I argued that for long-
wavelength field configurations (i.c. fleld conflgurations A(x) for which T'r(£7) varics slowly com-

pated to the confinement scale), the QCD vacuum should have the form (1]

V(4] = ezp(—/t/dnz’l‘r( Fa)) (3)

Note that the probability dcnuil’y W looks like e =5 in one lower dimension (" dimensional reduction”).
In fact, it is possible to prove that the QCD vacuum has precisely this form in strong-coupling lattice

+ gauge theory, where [2]

V(U = ezp(8Y_TrlUUUUY) + O(B%))
plag

is the ground state, and there is a systematic expansion for obtaining higher order terms in the
exponent. But, of course, we are really interested in the structure of the vacuum at weak couplings.

One rather general argument in favor of eq.(3) is based on the concept of magnetic disorder. It
is believed that confinement is associated with disorder in the field-strength Fi;. Wavefunctionals

with the maximum possible disorder in the field strength must have the form

V[A] = [[#:(TrF*(2), TrFi(2),.]

where ¢, depends on F;; only at the point z. Then the only correlation that exists between field
strengths at different points is through the Bianchi identity. Such maximally disordered wavefunc-

tionals can be rewritten as
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YAl = e:p(/d:ln¢,)
= __d¢ 2 4
. = eap(~ [dal-Ind(0) - 5 Tr(F +O(F )
~ conat.xcrp(—,x/d::TrF")

for small amplitude fluctuations, in agreement with eq.(3).
However, this form cannot be completely correct. In particular, because of asymptotic freedom,
we expect the QCD vacuum to resemble that of the free theory, eq.(2), at short distances, A simple

interpolating form, which contains both eq.(2) and (3) as limiting casrs, is

V(4] = BZP(-/J:’M’!/T'[FU(i')V(z.v)ﬁ;(u)V(y.z)]tﬁ(z )] 0

where V(z, ) is a gauge connector (c.g. a Wilson line) between points x and y, and

¢(r—u)—-(;-_—l-’-l)—, as (z ~ y)=0

while ¢(z ~ y) damps exponentially to zero as |z ~ y| exceeds the confinement scale L. For fleld

configurations A(x) which vary slowly compared to the confinement scale L, we then have

v[4] = rrp(—lt/dstTr( F?y) (6)

where

"= /d%qﬁ(:)

But, although | believe this reasoning is correct, it is obviously desirable to go beyond such
heuristic arguments. [ will now describe a method for actually measuring the relative valucs of
W2[A] in an arbitrary (but finitc) set of field configurations, by the Monte Carlo method. The

method is based on the exact, path-integral representation of the ground statc in temporal gauge

0
V[A] = / DA(t < 0)8[Aojexy( / AL[A)
-0
Let {"A(z)},n =1,..., N be any set of field configurations on the time slice t=0. Then

Y[ AP = /DA(:,!)&[A(:,O) _n A]éi[.40]43:::;»(—/m di L[A})

N
= / Y. D Abmne=S

m=1

“where
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Dm A = DAb[A(z,0) =" A)6( A)

Now rescale the wavefunctionals as follows: .
¥["4]
y[*A] => ~N T
e [y TTLY I

so that with this rescaling

2 _ !z;mD,,.M,.me"s
A= JY D Ae=3
This expression can now be latticized in the obvious way:

_ [ DnUSmaezp(B-Tr{UU U UY)
o= S DmUezp(BY Tr[UUUUN] ) ©

where

DU = [TdUs(z,)6{Ui(=,0) =™ Us(z)}6[Us - 1]

i,

Observe that the denominator of eq.(6)

z7= / S DnUezp(f3_TrlUUVIUL))’
m
is just the partition function of a lattice gauge thedry with the fields on the t=0 time-slice restricted
to the finite set
Ve{"Um=1,..,N}
It is clear that in this statistical systen, the quantity ¥3[PU] just represents the probability that
a random fluctuation selects U(z,0) =" U(z). Therefore, in a Monte Catlo simulation of (6), we
simply have
N,
ViU )= 2
rul= %
where Nj, is the total number of Monte Carlo iterations, and N, is the number of iterations in which

the n-th configuration "U was selected by the Monte Carlo algorithm on the time-slice t=0. From

this data, it is possible to check whether or not the vacuumn wavefunctional fits the form

92 = Nezp(py T+[UUU'UY)) n

for small amplitude (Uss1), slowly-varying link configurations.
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The Monte Carlo calculation of eq.(8) was carried out on a microvax computer. In order to keep
the computer time requited within reasonable bounds (=220 — 40 hours cpu time for each coupling
), some concessions were required: the computations werc done in three dimensions, and on fairly
small (43, 6%,8%) lattices. On lattices of this size, a "slowly-varying” configuration should have almost

no variation over the length of the lattice, and in practice I have used only non-abelian constant

configurations
Uy =(1 — a)31 + iaqo,
"Wy =(1 - a?)}1 + ianay
where
1
a, = nSp *
2013

and L = no. of sites/side. Then

(- ST URU Ul = 5
2 10
plag
The constant Sp was chosen {by trial and error) so that Ni/Njoms50.

From the data obtained in the Monte Catlo calculation, there are three things to check:

1) Does ¥? fall exponentially with T Tr[UUUU)?
M this is true, then the parameter u(f) can be extracted from the data. If it is not true, then

the form (7) is obviously false.

2) Is p(B) independent of lattice size?
This question is related to the long-distance behavior of ¢(z) in eq. (4). In deriving (5) from
(4), it was assumed that ¢(z) damps exponentially to zero at large distances. If this assumption is

not true, but rather

p= [E26)-00
in an infinite spatial volume, then p would increase as the lattice size increases, and again eq. (3)

would be incorrect in the continuum limit.

3) Does u(f) scale correctly at weak couplings?

If eq.(3) is the continuum limit of (7), then as f—oo it is necessary that

p(B) = const.xp?

which is the correct weak-coupling scaling behavior in 3 dimensions (for strong-couplings, u = f).
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In ref. (3] it was found that weak-coupling scaling behavior for Wilson loops sets in around
B = b for SU(2) gauge theory in 3 dimensions. The data for ¥? as a function of L Tr[UUUU] at
B = 5 is shown in Fig. 1, on an 8? lattice. There is little doubt that this data accurately fits an
exponential curve (straight-line on a semi-log plot), so u{f) can be accutately extracted from the
slope.

In Fig. 2 the same data is shown for coupling # = 6, for three different lattice sizes (42, 67,83).
Error bars (not shown) are toughly the same as corresponding points in Fig. 1. The data is almost
independent of lattice size, which is good evidence that ;(f) has a finite limit in infinite volume.

Fig. 3 is a plot of u(g) as a function of 3. We see that the data in the strong-coupling region
(0 < # < 2 follows the strong-coupling curve s = §, while data in the weak-coupling region is closely

fit by a parabola u = .4054%, which is the correct weak-coupling scaling in 3 dimensions.

In summary, the Monte Carlo data obtained thus far supports eq.(3) as the QCD vacuum for
long-wavelength field configurations in three dimensions. More work nceds to be done, of course,

using larger lattices with non-constant field configurations, and in four space-time dimensions.

Next we consider the QCD wavefunctional of states containing static quark-antiquark charges,
i.e. "string™ wavefunctionals. A state containing heavy quark-antiquark charges is given, in path-

integral representation, by

0
VoAl = / DA(z,t < O)Was[C-16[F[Aljezpl— / diL{A]]
=Wy + iVG05, = Fau[A)¥,
where Wy[C.] is a path-ordered Wilson line, and C_ is the semi-rectangular path running from
(=',t=0) to (2',t = ~T/2) to (z",t = =T/2) to (z",t = 0). We then have

< Val¥a >=% < TrW[C] + TrWICWHC.) >

< ¥l¥ >=% < TrW[C] - THW(C,IWYC.] >

where C; ia the semirectangular path from (z",0) to (£, 7/2) to (z',T/2) to (', 0), and TrW[C)
is the RxT Wilson loop TrW|[C] = TrW[C,]W|[C-).
It is important to note that the antihermitian part of the wavefunctional, ¥* = ¥°¢5, has a

nade at A =0, i.e.

VA=0=0

which is implied by the fact that Tr¥; = 0. The existence of nodes in the QCD string wavefunctional

is crucial to the "gluon-chain” model of string formation [4,5], which I will now describe briefly.

30



The gluon-chain model is based on the idea that Nature does not tolerate charges of arbitrarily
large magnitude, and that large charges tend to be screened, both in QED and QCD, by particle
production. For example, it is impossible, in nuclear physics, to have a heavy nucleus of charge
greater than some critical value Z.x170. If a nucleus has a charge greater than this value, it
becomes energetically favorable to pull an electron-positron pair out of the vacuum, The electron is
then captured by the heavy nucleus, reducing the nuclear charge below the critical value (Fig. 4a).
Similarly, in QCD, as a quark-antiquark pair separates and the effective coupling increases, there is
some critical scparation R, where it becomes energetically favorable to pop a light quark-antiquark
pair out of the vacuum. The light quark binds to the antiquark, and the light antiquark to the
quark, so that the original quark-antiquark charges are screcned from one another (Fig. 4b). Again
there is a natural limit to the growth of effect..ive coupling.

Now consider the case of QCD with no light quarks (only in this idealized case is there a linear
quark potential at arbitrarily large distances). In this case a type of charge screening is also possible.
As massive quarks separate and the effective coupling grows, there is again a critical separation where
it is energetically favorable to place a gluon in between the two quarks, as shown in Fig. 4c. From the
point of view of the heavy quark (antiquark), the antiquark (quark) charge has moved to the position
of the gluon, and therefore the average separation between color charges has been reduced. As the
heavy quarks continue to move apart, an upper limit to the average charge separation is maintained
by dragging out more gluons between the quarks. The eventual configuration of the confining QCD
"string” is shown in Fig. 5; it consists of a chain of gluons between the quarks, with each gluon
held in place by attraction to its nearest-neighbors in the chain (in the large Neoor,—00 limit,
there are only interactions between nearest neighbors). Let R,, be the average separation between
neighboring gluons, and E(R,y) the average (kinetic + interaction) energy per gluon, nyryon, the
number of gluons in the chain, and L the distance between the heavy quarks. The total energy of

the chain is then roughly

E(R,
Echain = Ngluons E(Rav) = —'(RL”)L =ocolL
av

s0 that 0 = E(Rqy)/ Rav is the string tension (assuming nguons = L/Ray, which is an approximation
that ignores roughening). This is the origin of the linear potential between quarks in the "gluon-
chain” mode! of string formation.

The gluon-chain model is motivated in part by large-N considerations. In the N,gor, —00 limit,

QCD has the rather striking property that the product of gauge-invariant quantities factorizes, e.g

< WG W [C,] >=< W[C\] >< W[C.] >

where W([C} 1] are Wilson loops. This has the immediate consequence that adjoint (gluon) charg: -
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are also confined by a linear potential, and that the relation between the string-tensions of adjoint

and fundamental (quark) charges is simply

Cadioint = 20 fundamental

Simple relationships cry out for simple explanations. But models of confinement which are based
on analogies to abelian theories (e.g. dual superconductors, Zy fluxons), and depend on isolating
some ahelian subgroup of the full gauge group, find it difficult if not impossible to account for these
conditions. In the gluon-chain model, on the other hand, factorization at large-N is built in. In
fact, suppose that large Wilson loops are dominated by very high (but finite) order planar Feynrman
diagrams. A time-slice of any such diagram (Fig. 6), in a physical gauge, revenls a state which is
simply a chain of gluons with quarks at each end, as envisaged in the gluon-chain model.
Returning to the computer measurements, one would like to use these methods Lo test the model

outlined above. Consider any excited state of the form

¥{A] = Z/dt]...d:n}'(n wn)A(Z1)... A(Tn ) Wo[A]

This state contains constituent gluons in some spatial volume V if

¥[A] =0

for any configuration A(x) such that A(x) = O for any z€V. For our purposes, a "constituent gluon”
is just an A-field multiplying the true ground state.
In particular, ¥; contains at {east one constituent gluon somewhere in space, since ¥;[0} = 0.

This fact is useful, because it means that the ratio

_< Wy >
(== Y| >

_ < TrW[C] - WiC,WC_]] >
- 2<TrW[C] >

is a lower bound to the probability that the QCD string state contains at least, one constituent gluon.
This is a quantity which can be readily measured by the Monte Carlo method.

The concept of gluons, of course, only makes sense in a fixed gauge. On the latiice, the gauge
maust be fixed well enough so that the link variables fluctuate around U = 1. The lattice Coulomb

gauge, in which the quantity

3
Re(Tr)_[Ui(x) + Ul (x = e;)])
i=1
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is maximized at each site, is appropriate for this purpose. Monte Carlo calculations in Coulomb
gauge can be readily carried out using the iterative gauge-fixing procedure of Mandula and Ogilvie
(6]

Before proceeding to the non-abelian case, it is useful to know what is the expected behavior
of ¢ in an abelian theory. In the free abclian case, it is easy to show that £—0 as T'—oo, i.c. a
state containing two static +/- electric charges contains no constituent photons, The reason is that,
as T—oo, the state is dominated by instantaneous Coulomb interactions, which only contribute
to the real part of the wavefunctional. The imaginary part of the wavefunctional is generated by
transverse photons originating at { = —7'/2, and propagating to £ = 0. As T'—o2c, this contribution
is suppressed. Another way of sceing this is to note that the ground state of the Schrodinger
wavefunctional equation with static external charges, in Coulomb gauge, is identical to the vacuum
state with no external charges, since the Coulombic part of the QED Hamiltonian is independent of
the transverse A field.

The SU(2) data for £ as a function of quark-separation R and loop-length T, in D=3 dimensions
at a weak-coupling of § = 5.5, is shown in Fig. 7. It can be seen that there is very little probability
for the state to contain a constituent gluon at small separations, but that the lower bound on this
probability rises to roughly 70% at R=6 lattice spacings. Moreover, the tendency of £ to fall as 7'
increascs does not seem very pronounced; and the evidence favors E—const.£0 as T—co. It appears
that, for 826, the QCD string state contains at least onc constituent gluon.

It is even possible to map, roughly, where this constituent gluon is on the lattice, although here

my results are very preliminary. Define

Ty =< ¥ ¥ >w(cev)=t)

so that T'y = 0 if there is a constituent gluon in volume V, and

8%
Ty,

rev =

As already noted, the antihermitian part of the wavefunctional ¥, contains at least onc constituent
gluon. 1 have mecasured the ratios ry for a quark separation of R=3 (T'=6) lattice spacings at
@ = 5.5, with V a strip at t=0 one link in width. The values of rv, for three inequivalent positions
of the quarks relative to V, are shown in Fig. 8. From this data, it scems that, the constituent gluon
is most likely to be in the center region between the two quarks.

In summary, the data for £ does seem to indicate that the QCD string contains at least one
constituent gluon. To check the validity of the gluon-chain model, however, it would be highly
desirable to detect more than one constituent gluon as quark separation increases. This could be

done by the ry calculations described above, which in principle could locate more than one node in
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the wavefunctional in different regions of the string. Such calculations, however, at larger values of

R and T, are extremely ¢pu-time intensive. Further work along these lines will require the use of a

supercomputer.
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NONPERTURBATIVE PERTURBATION THEORY

Carl M., Bender
Department of Physics
Wiashington University

SG Louis, MO 63130

In this talk we propose a new perturbative computational scheme for solving
scll-interacting scalar quantum ficld theories, “l'o solve a A theory in d-
dimensional space-time, we introduce a small parameter § and consider a M¢)'
ficld theory. We show how to expand such a theory as a series in powers ol 4,
The resulting perturbation series appears to have a finite radius ol convergence
and numerical results for low-dimensional models are good. We have computed
the two-point and four-point Green’s functions to second order in powers of 6
and the 2n-point Green’s functions (1>2) to order 4, We explain how to renor-
malize the theory and show that, 10 first order in powers of 4, when >0 and d >4
the theory is free. This conclusion remains valid to sccond order in powers of 4,
and we believe that it remains valid to all orders in powers of 4,
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In two recent pnpur\ 2 0 new perturbative technique wu\ proposed for solv-
mt, scll-mlcrm.lmg scalar quantum ficld theories such as A lhcnry The tech-
nique consists of capmuhn), the n-point Green's function GV [CTR S )
for a N(¢™)'* theory as a serices in powers ol #:

G - dt= D ) (1)

k)
l)m;_.,l ammalic rulc' were  formulated  Tor  cealeulating  the  coceflicient  of
o (k=0,1.2, - - - Y in this expansion {or any (unrcmnm.lll/ul) Circen’s function in

1I-(I|mcn.~mn.|l space-time. In the 4 expansion it is only the parameter 8 which is
considered small, Thus, like the 1/N expansion, the results are nonperturbative
in the physical parameters such as the mass and the coupling constant.,

Perturbation methads have played a central role in the quest Far approximate
numerical solutions to quantum-fickl-theory models. In this talk we distinguish
hetween two dilferent kinds of perturbation scries: a natural cxpansion, which is a
series in powers of a physical parameter that appears in the functional-integral
representation of the theory, and an artificial cspansion, which is a serics in
powers of a new parameter §, which has been introduced temporarily as an expan-
sion paramcter Tor computational purposes. chk-couplimJ expansions in powers
ol the coupling constant ), :\lron;,-muplm;:, expansions in powers of 1/\, and sem-
iclassical (loop) expansions in powers of Planck’s constant are all natural pertur-
bation expansions,

Unfortunately, natural perturbation expansions suffer a number ol disadvan-
tages. Weak-coupling scries are divergent and may not cven be asymptotic to the
solution of the theory.  Semiclassical approximations also give divergent scries,
are very difficult o obtain beyond leading orders, and therelore may give very
poor numerical results.  (For example, in a simple quantum-mechanical system
with tunneling, when tunneling oceurs rapidly because ol a low barrier potential,
the WKIB mcethod gives a very poor approximation to the tunncling amplitude.)
The computation of strong-coupling series requires the introduction ol a lattice
and the subsequent taking of a continuum limit; such series are often very slowly
converging with many terms being required 1o give a rcasonable approximation,
The principal difficulty with natural perturbation expansions is that the analytic
dependence of the solution to the theory on the physical paramceters is lost; by
forcing the physical constants to play the role of expansion parameters they are
no longer available to display adequately the true tunctional dependence of the
physical theory on them. (For example, in clectrodynamics the anomalous mag-
netic moment g=2 is an unknown, but \urcly complicated Tunction of «a. s
weak-coupling c\pan\mn, g—2=c 104207+ -, only makes sense in the limit
a—{). This cxpansion docs not even begin o suggest how g=2 depends on the
parameter a when o is not small.)

The advantage of artificial perturbation expansions is that, il a paramcter §is
inseried in a clever way, the resulting serics in powers ol & may be casy to com-
pute and rapidly canvergent. Morcover, the terms in this expansion may exhibit a
very nontrivial dependence on the physical parameters of the theory, One such
perturbation scheme s the large-N  expansion, where N is the number of
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components of a scalar ficld. In nomcl.lllw.slu. quantum mechanies, Iuru.-N
expansions are surpnsm;,ly successful.} For a (47 theory the very first term m
the large-V cxpansion gives a nontrivial and renormalizable quantum ficld theory.’?
Also, quantum chromodynamics al large N displays interesting theoretical and
phenomenological features.’

We iltustrate with a very simple example of an artificial perturbation expan-
sion. Consider the problem of finding the (unique) real positive root of the fifth-
degree polynomial

Xhv=l
We introduce a small paramcter 8,
X ed=1
and scek a solution in the form ol a serics in powers ol 6. Such a scries is very
casy to find. The first few terms are
n .
¥ (O)=1—4/5=8" 254 /125
If we evaluate this series at d=1 we get ¥ (1)=0.752, an extremely good approxima-
tion to the exact rool, which is at x=(.7549 - - - |
The problem of cowrse is 1o lind a method for expunding the Green's funce-
tions of a quantum licld theory as perturbation series in powcers ol 6, We are con-
sidering the Lagrangian

1,'7

——("')) P—u’ LM My 2

in d-dimensional Luclidean space. In (2). pis the bare mass, N is the dimension-
less bare coupling constant, and M is a fixed mass paramecter that allows the
interaction to have the correel dimensions. ‘The problem is that if we cxpand the
Lagrangian in (2) as a scries in powcr‘ sof & using the identity

xP=e Y =1 Sy +—-—(Im) + (ln\ Y+
we obtain a horrible-looking nonpolynomial Lagrnngi;m: .

L=%(u¢»)3+-l-(,,3+2,\M3)¢53+b,\d»3M:1n [dFM 3*"]

2 3
+i-,\4 [m[ 1--"]]'+~—\0—M [ln & MZ*"]]+- ce (3)

We have devised a very simple and mdc,rly procedure for caleulating the #-
point Green's lunction ol the Lagrangian in (3) as scries in powers ol 6. Tt con-
sists of three steps:

(i) Replace the Lagrangian L in (3) with a new Lagrangian L., having

polvnomial interaction terms.

(i) Using Lypackn, compute the Green's Cunction Gy, using ordinary

Feynman diagrams.
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(iii) A|)1ply u derivative operator D to G\ |,,,,,ck,, to get the delta expansion
for G

The new Lagrangian L., and the derivative operator D depend on the
number of terms in the § scrics that we intend (o compute. For example, if we
nced onc term in the § serics we take ’

1., 1, 22 SIV) thd
Ltincko=n (08 = (F4+20M )M 9 [g2nr 2~

‘Then we compute the n-point Green's function G™,, 1o order 8§, apply

)

D=7,

(’(\

and seta = .
Now supposc we need two terms in the d series expansion of G, We take

Lwll acka =_—];.(d(/’):+‘l_ (“2+2’\AI :)l' s
o] + l 2,0 i+1
HO+)\M [c/FM--" T A=+ [d;'M"" ]

"y ad
I'hen we compute GM o to order &, apply

1,8 o, 1 (.P
D=m(——— —+
2 ( dov o )+ ( dJa? /32)

and set a=3=0,
For three terms in the § serivs expansion of G™, we take

Louhacko = (08 42 (P42 )
5 In agd (24 g2—a ]!
+[1‘)+T(l+(l)+ﬁ' IN’VI‘ [(,')‘1\4" ‘]
- ol d e} "+l
Heot (P )46 P [,,f,-M--" ]

) 152 3 ATV l.’+l
HBo P T4 M (3 ]

As above, we compule G(")“,,,,Ck,, to order &%, apply

') o U: ¥ F & & CP
D—— — -~ —(— —=4—) ,
( ’(] ()j )+ ()(‘ + ('7)2 ,. ‘7 )+ ( ()fl? + (’)/?3 + (’)"If’; )
and scl a=3=

H we need four terms in the delta expansion, we take

Lw/ulcko =l(0¢6)3+l(, ’2+2)\M 2)':')2

548 -+n+ﬂ+ﬂ,+r/+'§((a’—ld"—, +i1/) 4 4+5(| FEIRNYY [ & M~"’]' +1
\]
i+ -2 1(cn+,3+’y+1/)-2‘¥(m +iFP i~ —IQ_Mq —41;{—513 +4'] N [¢"M'_"]
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3 el e e}
N 2—a—F—A=1I (=" H P4 —i 1) + —4;51 +5) WM [d,zMz-d)"*

0
24 AP P2 P oy
Hei 48 2H (a.+/i+‘7+l/)+f(¥)( o=~ ~ro417) +F 41-;5// +5) e [‘/)2 M‘”"]
We compute the Green’s function G,y .10 to order &, apply
L0 0,0, 1(z'r PP o-)
8 00 ofF oV o

4 aa 08 v ow
P PP (LN z;‘ i
2o o AR G o
and set or=/==j=p==().
We do not have the gencral form of the Lagrangian L, y,ce, nrvded to obtain

N terms in the delta serics. However, we do have the form of the derivative
opcrator D:

N N 2i(1=k)j/N [ 5 )
D—l 2-32.36 [ 13} ] .

jarkiar ! doy
Low-dimensional models

To cxamine the form of the delta cxpansion and to verify its numerical accu-
racy, we consider a zero-dimensional and a once dimensional llt.l(l theory. The
functional integral for the vacuum-vacuum amplitude Z of a & field theory in
zero-dimensional space-time is an urdmary Riemann intcgral:

4

d\ —
Z j Al
Now we insert the expansion par'\mcter b:

Z— ] AL @)

—-00 /I
Recall that the ground-state energy E is given in terms ol Z:
' E(®)=—InZ .

For this simplc theory we can, of course, cvaluate directly the integral in (4):
2643

o
E(ﬁ)——ln[ =T S5 %)

To find the delta series we mercly expand the right side of (5) in a Taylor scries in
powers of &

E(a);iz/;(i)— Ly )+1//( )2 l°4/( yr2i )

384[19"'#( )+144¢//( )+”4r/”( )+¢/f"( LA (6)
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Notice that the structure of the delta scrics in (6) is rather strange in that the
coefficients all depend on polygamma functions evaluated at 3/2. The polygamma
function 1{x) is defined as the logarithmic derivative of a gamma function:

N L(x
| K= Ter)
There is a gencral formula in tcrms of zeta funclions for the ath derivative of a
polygamma function evaluated at 3/2:

M3 2)=(—1) nI[(1-2"Ds(n+1)+2" ).

The first two . - ‘ygamma functions are 1{3/2)=2——2In2 and 1[’(3/2):?——-4.
We list below the numerical values of the first few polygamma functions:

(3/2) = 0.0364899740;
/(3/2) = 0.9348022005;
P'(312) = 0.8287966442;
P"(3/2) = 1.4090910340.

It is crucial to determine for which & the scries in (6) converges. Note that
E(d) in (5) is singular whenever the argument of the gamma function vanishes.
There are an infinite number of such singular points & in the complex-§ plane
given by the formula

2k 43
G=—""7—=, k=0,1,2,3,... .
*TT k42
Each of these singular points is a logarithmic branch point. Note that these
singular points form a monotlone sequence on the negative~ axis beginning at the
point 6=—3/2 and converging to the point §=—1. We conclude that the delta
series in (6) has a radius of convergence of 1. :

AP theory corresponds to é=1, which is situated on the circle ol conver-
gence. Thus, to compute the delta series with high numcrical accuracy we use
Padée summation. Here are the results: The exact value of the energy is
E(1)=-0.0225104. Becausc we are on the circle of convergence we do not expect
that a direct summation of the delta series will give a good result, and indeed it
does not: ten terms in the power series give -0.367106 and twenty terms in the
power series give -0.517356. However, a {3,2) Padé gives -0.02252 and a (5,4)
Padé gives -0.0225103.

Now let us sec how well the delta expansion works in one~dimensional ficld

theory (quantum mechanics). Consider the Hamiltonian for the anharmonic
oscillator: :
d> 1 4
5w
2dx* 2

Our strategy is to insert the parameter §in the x* term:

1. 248
+2(.\ Y+

H=

H=—-%"
2dx~
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The ground-state encrgy £ for this Hamillonian has the delta cxpansion:
1,6 ,3
E@ms 45U

_.1% 1;/'(%)4&1!(%)1nz-sw(%)lzﬂsz/(%)—32+32'n2}*' t

This scries is extremely accurate numerically. Thc exact value of E(1) is
0.530176, while the sum of the above series to order # is 0.534385. Notice that
the form of the series is similar to that in (6); the coefficients are all constructed
out of polygamma functions evaluated at 3/2,

Renormalization

We now consider the problem of how to renormalize the S-expansion. It was
pointed out in Refs. 1 and 2 that when d>2 the coefficients of & in the expan-
sions of the Green’s functions are less divergent (as functions of the ultraviolet
cutoff A in momentum space) than the terms in the conventional weak-coupling
expansion in powers of X, -However, the coefficients g (x;,%5, * - * ,%,) in the &
expansion are still divergent and it is necessary to use a renormalization pro-
cedure.

We will show how to regulate the theory by introducing a short distance
cutoff a (which is equivalent to an ultraviolet cutoff A=1/a) and we compute the
renormalized coupling constant Gy, in terms of the bare mass u and the bare cou-
pling constant A, We then show that if we hold the renormalized mass Mp fixed
at a finite value, then as the cutoff a is allowed to tend to 0 (A—o0), Gp can
remain finite and nonzero only when d<4. When d>4, Gp—0 as a—0. This
result is the continuum analog of the numerical nonperturbative results already
obtained in lattice Monte Carlo calculations.®

We have computed the d-dimensional two-point Euclidean Green’s function
GA(p?) to second order in powers of 6. From GP(p?) we can obtain the wave-
function renormalization constant Z and the renormalized mass M. The conven-
tional definitions are

(5]

Z-'=14—
&p?)

([GAeH o ™
z;nd
MR=Z[GP) oo« - @®

We have also computed G)(p,,p,ps.p,), the connected d-limensional
Euclidean Green’s function with its legs amputated, to second order in powers of
8. From G we can obtain the dimensionless renormalized coupling constant Gy
in the usual way:

Gr=~2G"(0,0,0,0)Mp"~* . ©)

We do not discuss the calculations of G(Z), G®, and the higher Green’s func-
tions such as G® here; the calculation is long and detailed and it is presented
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elsewhere,” 1t is sufficient to state that the calculation follows cxactly the rules st

down in Refs, 1 and 2, Here are the results for Z, Mg®, and G to first order in
b:

Z=14+0(") , (10)

My=1 M 228M 1+d(%)+ln{2A(0)M2"’l]+0("2) ’ (1)
d—-"’

GJ(=4M 20) +O(#) . (1)

In (10)-(12), A(v) represents the free propagator in d-dimensional coordinate
space; A(v) can be cxpr«.s\'ccl as an assocociated Bessel function:

Ay )—(°r)"’jd"p 2

9> m >
=)~ 4Py /m)"" PR y_g p(myx), (13)

where m’=2422M2,
The function A(x) is finite at x=0 when d <2;
AO)Y=2" 47 P 21— ) (14)

However, we are concerned with quantum ficld theory, in which d22. For these
values of d, A(U)=oc, and it is clearly necessary 1o regulate the expressions (or the
renormalized quantitics in (10)-(12) because of this divergence.

To regulate the lhcory we introduce a short-distance (ullmvmlul) cutolT a; to
wit, we replace A0) in (11) and (12) with A(a), where

Ma)=Qr)y " (a fm)'~PK | _yp(ma) . (15)

Apparently, there are three distinet cases which we must consider:
Case 1: am<<l (a—0)." Herc we can approximate the Bessel (unction in
(15) for smzlll argumcnl' .

A(a)"‘ l(—-——-l)(rn H-dr (16)

Case 2: am=0(1) (a—0). Ilcre

-2

Aa)=(constant) m (17

Case 3: am>>1 (a—0). llcre we can approximate the Bessel function in
(15) for large argument:

na — - 2
A(”)qu(; )(1 132, —ma ) (18)
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Now we consider each of these three cascs in turn. In casel we substitute
(16) into (12) to obtain

N=(constant) Gy (aM)** . (19)
 Then we use (19) to eliminate A6 from (11). The resulit is
Mg%=m>2+4(constant) [logarithm term] Ggp M? (aM )¢ . (20)

It is necessary that the renormalized mass be finite. But as a—0 the sccond term
on the right side of (20) becomes infinite when d>2. Thus, both lerms on the
right side of (20) must be infinite and must combine to produce a finite result,
Hence they must be of the same order of magnitude as a—0:

(consrant) [logarithm term]| Gg M* (aM)*~4=m? . @
If we multiply (21) by a2 we obtain ‘
(constant) [logarithm term) Gg (aM)*~?=(am)?><<1 (22)

by the assumption of case 1. Thus, when d <4, Gp can remain finite and nonzero
as a—0, but when d >4, Gp—0 as a—0 and the theory is frec.

Next, we consider case 2, We substitute (17) into (12) to obtain

Ns=(constant) Gg (m/M)-2 . (23)
We use (23) to eliminate Aé from (11) and obtain
Mg*=m>+{(constant) In(m /M) Gg M? (m /M)~ . 29

As above, we argue that the left side of (24) must be finite so the two (infinite)
terms on the right side of (24) must be of equal magnitude:

(constant) In(m /M) Gp M?* (m /M) 2=m? | (25)
We divide (25) by m? and solve for Gp:
Gr=(constant) (m /MY*~4 in(m /M) | (26)

Again we observe that when d >4, Gp—0 as m—co,
Finally, we consider case 3. We substitute (18) into (12) to obtain
No=(constant)Gp(aM Y~ (m /M) -D2g-ma @n
We use (27) to climinate A6 from (11) and obtain
2, [logarithm term] (1=d)/2 (d=3)/2, ~ma
M GpM~ : . 28
r2=m’+ (constant) rM(aM) “(m /M) “e (28)

Once again, we observe thal the two terms on the nghl side of (28) are divergent
and must be of the same magnitude:

[logarithm. term) GM
(constant)
From (29) we then have

HaM Y =D P(n M )4 mmazmy? (29)

stant - .
O™ [lng:rai:ll:n‘:nre)rm]ema (ma )4 DG fmy'=? . (30)
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Thus, when d <4, Gp—oo as am—woo, Hence, case 3 may be excluded when d <4.
It is interesting that when d >4, Gy can remain finite as am—oo so long as m /M
grows exponentially with am:

m /M =(constant)e™* (4~ (gm ¢ =3)/C4-8) (31)

However, this possibility can be ruled out by computing the 2n-point Green’s
functions G(®*), To order & we have

G@0,0, - - O=ANn-YM2'[-AO)"+0(F) . (32)

If (31) holds, then (32) implies that for all n>2, G®)—0 as am—oo and the
thcory becomes trivial.

We have been able to generalize these arguments to second order in powers
of 4. However, we do not present the calculations here. We merely present for
purposes of illustration the result for the renormalized mass to second order in
delta:

MR2=12422\M 2420M S +EOMYS2+144(3/2)1-4N2A0)M*S [d’x 2

1
—AN2AO)M* [d¥x e t‘;‘ [zt+Hn(1-2t)]
0

Vz—2t

t.

where S=y(3/2)Hn[2A(0)M*¢]+1 and z={A(x)/A(0)]>. We cannot evaluate the
integrals in (33) in closed form except in particular space-time dimensions;
namely, when d=1 and when d 1is even and negative semidefinite
(@=0,—2,-4,—6, - - - ). For these special values of d we give the explicit evalua-
tion of these integrals in Ref. 7.

Because the ideas presented in this talk are so new we cannot say at this
point how useful these methods will ultimately be in quantum field theory. Much
more research is required. However, it is already clear at this early stage that the
delta expansion has very wide applicability. For example, the delta expansion is a
natural tool for supersymmetric theories because global supersymmetry is
preserved for all values of delta.

1
+NAO)MA fdx [de In(1-z¢)}4+0(&) , (33)
0
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QUASI-EXACTLY-SOLVABLE PROBLEMS IN QUANTUM MECHANICS
A.V.Turbiner
Institute for Theoretical and Experimental Physics

TnacoT

There are no doubts about the importance of exactly-
solvable problems in quantum mechanics. They serve as a ba-
sis for modelling different physical situations. As a matter
of fact these models are quite rough and don't reproduce many
essential properties of the phenomena considered. In this re-~
port we will describe so-called "quasi-exactly-solvable" quan-
tal problems of two types: (1) when we know whole information
about the first N eigenstates (N = 1,2,3+4.), which are rela=-
ted to each other by means of analytic continuation, and (2)
there are N potentials of the same sort, which are different
from each other in the magnitude of the potential parameter,
with the same i~th eigenvalue of i-th potential; these poten-
tials are related by analytic continuation, All the above
problems are nontrivial and in the limit N+ oo the well-
known exactly~-solvable problems in factorization method //
are reproduced, It is worth emphasizing that their analytic
properties are strongly different from analytic properties of
exactly-solveble problems /2=4/ + The calculation of the
first N elgenvalues in quasi-exactly-solvable problems is
equivalent to f£finding the eigenvalues of some NxN Jacobi
matrix. _

A, Opne~dimensional case. Let's consider the Schroedinger
equation

and make the substitution /5/
Vi) = pi) exp (- i) &)
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in it where pfx) 18 a certajn function containing the in-
formetion about wave-functlion mnodes in some minimal fashion
(eegs for the n-th excited state the simplest choice of the
function p(x) 1is a polynomial of n~th power with n real
roots. Letting Y= ¢’ and subatituting Eq. (2) in (1), we
obtain

y'-yt-pl - ayp] = £V &

Our purpese to choose the coefficients in the polynomlals J
end Y in such & way that the ratio [ p-2yp’] /p is also
a polynonial. Moreover, we-will require it to be a two-term po=
lynomlial in certain variables. It's worth noting that in
exaqtly-solvable problems the result is one-term polynominl,
Now, let's proceed to consideration of particular cases.

1. Geperalized Morge potentialsg, Let's take as

olX

=otX
‘a=—acd+5+c¢ )

@20, of>0 4
and P = 1. Substituting eq. (4) to eq. (3), we obtain

-2aX —aly X
V, =ate “La(ur2d)e ™ +c (16-4)e” +c‘cw', E, =iac-£* (5

Thus, the potential (5) depends on the parameters a, b, ¢,d
and we know the ground-state energy, which is single-valued
analytic function in any variable a, b, c, o . The potential
(5) grows at Jyf~» oe , and the ground-state wave function
decreases and is positive. Let pa e""f:-,ﬂ‘ « The parameter A
wlll be sought by requiring the absence of singularities in
the resulting potential (see eq. (3) ) at real x . As a re-
sult the addition to potential (5) appears

V‘ =-2d0€ oLx (6)

and

A. '-'EJ"Z‘ * /{al -0-23)"#45“7} /90.
E, = tac-8*-L[1r28 = [T 26 vikac | /2
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where plus corresponds to ground state (wave function is po-
sitive) and minus corresponds to the first excited state in
the potential (5) + (6). Let's note that eigenvalues and eigen-
functions of the first two states in the potential (5) + (6)
are plesited and two~-sheet Riemann surfsce appears with square
root branch pointe at (d+28)= £ 4iYac . Obviously, when
pma Mg ™ . 44y  the cancellstion condition in
(3) leads to the potential addition V‘,.-zm/n"‘" o In this
potential the firet N states arise from ocertein slgebraic equa=
tion of (N+1)=th power which is a secular equation for certain
Jacobi matrix of the size (Ne41)x(¥+1). They create the (N~gheet
Riemann surface. The limit A= oe corresponds to om0
under the suitable choice of the parameter dependence on N ,
In this case the spectral Riemann surface ig unplaited and the
exactly=solvable Morse potential appear,

There are two other families of quasi-exactly=-solvable
problems, which are associated with the Morse potential, It
takes place when

=X el X
Ya=~Ct +ae -fl, €20, >0 (7)

X o
“_8+ae™, cr0,u50 (8)

- F
ds=ce )

The both quasi=-exactly-solvable probleme turn out to be of the
second=type unlike the quasi-¢xactly~solvable problem generated
by (4). There exists plaiting of potentials in parameters a,b,
¢y o, at certain energy.

2. Gegeralized Féachl-Teller potential. Let's take
y,-.—.aé‘dx + L& s/.z.(x , €30, £ >0 (9)
Substituting (9) to (3) at p = 1, we get

V, = =a(ard)ch2dx ~c (¢ +2d -2a)ch’ix+¢* ch'ux, E,22ac-a*-we (10)

and hence we know the ground state in potential (10), which is
not plaited with the rest spectrum. If P=éhdx , certain
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addlition to potential (10) arises

Vis-2d(asg)eh™ix , £ =2ac-atsde (1

where B, - is the eneryy of the firot excited state in the
potential (10)+(11). Hence, we know the energy of lhe firut
state in the potentisl (10)+(11). Due to Lhe parity of the po=
tentlals under conslideration, the Riemann surfuces of oven and
0dd states are geparated and they are not crossed. When p=
=H,‘Jx ) (the sector of even states), then the addi=
tion to (10) equals to Vi = =2« {2a+3o)ch™«x ond

4: = [-n-c- 24 E\f(asce2d)*s 2(2a+ 3.()1]/(:44 3 ) '

Eo,z = 2ae -a"-d[b.-c + 2423 Wauozd)"fk(zq_* s,l)’]

Iz Pp= thav (4h%x + 4) (odd sector) the addition to
(10) 18 V3 = -6« (a+2u)ch *ex and

A, = [- a=c-4dt \flasco yu)F~3el [2as60) ']//zaffd)

E4,3 =lac -a’--([?a -8c12d 2/@+c-r0.()"_3.((za,;-.()]
This situastion is different from that which is described in
section 131 the Riemann two-sheet surface is formed by the sta=-
tes of the same perity. In the generel case, when p= 248y +
+ 4 t-l,k'ilxh-w Ai s tho addition to (10) equals to

V, ==~th(wksra +2a )chtelx o In this potentiul the first

Ne[4]+1 states of parity (-1)* are imown. They plait
forming N-shcet surface. In the limit A~ o< the Riemann
surface is unplaited, parameter ¢ = O and the exactly-solvable
Poaschl-Teller potentisl V o eh (X ariges., This quusi-
exactly=solvable problem 18 the first-type one,.

The other quasi-exactly-solvable problem of the second
type associated with Poschl-Tellet potential is generated by

yzf-‘fAJJX-&a.'“JX, a>f,a(>a Ué)
The 1imit ¥ —» o< corresponds to b -»0,
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3. Generalized hemopic ogcillator. Let's consider as in /4=7/

y= ax¥+4x, azp (13)

It's clear that the uytates of different parity form the separa-
ted Riemann surfaces. Let P =" then

Vo= axbs 208 x%+(8*-3a)x%, E, = (1)
and gt p=x s We et

V, = alxé 4 zalx‘u//‘-s:.)x‘) E,—:.?! (15)
then p =x*+ A , the addition to potential (14) equals

aVy=-46xt end de =[a2/a%28 /28 ; By = Ja L2 (- Va%e28).

It p=x(x*+4) , the addition to (15) 1saVj and /4, =
=[atfates€lf24 , Eq3=5azt2f- Vai+68) Eigenvalues
EO,E (E1,3) form u two~sheet Riemenn surface with branch points
at 8 =ty/a', =2(/6a c s v0 paxbshatiliie g,
the acdition to (14) equals to 4Vn=-2a/< x% ; in this po-
tential it is known N-= [lz/l],-[ eigenstates of parity (-1)k.
Bach eigenvalue [, (eigenfunction ¢ ) contains (IN-1)-pairs
of complex-conjugeted square-root brench points in a .1t
corresponds Lo the crossing of the level under consideration
with tne rest levelsg of family given. It is worth noting that
the different Uypes of potential curves appear depencing on
various relaetions between parameterss: l>o, £ a (2k+3)
(single-woll potential); £<p, £%2afzk+3)  (triple-well po-
tential); fi< ¢ (2k+3) (double-well potential), If

b»eo , then a—»0, the spectrum is unplaited anc potential

V= {%x% appears.,

B. Nultidimensional case. The radial part of thc d-dimen-
sional Schroecdinger equation with spherically-gymretric potene
tial can be considereé in an analogous manner

' "-1(2{4'.!—()!; -y2-p [p"+[{zf+J-4)r"1zg]P:(=E ~Vfz) (1

(compare (3) ), where £ is an an:ular quantum number,



4, Generalized m dimensional monic oscil [
Apparently, the multidimensional analog (413) has the form

tj: ads dn fC?.-f , az0, ¢ .<l+d/;_ 1?7

If p = 1, then we get

V,=¢ (C‘Ze"J*'Z)"-i [tl-a(zl+d+z-2c)]r"+2alr"m'-r‘, E, ={{2{1‘ d-2¢) (18)

for which the ground state is known, The acdition to (48)

aVy =z —¢Mar? gives the potential with (N+1)-known levels,

If N> oo s then a—»0, the spectral Riemann surface is
unplaited and the .exactly-solvsble problem appears (see e.g.

/9, p.158).

S5« Generalized Coulomb problems., Let's take

y,=a.+cr"+[r ) £z0, c<€+-l/z (19

In the case of ground state (P = 1), we have

Vo = ¢ le-2f-ds2)ra {Z(U—l-ZC)r'LZa bre “r", E,= I/z[d-z:) -q¢ (20)

when p =¥, '04"”-’ v+ Ay » there is the family of poten-
tials which are related to each other by analytic continuation
in parameters a, b, c; the i~th state energy of the i-th poten-
tial has the value 5,,_-.{/2//+z €+d-2x)-a2 . It is the quasi-
exactly-solvable problem of the second type. At b=0 unplai-
ting takes place and we get the exactly-solvable Kratzer po-
tential (see e.g. /9/ s De157); it is the generalization of
Couwlomb problem to non-integer angular momentum.

Other generalization of Coulomb problem is generated by

el -
\jz=a.+4.r +£rz) a>o £<o (21)

At b=0 we get the Kratzer potential. It is worth noting,
the case a=0 was investigated by E.Korol /10,

Now, let us give the list of Ehe quasi-exactly-solvable
problems of the ftirst type with(N/ﬂown statess
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V= a2e ™ o [1f+ uemrl] € s caf-u) e?* , cr et
V= hle™) exp {- Fei b .-f-&"y

V= -[afa+ )+ k(Kks uzo)]alr" ~Cles24-10)ch’ix 1otohux
Y= pu(thux) (dux) :.x,b { duxf

V= ax®+ 2afx¥ + [{3~(2ke3)a]r
V= puls) eap{ -8 - &*f

V=atr s 220 [B% (evezlediz-2e)alrts ¢ (e-2l-dve)r*
V= pulr) rb-caxp (- o' )

and the list of the potentials of the second type (the i-th
eigenvalue in the i~=th potential equals EN )s

V=484 2abr- [a(z { -rJ—f-Zc)*J]r'"-r cle-2f-dez)r*

E, = Z(zmzud-za)-al, w.—.p”/r}rl"zyp (- q_“_ ar)

V=04 bze-20-4.3)73, [cg-2L -J#Z)dnldjr‘é afNs2brd-1-2)r
Ey=-a*, vy =/:>,,{r)r£'°exp(-ar+ lr"/ |

V= de™% 20de=*, (ohd sateridsamnd Je 2% /zduq %) aad
BB, v ) onp (4% g )

V= o™y 20de™’s (02 28d-10d)e™ (206 -2as 216"
Ey=-b5dhlanl), ¥=p,le erpf- o a0 4]

v=-£%4fux, l[md&:-a{zb.r)]a‘ ”‘[(a*zlﬂulﬂ)dk.(ld]o"flx
E,f "(“-"8)1-) ¥ = Pulthex) (dux)-(a“)/‘_“//_zf, 42‘“]
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where A= [%]4-1 « The eigenvalues £; for
(I)-(IV) end the values A; for (V)~(IX) (where i=1,2,...N+1)
come from the roots of certain algebraic equations of the N-th
power., One cen prove that there are no potentials with the
above properties at N> O among polynomials in X, (r,r-!) )

(chiax, chtx), (e, e~ <),

6. Generglized uat@' u _problem. There is a quasi-exactly-solva-
ble problem with o periodical potential. Iet's take

3 =aq Stn ol X (22)
If +=1, thon

Vo=_azcna.lx_“&“, E, =-at (23)
for which the ground gtate is known, It's well-known that there
gre four types of solutions in a periodical potential: with pe-~

- riod 27/o, (oven and odd) and with period 4¥/¢ (even end odd). In
these cases per-exponential factor in eq.(2) is yﬁ]p/a,qag,where
‘]("”1’ Sina x t(ﬂllX/z » Iin X/ s correspondently, and lb/ﬁ,d,)is po-
lynomial in (pdx - In genersl case we get

{

Sind X - & Gux
Wy = -a2llax-aul oy otx, W(x)= C:J,/z Pltndx) e © w0
Sinatxfy

it N k+{ k=0,1,¢0. we know (k+1)-plaited levels of the
first type and k plaited levels of the second one. If N=2k
X=1,2,000, 1%t 18 known i plaited levelg of the third type and }5
plaited levels of the fourth one. In the limit M+oe Hatheu po~
tentlial emerges. Unfortunately, we could not obtain Brillouin zo-
nes eppearing at non~zero Floke's index.

In a conclusion, it is worth noting that the above quasi-
exactly—-solvable problems (I)-(X) can be exploited as inputs in
11l deterninant nethod (see e.g. " de
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Results on 10—~ and 3S-nucleus collisions
from the HELIOS Collaboration

presented by Luciano Ramello
Torino University and INFN

Introduction

The CERN heavy ion program consists of 6 large experiments and several emulsion
exposures, all of which took data with 60 and 200 GeV/A !0 beams in December
1986 and with 200 GeV/A 33§ beams in October 1987.

Its physics aim is the study of extremely dense, extremely hot nuclear matter over
extended volumes. This should provide insight into non-perturbative QCD topics,
and possibly lead to the formation of quark-gluon plasma, a macroscopic system of
deconfined quarks. '

The experiments must be able to handle complicated events with large multiplicity
(several hundreds) and large energy deposition (several TeV).

The HELIOS experimental setup

The components of the HELIOS setup which are relevant for the heavy ion exper-
iment are calorimeters, multiplicity detectors, external spectrometer, muon spec-
trometer and emulsions. In the following the first three such components will be
described in more detail.

Calorimeters

A set of Uraniumyscintillator, Uranium/Copper/scintillator and Iron/scintillator
stacks surrounds the target at 120 cm distance (Fig. 1 and Ref. 1). They feature
good granularity for —0.1 < n < 2.9 and a coarser granularity in the forward region
n > 2.9 (this section was replaced in 1987 with a much more finely segmented
Uranium-liquid Argon calorimeter).

The energy resolution is good, thanks to compensation, from moderate energies
(Fig. 2) up to the full oxygen beam energy, where o /E is 1.9 % (Fig. 3).

The ion beam composition can be clearly seen in the total energy spectrum, which
shows very little contamination from breakups of the projectile occurring in the
beam line (Fig. 4). These events are rejected by a dE/dx measurement in the beam
counter.

Multiplicity Detectors

These are finely segmented silicon detectors (400 elements each), located a few cm
behind the target (Fig. 5). The ring counter has a geometry specially designed for
dN/dn measurement, and provides a total multiplicity trigger. The silicon pad is
used for the interaction trigger.

In 1987 the configuration was upgraded and contains now 3 ring counters.
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External spectrometer

. A "slit” through the wall calorimeter, at 0.9 < n < 2.0 and 3° < 8 < 7°, is equipped
with momentum measurement, a time-of-flight and a Cherenkov system, forming
the external spectrometer (Fig. 6).

Measurements of particle spectra, average p of different kinds of particles, rapidity
distributions and 2-particle correlations are provided.

Photons are also measured with the help of a converter, sandwiched between two
proportional chambers, which is placed in front of the spectrometer.

Targets

The standard targets are thin discs (0.1 mm to 1 mm) of various materials (W, Ay,
Al in the 1986 run). The same material with different thickness is used to unfold
any target-thickness dependence of the measured quantities.

An "active” target, i.e. a drift chamber containing several thin Pt target wires, has
also been used in 1987. Its purpose is to minimize (and tag) secondary interactions
and still keep a substantial total thickness (4 % of an interaction length for 328
ions).

A special configuration with a movable emulsion stack is used to collect and measure
completely "interesting” events, defined e.g. by high multiplicity or high transverse
energy. :

The results discussed in the following have been obtained with a set of thin disc
targets (Ref. 2). ’

What do we expect to observe ?

‘A generally accepted scenario for the time evolution of the quark-gluon plasma
(QGP) is the following:

1. at sufficiently high enegy density (¢ > 2.5 GeV/fm?) the QGP exists as an
jideal gas of massless quarks and gluons, imbedded in a colour<conductive
perturbative vacuum

2. as the system cools down, there is a transition to a mixed phase, where
deconfined quarks and gluons coexist with "blobs” of physical vacuum,
containing hadrons

3.. finally, after further expansion and cooling, the system becomes a gas of
ordinary hadrons. Statistical QCD simulations predict a very sharp phase
transition between QGP and the hadron gas at a temperature around 200
MeV. - :

1

The task of current experiments is then threefold:

1). demonstrate that a sufficient initial energy dehaity has been achieved, at
least in some of the collisions
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2) show that a thermalized state, behaving like a fluid rather than a collection
of independent particles, has been formed (thermodynamical calculations
indicate a transverse expansion)

-

3) find signatures of QGP which are not easily affected from final state inter-
actions, such as:

a) photons and lepton pairs, .

b) strangeness production (reflecting the thermodynamical equilibrium
of QGP),

c) dissolution of resonances (p, J/¥, ¥') in the colour-conductive QGP.

HELIOS results
Trigger and event selection

The highest energy densities are reached in central collisions of nuclei, where most
of the nucleons participate to the reaction. Various methods to select central in-
teractions, such as requiring little forward energy (i.e., the projectile is completely
destroyed), high transverse energy or high multiplicity, have been found to be equiv-
alent, as illustrated by a 325 — Ag(Br) central interaction (Fig. 7).

Our main trigger requires high E7 in the region -0.1 < 743 < 2.9, which contains
the highest dEr/dn point at 01,3 >~ 2.4. Four different thresholds are used to cover
the full Ep range. An interaction is required by asking > 10 particles in the silicon
pad.

Further offline selection consists of:

i) requiring Eror and beam dE/dx consistent with a single.incoming 16Q,
ii) rejecting non-target interactions by using silicon pad and ring counter
multiplicity,
. iii) subtracting the remaining non.-target. contamination, which is <1 % at
E7 > 50 GeV, by using empty target data.

Energy flow

The measured E7 is related to the true E7 via a detailed Monte Carlo simulation,
which uses realistic assumnptions about particle composition and energy flow in 5.
The E7 resolution is found to be ¢ = 20 % Er (Er in GeV), and the total
systematic error on the Eq scale is 7.1 %, of which 5.1 % comes from the M.C.
correction and 4 % from the overall energy calibration uncertainty,

Er cross sections for 60 GeV/A and 200 GeV/A 'O on W, Ag and Al targets have
been measured (Fig. 8). Values of Ex in the trigger region up to 200 GeV have
been reached, which correspond to 280 GeV when the forward » region is included.

The kinematic limit for Ex can be evaluated assuming full stopping of the projectile
and an isotropic distribution of the available energy in the center-of-mass system.
For a central 10—-W collision at 200 GeV/A about 50 targel nucleons participate,
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V5 is 850 GeV and EJ%* is /4 x(\/s-66M n) = 383 GeV. The maximum observed
Er is then 73 % of the kinematic limit.

A simple geometrical scheme explains the shape of do/dEr as a superposition of
collisions with random impact parameter. A geometrical model (Ref. 3), postulating
Er production from N independent nucleon-nucleon collisions, with N given by the
overlap integral of the nucleon densities, reproduces fairly well our data (Fig. 8).

The dEx/dn distributions for the two beam energies, and for three Er regions
corresponding to the plateau of do/dE7, to central collisions (defined as the Ex
where the cross section is half the plateau value) and to the extreme tail, are shown
in Fig. 9.

As E 7 approaches the kinematical limit, the dEr/dn distribution gets narrower, as
would be expected from a spherical fireball in the center-of-mass system.

An estimate of the energy density can be done in the following way. The average
160..W central collision involves 16 projectile and 50 target nucleons, in a cylin-
drical volume of 7R% x2Ry = 320 fm®. In the "16+50" center-of-mass system the
effective volume (contracted by a Lorentz factor ~y¢m of 5.8) is 55 fm®. The energy
density is then e  Ez/V = 3.6 GeV/fm3, or alternatively, using the Bjorken model,
¢ ~ (dEr/dn)™e*/(xR%er) = 3.5 GeV/fm®.

This energy densily is possibly over threshold for QGP formation, and certainly
well above nuclear density (0.13) and hadronic density (0.5). A preliminary do/dEr
distribution for 3?8~ W collisions is shown iu Fig. 10, reaching still higher E7..

A comparison of our data with absolute predictions from the dual parton model IRIS
(Ref. 4), whose parameters have been adjusted to fit pp and ete™ data, shows that
the model qualitatively reproduces the do/dEs (Fig. 11) but is systematically lower
than data in the high Er tail. However, it has to be noted that the Er systematics
is still & 10 %, and furthermore the model does not include cascading of hadrons in
the nucleus, which could be important at backwards 5. There is 2 good agreement
between the IRIS prediction and the measured dE/dn distribution (Fig. 12).

Multiplicity and particle spectra

A preliminary charged multiplicity distribution, measured with the ring counter
and the silicon pad in the range 0.9 < 5 < 5.0, is shown in Fig. 13. The general
behaviour of do/dN.} is similar to do/dEx, with a plateau followed by a fall-off at
high multiplicities, and similar geometrical considerations apply here.

The multiplicity flow (dN.x/dn) shows a shift towards lower 7 as E r, and therefore
the degree of "centrality” of the collision, is increased. :

An estimate of the average ps is given by <pr > = 0.55 E7/N.x for charged
particles, where Er and N_j, are measured in the same solid angle. The data show
(Fig. 14) only a modest increase of <pr > as a function of Er (one would expect
a sudden rise above some threshold energy density, as in the JACEE collaboration
events).
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‘Charged-particle pr spectra have been measured by the external spectrometer in
the range 1.0 < n < 2.0, both with p and 60 projectiles. The regative particle
spectra show little difference between p and 160 (Fig. 15), although one might see
an increase of the ratio !60/p with increasing pr.

There is a little but statistically significant increase of the <ps > of positive par-
ticles with E (Fig. 16). The photon pr spectra (Fig. 17) do not show significant
differences in slope between the p and 160 reactions,

Figure captions

1.

0 =3 M U & W

10.

11.
12,
13.
14.

15.
16.
17.

Layout of the calorimeters.

. Energy resolution.

. Measured total energy for identified 10 events.
. Total energy spectrum for all events.

. Multiplicity detectors.

. External spectrometer.

A 3?5-Ag(Br) central collision at 200 GeV/A.

. do/dE7 for 60 and 200 GeV/A ©O-nucleus collisions. The curves are a

geometrical model fit to the data.

. Normalized dEr/dn distributions.

Preliminary do/dE7 for 200 GeV/A 325—~W collisions (1987 data) compared
to that for 150-W collisions (1986 data).

do /dEr for 200 GeV/A 60 compared to the IRIS model.
dEr/dn compared to the IRIS model.
Preliminary do/dN,, for 200 GeV/A '®*0-W collisions.

Preliminary <pr > of charged particles vs. Er for 200 GeV/A °0-W
collisions,

Preliminary pr spectra of negative particles for p— W and 1*O—W collisions.
Preliminary <pr > of positive and negative particles for 1°0-W collisions.
Preliminary pr spectra of photons produced in p— W and °Q-W collisions.
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SPACE-TINE EVOLUTION OF FROTON-FROTON, PROTON=NUCLEUS AND
NUCLEUS-NUCLEUS COLLISIONS ANDL THE DILEPTON PRODUCTION

N.Pi¥tové?) and J.pi&dtl)

1)Departmcnt of Theoreticsl Physice, Comenius University,
842 15 Pratislava, Czechoslovakia

2)Dap(u'tmen't of Nuclesr Thysics, Comenius University

A review of our recent calculations of dilepton produc=-

tion ir pp, pA and AB collisions, performed partly in colls-
boration with J.Ft4¥nik and P,Lichard is presented. The
enmphasis is put upon the connection between the space-time
evclution of the ecollision and dilepton production., We dis-
cuss also less understood aspects of the problem and try to
poir? out possible ways to separate signatures of the quark-
gluon plasrca from other, more procaic, mechanisms of the di-
lepton production.

Space~-time_evolution of pp collision and the dilepton prcduc-

-------------------- - v v menam o mme oo~

tion.

The picture c¢f the space-time evolution of hadronic col-~
lisions within the framework of the parton model has been des-
oribed in clessic papers by Bjorken [1] ana V.Gribov [2]+ The
amendments taking into account the LCD are discussed in Ref,
[3]. For a protoneproton collision considered in the CoMa,
the production of secondary hadrons proceeds via the inside-
cutside cascade consistent witk the boost invariance of the
process, At ithe moment of collision wee partons of both pro-
tons interact and this spcils the coherence of weve functions
of teth protons. after time v, the coherence is lost &and cure
rent quarks (q°s), antiquarks (G°c} and gluons {g's) start
their transformation to final state hadrons. Detuils of this
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{ransition are unknown, sinoe the process is governed by QCD
at low momentum transfer. One of the possibilities [4.5] pro-
ceeds as follows.

The gluons are oonverted in time ‘!1 into pairs of quarks and
antiquaerks which dress themselves into oconstituent quarks
{Q°s) and antiquarks (J°s) and recosbine to mesons in time T
The time order is given below

T, - ooherence of q,3,8 lost

G- gluons convert to current quarks and antiquarks, which
change to oonstituent quarks

T.', - oonstituent quarks and antiquarks recombine to mesons.

A1l this happens in the proper time (at y*: 0 in the c.m.8.).
Due to the Lorentz invarisnce of the space-time svolution the
same sequence of svents happens at any rapidity at the same
proper time. The "oo-moving® or "space-time” rapidity 2 is
defined as

£

’7 . L. 1p Bex (2)
2 t-x

where x is the longitudinal distanoe from the point of the pp
collision in the o.m.s8. The proper time T' is related to t and
x by the standart relation
T (1?2 (3)
Prom (1) and (2) we cbtain useful formulae
t = Toh "L ’ x = T sh ‘z
lines corresponding to a fimed value of ﬂL are given as.

x/t = th%

The space-time evolution of the pp collision is shown in Pig.l.
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7

Fig.l

The three regions denoted as "qdig", "QQ" and "pion gas" cor-
respond respectively to the system of current q°s, §°s and
gluons, constituent Q°s and Q's before the recombination and
pion gae.

As mentioned above the piocture is rather uncertain in de-
tails, it is eg. not clear whether the current quarks are
not dressed into the conatituent ones only after pions has
been formed.

An interesting and perhaps important fact noted in [4,5]
is that the number of current quarks and antiquarks obtained
after the conversion of gluons from the incident protons is
roughly the same as 1s the number of constituent quarks and
nntiquafks present in final state pions. This indicates that
the density of constituent quarks in the "(Q" stage is sbout
the same as the number of final state pions

(1] - 4axN
- o -—g-dn 2 —— (4)
dy dy ay
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In discussing the dilepton produotibn we have to discriminate
between two mechanisms. The former produces dileptons from
interaction of constituents created during the space-time evo-
lution of the collision [4,5] and contributes predominantly
to low mass, M {1 GeV, dileptons. The latter is a fast pro-
cess occuring at the moment of the collision and contributes
mainly to large mass dileptons. A typical representant of this
process is the Drell-Yan annihilation q3f »e*e”.

Ve shall start with discussing the former process,
At any value of " all of the three stages namely qig, QQ,as
pion gas can contribute to the low mass dilepton production
via diagrsms shown in Fig.2.

o
R €
Q et
a) b) e”
Q e 5 ? et
e
e) d) R ®
et ] Q
+
\-Z? e
N
e) . - -7t+
T~ \\7,-"
~N

Fig.2 Some of possible subprccesses contributing to
ete” production during the space-time evolu-
tion of pp collision.

Some information about the relative importance of various sub-

processes can be obtained from the data on dG‘/dlI2 obtained
in numerous experiments, in particular by the APS collabora-
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tion at CERN. Such an analysis hae not been performed so far,
but it is most desirable.

As pointed out in Ref.l's] interaotions of oonstituents
created during the collision yield only low mass dileptons.
Lt any value of time t, the oonstituents are "excited" only
in a specified region of co-moving rapidity ?’ + This oan
be meen from Fig.3 where we plot the line t=oonat and two
lines "[., and % corresponding to the "Qg" region exoited at
this timse.

— — f=clonst

F1803

The interaction of constituents with a emall rapidity diffe-
rence can produce only low mass dileptons. To see this in mo-
re detail, suppose that SD (t.x.p,,.pT) denotes the excitation
intensity of constituents with p, and Pp in the space-time
region x,t. The excitation funotion can be rewritten into va-
riables T, 9 and y = (‘1/2)1n[(E+p")/(E-p,, )] and pp. Becau-
se of the Lorentz invariance the excitation function can de-
rend only on T, y=9 andpps ¢ = ¢ (T, y-4 ,pp). The
dilepton yield is proportional to the integral of the product
0ol Tora=9Pm) fG(Ts3p=% 0g) over dx at =7Tdrdy
At any value of ‘)L only interactions with a small rapidity
difference Y= J, Aare possible and these give only low mass
dileptons.
The calculations in the soft annihilation model are ve-
ry similar to quark-gluon plasma calculations in what con-
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cerns the Lorefitz invariance of the space~time evolution, the
difference is in the density of excitation which is taken from
the thermal equilibrium in one case and from the density of
final state pions in another case.

We have to stress further that by uaing diagrams like
those in Fig.2 for constituents separated by a small rapidity
gap we can obtain only a rough estimate of the dilepton yield,
since we are, in fact, using perturbative arguments in the re-
glon where perturbatire expansion is not applicadble,

This implies also that more general statements,indepen-
dent of detailed properties of various diagrams,aro probably
of more value than specific results. A general statement of
this kind concerns the dependence of low mass dilepton pro-
duction on the rapidity density of produced pions [6]. The
argument is simple. Assume that the R stage dominates the
low mass dilepton production. The dilepton yield is propor-
tional to the product (dNQ/dJ).(dNE/ds). Because of Eq.(4)
this produot ie proportional to (dN'/dy)a. This quadratic de-
pendence has been recently observed by the AFS collaboration
[7.6]. It is interesting to note that the same quadratic de-
pendence is predicted also by the model with quark-gluon plas-
ma formation [9]. The constant in front of the quadratic de-
pendence ia, of course, different [IQ] and with increasing
plon multiplicity one expects the transition between the two
different quadratic dependences [11]

The available soft annihilation model [5,12] of low mass
dilepton production takes into acoount only the QQ stage of
the evolution of the collision and includes only diagrams
2a) and 2b).

The state of matter from which low mass dileptons were
produced in pp collisions is not yet known, it can be some-
what elucidated by

« gtudying the shape of de-/dm.+.- spectrum and looking for
subprocesses which might give agreement with the data. The
soft annihilation model [5,12) should be extended to inclu-
de also the diagram 24) in the QQ stage and other diagrams
in other stages of the evolution.
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= The soft annthilation model should be reformlated in a
way as close as possible to the thermal equilibrium models.
- Comparing detailed models of the space-time evolution of
the pp collision with data extending to as high as poasidb-
le dNg/dy.
The troudle with pp collisions lies in the fact that the evo-
lution is rather short. The transverse dimension of the sys-
tem is about 1 fm and because of that the whole time of the
evolution is only 1 fm/e, Still, observation and theoretical
understanding of a change of the slopes of the quadratic de-
pendence would dring and important information. :
Large mass dileptons (M71-2 GeV) are produced almost
exclusively by the Drell-Yan process which is mmuch bvetter
understood than the mechanism of low mass dilepton production.
Any excess of the large mass dilepton production over the
Drell-Yan contribution would be an indieation of high tempe-
ratures reached during the collision. Such an excess should
be also proportional to the square of dNg/dy:
- a more detailed studies of correlations between diNy/dy
and large mass dkleptons are desirable both from experi-
mental and theoretical side,

Space-time evolution of proton-nucleus collision and_ the_di-

lepton_production

‘the soft annihilation model descrided above is a preequi-
librium model, the plasma is not formed because the excited
system exists only during a time interval of about 1 fa/e.
in proton-nueleus collisions higher esnergy densities can be
formed and with higher densities of constituents the mean
free path becomes smaller and the tims over which thes exci-
tation exists could increase. '

The basic question is whether the energy released in
subsequent collisions of the incident protons with nucleéeons
in the nucleus can be accumulated in the same space-time
region, To introduce the problem consider the proton-deute-
ron collision in the rest frame of the deuteron (Fig.4) in
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the configuration when proton collides with both nucleons, The
first collision occurs at =x=0, t=0 the second one at x=d

Fig.4

and t=d/v, where v iag the velocity of the incident proton.
The space-time evolution of both collisions is shown in
Fig.5. The two excitation functions can be described as

ﬁ, (x'tsp,, oPT’
Pt(x'tsP”oP!)

S’,(To"ZQPT, (5)
r’_(tl ,3-2'.131)

where

' w202 o a4l Al t-4/y) + (x-4
v's it - 200 g 1n {8cd/v) + (x-0)
t

! 2 (t=d/v) ~ {x-4)
£

[

4 ,
Fig.4. The excitation region of the firat (1) and se-
cond (2) protam-nucleon collieion

X
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As seen in Pig.§ both excitation resgions overlap for larger
rapidities. this is also natural, If the collision is consi-
dered in the proton-nucleon c.m.s. the nucleus is Lorentz
contracted to a pancake with width of 1 fm (due to wee par-
tons) and the centres of both nucleons are separated by a
small j x. So for rapidities near y*:O we can expect a mo~
re or less complete overlap of the excited regions, whereas
in the nucleus fragmentation region the overlap will be smsll,

"he low mass dilepton produciion is given by the total
;uark ani antiguark densities

f(t,x,p..p.r) a r, (toxoP, ’PT) + fl(t,x.p, ,PT)

wiich enters the expreesion

ne - =ff’a(’5‘ v&(QQ> e*e” 4+ x) dV dt (6)

with a complete overlap in the central rapidity region we
expect qualitatively

P an%; “
mpter = 4 mgh (e (7)

and for no overlap in the deutercn fragmentation region

P\~

The difference between {7) and (8) is due to the fact that.
in the formar case f“fg in E3.{6) is effectively equal to
4 <+ , whereas in the latter case it is equal to {161 +f,,f,_=
2 (i1

Por colligione of a pion with heavier nuclei we argue
in the same way, in the eentral rapidity region the denslty
of excitation is the sum of all densities produced in subse-
guent proton-nucleon c¢ollisions, in this way ~= have
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L X

aR
ne‘e ~ (?.' +* fzf vee *‘!m )2“’(“&;!')‘“% (9)

~

where dNp/dy is the total rapidity density of piona in the
finsl state. Assuming that each of pions has gbout the sams
transverse energy £.(per pion) ~ 0.5 GeV we have also
dNp./dy ~ Bp and this gives the last term in Bg.{9)e

More details can be found in the recent CERN preprint
by Peter Lichard [13] and in Ref,[14].
- A really deep analysis would probably require an ansatz on
the form of the exoltation function containing a few free pa-
rameters, determination of these parameters from low mass di-
lepton production in collisions of protons with lighter nuc-
lei and analysis of interactions of protons with heavier nuc-
lei using these paramaters. Such calculations has not been
attempted s¢ far.
- The production of large magss dilepfras is glven by the Drell-
Yan mechanism., This process ie fust and occurs prior to the
space-time evolution of the collision, rhe crosa-section for
the urell-Yan production in proton~nucleus collisions ia pro-
portional to the number of proton-nucleon collision and that
means roughly proportionsl to the transverse energy released
in a specified rapidity window in the central region, Detai-
1ed calculations of this correlation has not been performed
50 far, Apart of understanding how the incident proton relea-
ses transverse energy in subsequent collisions with nucleon,
it would also require understanding of the mechanism of flue-
tuations of energy relegsed in individual proton-nucleon col~
ilsiong,.

gpace-time evolution of nugcleus-nucleus_colliisions_and the

dilepton production

In 1on~ ion collision, especially with heavy ione, the
juark-gluon plasme may be formed and the dilepton production
is ons of the most promising signatures of its formation.
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the iransition from the gquark-gluon plaema to pion gas is not
yet well understood. The most populsr, though very simplified
model uged the idea of the first order tramsition: at suffi-
ciently high energy density the (GP is formed, during its
expansion the temperature and energy density of the QGP de-
creases and the mixed phase (of QGP and pion gas is formed),
finglly, when the temperature decreases telow ;Ec the whole
mixed phase goes into the pion gas [10,15] .

Another option proposed [}6] and advocated by shuryak
[27] assumes that the transition goes in two steps, In the
first one the (GP goes (via a mixed phase) into the gas of
constituent quarks and in the second step this goes (again
via s mixed phase) into the pion gas. Note that the latter
scenario is closed to the soft annihilation model, at least
so far, as the energy density is just sufficient to produ-
ce the constituent quark gas with energy slightly above 'I'c.
In the proton-proton collision small transverse dimensions
of the gystem prevent longer existence of the gas of consti-
tuent quarks, whereas in heavy ion collision the system can
live for time whica is sufficient for the properties of the
gystem t0 be manifested.

The data on production of both low mass and lgrge mass
dileptons produced in 160-1! and 328-!! interactions will soon
become available from the NA-38 collaboration [18] at CERN,
The first besic information to be ocbtained from these data
concerns the question whether there is any other source of
di leptons different from what one would expect if a heavy
ion collision were a simple sum of nucleon-nucleon collisiond.

We shall now deseribe our predictions for this minimal
dilepton production.

For low_mass dilepton production in the central rapidi-
ty region we consider the collision in the nucleon-nucleon
c.M,8. Both nuclei are lLorentz contracted to pancakes with
a longitudinal dimension of about A fm, The transverse are
of the nuclei is divided into small areas of A4S =0 whe-
re 65 is the nucleon-nucleon oross-section; behind each of
these areas there is a "tube" containing my nucleons in 160
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and ny nuoleons in zaau. The 1i=th tube thus leads to myny
nucleon=-nuoleon collisions (eee Fig.6). Assuming that in each
of the nuoleon~-nuoleon 00llisions the same amount of oonsti-
tuent quarks is produced as in a pp ocollision and assuming
that in each ocollision only the soft annihilation mechanism
works we £ind that the number of low mass e¢*e” pairs produ-

’1‘06

ced in a collision at a given impact parameter b is

nd" ¢ (p) = E, Z(-iniyar‘(ni)r,(-i) < n;;"> - 20
tubes myn,

where P (n,) is the probabdility to find n, nuolecns in the
i-th tube in the Aznueleus, Fp(m ) denotes the same for Be
nuoleus and ¢n? * > is the ¢*e¢ produotion in protonepro-
ton aollision. It is eaay to calculate also the transverse
energy r. .eased at & given value of D and plot the dependen-
ce of the e*a” proguction yersus En in a given rapidity win-
dow, Values of n;*/(n? S are plotted versus Ep relsased
in & central rapidity region of lenght Ay = 2 in Pig.7,

We plot also the average multipliocity of pions at a
given value of the transverse energy. 1f is seen that the
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ratio of e*e”™/7T" 1s about 10 times as high as in an avera=
ge pp oollision, The number of o*e” pairs 1is also seen to be
roughly proportional to Ep up to the highest values of Ep.
More details can be found in Ref. £14].

It is,stressed that this is the pinipal rate of the low
mass lepton pair produotion, any further inorease would be
due to some collective effects, most probably thermalization
of exoitations of neighbouring tubes and this would be the
way to plasma formation, If such an excess is observed, its
further study may hopefully lead to understanding also the
type of the thermalized matter.

The minimal large mass dilepton production hae been
studied in Ref.[13]. We have assumed that the %0-U co111-
sion can be viswed as a sum of nmueleon-nuoleon collisions
and that in eaoch of these collisions the Drell-Yan mecha-
nism is the only source of large mass dileptons. Bach of
nucleon=nucleon collisions ie also assumed to contribute to
a specified rapidity window in the central region about the
same amount of transverse energy. This leads to the linear
dspendence of the large mass dilepton production on the to-
tal transverse energy. We understand that the results con-
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tained in notl.[14,19] should be considered as preliminary

qualitative studies and that more detailed caloulations inclu~

ding '

« gnergy losses in subsequent nucleon~nuocleon collisions

- gatimates of possible contributions from plaesma formation

=~ gpeoific caloulations taking into account realistic oondi-
tions in the NA=38 experiment

should be performed.

We are indebted to J.Ftdinik and P.Liochard for collaboration
on these topios and to V.Cernf, A.Nogovd, O,Pavlienko, O,Fab-
Jan, E.Levin, M,Ryskin ank K.Kajantie for disoussions and
oorrespondence,
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Wi RwilI2a®I0ON OF TIL IIADRON-HADRON, ILADRON-NUOLEUS
AHD WUCLLUS~NUCL:US FHAGWLLINTATION MODEL

S.Yu.ﬂhmakov. V.V.Uzhinekil
Joint Institute for Hucleur itesearch, Dubnu, USSR

Abstract

A new lionto=Carlo realization of the duul parton model
is suggesied. The code tukes into uccount high and low mass
dilfruction dissociutlon processes, transverse momentc of
quarks, Fermi-motion of nucleor nuclecns. The code operation
‘recults in un exclusive stute outisfying the energy~-momentum,
baryonic und electric charges, strungeness etc. conservation
laws,.

Authors of llonte-~Carlo codes realizing the main assump-
tions of the dual parton uodel 1 must oolve the following
probleus

1. How to avoid the low mass string creation.

2. How to describe the decay of hadrons into quark
subsystems. '

3. How to sutisfy the energy-momentum comnservation law,
especially in the cuse of hadron-nucleus and nucleus~nucleus
interactions.

Since questions like this arise in different approaches
ut the description of various reactions, we think 1t reason-
able to glve a solution we used when developing the new rea=-
lizution of the duml parton model.

The main ides we were guided with was the uncertainty
principle according to which muss, energy of particles,
strings etc. can't be determined with an accuracy AM~ #/T'
during the time interaction T . Yo, at the interactions time

T one cun "ascribe" masses different from the table ones to
initial hadrons. Besides, during this time one may not worry
about low mass string creation. VVhat matters is all final
hadrons were on the mass shell. To consider the main features
of the algorithm realizing this ideas let us take a simple



- example, namely the diffraction dissociation of hadrons to
the low mass states, e.g. in nucleon-nucleon interactions.

In the Born approximation of QCD the diffraction digso-
ciation process is described by a set of graphs (fig. 1). Let
us suppose that the creation and decay of the string are the
final stute interactions. Then at the intermediate stuge we
have a system: the baryon, the querk and the diquark of the
dissociating haudron. Due to the energy-momentum conservation
law an exclusive state of this system is completely character-
ized by one independent kinematic variable X , the truns-
verse momenta neglected., Let this variable ratio of the lon-
gitudinal querk momentum to the sum of the quark and diquerk
longitudinal momenta. At ¢ given value of X the kinematic
charucterostocs of all particles defined as

‘Cpsz(lm’-” fpe’lJ Ib/SaB’)

Py = (fmF %%, xp, O

9)7‘} = (/rﬁ';; +(1"JU‘PT, (r~xJp, 6,)
liere fna,/T?, fﬂ77 are the mausses of the baryon, quurk cnd

diquark respectively: /95 and /b are the solutions of the
equation system

patp = Pe
{EB+E7+577=E¢7 (2)
where f; and /30 are the total energy and momentum respec=-
tively., It is easy to see that the primary hadron "masg"
(9% 4 9q)L, defined in this wey, is different from the tuble
value /Mg .

Supposing that the value of X is distributed uccording
te the rule 16 22,8

%()‘)"‘ l/J(_i“({—X) (3)

and calculating the fla dependence of the process amplitude
by the graphs of fig. 1, one can obtuin (see fig., 2) various
characteristics of the diffraction dissociation process. (ne
can easily formulate a similar algorithm for the description
of hadron decuys into a greater number of subsystems.

an independent "simulation” of quark, antiquark and di-
quurk momenta followed by determination of kinematic charac-

(1)
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teristics of strings created between various hadron subsys-
tems may face the occurrence of low mass strings. We inter-
prete them as off-shell hadrons end formulate the "putting-
onto-the mass-shell" algorithm as follows.

Iet a set of particle characteristics is given

9{ = (E"'l /b//:'J ﬁ:.") ’ mq_‘ R '/si -5/\/ (4)

L z 2 2
For some particles My # £ ~Pu;~p.;« Solving the system
of equation for the unknown variables C, and C,

%‘ Pu;c C‘Q(P";).. CZG( Plll')J = P°
;[\lh‘l:’; “ef Pllz': +Pt;'e(P“i)+Wm0? +Cy, PIT;" P:; e(‘P"i)]:Eo(S)

we determine the particle characteristics in the final state

@ (\Imo +C{P" t P.L G(Pll) Vmo I-(’,_/D” *P_L, 9(/’”-),
C4 P//‘- G(PII‘)*CL/DI/( 9(/’”.), PJ.., ).

Here ’Tk%are the table values of hadron masses. So, we have
an opportunity to avoid rejecting events with low strings
created, which in its turn allows an increase in the code
operation rate. We also have an opportunity to satiafy the
energy momentum consexrvation law with computer accuracy, to
take into account the transverse momenta of the constituents,
the binding energy, etc. when simulating interactions of
composite systems.

In the case of nucleus-nucleus collisions an additional
problem of simulation of inelastic configurations of inter-
acting nucleons arises. A large number of elementary interac-
tions aggravates the problem of creation fof low mass chains.
Our earlier algorithm for the configuration choosing 13/ Tea-
lized in the code DIAGEN /4 together with the "putting-onto-
the mass-shell" algorithm allow one to solve these problems
without violating Glauber's relations between cross sections
of various proceéses *) and without loosing the code operation

*) These relations are violated in the existing realiza-
tion

87



efficiency. In this case no simplifying assumptions on the
elastioc NN scattering amplitude are required.

In figs. 3-5 one can see various characteristics of
proton-proton interactions calculated by us with allowance
for the processes of diffraction dissociation both to the
low-mase and high-mass states. Fige 6 shows the rapidity dis=-
tributions of secondary particles in hadron-nucleuws collisi-
ons calculated without violation of the energy-momentum conser=
vation law with allowance for Fermi-motion of nuclear nucle-
ons, In figs. 7,8 characteristics of X -particle interactions
at VA = 126 GeV are given. In fig. 9 transverse energy
spectra for h-A and A-A collisions are represented.

For all calculations we used the string fragmentation
code BAMJET 15/. As 18 seen our calculations are in satis-
factory agreement witu the experimental datae.

Thus, our realizatlion of the dual parton model describes
the available experimental data well enough and permits one
to analyse more subtle characteristics of h~A and A-A inter-
actions thanks to allowance for the energy momentum consexrva-
tion law, the structure of elastic A=A scattering and the
diffraction dissociation processes.
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Fig. 1. Diffraction dissociation to the low mass state in

the Born approximation of QCD, ’

Fig. 2., Created system wmass dilstribution in the process

/3+,b-r/9+X « The curve is the calculation, the
points are the experimental data

89



T 7 T s

V3'=249

Fig. 3. Negative particle nmultiplicity distribution in pp-
interactions. Curves are the calculaiions, the points
are the experimentel data

90



10
~ | ppepx [l pepepr
aD

E | 135 6ev /'] 100 Gev

\D‘x . .\'/

Dl-o *

” .

0 02 04 06 08 02 0% 06 03 y

Fig. 4. Inclusive spectra of protons in pp-interactions. The
points are the data

1. -
4!1 . S TA X
dy | “\ PP

/ \

0 ‘..1 _ ,

Pig, 5. Rapidity distribution of secondary particles in pp-
interactions. The points cre the data

L'

91



Mpe 6. Tuplidity distribution of secondary particles in pai
interactions. The points ure the dasu . The
dashed lines cre the cilculations /11/. The Solid lines

are our calculations.
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Abstract

It is shown that the perturbative QCD allows one to under=
stand the main properties of the hadron interaoction at high
energy. Developed on the basis of the leading logarithmioc
approximation in perturbative QCD and the reggeon diagram
technique, our approach suocessfully desoribes the inolusive
speotra of the secondary hadrons including emell transgverse
momenta p, ~ 300 MeV, and the multiplioity distribution in
a wide region of enexrgy s = 50=900 GeV, using only three
phenomenologiocal parameters. It fturns out that the main
source of the secondary hadrons is the production and the
fragmentation of the gluon minijets with transverse momentum
Qg ~ g0 where q, = 2,5 GeV at s = 0,5 TeV, and q, = 7 GeV
for s = 40 TeV. Our approasch prediots a rapid increase of
the total multipliofity Nesq2es exp (2.5 ln 8), the total
cross section G}acanas and a comparetively slow increase
of the diffraction dissociation oross section GDt'aln Be

1. INTRODUCTION

It is well known that the typlical hadronic interactions
at high energy are soft processes that ocour at large distan-
ces (or small transferred momenta) where the mysterious con-
finement foroces should be acted. For this reason, discussing
these processes in framework of QCD, we are to use some mo=-
dels that contain our qualitative improvization utiliging
rather the QCD terminology (quark and gluon degrees of free=-
dom) /1’3/, then the explioit form of QCD interaction.
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Here, we advooate a8 quite different view point, namely, the
leading logarithmio approximation (LLA) of perturbative QOD
is a sufffoiently good basis for the desoription of high
energy physiocs. We are trying to demogtrate belew, that we
oan aohieve the full and selfoongistent understanding of

the main properties of high energy ocollisions on this way
inoluding both the proocesses with small and large transverse
momenta (qt). We prediot 1) the logarithmical inorease of
the interaotion radius Reeaeln s (the aiffraction slope
Bev1ns and of the total cross seotion G' oalns,

11) the speoified behaviour of the diftraotion dissociation
GD /auznoln a/I? (1n I?)' at high energy, 1i1) the ra=
pid increase of the mean transverse momentum of the secondary
hadrons or jets, namely Qyy4q4 o> 0xp(a Yio #) and their

multiplioity Nee ¢, jet for typiocal inelastio event,

In our approach we prove the s and t ohannel unitarity
and can eapily show that our formulas have a usual limit of
the perturbative QCD at large Qe The main reason why we can
- digouss so oonventional soft phenomena as toial oross sectien
is the signifiocally large mean transverse momentum for typi=-
ocal 1nelaatio event. that, as predioted, rapidly grows with )
energy (qt = q, a.exp(z.s {1n s). Such a large qtz reveals
11;5912 in smell ooupling constant of QOD (qt ) = 4T /b
ln qt / Az, which smellness controlles the agcuraoy of our
caloulation in perturbative QCD, We see some experimental
support of the above ideas even in the energy behavicur of
the slope of the diffraction peak /4/

B(psp) = (10,9 ~ 0,08 1 & + 0,043 1n® 8) GeV™2 . (1)

It 1o easy to see from eq. (1) that the factor 1n? 8, being
proporticnal tc pt'a, where_pt is the parton peripheriocal
transverse momentum, is extremely small and corresponding
to pyal-2 GeV since 0.043e5 (. /p;)2,

Even et not high energy, l.e. {§ = 10 - 60 GeV the slope

of pomeron trajectoryw’ (B = B, + 2«/ 1n s) only slightly
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exceeds the minimal value permitted by t-channel unitarity
for t = 4m2

b 3. O
% mtn 2 3272
Experimentally /6/ o' 0.13 % 0,02 Gev2, Thus, the experi-
mental value of «/ 1g connected with comparatively rare
everts of the pion produotion on the periphery of a hadron,
while the typiocal transverse momente of & parton in the
fast hadron is sufficiently large (> 1 GeV) to provide the
application of the perturbative QCD. Thus, we claim that the
original lagrangian of QCD allows us to build the picture
for hadron interaction at high energy on the same level of
our understanding of the high energy dynamios as has been
reached in quantum eleotrodynamics. In our approach, that is
based on the LLA of perturbative QCD and taking inte account
the rescattering of partons 7 » we can describe the main
properties of the inelastic nuoleon interaotion for
V& = 50-900 GeV such as 1) the rapidity distribution
4G /ap , 1) the p, spectra dﬁ'/dpg in the wide range of
py from 300 MeV to 10 Gev, 111) the multipliocity distribu-
tion Gy, and 1v) ‘the increase of the mean transferse mo=-
mentum <,pth1> versus N, Fitting experimental data we use
only three parameters that cannot be caloulated in pertur-
bative QCD and their values have been extraoted from expe-
riments. At the gsame value of thege parameters we reproduce
the energy dependence of the slope of the diffractive pesk
B = g2 lni and the totsl oross seotion Gt = 8’.“&2 1n2 8,
and also the inclusive oross section with large transverse
energy E, for proton-nucleus interaction (4G (p, Pb)/dEt)+).
As in QCD we can develop the regular procedure for the cal-
oulations of smell corrections to our approach.

1n 4n2./ nﬁ = 0,08 GeV~2

Thus, we have discussed briefly only the positive aspects

of our approach, which is based on the well developed LLA
of QCD /B/and the reggeon diagrem technique /9’10/. Now let
us considexr our diffioculties. First of all, it is the low
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practioal precision of the LLA calculations. Even in such
simple process as the heavy lepton palr produotion, the LIA
formula gives the value of the oross section G(p* pr)

twice larger than experimental one. Of coursge, we know how

t0 caloulate the ocorrections to LLA but umfortunately such
ocalculations are extremely complicated., The second Aiffioculty
is typical for all many body interactions. Although the pro-
bability of the resoattering of each pair of partons is not
large, in the central rapidity region where there are many
partons we face the usual problems for the many body intera=
otion, and are obliged to use more or less reasonable appro-
ximationg for real oaloulations., Unfortunately, the accursoy
of such approximations is not good. Al leagt, all caloula=
tions are related to quark and gluons, and we can take from
experiment the phenomenological structure function for gluon
(quark) distribution in initial hadrons and the hadron frag-
mentation funotion for produocing quark and gluon jets,
Fortunately, al=qualitative features and the most part of

the quantitative caloulations, at least for the central region
depend very weakly on the details of the used struoture func-
tiong and even on the way how we take into account the parton
-parton interactions ++). ‘

*) Let us note that the disoussed approach /772 a110ws us
to solve the problem of goreening correotions for the deep

inelastio scattering 711/,

++) It ocours because the parton density grows with energy

and reaches its max:mal value permitied by unitarity.
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2. PARTON VAWE FUNCTION OF A FAST HADRON

1. Pirst of all let us cutline two important peculiarities
of QCD.

A. Due to the spin of a gluon being equal to the unity
we get the constant oross section even in Born approximation
of QCD at high energy from the two gluon exochange (see fig.
la). The radiation of intermediate gluons shown in fig. 1b
leads to the inorease of the total oross seotion, namely
Gt,LLA”q§< reY s % , Thus, some chanoe appears to stu-
dy the processes vwith rising oross sections already in per=-
turbative QCD at small o . '

B, In QCD a gluon, graduaslly slowing down in the ladder
diagrem of fig. 1b is taking part in two random movements
simultaneously. One from them is a usual diffusion in the
impact parameters (bt) which is typical for any reggeon &x-
change /12/. At eaoh gluon emission " 1 " the parton that
looses its energy shifts iis position in 'bt on the value
‘th"'llqt‘ Such diffusion prog%des the increase of the
interaction radius with energy « The gpecond diffusion
that was firstly considered in ref. 8 y is the random
changing in log Qe Since the QCD coupling constant 1s die
mensionless, all integrals over any transverse momentun qt 1
are logarithmical looking like .fa( (qt 1)dqt 3 / qt and’
converge at 9,1 = 94,141 or qu 4 = 9,51 ° In other words.
at eaoch step of the aiffusion (for each rediation) 1n qt
changes by the value of the order of unity. As & result of
such a diffusion the mean transverse momentum of the partio-
les rapidly grows and the main contridbution for multipartic=-
le generation regults from the fragmentation of the gluon
Jet with q, = q, = A exp(1.26 {In s).

2., Let us oongider in details the development of che quarke
gluon cacocade that forms the wave function of low partons

in & mdron +). We would like {0 emphasize, that the summa-
tion of the simplest ladder diagrams that has been carried
out in the LLA of QCD (see f£ige 1b) in faot means that the
developed casoade of gluonas is taken into account since each
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produced parton 'decays into a whole casoade of slowed partons
as shown in fig. lo. The probability to emit a gluon with the
fraction x of the hadron momentum p is proportional to

dwos o, ax/x, and, thus, the multiplicity of the._p:r&t:ne

(N) ¥ = ¥, exp(c ot 1n 1/x) since aN/N = aw = ====fomcean ),
The cross section is determined by the produot of the N for
the slowest partons and the parton-parton oross seoction

( 6y) 6,°> 0, N(1a 1/x = 1o V8) so the increase of multi-
plioity N providoa G' - G' . 8°%8 |, The question ariaes.
what 18 the distribution of the partons in b, and qt

Let us conaider two extreme situations. 1). Por each gluon
radiation, log of its q, grows, Alog Q= 4l. The transver-
se momentum in puch ladders (shown in fig. 1d by vertical
lines) inoreases with the growing number of diffusion steps-
"m ", The thickness of the lines in fig. 14 reflects the
increase of 1log q; = '*. Each step of the diffusion ooou-
ples the rapidity interval Ay = Aln 1l/x col/ X, (qt ),
since wen 06, 1n 1/x ~ 1, The coupling constant 0( Nl/lnqi.
go the oha.re.oteristioal value of ln q, grows as dlnggoepl, dy_
and

1In ;> o> (W £ay> = Aexp oy, y=1n1/x (3)

At the first sight 1t seems unnatural that from diffusion
with equal probabllity for inoreasing and deoreaging log q
some grows of q; follows,

+) Ty gluons play the most important role in this formation
and for this reason here we restriot ourselves to gluon
ladders only although in practical calculations we have in-
volved the quark production as & well,

++)Strlct1y speaking, in quantum mechaniocs it 1s impossible
to fix the coordinate and momentum (bt and q,) simultaneous-
1y. Such a situation is in contradiction with uncertainty re-
lation, but in our case we can use Q and bt with semioclassi-
cal acocuracy since the number of partons is extremely large.
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Let us present a very simple estimation to confirm this state-
ment. Let us suppose that the ln q, distribution has the
usual diffusion form /8/ , nemely

2

1n"q
1 t
¥ = t

The mean transverse momentum can be found from a simple ex-

pression
q q
t nz i 1 )

(1n « 1n© o -
b fo O T

If we put m»o(s ¥y e ¥/1n qi in the above equation, we get
eq. (3) for qq+ It 1s easy to understand that such ladder
can not shift its position in lmpact parameters LI since
such a shift is aoout llqt (Aby ~1/q,) and exponentially
£alls down (eq. (3)) with repidity y, 11) The opposite
example, the transverse momentum only weskly ochanges in
a ladder, q; ~ Q,. We can reach such & situation in the logqt
diffusion if on each step 1n 9 = +l or =1, successively.
In such a ladder the parton can move in by up to by =
= nAbiesn/Qerol, (Q)) 3/Q,, and these movements provide
the increase of the intersction radius R =of/1n s where
K‘o—aa(elao apd y = 1n s/Qﬁ .
3. Of course in full parton cascade all situations ocan be
realized that are intermediate between the two above, but
since the total parton multiplicity grows as a power with
energy (Nes 8% ), in any case such branch of the casoade
can be found, where the transverse momentum (1in qt) monoto-
nically increases or the branch where the parton gradually
shifts its position further and further from the centexr of
the initiesl hedron (the last branch i1s presented in fig. 1d
by sloping wave lines). For example, fig. 1d shows the two
steps of the diffusion (m = 2) when the initlal parton decays
in four gluons from whioh two inorease their 1ln q;‘ in avera-
ge, while from the two others with smaller q4 one shifts to
the right (Abt'v 1/qt) and another to the left further end
further from the disc centre bt = 0. Thus, the total multi=
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plicity of slow partons fnoreases and becomes go large that
the gluons within a unit of rapidity must begin to overlap

in spaoe of the thin disc which they oceupy. At the distan-~
ces bt = R = ay apart from the disc centre at least one part-
on &t x = a7 oan be found with the probability (W) of the
order ot the unity, but inside the disc (b,< ay) the partoen
always exists (with W 1) with the transverse momentum

q; = 9, (3, bt) that used the rapidity interval y = y - by /
/a +) for the inorease ln q,. Thus,

Q?, (3o by) = Qf, + A% exp(3.56 |y - b./a) (4)

In eq. (4) we substitute the value of the constant o = 1.78/7/
1n eq. (3) and the preasymptotic term Q, is added, that deter-
mines the initial virtuality. It is useful to introduce the
kinematical variables r = ln q, and y = 1n 1/x, which are
given in fig, 2. The golid line shows the equeation

9 = g9, (¥ bt) which 1s the condition that in the point

bt’ q; and y at least one gluon ocan be found with the proba~
bility W ~ 1. To the right of this ocurve in the region of
large q, S$»q, the probability to £ind a gluon or & quark is
small. In this region the parton distribution is calculated
by Lipatov-Altarelli-Parisi evolution equations, but the ini-
tial condition for the evolution equation should be the gluon
density along the boundary (4). However, in the ILA where

the emallness of ots is compensated by large 105% of the ener-
&y &, 1n 8e- 0(1) (£ C (&, In 1) ® the calculation of

the parton density along the boundary of eq. (4) has been
successful only for small x, while on the first vertical

part of the so0lid curve in fig. 2 we are to use some pheno~
menological initial structure function D(x, Qo). The parti-
ocular value of the funotion D is very essential for the cal-
culations in the region of large q2 and not small x (see

point 1 in fig. 2) and almost negligible for small x (see
point 2 in fig. 2), when the initial oondition for Lipatov-
Altarelli-Parisi equation is entirely determined by the parton

+)In the language ofthe reggeon field theory the time interval
7=1t-
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dengity on the boundary (4). To the left of the boundary (4)
the most of the slow partons are concentrated. Their number
rapidly grows Ne»3°®%  without the patron-patron inter-
action. This power-like inorease is closely related to the
1lagarithmically large probability to emit a gluon in the
parton casoade:

In space the variable log F corresponds to the logarith-
mical integration over the time of the coherent emission of
the gluon * 1 "% d'i -o(s aT/q. The total formation time
‘T 15 equal to Eilql (g = Eil qit) but the parton oan use
thle time , only if the parton-parton interaction is negli-
gible. Indeed, any oollisions that require a small time inter~
val A’l'irv 1/q.l:1 for example the one gluon exchange violates
the condition of the coherent emission changing the colour
and the momentum of the parent parton. Therefore, to the left
of the boundary (4), where the number of collision is very
large */ the LIA conditions are violated and, calculating
the gtruoture function in this region (region C in fig. 2)
we can restriot our ourselves by the lowest order diagrams
in & that is to calculate the simples two gluon exchange
betwaen the parton of interest (point 3 in fig. 2) and gluons
on the solid ocurve in fig. 2.

4. KNow let us write the equation /8/ that describes the be=
haviour of the total cross section from q and 1n x =

=y in IIA of QCD (in log x). Introduoing ¢>(q2, y) which is
the oross seotion of the gluon interaction under condition
that the transverse momentum of the fast gluon q% equals

to qz in the upper cell of the ladder, we can reproduce the
equation of ref, [8/ in the form

0 . fy X '
_'af. - (K@, 0 ¢ n == A, (0P aa?e

(6)

*) 0n the boundary (see eq. (4)) the probability of the
parton resoattering is of the order of the unit.
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4; (qz. y)eo D(qz. x=eavV) , x/q2 ~ (6)

N, = 3 is the number of oolours, and the factor & that is
introduced for the desoription of the effectivensss of the
gluon radietion, is equal to 1 for LLA

. QE $(q)
(-2 (q-a2(a2+(q-0a)2

(g, q7) P(q") =

(Bee ref. 8).
Por ‘the funotion 4>qu2(£ -1)

(B @ by (0" ag” 2 =X ) el

vwhers the eigenvalue ‘x(f) = 2¥(1) -q’(f) -Y(1-2) ana
Y(2) = a 1n [ (z)far, [(£) Lo the gamna function. The integ-
ral over g ‘18 oonvergent of values or | vaq and in the case
when¢m 1/ | q° the dominant in qy differs from 1n gy by
£ 1. Let us note that =1/ q® gives the fastest possible
_ increase of the total oross section 18] with energy
d>&(y)m exp(41n2 ¥, X , 3/F )+ To include the parton-
parton interactions im eq. (5), for the region to the right
of the solid ocurve in fig. 2, it is enough to take into
acoount the semienhanced " fan " diagrams of fig. 3a type.
The equation that sums to thege dlagrams looks like eq. (5)
with

E=1-&, P 3/, (7

ingtead of € = 1 asg f{n LLA. Such s modified equation gives

us the following answer. With the inorease of energy the

funotion ¢(q » J) exponentially grows (¢M 7% ‘ﬁ

up to ¢plq®, ) = ¢, = Const et q? = ¢2 (3) = @3 +A2

exp(3,56 ("y). For larger y the increase of ¢ slows down and

1%s value tends to the unita.rity 1imit that is th =
¢°/“ (g?) (b (P) +) , Now let ue generalize eq. (5),
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including b, and assuming (with a semiclassical acouracy)
that for each emission the probabllity for the parton to
change 1its position in b, should be desoribe by function
axp(- A Bt2 q 2 /4). The new equation has a form

0 (b ? ’y) ’ ‘ ’
¢Gt k& ‘fx(chq ) ¢(bt s Q¥
J

o (b=-1"3" N
e m ( ’2) [+] 2
s ' ) Ty T

e [1 & pb,a9)/ ] (a>Q,) (8)

dzbt' a%q .

As seen from eq.(8) ,4: monotonously increases with y going

to ¢ max (¢"¢m )o

In the disc centre (b = 0) the valus of <l> is 4’(0'%-3) =

= ¢, reached at q = q (¥). The maximal value in the peri-

phery should be for ¢ = ¢(b,Q +¥) since d'b f£alls down

with the rige of Qg o ¢(bt,Q°.y) = q>° for bt = ay, where
‘X.I‘OO(B(QO)

Q
at @2 = 2 Gev? ,

= 0,40 Gev ~t

Therefore from the perton view point the fast hadron is
nothing more than the almost black diso with R = ay. The
blackness inside the disc grows as a result of the inorease
of the parton density for large q,, since d’(b,q,y) is very
close to ¢max up to q; = g, (7,b;) (see eq. (41)). The
momentum Q4 ~q, gives the main contribution in the -pro-
cesges of the multiparticle production, since the inclueive
crosg seotion is equal to the following expression (see fig.4)

+) The right hand side of eq. (5) is positive and the funcw
tion ¢(q y) grows with y, but at ¢$4> ¢ changes its
sign, ?¢/ 9y becomes negative and $(q 2.:y) falls down,
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LT, 4T 2 /ﬂ aq2
an a9 q% qy e +<qtrﬂ)¢<qt0y2)“'. 4y &»
"‘P ) qo | ' (10)

The multiplioity N grows proportionally to the whole permite
ted phase space, namely Ne» qﬁ—- exp(2.52 (In 8). We would
like %o emphasize that eq. (8) allows us to caloulate the
struocture funotions with a good acocurapgythat is oontrolled
by a smallness of the QOD coupling oconstant ot. only in the
kinematiocal regions, where the parton density hees not been
large yet and the value of ¢ does not exceed 4:0 = oonst,
The above condition is satisfied either to the right of the
boundary q, >q°(y,bt) or at the disc edge b,>ay. For
Qg & 9,(Yysb) we have to use some hypothesis, but the uncer-
tainty arising here is not large, since ¢ becomes already
aqual to ¢, on the boundary gy = qo“"bt) and its further
inorease is restricted by the unitary oondition, namely

4)4 ¢ - c,p /& 4+ We can get this inequality using
Kanoheli-Mueller rules I13I » Nevertheless, we would like
to draw your attention that for the whole region to the left
of the boundary we need some model for 43 ¢ Our assumption
1sp = P, for q. & q,(y,b;)s The above pioture is in &
good agreement with the avialable experimental data. As was-
digoussed in ref. [14/ , the so called BEL-effect was obser=
ved experimentally for energies from (& = 50 GeV (ISR) to

(8 » 540 GeV (SppS-colider). The proton beoomes Blaoker,
ite Border Edgier, and its radius larger. In other words the
proton turns into the black diso with a suffioiently sharp
border, as eéxpected in our approach. Experimentally, dR/dy =
= & = 0.42 GeV"L in our pioture for Q2 = 2 GeV?, that was
extracted from the inoclusive production at Spps energy /7/ ,
aw= 0,40 gev-l o The contribution of pions, that can be emit-
ted rarely from the border of the disc, is in 10 times small-~
er. Of ocourse, this oontribution (e = 0,04 GeV) can not be
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oeloulated in the perturbative (OD but we can develop its own
perturbative theory for esuoh o omall ocorreotion taking into
acocount all rare peripheral pions, Thus, the enexrgy behaviour
of the total oross seotion is in agreement with the experiment,
As for multipartiole production, we olaim that ite main
source is the fragmentation of gluon minijets with QA Qe
The 9, value for the oentral rapidity region % = 0 is
q, ® 2.5 GeV ( (& = 540 GeV, 3pps), Qo = 445 GeV ( (€ = 6 TeV,
UNK), and q, = 7 GeV ( I8 = 40 TeV, 88C). Experimentally, the
oross seotion for the hadron jet with p, > 5 GeV is suffi-
olently large. About 405 of the events at & = 900 GaV con-
tain at least one jet with q, > 5 GeV for (7[< 3.,
The observed value for
dG_Jet qi = 5 GeV
a9dq, 7=0
6 = 940 QeV

u 0,4 : 0,15 mb/QGeV that 1is in & good agreement with the
predioted magnitude 4 Gj/dzd,qt = 0,55 mb/ GeV,

3, NULTIPARTICLE PRODUCTION

Let us briefly discuss the inclusive hadron cross sections.
Using eq. (4) for qo(y) and the formulae of the review/7/,
we have been able to desoribe the experimental data on
dG‘/qu and dG/d9 in the wide range of energies ( {8) from
50 to 900 GeV and the transverse momentum (qt) from 300 MeV
to 10 GeV, assuming that all secondary hadrons (even with
qq; ~ 300 MeV) originate from fragmentation of the gluon
Jets /15,1 /. The corresponding curves are given in fig. 5
/16/ o Pitting the obeerved date the two free parameters
(which cannot be fixed in LLA) have been extracted directly
from experiments. The value Q'g = 2 GeV? determines the ini-
tial virtuality of the parton, the scale of the oross seo=-
tion C'ool/Qg and, simultaneously, the increase of the total
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oross neotion with energy (the faotor " a " in R = ay,

Gy =2 T R2) and for the inolusive one, 4 G (a)/ay , pre-
scnted in fig. 5. The seoond parameter A , sete the scale
on q4 axis and the value of the ooupling oconstant s =
« 49/b 1n q?/ A%. The obtained value A = 52 MeV is in
agreement with the value of o ., Observed in ref, 17/, name-
1y, &, = 0.16 % 0.01 at q° = ®22.5 Gev2.

It 15 interesting that the mean transverse momentum for
the inelestio event inoreases with the multipliocity N/le/.
Indeed, the inorease of N can be reached either 1) as the
rasult of a more frequent radiation of gluons, i.,e, the in-~
oreage in the numbexr of the diffusion step " m " in the rapi-
dity interval y. Since £ 1ln qt) e> m, thies mechanism di-
rectly leads to the lerge iransverse momentum, or 1ii) due
to oreation of several branches of the ocasocades that can be
desoribed by diagrams responsible for the exchanges by many
reggeons in the reggeon diagram technique (see fig., 6).
However, in these diagrams the additional logarithmicel in-
tegration over the transverse reggeon (ladder) momenta Q1
arise generating each its own diffusion in log Qit. Sinoce
momentum Qi plays the rvle of the initial virtuality Qo for
its own ladder, the mean 94 becomes larger when the number
" n " of the ladders increases /% / (see fige 7). The multi-
plicity distribution also can be desecribed fn our approach
in agreement with the experimental data/l / (gee fig. 8),
but we are to introduce one more parameter g = 0,37, that
characterizes the probability to create additional branohes
of the cascade Pnewvgn. It is important .to note that the
values of all three parameters turn out to be very reagon-
able, natural and coinciding to 20-30% acouracy with the esti-
mations from the calouletions of the lowest order diagrams in
perturbative QCD. It turns out that our regults are very
close tc the quark-gluon plasmea (QCP) approach, although
all our caloulations were sufficiently apart from the thermo-
dynamical ones. The energy densgity in the unit volume
rapidly increages. evaqo/ <, e 8xp(3.8 [1n 8) reaches the
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value 3 GeV/fm> at SpPS energy ( {8 = 0,54 TeV) and 17 GeV/.
/fm3 at the UNK-energy ( 8 = 6 TeV) hé/. The effective
temperature or the mean kinetic energy.of the gluon tends

to be the large value about 1.5=2 GeV for (85 = 6 TeV.

At that high temperature the production of heavy hadrons as
charmed, strange, beauty, and gso on, rises, asnd because

of the parton collisiona with qy & q, 8 kind of the equili-
brium distribution in the transverse space 15 organized.

But the system as a whole is quite far from the equilibrium.
Firstly, the partioles with Q4 > q, has a too small oroes
seotion and oan freely come out of the syastem, oreating the
hadron gsets with the power-like tails of the momentum oontri-
butions dO‘/qunq;“’ at q, 5> 9, Thus, such a jet emission
is the permanent source of the evaporation processes in our
system which is opened. Secondly, we have not reason for

the equilibrium in the longitudinal momentum because of the
lack of time in the hadron collision. Our pioture leads to
large fluotuations in the multiplicity or the number of the
ladders " n ", and in the transverse momentum because of

the diffusion in 1n Qye Thus, the event that we are going

to interprete as the plasma production can be only a large
fluctuation in the typical hadronic multipartiole production.
Even the inorease in the mean <qt7 versus the multiplici-
ty that was considered frequently as the indication for the
production of the plasma in our approach gets very natural
explanation (see fig. 8) 16/,

4., CONCLUSION

In oonclusion we would like to emphagize that we are
understanding now quite well principle properties of the dy=-
namics at high energy hadron interaction, We have explained
the main features of the multiparticle productions and elu-
cidated the reason for the energy increase of the total orocss
geotions direotly from QCD Lagrangian, using the perturba-
tive theory. We also have demonstrated in esimple model with
only three paremeters, how all available experimental date
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can be degoribed in our approach. +)

For smell q.4< 4, (by»y) the logarithmically large correct-
ions are absent and the value of the total oross section
for {8 = 20 GeV can be reproduced by the two gluon exchan-
ge 19 s 8nd the observed inorease of the total oross sece
tion with energy is provided by the parameter Qo' that deter-
mines also the scale of the inclusive multiparticle produc-
tion.

Kow let us digouss the value of the parameter Q « As dig-
cugged, we have extracted Q 2 1.4 GeV from experlments,
and this value seems unnatural for many our colleagues /20, 21/
Indeed, formally speeking, Q° is the transverse momentum' of
the " reggeon " (ladder) in the semienhanced diegram in fig.
3 o+ It looks natural that such momentum should be cut off
by the hadronic electromagnetic radius and equal to 400 MeV.
£ cour.e, 1t is correct for the diagram of fig. 9, where
the two ladders are influenoced by two different valence
quarks in e hadron, The contribution of a such dimgram is
proportional to I, = (ng - n'q) Qﬁ’dfa ni / <r§> s Where
n_ is the number of quarks, eand r_ is the proton radius,
However if the both ladders interact with the single valenco
quark, as shown in {ig. 9b, the corresponding Q° is closely
rélated to the size (5 ) of the constituent quark, namely
I,=n Qo bz =n /¢r5> . Although the number of the dia-
grams of fig. 9 type in (nq = 1) times smaller than the
number of fig. Y9a graphs, the contribution of such diacrams
can be large becaugse of the loarge value Q ,b° The most im-
portant contribution comes from enchanced diagrams of fig.
3b type (see’ fig. 9¢), from which vwe have started the dis-
cugssion o the screening corrections

+) In any oase up to now we have not faced the certain obser-
ved quantity, that is in contradiction with the discussed
approach. Even the Ey distributions for hadron nucleus
collisions can be described without new parameters /18/.



These graphs also have large Qﬁ. One more argument for the
large velue of Q, (Qo = 1-2.GeV) comes from the small radius
of the triple pomeron vertex, r3p ~ 1/l GeV, as observed
experimentally. In our approach r3 = 2/Q° and, ag disoussed
above, Q, = le4 GeV allows us to desoribe the inclusive
orosa seotion of the diffraotion dissociation pp —p + X
in the triple reggeon region. Of course, strictly apeeking,
we cannot disouss the value of Q, in LLA. The only thing
that we must do is to verify whether we ocould describe the
large body of the experimental data with the same value of
Qe Up to now we have been lucky in this business. We would
like to claim that we do not know any experiment, which
would contradict our approaoh (with Q, = 1.4 GeV) and have
no theoretiocal or phenomenological arguments ageinst the
large value of Qo « For this reagon, we believe, that our
approach can be a good guide for the understanding of high
energy physios at new generation of the accelerators. It
oan be used for simulation of the multiparticle production
at higher energies, including SSC energy ( [@ = 40 GeV) and
for estimation of the background from typical inelastic
production for rare event for production of heavy fermions,
Higgs bosons, and other exotics. All these typical processes,
that have been discussed as soft ones before, should be con=-
sidered as semihard now, since the typical transverse momen-
tum of the gluon sets in the central rapidity region (9 = 0),
reaches a large value about q; = 7 GeV, at (8§ = 40 TeV,

To our opinion during the last few years the situation
in high energy physics has been essentially elucidated -and
now we have sufficiently transparent and selfoonsistent
picture for the high energy interactions. This is a good
starting point for the full understanding of “he problem.
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CORRELATION PHENQMZENA Il PARTICLL PRIDCCTIINE
IN NUCLEI
B.B.Levchenko
Nucleer Physics Institute,loscow ! tcte University

Moscow USC

The necesscry condition for creetion of the (GP in
the nuclear collisions 1s & high density of metter ex-
ceeding certein criticel density. This density cun bte
eveluated one knows the dimensiona of the pcrticle produc-
tion region. These dimensions cun be inferred from messu-
rements of the identicetl pcrticle correlutions [I} fieme=

ly, one has to meusure the correl:tion function

C(T)'I, B) = P, B / (PG"I)'P@"J) (@
where P(®[,...y §) 1e the prooubility of observing the
perticles I)‘I through 'p'n £l1l in the stme event. The ctl-
culetions (I) showed that for uncorrelited sources - of

perticlea EI and 32

PPy =1+ e'ﬂ/(uqtt‘), (2)

where q = py= Py G =6~ €,, D - (¢, ), L is lineer di-
mention of the perticle production region, T is the 1ife
time of the source.

Jn the other side, for mtny yetrs in psrticles physics
on hes studed the two prrticle correlction function

Rz‘d| ,dg) = é-:;-:'(z—;ll -1 ( 3 )
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vhere ({) =q:—dé°‘1, (ﬁ'@-‘-é_‘;&%ﬁat y of = (‘I‘l 1Yy Xy _3,---).

In Figes w~o rraeseat , for axsampie, Rz(yt Tor charge

sarticgles pruduced Ln nuciesne-nucleon (NN), nucleon=-nuc-

irom defintians (1) ard (3) it Soliows thet the two
ecrraiaticon functiins are practically the same funcbion.
Theratore, if cne could compute R‘ for NN, NB, AB inte-
ractions in the framework of same mu.«:production .model',‘
then the function (2)or its like would allow one ts deter=
ring +he zeriicie saurcs size end its A-depandence. More=
over, in the Giauber type models cne can relate to each

sthap Ry for all the three types of collisiuns and rela-

L)
t3 the partl!clis scurce sizes Rz(‘jn‘p ‘\ /,
% \
in NN, NB end AB ccllisions. o\ My
.“ ’
Using the Glsuber multi- 5 NB ™Y /7
. ™ \-"

scattering model the Pocllewing

squation reiatss the correie-

NB N / k)
ien funeticn F,° end Ry . NN N

fer the preluction on nuclel

and nuecleons sy be DbtainedLZJ:
Mg, I

2
N oo oy VR ~GVY 4 oWV =
N2 (Pofe)= <vy2 A7) Ry (PoP): (o)
Here V stand for the number of inelastic coliisions of
the incident fast nucleon with the nucleons cf the nucleus
(the nuzber of wounded nucisens) .

Now we calculate the function Ega following the



method (2] and using the multiple-scattering formelism {3)
used for the calculation different kinds of the cross-sec-
tions in fremework of the optical approximation to the
Glauber model.

In Pig.2 we presant multiscatering diagrem an AR
interaction. Let us cell {1} g "a'"p (vil (4 = 1oveyny)
the probability that n, (ng) nucleons of A(B) are wounded
end the i<th nuclecn of A colllides

with \)‘1‘ of these nucleons of B,
Then the single particle inclusive '"

spectrun (see Fig.2) is . ......v‘
) N"
N --1;.% é%ﬂ‘ ), EE E‘
Fige 2

here

&™) T, Bl eu.mf“’

and éNB(b) is the nucleon~nucleus B profile functicn,
given by

Gyglt) = '(1 -(@-61,,00)F)

.Using eq. (6) from eq.(5) can ba cbtaned

<ngV> - AB6 /G ,8
The two perticle inclusive spectrum ee it following frem

Fig. 2, is

(Ws=g, Li5 Z d “""“{d‘w‘-i)u),(z),; W42,

®ret nget Uiy
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# VY U2l J=Led smyinctiid + <oy R3], ()

Integrating the eq.(%) and (7) over the izpact parameter
b we obtain

RAB » 41y g WV -grd? sangv®> L B (g
<nyvy” <n V>

The equaticns (4) end (8) ¢nable une to ccnnect the funes

tions RQB and Rga. *n ordar to 3¢ sy we use the lact
that eq.(6) for & n,V  factorizes az a function of
veriables n, gand V end tharefore

kvl = afyeyly

It resulta in

RSB - ﬁ(nA' I,'ViV2s "((nA" I)V)(n‘,;\,) ’ }:2'-5 (9)
&npvd© n
Equations (2),(4) , (8) end (9) enable cne to re-
jate the linesr dimentions of the particle sourse in the

three type reactions}

o
N saRy, + 2, (1)
£n,> Lngwd

where )\ = 1/(1 + qgt 2) and AR s the first terms
on the right side of eq. (8) = (9) correspcrd to tha long
range piece of the corrslation function.

Using the same method one cen obtain the relations bet-
twen the Wroblewski's retion D/ N> for the pariicle multi=~.
plicity in AB, NB and NN collisions.
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So

2 2 2

D I[D e | D

e = AR A et = AR e _ﬂ II
QN)AB NB " ¢n Nb ng O NN <pxp)(N w o )

In conclusion one must note that relations (5) and (7)
correspond to an asymptotical energy and at present énergy
must teke into account the energy-momentym corrections. Yet
in the relationship (3)the major part of the finit energy
corrections are cancelled,

More consistent calgculations of the correlation fuctions
(4) should rely upon models wich do explicitly incorporate
energy-momentum conservation. The principal conclusions on
the A-dependence of R, are preserved, though the counter-
parts of simple end self-explanatory formulas (IO) are

fairly complicated ones.

I would like to thank the Institute of Physics
Slovak Acedemy of Sciences for hospitality during the con=
ference and Prof. J.PiBut and §.0lejnik. I thanks to
N.N.Nikoleav for discussions.
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PARTICLE PRODUCTION IN ULTRARELATIVISTIC PROTON-PROTON
AND PROTON-NUCLEUS COLLISIONS IN A PARTON-STRING MODEL

M, Kutschera
Institute of Nuclear Physics
ul. Radzikowskiego 152
31-342 Krakéw, Poland

Introduction

A successful detection of a quark-gluon plasma phase in
ultrarelativistic heavy ilon collisions will require an answer
Lo the question how different is the normal production of
particles from the production resulting from a collective
behaviour of the plasnia phase. Our aim here is to present a
model of normal production of particles in pp and pA
collisions, which is a first step in this direction. Since in
the area of soft processes QD does not yet provide
quantitative predictions, one has to rely on phenomenological
models, which are compatible with QCD, and implement as many
measured quantities as possible. '

In my talk I shall discuss a modeli'a'3>.

which was
developed by K. Werner, J. Hufner, O. Nachtmann and myself in
Heidelberg. The model is a specific realization of the parton
model ideas, and is most closely related to the Dual Parton
Model of Capella et al. 4

on the Monte-Carlo wversion of the model with the aim to

Presently K. Werner at BNL‘ is working

construct an event generator for ultrarelativistic heavy 1ion
reactions, which would fully account for the normal production
of particles.

The physical picture of a pA collision is as follows: When
the projectile proton traverses the nucleus, one or more
collislons with target nucleons take place. These collisions
are assumed to proceed by a c¢olour exchange between quarks,
antiquarks and gluons of the projectile and the appropriate
partons of the target nucleon. Alternatively, one can view this
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process as stripping quarks, antiquarks and gluons off the
proJoculoa). As a result, a number of colour strings are
produced, which later on hadronize into observed particles. The
dynamics of soft collisions cannot at the moment be calculated
from QCD. Instead, for daescription of inclusive hadron-hadron
colllsions' we shall employ the parton distribution functions in
nucleons and the fragmentation functions of the colour strings,
as measured in ep, up, vp and e*e-. reactions. An essential
assumption is that these functions are somehow universal, {.e.

can be measured in lepton scattering off nucleons.

Proton-proton scattering

When colour is exchanged between projectile and target
protons, Fig. 1, the space-time structure of colour singlets is
changed. Now the singlet is formed by partons moving in
opposite directions, In Fig.1 there are two such states after
the collision takes i:lace. These are the colour strings, which,
as virtual objects, have to decay into hadrons. Leading
particles in this case are products of hadronization of a-
diquark Cby diquark we always mean a remnant, N-q, after
removing & parton q from the nucleon). ¥We sometimes refer to
this process as quark removal., The diagram a of Fig.1 |is
supposed to be mainly responsible for the inelastic production
at small x. The other basic process, giving the diffractive
peak in pp scattering, is the removal of a colour-neutral qa
pair from the projectile. In principle the quark can be a
valence quark or a sea quark, and the remaining three quark'
system CB=1) can be excited. In Fig.1 and Fig.3 the arrows
indicate the colour exchange.

Longitudinal momentum distributions of hadrons h produced
in a pp collision, fpth,p.r). are measured as inclusive cross
saections for given value of Py

d3 app-ohx 1

2 P
dx d Pr °fn

fph(x.p.r') = x 1>
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wvhere x is the momentum fraction of the observed haﬁ_roh h
reia!.!.ve to the projectile momentum Ppr X = P, Po- The
functions fph(x.p.r) contain the dynamlcs of the process.

To calculate longitudinal momentum distributions for
various hadrons we evaluate the diagrams schematically shown :i.n
Fig.1. To do so for hadrons h originating from the proton
remnant. N-q, we have to specify both the momentum distribution
of this remnant, pqux). and the function quCz). describing
the distribution of momenta of hadrons h, which were produced
by fragmentation of the remnant N-q ¢ = qq). The contribution
of diagram a of Fig.1 is then:

r"h

Cx,pp = x_['-— pquy) quc y . 'r’ . (&=»)

As the diquark distribution function, pqq(z). we take the
measured quark distribution function, qCz), calculated at the
complementary momentum 1-~z: pqq(z) = qC1-zd). In the actual
computations we take care of flavours, which we suppress here
for simplicity of notation. Similarly, to evaluate the diagram
b of Fig.1, we need the momentum distribution of the remnant
N-qa = qqq Ca triquark), for which we take a convolution of
measured quark and antiquark structure functions at 1-z:
Paqqt® = qeqC1-2d.

Ve take fragmentation functions of the projectile remnants
into observed hadrons, if only possible, from measurements in

lepton—-nucleon scattering. The diquark fragmentation functions,
Dh
qq
such measurements are available for the triquark fragmentation
function D' . We choose this function somewhat arbitrarily to
h cz) = & pé(i-z) By this choice we do not allow for

be D
excitation of the projectile proton by the qq pair removal.

» are well measured for various final hadronsa). whereas no

q99q

This also means that the diagram b of Fig.i gives a
contribution to tph(x.p.r) only when the observed hadron is the
same as the projectile, which reads

ph = dy . _ h
fb Cx.p.r) x T qeqcl y)quq( y *Pr > . (&< >

125



10°2

126

p,=0.75 GeV/c

0.7 0.4 06 0.8

X

1.0

Fig.1 Two basic processes
of the model: quark remo-
val Cad and quark -~
antiquark pair removal
Cbd. NP is the projectile

nucleon, NT is the target

nucleon.

Fig.2 The longitudinal
momentum distribution of
protons in a pp collision
for different values of
Py » data ref.8. For large

Py the two contrlbutlons:

q-removal, Fig.la, and qq
pair removal, Fig.1lb, are
clearly distinguishable.



In cases, when the detected hadron h is not the same as the
projectile, only the diagram a of Fig.1 contributes, as we have
neglected excitation of the triquark in Fig.ib. When the
detected and incident hadrons are identical, both
contributions, eqs. (2 and C3), are present.

Ve have Ldonutladn the qa-pair removal with the
diffractive target excitation. This contribution gives a peak
at x » 1, as it is proportional to qeqC1-»>, which in this
limit varies as 1/C1-39., To account quantitatively for the
diffractive events we have to weight appropriately the two
contributions, !'Eh and ‘.gh :

'fPth.pT) - c1-~orfh + wrgh . 4

Parameter w can be identified with the ratio of the diffractive
production cross section to the total inelastic pp cross
section: w = a':lp/vr’; . Data from ref‘s> show, that w = 0.2 for
pp and w = 0.15 for n'p.

Fig.2 shows the inclusive cross section for the reaction
pp+pX. The data points are from refC’ at 100 GeV. In refl> the
detailed description of the structure and fragmentaticn
functions |used, |is give'n. One can alse find there the
discussion of the transverse momentum dependence of the
inclusive cross section. Our model agrees with the data
reasonably well.

Proton~nucleus collisions

To generalize the above ideas ta the c;.ase of PpA
scattering, we consider first the second collision. In the Dual
Parton Model of Capella et al.“. the leading dlqi:ark. which is
formed in the first collision, does not change ite nature in
subsequent collisions. This corresponds, in the language of
Fig.1b, to qa-pair stripping off the leading diquark in the
second, third, -et.c..-.. » collisions. We have developed an
alternative view in re!‘aD. namely we have considered stripping
of a quark also in the second collision. We thus allow for

diquark breaking. It was showna> that inclusive pion spectra

127



from measurement by Barton et -.1.”or proton-nucleus collisions
suggest that this really happens. We have used the
characteristic difference between fragmentation functions of
diquark and quark into pions to 1do}1u.fy the leading parton
after two collisions,

Typical diagrams for two inelastic collisions are shown in
Fig.3. We allow for stripping a quark off the projectile with
probability 1-w, and a qt-;-pair with probability w. Fig.3c shows
the double stripping of quarks, what produces the single
leading quark after two collisions. For higher number of
collisions, v 2 3, we will limit ourselves to the two basic
processes mentioned above, with the restriction. that the
leading parton cannot be in a zero- or negative baryon number
state. .

Longitudinal momentum distributions of hadrons h
originating from the leading parton vaﬂ.or exactly v collisions,
fEth.pTJ. is thus given by a formula:

ph = <md X Cm h x
£ Cxpp m§1A" J'dy 5 P Cyd qu::—y P e (4>

where Af’m) is the probability for the projectile remnant to

contain m valence quarks, p:"pcw is the momentum distribution

function of the leading projectile remnant, and Dh

quz) is its
fragmentation function into hadrons h. Formula (85) says, that
this leading object contains at least one valence quark. The
fragmentation functions of a quark and diquark are taken from
measurements ' of the lepton-induced reactions. For triquark
fragmentation we use the function described above. The remnant
momentum distributions, pim. are calculated as suitable
many-fold convolutions of quark and antiquark structure
functions. ’ ‘

The inclusive cross section to observe hadron h’ as a
product of the collision of hadron h with the nucleus A is

»
exprassed by functions f‘::h according to the fermula:
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1)

b)

No
v
: .

Fig.3 The interaction of the projectile nucleon NP with two

target nucleons. Cad: the removal of two qq pairs, Cb): the
removal of one qq pair and one quark, C¢): double quark
stripping.
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e =g M M ey )
dx d Pt vzl

where o:A are the geometrical cross sections for exactly v

inelastic collisions of hadron h on nucleus A, These are
calculated using the Glauber formula:

hA 2 ~TehY 1
o, -fdbr“Cb>e —T - o)

The thickness function
Tcbd = oM faz ntb, 2> )

is calculated using the inelastic hadron-nucleon cross section
a‘:: and the nuclear matter density nCrl) of the target nucleus
Cmerdd3r = A,
Results and discussion

Fig.4 shows the results of our calculations of the
absolute values of the inclusive cross Sections for the
reaction pA + hX, where h = p.nt. The data are from Barton et
al.-"J at 100 GeV. For protons the data stop at a too low x to
see the peak near x=1, which 1is present in Fig.2. The n*
spectra exhibit a peculiar behaviour: for X -+ 1 the crossA
section for pp -+ n+x drops faster than that for piac - n*’x.
This cannot be explained by the energy loss of the projectile
proton, since the energy loss is larger in a collision on
carbon nucleus. and from such an argument one would expect the
cross section to drop faster for piac than for pp. The
qualitative agreement of our calculation with the data is due
to quark fragmentation in the case of piac collision. The quark
fragmentation into a* produces a harder Spectrum than that of
the diquark. For pp collision the fragmenting leading parton is
a ciiquark. while in piac collision we also have a leading
quark, producing harder pions.

4.9

As many other authors we have treated quarks and gluons
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very differently. Colour exchange in our model occurs only
between quarks, while the gluons are treated as spectators. The
gluon contribution is accounted for partially by employing the
measured fragmentation functions. To estimate the influence of
including the dynamical gluons, we have calculated a diagram
corresponding to the Fig.la, i.e. the gluon romva].a). In case
of gluon removal the leading parton is a triquark in a
colour-octet state. Making the same assumption for |its
fragmentation function as for the colour-neutral triquark, and
using the gluon structure function of rel‘.gD. we find the
inclusive pp scattering with single quark and gluon removal to
be qualitatively similar to., the case of q " and qa-pair
removalaD. Discrepancies between the predictions and the data
in this case are probably due to our oversimplified assumptions
about. fragmentation of triquark.

The author is gratefui to K. Verner, J. Hiufner and O.
Nachtmann for creating an 4eﬁjoyable and stimulating atmosphere
during our work in Heidelberg. He would also like to thank the
organizers of the Smolenice conference for invitation and warm )

hospitality and Wojciech Broniowski for reading the manuscript.
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NUSLEAR STRUCTURZE PUNCTICHNS AND CTUNULATIVE
PROJESS3S

Zfremov A.V. - JINR, Dutna
Atgtract

The author's poirt of view on nuclear quark structure 's preser-
tad, Differert models for explairing the ENC effect are reviewed, Tt
ig aleo shown that cuculative production dats car te used to improve
sur understanding of the EMJ effect ard to give evidence for ita mul-
tiquark rature.

Jdiscovery of the 3M:-effectl1/ has drawn attention of the world-
-wide community of physicists to the problem of quark structure of
nuclei, and to its irre’ .citility to the quark structure of consti-
tuent nucleons enly/2 . Stream of theoretical papers followed the die~
covery of EMC auggestiqg a whole spectrum of possibilities for under-
standing the phenomena’’’/, However, many of the suggestions met with
difficulties after 8 change of experimental data on Fa /Fg in the
region of esmall X ALk . Jowadays, when all suggestions seem to te
made, one can try to aralyre them on a gerieral basise and to estimate
to what extent the nuclear quark structure is understood end what is
still unclear.

1. COXMECTION CF NUCLZUS AND WUCLEAR QUARK STRUCTURE

Probadbly G.,¥est first noticed that QCD evolution equations re-
sults ir a simple convolution relazion of nonsinglet quark distribu-
tion functiors (thekvalence quarkse ) of nucleus and nucleon‘

- \ NS ;X 2 ,
x P> V@)= YTV (2,8%)d < (1)
X
where the function T‘:skd) gatisfies the taryo: nurber sum
rule



A

5 T ydw - L (10)
(all nuclear funotion are here divided ty A). Due to this, one car
oorsider T NE an an effective valonce rucleon's distridution
rurctior sver a frection of rormerts o irspite of the impossibility
of exprecsing it through the orne-nucleon wave furotisn, The probhm
ts as followes does it describe a pricess that "eﬂm» the dis pritu-
tion T (esrs the strippire of 8 nucleut )?

A airilar relatior car te writter for the pirslet choprel us

w011/7 8/ which mixes the einglet quark,Z (')t E-M?fum)"r;t’:" )k
ard gluon distnbutiou functions

S0, 6) = )Ta‘u)z., (£,0%)d
L}

(2a)
s ,

Gatx @)= .ST; w) Gy (F,8°)da (2v)
wrers, in gerersl, Tj'# T”s and 'T. satinfies
the energy~mocertum sum rule

r. s
' Ta ) dod = MaJAM, =4 (2¢)
4

Really, diagonelizing the systes of tws linear evolution equa-
tions for the momants Z ( n,Q%) end G(A-,G") , One car. ottain
the relation for two oigenfunctionu ‘f (n,0')rZn u‘)os.(d;m )6 (n, Q)
( Cu are some diagonslizing coefficients deperding on anotalouse
«di{mersion matrix);

+ *
£20m@)=Ta ) 4y (n6%) ()

Wow, let us take into account the fact that toth nuclesrs and
rucleus are tound states of querxs end glusns, Due to thie querk
(ard pluon) propagator ¢ P|ﬁ(o)q\‘5)|P> gust satiafy o
honoganeoun Bathe~Salpeter equation (Pig.1) whose elgervalues deter-
rire the effect!ve mess (the tinding ererry) 5f the quarks. The quark
cdistritution functior 1is expressed throurh the lim:it of this propavetor
wher §— 0, resulerized with the help of an ultraviolet cutsff pa-
rareter Q‘l o ir. the approximation of lesgding twist, i.e, disresars
ding -:L/Qz corrections, the equation of Pig,1 tecome algebraic:
there is no Qz dependence and, consequently, the mass- independent
coefficients are the same for the nucleus and nucleon


http://valor.ee

(0, Q) = Kgg(mIZ @)+ Kg(n) &(n, %)
Far thip reanon,

Z.tmﬁz)_) - Z(ﬂ;({;). ::(1 k,.f)-’(‘]n(n)ﬁ
A

K b ohe) wn 4l Y
L -, 2
ad IA = ]A = ]} s which ysive, torether with (3) rela-
L

An irned.ate confequence of relat.ons (<) 1a the equality of
averape roaconta fractions of pluons and quarka nnd antiquarka irn the
nueleun and ruclesn

=

- - 4)
PR TN ¢

This relation fo in y00d agreemert with BSDM3/4/ data which are the
ront precipe rowacayst ('J?,h/(x >~ 1 Y = (0,731,721,0)7%,
(The =14 Bl -dats 1/ #ive for the quartity (7,121,023,0)5),

The relation (4) clearly contradicts the resecalir: rypcthenis
/1 ir explaration of the ZM. -effect, Ir fact, the passuyse fron
ruclean to rucleus in these models i{n equivalent to the growth of

@? for which, according to .~ , XX gy increaped o ~Nesduire-
aLrs,

In conclugisn of this section let us Btress once more thalCD
evilution equati-na just as relation (3) are resulto of the leading
twigt wpproziration, So, the relations (1) and (2) do not {nclude the
ruclear serecrnir, which io formally 8 high-twist effcct/1o'11/.

v ot vl v
2, THE B eRrRElT

Let ug see now what the ENl-effect mearse in the frawe of our
approact. let us agsure that thre functiors | 5 deternine a: effec-
tive distritution of nucleons in nucleus, at least approximately,
and therefore they ere mostly corcertrated ir. the region of ol -1
(i,e. in the resion of zero internal momentum of the nucleor ). Expan-

ing F/V (5/\ ‘ir (1) ard (2) around « =1, it is easy tu obttain
for rot very large X



/
ﬁ<1‘> <(\"‘)-T;>x Fy 2'<(| *3-‘;) <XJ*2 ) ” (5)

whoro 4 > means 1ntegration over irterval [o A] + If one

accept that Fp~v (1= X)* ara w23 , then X - depen=
dences of the second and the third term sre the factors

=KX /(L-X) and KX(i-%) [(K-t)x [-»x) =2 ] respectively.
In the region of X = 0,5 the second term is cloge to zero and to
obtain the depletion in the region one should have

A
{Ta>-424,%0 or So(’rf(u)-sz(-t))do(=AA>o ®)

for the ratio Rl of the structure funetions F,_ > Z and

A .
L-4Ti%=%50 o {u(Ti o) oe=B0>0
(1)

for the ratio R; of the structure functions of X F; * .

In addition, in the region X 7~ 0,5 the sea quaerks are
practically abeent:s therefore one can expect that and

%A’-’-' Aa  (more exactly 2/3 LY (8)

The relations (2) ard (7), mean thet the number of "effective
nucleons" in a nucleus have to be more than A , and valence nucleons
have to carry only a part of the total nucleus momentum. In other .
words, there is a repumping over of part of momentum from valence quarks
to sea quarks, in the nucleus in comparison with free nucleons.

Notice that the shock produced by the discovery EMC was due to
the prejudice that a nucleus is made of A nucleons and so the condi-
tion A4 = O has to be imposed on the distribution 1 , which
unavoidably results in RL(_X! O0.§)=41 , independent of the
form of T, In this sense, the difference between Ts and T”s
(necessary to explein the EMC-effect) leads to the irreducibility of
nuclesr quark structure to the quark structure of free nucleons,

*por a more accurate proof of thig result aee/sl.
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In spite of its generality, this approach sllowas to draw a num-
ber of interesting conolusionas
1) It 1med:lately fonown trom (6) that the ratio

R (x O) = STA(d)dd = |+ AA 7 4 (9)
i1) The most accurate measurement of BoDKS/*/ ghows & emall ( = 5%)
but definite excese of the ratio over 1 in the region of small,
i,e. the same value as the lose of momentaof the valence nucleons
t'oA « This means a small number of perticles of the nonnucleon com=~
ponent, However, they have to be heavy enough to supply the 5% pumping
over of the momentum ( §’ -zesons, NN-pairs or pions far off the mass
shell). So, in addition to the internucleon sea there is a small
( = AA ), but hard enough "collective Bea™ of quark-antiquark pairs
in nuclei.

Ueing (1) and (2) it is esey to obtain for the eea

000824V, = S T 00, (3)elu *f(TAmTA ()M~ (10)

vwhere the first tem comes from the internucleon sea, which rapidly
decreases with increasing X , ard the second term comes from the
hard collective BSea OA' » beceuse ite center of gravity is

Lor = TETADLTTADS = Balba= o
For pions on tbe mass shell this number is "™« /MM x 4/7 « That
is the reason why the pumping over into the pions 2 gives no satis~
factory description of new data in the region of emall X (too many
pions sre needed to supply the 5% pumping over),
1i1) The place of intersection R(Xg)z 1 does not depend on the
sort of nuoleus and is at X, * 0.3, Really, if there are no scree-
ning and light particles in nuclei, Ti’ (%) has to be smooth enough
in 'the region of small ™o . Using then the first two terms of (5)
it s easy to find

(i g 'T (.e)oh / g’x’o\":(u)olu)-.i

The ratio of integrale in the right-hand side is in the interval
[0.X,] and thus 0.28 <X, < 1/3. This feature of the ratio
seens confirmed experimentally.

Now, what atout the proposed modele? Different models are in fact
different suggestions of the pumping over mechaniems. Not all of them
seem satisfactory from-our viewpoint, We have mentioned the resceling
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models,9, where part of the pumping-over comes into gluon component,
However, the main draw back of these models is the esoftness of the
gluon and the sea component in nucleon., This leads to a too big
value of R, (x=0)  after the 5% pumping over. (Although the aut-
hors deny the applicability of ther model to the region of small X ),
As 1t was noticed, models with pumping-over of moments into the mass
shell piona 12 have the same disadvantage,

Other models can te divided into three big cathegories:

i) Models with pumping OVer of the momentum either into massive
meaon component ( .P s off the mass-shell pions) or into
nucleon-antinucleon pairale/. A component like that is probably rela-
ted to the core of nuclear force at small distances, However,it is
hard to believe that the nucleon can conserve at such small distances
its individual quark structure without converting it into multiquark
states;

ii) Pumping inside each nucleon/14/ y 1.8, change of its quark
structure due to the influence of the internuclear field, Transition
of part of nucleons into A -1sobars,15/ aleo belongs to this class,
We do not see, however, how it is possible to obtain the hard sea here.

i1i) Pumping over inside a multiquark-rluctuation/16l. By this we
mear not only a bound state of two or more nucleons with interaction
of their quarks, as proposed in 10 » Or an exchange quark interaction
in the final state considered in’) ,. That kind of interactions is
inevitable in any theory with a composite nucleon. However, the cal-
culation of the quark structure of states like that seems ap diffi-
cult as the calculation of the quark structure of nucleus.

It is necessary to stress the important difference between a
multiquark state and few-nucleon correlation (PNC)"B/. The losses of
momenta of the valence quarks for the latter are the same as averaged
over the nucleus, AFNC. = AA , due to a change of structure of each
nucleon, Por the multiquark, however, it has to be much larger

A5?>AA (12)

e.g, if there is no pumping-over ineide the nucleons, then AA PA;
where P is a8 probability of multiquark states. In fact, the rela-
tion (12) can be considered as a definition of the multiquark state.
A statistical reslization of the hard antiquark sea is known (see
Kondratyuk paper/16/ ).

It seems that structure~function measurements cannot distinguish
between theese models, So, new sources of information are necessary,
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One of them is deep-inelastic scattaing with measurement of hadrons
in & final state. Production of { - and A -resonances and also

K~ <mesons and antiprotons which carry the information atout the
collective sea is especially interesting for evident reasons. The
publighsd data of the EMC-collaboration give avidence in favour of
the enlarged yield of antiprotons from the deuterium in comparison
with the hydrogen 19 « They also give an argument in favour of an
enlarged content of Nﬁ:pairs in nuclei/® + However, the excess of
antiprotons is so large that aeems improbable., In the region of

X~ 0,025 it is about 100%. (It is a new discovery if it is not
an error!) Except that, the data on cumulative produotion of anti-
protonas, as we see below, give no evidence in faveur of this expla-
nation of the EMC-effect.

3, CUMULATIVE PARTICLES PRODUCTION

Another source of information is cumulative particle production.
Especially, the production of ¥ -meson and antiprotons on nuclei in
the region X 32 1 ’ becagae of the peculiarity of the nuclear quark
structure mentioned before .,

However, a question arises: to what extent is the cumulative
production cross section determined by the nuclesr structure functions

Fﬂ\(ﬁ) ? Until now there have been no quite reliable data for nucle-
ar deep-inelastic scattering in the region X > 4, though there are
some indications of similarity of the cumulative mesons spectra and
structure function Fa () in this regionIZOI.

There exist two points of view on the physics of cumulative pro-

" duotion’?/, (a) "Hot models™, in which massive clusters in nuclei
(which are necessary to produce a cumulative particle) are formed by
an incoming hadron, either by a sort of compression'of the nuclear
matter and heavy fireball formation or multiple rescattering;

(b) "oold models", in which formations of that sort already exist in
nuoclei becsuse of Blokhintsev’s fluctuations of denaity/21/ either
in a form of multiquark states or in a form of a few-nucleon correla=~
tion, resulting in the high-momentum Permi motion. This reflects in
the structure functions of the nucleus. A common property of these
models is the independence of type of the nucleus of the nuclear par-
ton fragmentation. This allows us to write down the cross section of
the process in the form )

®
Pormally, they can be presented as valence quarks in antinucleons,.
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A o
%%% 2P pah Y, Pr) = &FA(‘)*B(%’W"T)% (13)

m.ve Xx-Uge Yx -t/s  and tbe function 'S‘h does not depend
on s lee. it i8 the same for a nucleus and for a free nucleon.
Combining (13) with (1,2), it is easy to obtain a ratural expression
(11lustrated in fig. 2a):

A AL
§aal09,8)= 1"‘ B Sy rsp)s Sl gy Goyn)

where we use the notation

M= 4 (T T , /VA'—'ZL(TAS-T:S) (140)

(14a)

The first expression can be considered spproximately, due to small-
ness of the EMC-effect, as a distribution of nucleons over fractiona
of the momentum. For cumulative and stripping protons it is necessary
to add to (14a) a term proportional to A4 (x) which takes into
account dissociation of the nucleus (Pig. 2b). Moreover, just this
term gives the main contribution when Pr2= 0 723/, Parametrizing
the form of the apectrum of stripped and cumulative protons with

Pr = O (with normalisation L= I+A,/z,<.LA(A):41-&/z and
using the experimental oross section for _P,V..7r y we obtain the
oroaa section of cumulative-pion production without any new parame-
ter. (The second term in (14a) naturally gives s small correction).
Thia programme for deuterium (to minimize poseible secondary nuclear
effecta) has recently been made in work 22 and shows a good agreement
with experiment. Aleo, the ratio k"/‘ﬂ" agrees with experiment. This
agreement confirms the independence of fragmentation of the kind of a
nucleus (at least, for light nuclei), which is the base of (14) and
means also that the valence mesons carry the same information on
the nuclear quark structure as the cumulative protons 24/ . However,
the peculiarity of the nucn}ur quark structure is hidden here.

Interpretation of A4 in (14) depends on the wechanism of

punping over and, due to the second terw in (14a), dominates for
"sea particles” (K-, P) in the reglon X3 4 . They are just
sensitive to the peculiarity of the nuclear quark structure, For
the ratio o2 K™ | K~ yields in the region, we have
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j Ny Py o (5 )l
re— =

- J Aty Pas i (& Yot

where the approximation PRk ® -PIV-'k‘ is used,
It is well=known experimentany/zS/ that the ratio r for slumi-
nium ard lead is constert, to experimental accuracy, in the region
4 ¢<x<21.3 (Pig.3). Therefore, thé functions A/A and 4’/74
in this region may only differ ty a coefficient, Due to differgnt
rormalization conditions for these functions <;/'> < N> AA/Z
one can expect that for the models of type i) and ii)
r=2(148/2)/A, . Using the parametrization’®/ of the SLCA-data/?5/
for the EMC-effect one finds ae= 65 ( 4, = 0,036) ard
rPB = 45 ( A,g 0,058) which is significantly higher than the
experimental ratio, especially for the aluminium ( f“,_ ~ \0 ).
For the pumping over inside multiquark states, which have to deter-
nine the cumulative cross sections in thie region of X , tkie'pum-
ping over Auq 24, /p has to be higher (due to a small P, ) and
re2(1+ A“]/Z)/Ag has to be lower, The experimental ratio Iag
corresponds to A‘1 .22 ard  Prex 16%. This can be conside-
red as an indication of the multiquark mechanism in the cumulative
phenomena as well as in the EMC-effect,
Let us turn now to the cumulative antiprotons, Naturally, they
are sensitive to the Nﬁ-pair pumping-over mechanism 8 . The ratio of
P/P -ylelds for 90° in the nuclesr rest frame is determined by
an expression of type (15) and is of the order of Q/AA 1ot .
The experimental bound for this ratio is 25 > 107, which seems
to reject the above mechanims 24/. On the other hand, if there is no
packing of the collective Bea irnto NN-paris and cumulative P results
in fragmertation of q-r P (juet 88 K= ), then the ratio P /K™~
hags to be = 0.3 (suppression by an order of magnitude due to
fragmentation q -> P and a growth due to a smaller transverse
momentum of $ at the same X ), which is not far from the
experimental limit p/& < 1 . However, this conclusion contradicts
the conclusion made from the EMC-date 19 . So, a more accurate inves-
tigation of the antiproton yield seems necessary.
It is necessary to stress also that secondary nuclear effects
can be significent for the interwediate and heavy nuclei we have
considered, Indications of these effects come, for ethple, from the

(15)
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enlarged A-dependence of cumulative proton and K~ =productions and
trom a depletion of 4-5 times from unity of §, . /Py .y in the
region X = 0.6 as compared to that for deep inelastic scattering.
(One should mention alaso that the ratio of cumulative cross sections

“‘/D shows even an anti-EMC effect in this region). Por these
reasons it would te desiradle to obtain sccurate data on the kaon and
antiproton production off deuterium,

The conclusive headlines are:

i) The cause of the EMC-effect is the pumping over of the valence-
-quark momentum to a Gollective sea of quark-antiquark pairs.
11) Small excess of the A/p =ratio in the X~ 0 region
pointa to hardness of the collective seam or to a big value of a
nonnucleon component in nuclei.
111) Many popular models are in trouble due to i) and ii),
iv) The ratio of K~ /K' oumulative cross sectionas supporta
the multiquark mechaniam in the EMC-~effect and in the cumulative
process,
v) The produotion of antiprotone is very intriquing but the data seem
controversial,
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Abstract

Prospects for testing QCD in non-leptonic weak decays are analyzed in
the framework of the effective chiral Lagrangian of the Standard Model.

1. MOTIVATION

Quantitative tests of the Standard Model (SM) [1] in non-leptonic weak inter-
actions are rendered difficult by our limited understanding of QCD at low energies
(long-distance effects). There are nevertheless several good reasons for detailed the-
oretical investigations of non-leptonic weak decays:

i) A new round of high-precision experiments on rare K decays is already under
way at BNL [2]. Compared to the present state, the sensitivity of these ex-
periments will allow for improvements of several orders of magnitude in the
branching ratios, reaching down as low as 10~!? in some cases.

ii) In the purely electrowcak sector, clarifying the structure of CP violation is
of paramount importance. After the recent experimental indication of CP
violation in the K® — 27 decay amplitudes [3], as distinguished from the well-
established CP non-invariance in the neutral kaon mass matrix, it becomes
even more urgent to confront the SM with different manifestations of this still
mysterious symmetry breaking [4]. Although non-leptonic weak decays are
very promising in this repect [4,5] in view of the forthcoming high-statistics
experiments, I shall in accordance with the main topic of this conference

= concentrate in this talk on the QCD aspects of the problem.

iii) Instead of regarding the strong interactions as an unavoidable evil blurring
our view of the electroweak interactions, we may try to extract mforma.tlon
on QCD itself from non-leptonic weak decays.

The standard approach to non-leptonic weak interactions makes use of the oper-
ator product expansion [6]. The dominant terms in the eflective weak Hamiltonian
are four-fermion operators of light quark fields with Wilson coefficients which are
calculable in QCD (short-distance structure). The problem arises in the calcula-
tion of hadronic matrix elements of these quark operators where the long-distance
structure of QCD enters in an essential way. Most of the methods proposed for
calculating such matrix elements can at best be called QCD-inspired. The problem
is especially acute for radiative decays which will be my main concern later in this

"o be published in the Proc. of “Hadron Structure '87", Smolenice, CSSR, Nov. 1987.
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talk, To calculate hadronic matrix elements to all orders in the strong interactions
and to the relevant order in a,m is simply beyond our present capabilities,

A possible alternative to the standard approach is provided by chiral perturba-
tion theory (CHPT), an effective field theory at the hadronic level which incorpo-
rates the softly broken chiral symmetry of QCD. The effective chiral Lagrangian
contains certain coupling constants which are not restricted by chiral symmetry
alone. It is important to realize that the chiral Lagrangian is not just another
QCD-inspired model, but it is really the SM itself at the hadronic level, with a few
constants left undetermined a priori. Further theoretical progress in QCD cannot
change the structure of this Lagrangian without completely upsetting our notions
of how chiral symmetry is realized, but it can only give information on the coupling
constants in the chiral Lagrangian, Based on recent work with Antonio Pich and
Eduardo de Rafael [5,7,8] I shall try to convince you that the chiral approach is
certainly complementary {9] and in some cases such as radiative K decays definitely
superior {o the standard approach.

This talk is organized as follows. In Sect. 2 CHPT for the strong and electro-
magnetic interactions of pseudoscalar mesons is briefly reviewed. Sect. 3 is devoted
to a discussion of how to incorporate the non-leptonic weak interactions In the chi-
ral Lagrangian. The main emphasis will be on Sect. 4 where radiative K decays
are analyzed in the chiral approach. Specific ways to test QCD in different decay
channels are investigated. Conclusions are summarized in Sect. 5.

2. CHIRAL PERTURBATION THEORY

QCD with massless quarks u, d, s exhibits a global chiral symmetry SU(3), x
SU(3)g. All experimental and theoretical evidence points to the spontaneous break-
ing of this chiral symmetry to the diagonal vectorial subgroup SU(3)y. This sponta-
neous symmetry-breaking entails the existence of eight Goldstone bosons to be iden-
tified with the octet of pseudoscalar mesons. The Goldstone fields p'(z) (i = 1,...;8)
parametrize the coset space SU(3);, x SU(3)r/SU(3)v and carry a non-linear re-
alization of the chiral group [10]

SU(3)Lx SU
U(g) IO 9,0 (pgh @1)
U(yp) may be parametrized using the fundamental representation of SU(3), i.e.
Ulw) = exp(iv22/fs)

%+§a xt K+

'\i’Pi - £ .
¢=7_2—= 4 -5+ % K° |. (2.2)
K- Ko -
The unique chiral invariant Lagrangian with the minimal number of derivatives is
given by the non-linear ¢ model -
A gty = I2 igh i
Lo =7 t(B.U8U") = 7= gij(¢)0up' &y (2.3)
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with the invariant metric .
945(p) = te(8BUBUY). (24)
For later use we record the V 3: A Nocther currents
L, = iflUsU  (V-A) 25)
R, = ifi0lU  (V+A) -

sllowing in particular the jdentification of the coupling constant f; with the pion
decay constant (f, ~ 83 MecV) to lowest order in (2.3).

Following Gasser and Leutwyler [11], we now couple the quarks ¢ = (u,d,s) to
SU(3)-valued hermitian external fields §, P, vy, a,:

L = Lqcp + §1'(v, + aum)e — 7S - iPnlq. (2.6)

Actually, we shall only be interested in the external clectromagnetic field A, ap-
pearing in

v, = €QA, 27)

with the 3 x 3 quark charge matrix Q and in the scalar field S which gives rise to
non-gero quark masses upon spontaneous symmetry breaking:

(s(z))we =M= diaa(mmmdaml)' (2‘8)

Because of the additional chiral invariant tr [(S + i P)U] of lowest dimension, the
Lagrangian (2.3) gets replaced by

H
La= E(UDUN 4 oMU+ UM (2.9)

with the covariant derivative

DU = 8,U —ieA,[Q,U] (2.10)
and
o my Mgy M (2.11)
f:_m'l"'md—mu"'ml_mﬂ'*“ml ’

to lowest order in CHPT.

The chiral Lagrangian (2.9) is non-renormalizable. The loop expansion for (2.9)
corresponds to a derivative expansion where some derivatives may be replaced by
external fields, At the one-loop level, the Lagrangian (2.9) must be supplemented
with the most general chiral invariant Lagrangian of fourth order in derivatives
and/or external fields [11].

Instead of writing down the complete list, of which we shall only need two terms
later on, I would like to dwell on the interpretation of the corresponding dimension-
less coupling constants. These constants originate in the process of integrating out
quarks and gluons and they reccive in general both long- and short-distance contri-
butions. The long-distence parts comprise in particular the effect of higher hadronic
states (resonances) which do not appear as fundsmental fields in the theory. Many,
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but not alf of the coupling constants in the fourth-order Lagrangian will be scals
dependent corresponding to divergences in the one-loop functional, Therefore, they
will sometimes generically be called counterterm coupling constants, In order to
appreciate the generality of CHPT it {s crucial to realize that to the order we shall
be working the complete dynamical struciure of QUD, long- and short-distance, 1o
contalned in fy, v and the ten coupling constants of Gasser and Leutwyler, If these
constants are determined by comparlson with experiment (11}, we get the complete
cffective chiral Lagrangian to one-loop accuracy as

Ech + cmnlu + Lwaw (2.12)

including the anomalous Wess-Zumino-Witten term Ly aw [12).

3, CHIRAL REALIZATION OF NON-LEPTONIC WEAK INTERACTIONS
The effective A = 1 Lagrangian for light quarks

Latat = —0‘7\; l|¢1¢al‘1u(l - ‘1.)“11‘1"(1 - ‘1.)(1 + h.c. (3.1)

is modified in the presence of strong interactions. From the operator product ex-
pansion one derives (6] the QUD-corrected Lagrangian

ag 4

oy S 7‘52 ne1ca Y Ci(u*)Qi + hoc. (3.2)
iml

Neither the explicit form of the 4-quark operators @, nor of the scale dependent

Wilson coefficients Cy(u?) will be needed. For the eflective chiral realization of (3.2)

the only important observation Is that (3.2) transforms as

(82y1n) + (272, 1n) (3.3)

under the chiral group. The most prominent feature of AS = 1 non-leptonic weak
interactions is the pronounced dominance of the octet part of (3.3) whenever it
can contribute at all. The chiral approach cannotl explain this octet dominance
(AI = 1/2 rule), but it can provide consistency checks for the assumption that
QCD fully accounts for this enhancement, as we shall soon see,

Neglecting the 27-piet from now on, we are led to the unique eflfective chiral
realization of (3.2) to lowest order in the derivative expansion (13]

/] Cr
= tr(As-g7LuL”) + h.c, .
Lag=1 273 sicicage sr(re-i7LyL*) + hee (3.4)

in terme of the V — A current L,. The dimensionless octet coupling constant gs is
determined from K — 27 decays as

|gs] = 5.1. (3.5)

Including the electromagnetic field is now straightforward and yields [7]

Gr
i, = Eﬁ sicrcags tr(Mo_irLuL”) + hec. (3.6)
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with a “covariant” V — A current
L“ = ‘f:UDpU,: (3:7)

To evaluate decay amplitudes consistently to one-loop accuracy, we must add to
(3.6) as in the purely strong and electromagnetic case all possible terms of fourth
order in derivatives and/or external flelds allowed by chiral symmetry. Taking into
account a discrete symmetry of (3.1) and (3.2) called CPS [14], one finds [5,7,8] for
the fourth-order AS = 1 effective Lagrangian

ie(x'.

['(A‘;-l.cm == 2/ F‘w{wl “(Q'\O-i'lcucv) + w; “(Q[m'\o-HLv)}‘*'
"

7
+ g-'fL'ZG_.'l”-" FWF“U tr(Aa_"QUQU') + hlcl (318)

e} %ﬁaccg
8= 1€1Cags
2

where 1 have only included terms which are relevant for radiative X decays with at
most one pion in the final state to be discussed subsequently. wy, w3 and w, are s
priori undetermined dimensionless coupling conatants, At this point, I also list the
two relevant terms in the strong + electromagnetic counterterm Lagrangian Legunter
in (2.12) as glven In Ref. [11):

LY) = —ieLeF*™ 41(QD,UD, U + QD UDU) + e LyoF* F tr(UQUQ) (3.9)

with two further constants Ly, Lio. Finally, we shall also need the anomalous WZW
terms in (2.12) linear in meson fields with the familiar form [15)

szw = 57?7- C‘w,,F‘wF"(ﬂ’o + 7]/\/5). (3.10)

The stage is now set for a complete calculation of radiative X decays (with at
most one pion in the final state) to one-loop accuracy.

4. RADIATIVE K DECAYS

Rare K decays are ideally suited for a treatment in CHPT for mainly two
reasons:

i) All hadrons in the initial and final state are pseudoscalar mesons.

ii) The natural expansion parameter of CHPT is ¢?/(4n f,)? for a generic mo-
mentum g which is at most
Mg

1.6_#’73 =0.18 (4.1)

for K decays.

149



Starting to calculate amplitudes fur radiative K decays one soon makes an
observation which can be phrased as a general theorem [5]: the amplitude for any
radiative K decay with at most one pion in the final state vanishes to lowest order
in CHPT, Thia theorem can be traced back to & mismatch between the minimum
number of powets of external momenta required by gauge invariance and the powers
of momenta that the lowest order chiral Lagrangian can provide |7,8].

We must therefore pass on to the next order of CHPT, A natural classification
of decay channels is provided by the convergence properties of the corresponding
loop amplitudes:

a) The fourth-order couplings in (3.8) and (3.9) do not contribute. Consequently,
chiral symmetry forces the corresponding loop integrals to converge.

b) The loop amplitude converges although there is a counterterm contribution.
The counterterm amplitude must be scale independent in this case.

c) The loop amplitude diverges so that chiral symmetry must allow for a scale
dependent counterterm amplitude.

48, K° = (r°)yy

In the so-called diagonal basis of pseudoscalar fields {5,8] the relevant loop di-
agrams are given in Fig. 1 where the #° is to be omitted in the final state for
K° — 44. The complete loop amplitude must be finite because there are no con-
tributions from the counterterm Lagrangians (3.8) and (3.9). With CP conserved,
the loop amplitudes only contribute to Ks — vy and K, — 7%1.

The final results for I'(Ks — 27) are {16]

oMy G fa(1 ~
2(2m)3 ‘
with r, = J}= and for the differential decay rate dI'(Ky, — 7%yy)/dz [8,17]

P(Ks - 21) =

L R (42)

w

) 218 2
e 2 7). 2 MhGa sy, 2, ) (2 - P2)F(2) + (1 = 2 = 2)F(2) P
dz (47")‘ 1'3 mrteer—, p—
e — K ~toop
w—loop
, (43)
5= %‘fi, 0<e<(=re) =052,  A(a,b,c) = a®+ b +c* —2(ab+be+ca),
(44)
where F is a certain loop function [8). With
|Gs| ~ 8.1 -107% GeV-? (4.5)
one obtains a branching ratio
B(Ks — 27) = 2.0 107 (4.6)

to be compared with a recent measurement at CERN by the NA31 collaboration
[18}:
B(Ks — 27) = (2.4 £1.2) - 10°°, (4.7)
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From (4.2) and (4.4) we get the parameter free prediction

D(Kp — 7°7) _ -

m—)'- = 5-9 . 10 . (4-8)
Here, we are in the fortunate position that the rates are unambiguously given in
terms of only the octet coupling gs due to the absence of counterterm contributions.
The prediction (4.8) will serve as a non-trivial test of the octet enhancement in
QCD.

The spectrum (4.4) is dominated by the pion-loop contribution and has a very
characteristic shape shown in Fig. 2. The specific z-dependence in (4.4) is in prin-
ciple a direct test of the chiral structure of vertices implied by QCD.

The two-photon amplitudes can, of course, also be calculated for off-shell pho-
tons. As an example, the normalized spectrum for Ks — yutu~ is shown in Fig. 3.
For all details, including a comparison with an earlier dispersion theoretic analysis
of Sehgal (19], I refer to Ref. [5].

The decays Ky — 2y and Kg — 7%y proceed via the diagram in Fig. 4 (for

.Ks — n%y7) involving the anomaly (3.10). Without the final #° the #° and 7
contributions exactly cancel to lowest order in CHPT for K; — 24. A complete
calculation to the next order in CHPT (sixth order in the derivative expansion) does
not yet exist. On the other hand, the amplitude for K¢ — 7%y due to the diagram
in Fig. 4 is non-vanishing. Away from the pion pole in the yy-invariant mass, the
chiral structure of the weak cubic vertex can again be tested in the spectrum (8].

4b. Kt = ntyy

To lowest non-trivial order, the amplitude for K+ — w+yv derives from three
different sources: loop diagrams similar to Fig. 1, the counterterm Lagrangians (3.8)
and (3.9) and the anomaly (3.10). Altogether, the differential decay rate comes out

to be
K D ri9n) M sy, a )2 (4GP + (01T (49)

dz ~ 2(8x)
where the anomalous contribution C(z) can be found in Ref, [5] and with
= Gaap s 2 —z—pt é
M) = Foli-1-IFG+(--DF@ a0

Cc 321?2(4(L9 + Lw) - %(‘lﬂ] + 2103 + 2104)].
It is quite remarkable that as in the case of K; — 7%y~ the loop amplitude is
again convergent although there is now also a counterterm amplitude proportional
to é. The total rate is shown in Fig. 5 as a function of é. The spectrum (4.9) has
again a very characteristic shape [5).
What can we say about the magnitude of the scale independent constant é
? From the analysis of Gaillard and Lee [20] one infers that there is no leading

short-distance contribution to é . From what we know about the separate coupling -

constants appearing in & we estimate [5] é = O(1) .
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From Fig. 5 we obtain a lower bound for the rate
D(K* = mtyy) 22.1072 GeV (4.11)
corresponding to a branching ratio
B(K* - ntyy) 2 4.107". (4.12)

With the estimate & = O(1) we conclude from Fig. 5 that a branching ratio signifi-
cantly larger than 10~® could hardly be consistent with QCD [21].

4c. K — wtte-

It is instructive to compare the deca.yu K+ - gtetl- with the semileptonic
decays K* — w%+w,. If the transition K+ — 7ty would proceed in lowest order
we would expect

T(K* — ntete)
T(K+ — m%tvp)

= (¢ "’“)’ = g3y, 10° (4.13)

where gy, is a non-leptonic enhancement factor. However, experimentally this ratio
is [22)
T(K* - ntete)
[(K+ — noety,)

for the electronic mode.In other words, the non-leptonic enhancement is more than
compensated by some suppression mechanism. This suppression requires rather
delicate cancellations in the standard approach [23]. In CHPT the transition X+ —
mty* vanishes in lowest order in view of the general theorem discussed earlier. A
more realistic estimate is therefore

= (5.6 +£1.1)-10" (4.14)

I'(K* - rtete e’gnr _
) - (G ~aagh 07 (a)
in accordance ‘with the experimental value (4.14).

The loop amplitudes are divergent for both K* — x*y" and Ks — #%* (in
the limit of CP invariance K; — 7%~ is exactly zero). Thus, the counterterm
amplitudes depending on w,, w; and Ly must contribute in this case and they are
necessarily scale dependent. With an additional assumption (absence of exotics) [7]
w; can be related to Ly which in turn is determined by the pion charge radius [11].
Fixing the remaining constant w; with the measured rate [22] for K+ — rtete,
all other rates and spectra are uniquely predicted up to a twofold ambiguity [7].

5. CONCLUSIONS

In summarizing the advantages of CHPT as applied to rare K decays the difficul-
ties of the standard approach in distinguishing between genume predictions of the
SM and additional more or less plausible assumptions concerning the long-distance
dynamics should be kept in mind.
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i) CHPT as the Lagrangian formulation of softly broken chiral symmetry is a
direct consequence of QCD.

ji) Chiral invariance and electromagnetic gauge invariance together imply strong
restrictions for radiative decay amplitudes (e.g., vanishing amplitudes in low-
est order for a whole class of radiative K decays).

iii) In spite of higher order counterterms, CHPT as a non-renormalizable field
theory can give rise to precise predictions.

iv) CHPT is a systematic expansion in momenta and meson masses especially
well suited for K decays with a natural expansion parameter of usually much
than M} /(4nf.)? = 0.18.

v) In favourable cases like K5 — vy and K, — 7%y the rates are unambiguously
calculable at the one-loop level. Comparison with experiment can test the
underlying assumption that QCD fully accommodates the Al = 1/2 rule.

vi) For 3-body decays the differential decay rates are either directly predicted
or given in terms of the total rates. The shapes of the distributions test the
chiral structure of vertices dictated by QCD.

Despite the complicated interplay between strong and electroweak interactions
in non-leptonic weak decays precision tests in this field will become possible in the
near future.
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Figure Captions

Fig. 1 One-loop diagrams for K® — #%y in the diagonal basis of pseudoscalar fields
8).

Fig, 2 Normalized z-distribution for Ky — 7%y (full curve) compared with phase
space (dashed curve).

Fig. 3 Normalized g}-distribution (¢] = ml, ,.) for K5 — qu*p~ (full curve) com-

pared with phase space (dashed curve).
Fig. 4 Tree diagram for K5 — 7%y,
Fig. 5 Total rate for K+ — w+yy (full curve) as a function of é defined in (4.10),
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DECONFPINEMENT ANALYSIS IN EXACTLY
SOLVABLE XODEL FOR LATTICE QCD
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On the whole it is now anestablished fact at high tem-
peratures the quarks and gluonsare practically liberated and
chiral symmetry is restored but at low temperatures it is
spontaneously broken and the constituents are confined 0].
The Monte=Carlo numerical experiments have made it possible
to ascertain the temperature and order of appropriate phege
transitions (though there are some contradictions between
results of different groups) hawever, the physics underlyngs

. the closeness of both temperatures and at any rate the intui-
tively apparent interrelation existing between them is atill
rather unclear [2] . Experience teaches us ( if only through
the example of Landau-Ginzburg effective theory in supercon-
dactivity) that at the present stage of theoretical develop-
" ment any attempts are extremely important to construct an
effective model theoxry allowingus to promote essentially the
enalytical methods of investigating phase transition problem
in gauge theories.

Specifically deeper @nslysis of  gdeconfinement phase
trangition nature comes from the constructive idea about the

dual-like correspondence between d+1 - dimension finite tem-
perature pure gauge theories and d-dimension spin systems
with local interaction [3]. However the lionte-Cerlo analysis
of the lattice QCD with dynamical quarks has shown that this
transition may disappear in the real world of interacting
quarks and gluons. Although in this cese the calculationa
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are not so irreproachable, since nobody has succeded in in-
venting the relevant order pcrameter, nevertheless these cir-
cumstances have given rise to the opinion in a number of pa-
pers that the confinement can be no more than a qualitative
conception in such theories.

In the present note we develop an approach to analyze
the deconfinement phase transition which, as & matter of fact,
demonstrates the origin of universality arguments [3] y 8% any
rate, in the strong coupling approximation. We find it to be a
valuable suggestion as a detailed investigation of the critical
region can be fulfiled anaslytically, This approach is based on
the go-called spherical model [4] arising as an approximation
to solve the Ising model and 80 far remaining to be one of a few
(if not a unique one) ferromagnetic models allowing an exact
solution and discovering the phase transition for a three-di-
mension lattice. kioreover, it is known [ 5] thal the singularities
of the thermodynamical functlons take the form of power laws
with the oritical indicies close to those in the Is:’.ng model

In order to make the essence of our suggestion more tran-
sparent we first consider SU(2)-lattice pure gluodynemics. Ve
employ the Hamiltonian formulation (in A = C gauge) inthe strong
coupling regime and then include the quarks following the reci~
pes of Ref. Y6T1. The corresppnding partition function tskes the
tom = Sﬂ—#h it e B TAA, Mear) 5 Potegd ?1)

where ]:(K o ,? ) L SRR &v\(l\-o\)"!' FIRN ﬂ)"ivr‘
b TR Ay ganNews '2)
and Y= B g"/z ., a.ls the lattice spacing, d is the space
dimension, Nd ias the number of lattice sites. Knowing the low-
temperature ( Y>> 1) end high-temperature (<< 1) asymptotic
behaviours of Eq.(2), [7,8] it is not difficult to realize
that the function }-f ‘{(’\fﬂ“fﬂ ) could suitably be & proximeted

T eve L eshost s i)

The functions I, 'fand K are some smooth fructions of Y
(howerer, there is the condition IY Y) and these reproduce the
corresponding asymptotic behaviours of the function F (“,'Y, "f“,).
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The computations have shown that the accuracy of this appro-
ach is about two percents in the whole region of Y, I\[
Af,! variables.

Now introdueing two-dimensional unit vectors 8;
-{é‘\ Py <} -{_Qos'f{- ';_.M\‘T } in each site of d - dimensional
space and noticing that 4\.\.’-".&. df,= SQ+T, -|)6 T2d2, de,

we have for the partition function

T o KON SHJQ d§5* 5@ euv{[(!)B %, *I(\')Zz@..r} (4
Thus the proposed approximation ma.kes it possible to reduce
the initial partition function Eq.(1) to the effective one
BEq.(4), displaying the generalization of the well~known clas-
sical Helsenberg model to the asymmetric interaction I(‘()#T(Y)
The critical behaviour of this system can be studied by the
powerful methods in spin system theory. The situation is quite
relevant to the universality arguments [3] and further.more,
in a sense, it i1lluminates the nature of their origin.
Investigating the phage transition character amd an
appearence of corresponding singularities of the thermodynamic
" quantities we utilize the spherical model [4]. The cruc:l.al point
is to prove a replacement of the condition 1°-:z= é‘ +& =1by

weeker ocondition
N«(ZQ*ZQ)’L (5)
is equivalent for Eq.(4) to replace

I,vsm-wg[‘d& 433t evp{- L@,Aa)--(aka)} (6)

The constant ¢ 18 chosen here in such a way a$to ensure the
legitimacy of interhanging the integration order after putting
Eq.(6) into Eq.(4). It means that € is a line to the right of
81l ~singularities of the integrand. It will be clear from
what follows that it 1s enough ¢ > d.

As to the inclusion of the matter fields, following
Ref.19], we have to add the factor which in tne present mo-
tation 1s equivalent to the following substitution

[Jd2,—> const [[(1+g)dy
In Ref. [10], the model of the gluodynamics with a gas of the
probe chaxrges has been developed and we has shown thet theé ‘
partition function takes an additional factor of a more general
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(than at Rer.[G]) form. For the present comsideration this

will be
[ ()& d2, (7)

where A\ is the fugacity regulating the contribution of co-
lour-charged particles and colourless cones. It is evident
taking ) =1 that we reproduce the result of Ref.[6]. Then
the partition function of this QCD model can be written in
the sphericel model approximation as

’f:i;: = S\;\da,(u)\&a B, Een{HeR)-1EID] o
where

¢ d [ o/ d
o051 750, T LI G- 2,540, t= 1

In order to obtain the integrals over @ and & in
Eq.(8) in the Gaussian forms, it is oonvenient to pexrform
those as

. c&‘ue ”z‘h*(‘** ),\) Salai 4% evpl20R) -(’A;)u‘p\s]}

\'\:"
Making use the ract that
Kk
i (2 ) Z by Z. H
‘\x LS ¥} K‘\ ¥,
where the summation is running over all unequal

¥
Yiyeeo XK, from the whole set X,,.. ,Y d we ocan reduce
Eq.(10) t0 the caloulation of the tollowing integrals

Se‘lp{j-@:k%)}a 'da.. Z::"(lz.“{‘#'(l w(&ﬂ)tﬁ—‘ i@\ﬁ"'
=@t (l){zh‘“ﬁd;k) C-‘,(“\\ n‘m\ Y k211

161



where G (1" v}\‘) is the generalization of the Hcrmitian
polynomial to n=-dimensiona.In order to detarmine (0) in
Eq.(11) we take into account following l'_11] that

"
z?’(m ZM“)G (}h vgm\ﬂ ®) -.@E&?H (%) (12)
™ S oy Bl ) h-
where H (Y4 ) has already been normal Hermitian polynom
for wh.ioh. we have

e
H ( 3 1) ' ) m ig aven
\M‘o 0 m is odd

: (13)
These give finally for the integral Eq (14)

‘ 2 % )%
Sé‘“‘)o(a.a:‘:.. 2, e, @ Q) ﬁ N zi‘*‘fw‘w L,o (14)

when m is odd "
. ~ ‘
Integrating over & and & we have the partition funotion

Eq.(10) in the form

1~ (e I Pal @ahRN "G 0w

N
here the result of the integration over d% is given as

(5:.":4)%'“1;( [-A’Liﬁ‘] . =(‘bd:ﬂv) PuA-‘ MM é’(}f‘ ):' (16)

and 2 meanse that the summation is taken over all ¥,
unequcﬁ. to each other (over permutations) As to the integ-
ration over dd its result is

sz LT, (7S 2944, f...ﬂ A

calculating Per( 1/A) we have by detenition that

N 5 . ' v Y
T f(() i) 0‘ x.' x{(‘s ﬂS’,”S’ Sx (18)

Using the explio:l.t form of ',]., we find approximately up to
the gV tems (p>d, ¥>> 1)

_(ﬂﬁ'- . M,In\vav,“v\‘x xv N ﬂ(Kv rv)

'/K Tﬂ prw Um' ) (19)
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Now edmitting the numbexrs YQv to be independent in the de-
finition of Per(1/A) for all matrices /{¥ 1/ 1.0, gno-
ring vestriotion(f,.. kv (§ ,m%,l) and edtending the suma-
tion to all Xy (all W, >0 ) we obtain Ty)

' w KY - d -
?e’?,%" w ﬂ __(/L“i)-'_:e”’e“['( J.m)] (20)
Irio o ser (0 (ot
Remind now that % y)¥e conclude Per(1/A) is the
Tn>T
regular function of « 1if the regionRed > ol .
To calculate we notice that

bypel- Ok, BIGY

! 'Il. M— i mk X (21)
ﬁ%@'ﬁi‘. te = £ [ " (14 0GA)
eto, We believe the suitable approximation for 19 as
follows 4
Pyanr o v w0y
§= 4: C.“ )\ [@‘4)1“‘ ‘] se )
where

£, 000 =+ b {18 Ty -1}

Indeed the precision of approximation 1s slightly getting
worse with W inoressing but if we are interested in not

so large )\ the deviation for high orders does not tell
practioally on the general result. The ocorreoction caloulated
elsewhere whioh is not <testifies to the infinite values of
exact funstion fg(,(.x) end its derivajive at ol wd. Substi-
tuting the obtained expressions of Rep AJL and Q into
Eq.(15) we £ind for the partition funution

T~ Vidan {roay) -

Caioo

where

PUP= £ T00+ Y- bod- L [htekhe ftutn] 2
We ocan show that

oo, qd ~dk
_Ie_dz“d;d,igs_u-d) = cohs'hi'%"[_lo&)] € (26)
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but

L b= g )

and sinoe the bahaviour of {(z) 1a well studied (mee, for
instance Ref.[127) the integral Eq.(15) can be oaloulated by
the method of steepest descent. The saddle point J[=do is de-
fined by the condition &, P(Lkd)=0

g (L-d)+ -%* JLL-4) 42 B“@;J%{nj;(i., ) (a7

It oan be solved ,vraphically and depicted in the figure.

The ourves 0,1,2 correspond to the values of the funo-
tion [+2 4 ) at 3=0,%,,)2 respeotively moreover
R2?), >0 o The gurve 3 corresponda to the function

Glh= §C-d)+ Fylid-d)+ 2 AL 4%)

Its singular point at o/ =d is denoted by asterisk. The
saddle points are expressad via the opened circles and their
pogitions are dafined by the point of interseotions betwean
the ocurves 0,1,2 and curve 3,

It is evident from the figure that the saddle point is
present at all )\ D0 (the curves 1 and 2) and at any I(Y)
(2igs. A and B); then the free energy ¢ (\ do(3)) 1z a
smooth funoction of temperature JS' {more exactly, the smooth
function of I(Y)) that signals the absence of the tempera=-
ture phase transition. When the matter fislds are absent
(\ =0, and hence §,({)20) the curve O at the figure, the
saddle point does exist at not all values of I(Y ) (fig.A)
and the phase transition is restored. The value of I at which
the phase transition takes place is defined by the equation

G (L=d)= [X)
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Optimization of Renormalization Group Transformations

C.B. Lang and M. Salmhofer!
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A-8010 Graz, AUSTRIA

ABSTRACT

We discuss the dependence of the renormalization group flow on the choice
of the renormalization group transformation (RGT). An optimal choice of the
transformation’s parameters should lead to a renormalized trajectory close to a
few parameter action. We apply a recently developed method to determine an
optimal RGT to SU(2) lattice gauge theory and discuss the achieved improve-
ment.

The lattice provides & gauge invariant regularization for field theories and quanti-
zation amounts to the determination of expectation values over the ensemble of field
configurations in equilibrium, The construction of a continuum quantum field theory re-
quires the investigation of such a system of statistical mechanics at criticality, where the
correlation length diverges. In this region of coupling space the lattice system is scale
invariant (the characteristic length being infinite); renormalization group transforma-
tions (RGT), which perform changes of the length scale of the system and corresponding
changes of the action, are then symmetry transformations. The critical exponents that
determine the continuum theory can be calculated from eigenvalues of the linearized
transformation at a fixed point (FP) of the transformation, a scale invariant action S*,
and it is also possible to determine universality classes as domains of attraction of S*.!

Real Space RGTs for a lattice system with fields U and action S are introduced
by defining a transition probability P(U',U) 2 0, trye (P(U',U)) = 1, where U’
denotes the configurations on a smaller lattice and trys () the integral over all of such
configurations. The renormalized action is then

§' (U") = logtry (P (1", ) ). (1)

For most systems of interest this integral cannot be calculated in closed form and ap-
proximations have to be applied. Monte Carlo Renormalization Group (MCRG) has
emerged as an cfficient procedure to obtain informations about the critical structure.?

Wilson® has proposed a gauge invariant action; for the non-abelian SU (N) gauge
theories in four space-time dimensions the critical value of the Wilson coupling K = %,-
is infinite, MCRG studies of systems of that kind have concentrated on the nonper-
turbative B-function of the theory by calculating the change of Kp under a change of
scale. This can be done with a single RGT step under the assumption that §' is again

1 Contribution presented by M.Salmhofer at the conference “Hadron Structure 87",
Smolenice, CSSR, Nov.16-20, 1987
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of the simple Wilson form.* The effective renormalized coupling can be defermined by
comparison of the expectation values derived from the blocked lattice with expectation
values determined in a simulation of the system with this simple action. More trust-
worthy are operator matching procedures 5; they rely on the fact that for any starting
action the sequence of renormalized actions will, after sufficiently many blocking steps,
be attracted by the renormalized trajectory (RT), the line connecting the critical and
the trivial FP. However, for an arbitrary chosen RGT the initial action may be quite
far from the RT and thus “sufficiently many® often enough may require simulation on
very large lattices even if observables are compared on the smallest ones passible.

This problem can be overcome by “improvement” of the starting action by including
more complicated interaction terms which place it in the vicinity of the RT of & given
RGT ©. On the other hand, there is a great variety of functions P (U, U) satisfying the
rather general conditions mentioned above; cach of them should be equally well suited
to determine scaling behaviour. Since the position of the RT may depend on the specific
RGT one can as well try to move the RT into a few-para.meter subspace by adjusting
the welght factor P(U',U) ",

The aim of the work reported here ® was to ﬁnd a transition probnbllity P(U',U)
for SU (2)-lattice gauge theory such that 5' has Wilson's form if S does, that is to make
S' lie in the subspace where only K is nongero. Whereas such an optimization clearly
reduces the problems mentioned above and even does away with the ever-lurking menace
of truncation errors® in the calculation of the critical exponents, its main problem is
whether a restriction as strong as that is possible at all. This question arises because
globally and exactly keeping the RT in a certain subspace would move the FP into this
subspace as well, which is, of course, desirable, but need not be possible. Provided the
RGTs applied are nonsingular, the FP can be moved only in redundant directions ° along
which no non-analytic corrections to ucalmg appear. Some recent studies!® indicate that
perfect ophmlza.txon might be possible using a nonlocal P (U',U) only and that there
might arise problems in the sector of odd couplings ®. Swendsen concluded!! that the
RGT’s used are singular since his optimization seems to move the FP successfully not
only in redundant directions. A dependence of the RG flow on the specific form of the
RGT has also been demonstrated in d=4 $*-theory.}® As concerns the work presented
here we find definite improvement but we also find that complete optimization in the
above mentioned sense is not possible in our case. The RT can be moved closer to
the one parameter subspace but there are still further couplings contributing to the
renormalized action.

The transformation investigated has scale factor 2, the transition probability is

P(p0',U) = 16 (Vi Vera0)) @)
e

where each block link V is constructed from a sum W over paths of length 2 and 4 on
the larger lattice,

Ws',u ()= PiUzpUszipu + P2 Z U U =+V-#U=+"+I‘-"U:+2u.v
vip

+ps E (UZ,V”=+”;I‘U:+,‘,VU=+M|I‘ + Ut.uU=+n.vU=+v+u.nU +2M, )
vilp

(3)

normalized to unit determinant. The transformation is local, nonlinear and preserves
gauge invariance; a RGT of this kind was first introduced by Swendsen.'® Due to the

167



normaligation one of the parameters may be put to a constant and we fix p; = 1, Any
reasonable choice of the parameters should, in principle, be sufficient for the determi-
nation of scaling behaviour and the trnnsformatxons (p1,P2,p3) = (1,1,0) and (1,1,1)
have already been used in other studies.14

The optimization can be carried out without calculating the renormalized couplings
or taking §' to be of any special form. If the actions of two ensembles of configurations
agree (up to a constant that has no influence on the statistical behaviour of the system)
so will the observables. The Wilson line in coupling space thus corresponds to a curve
(denoted by WT) in observable space, and the optimization consists of finding values
p; such that the euclidean distance of §'(p}) to WT is minimal. Of course, we have to
restrict ourselves to a tractable number of observables: we considered plaquette, planar,
bent and twisted bent double plaquette in fundamental and adjoint representation only.
These eight observables are sufficiently local to make sense on the lattice sizes we used.

Due to the normalization one finds that the variation of one parameter, keeping
the others fixed, leads to closed curves of the observables of the blocked system in the
corresponding space, as demonstrated in Fig.1 in 0;-0;-projection. Similar figures may
be produced for any combination of observables. The amount of variation of results of
possible RGTs is surprising,

At the optimal point p = (1,-0.70,—0.18) the average distance per observable is
0.003 with a statistical error of the order of 0.0003 in the determination of the observable,
which is about 4 times closer to the Wilson line (in operator space) than the naive value

(1,1,1) and a factor of 4.2 better than the choice (1,1,0). The minimal valley is very
flat with regard to p3, however, and even values like (1,—6.00, —0.18) are clearly better
than the naive choice. Repeating the optimization for Kr = 2.4 leads to compatible
values of RGT parameters, It was not possible to find zero distance for any value of
the RGT parameters. This implies that the renormalized action necessarily will contain
further couplings to interaction terms beyond the simple Wilson form.

There are various possibilities to check on the possible improvement due to the
optimized RGT. One is the determination of the renormalized couplings; this was sub-
sequently done within a SU(2) gauge-Higgs system study by Reusch!® and the results
indicate that the projection of the RT into the plane of the fundamental and adjoint
plaquette couplings, Kr and K 4, lies below the Wilson line, roughly a factor of 4 closer
to it than e.g. the Migdal-Kadanoff RT'® or the RT with!"™!® p = (1,1,1).

The evidence that the optimized RGT has a RT much closer to the Wilson line than
the conventional choice for RGTs is further supported by an operator matching study.
We simulated the theory at various values of Ky between 2 and 3 for lattice sizes 164
and 8* and performed up to 3 (on 16*) or 2 (on 8%) RGTs of (A) the optimal values
for p = (1.,-0.70,-0.18) and (B) the naive choice (1,1,1). Up to values of Kp = 2.6
we observed consistently good matching of all the operators already after 1 RGT for
(A), i.e. comparing expectation values on 8%, whereas one needed at least 2 RGT's
until good matching was obtained for (B). At larger values of Kr one noticed a clear
deviation from the Wilson line.

The only way to avoid spurious results in that domain is to perform sufficiently
many RGTSs to make sure that one has arrived at the RT. One way to confirm that
is to check the saturation of the observed value of K} after sufficiently many blocking
steps For the optimal parameter choice (A) this saturatlon was observed for Kp < 2.5
in the second RGT step, for Kp < 2.6 in the third step and for larger value of K not
at all (cf. fig. 1). For the parameter set (B) saturation required three steps even below
KF = 2.5. The B-function we got® essentially agrees with other determinations!®.
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Figure 1: The full curve gives WT in operator space for observables Oy and

O3 (as determined on 4%), the full circle shows the point of simulation on an

8% lattice at Kp = 2.5 and the dashed curve gives the results of BSTs with

p1 = 1,p3 = —0.65 and py varying continuously. In this projection two points

appear to be close to the Wilson line, however, only one of them has minlmal
. distance in the complete space.

In conclusion we may say that the operator oriented optimization allows a modifica-
tion of the RT such as to bring it closer to a few parameter action. Since the RT is often
used only as a technical means to obtain information on the renormalization behaviour
along e.g. the Wilson line, one may well use different optimizations at different points
in coupling space. However, it became clear that at least for the model and the parame-
terization studied it is not possible to obtain an overlap of the RT with the Wilson line.
It may be possible to study this behaviour at weak coupling with perturbation theory.
The net gain in comparison to & non-optimized RGT approach amounts to roughly one
blocking step less in the operator matching spproach, which in d=4 correspond to a
factor of 16 in computer resources.

Acknowledgment: We want to thank H.J. Reusch for communicating his results
and R. Baier, H. Gausterer and P. Hasenfratz for many discussions. The calculations
have been done on the VAX 785 of the EDV-Zentrum der Universitit Graz and on the
CYBER 205 at the Supercomputer Computations Research Institute of Florida State
University, which is partially funded by the U.S. Dept. of Energy through Contract
DE-FC05-85ER260000. The work was partially supported by Fonds zur Forderung der
Wissenschaftlichen Forschung in Osterreich, project- P5965.
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Monopole Excitations in the 3D Georgl-Glashow Model
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Humboldt-Universitiét zu Berlin, Sektion Physik, GDR

1. In this talk we present results of a numerioal inveatigation
concerning the vaouum structure of the Georgi-Glashow model
(GGM) defined on a three-dimensional lattice with periodic
boundary conditions 1 « By an appropriate relaxation procedure
quantum fluctuations of Monte Carlo (MC) generated equilibrium
configurations are frozen out in order to study the typical un-
derlying background fields. This method already proved to be
‘suited for studies of the vacuum structure of pure 4D Yang-
Mills theory, where at TsTc (multi-) instuntons 2/ ana at
TZ T, monopoles /3 were found to be relevant ( T, being the
critical temperature of the deconfinement transition). A similar
(multi-) vortex investigation has been carried out for the 2D
Abelian Higgs model, too 4’. The 3D GGM is studied here in. or-
der to establish the existence of 't Hooft-Polyakov monopole
solutions in the quantized vacuum and to show that these back-
ground configurations play sn important*role in the Higgs phase
transition ( a first exploratory study has been done in Ref,
/5/). We take this as a preparation for an investigation of

the more complicated 4D case., In the latter case recent measure-
ments of magnetic fluxes out of elementary 3D cubes for MC
equilibrium configurations showed that loops of monopole-anti-
monopole pairs (mm) seem to condense in the confinement phase

and to form a dilute gas in the Higgs and deconfinement phases
( see Refa. /6/).

2. We consider the SU(2) gauge Higge model with the Higgs field

¢°’ y a=1,2,3 4in the adjoint representation
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S =f, Z (4--4:-",.,,,) + ""Z ""Mh"n 9 U n,. u”f)“)
+ FRZ[: +r(¢..¢.,) -

where ¢ = igt as V= 1-:-(2?»11---1)/29R denotes the
standard plaguette varisble, Due to superrenormalizability
the eontinuum 1imit of this 3D model corresponds to B>
and Bg/ (!'H — 0. Mostly we have chosen the unitery gauge
¢,= 1R 6% for all sites n. Equilibrium fields were genera-
ted by a standard Metropolis algorithm, which allowed the
radial Higgs mode R to fluctuate. The lattice size was 83
- We concentrated on a region at fixed @o = 0.1, 5 5.0 and
verying @3y ( 0.44 B £0.8 ). By mea.au:r:lng (trq n¢n+ UUF)
as an order parameter we have found there a narrow orosaover
related to the transition between the confinement and Higgs
phases in the 4D case 6,7 « In order to detect moncpole eox=-
citationa we measured the magnetic flux through plagquettes
perpendicular to the P. -direction

o = S (1l )+ (s s i) 2

A
(¢ = ¢ / Hl‘) and the magnetic charge inside cubes at sites

- "‘2 (fin -{m,c,,.). )

In the continuum limit the manifestly gauge invariant expres-

sion (2) corresponds to the magnetic field invented by

't Hooft

Starting from MC generated eguilibrium configurations we have

iteratively minimized the action for each of them by applying

a Langevin type relaxation procedure (without noise term) sym-
bolically written as '

‘XN""X"-“A’!’ g—i N 'X=(Un,.,1?n) (4)

The time step was taken to AT = 0.15,
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3, The results are the following. Only for those configura-
tions produced within a rather narrow 'window' for the gauge-
Higgs coupling 0.454f,;,4$0,55 we observe non-trivial pla-
teaus developing during the oooling process., We have found
two types of rlateaus: mostly unstable ones roughly at action
values 5, ¥ 1.40 , i=1,2 and absolutely stable ones at
s = 1-12.4 , i=1,2, Unstable plateaus finally decay either
into the SU° ones or into the trivial configuration ( 8 = 0).
The configurations we arrived with on a plateau, where the clas-
sical field equations are satisfied approximately, have been
thoroughly investigated by plotting out the spatial distribu-~
tion of the action density aco. to Eq. (1), the magnetic charge
distribution ( Egqs. (2,3)) and the spatial behaviour of the
Higgs field modulus 151 - -
It turns out that the S imm - plateaus correspond to 1 pairs
of well-separated and localized (anti-) monopoles of the
't Hooft-Polyakov type with zeros of the Higgs field at their
centres. These mm —pairs can stabilize their positioms due the
periodic boundary conditions, The magnetic charge of elementary
cubes belonging to a single local excitatlon sums up to |
with good acouracy. )
Furthermore, we see the stable plateaus at siIJS = 1.12.4 to
correspond to Dirac string configurations, They occur, when a
monopole and the corresponding anti-monopole leave the finite
volume in opposite directions and thereby annihilating due to
spatial periodicity. If this happens, the only leftover is the
magnetic flux directed from m +to o . This flux spreads until
each plaquette perpendiculer to the mm -axis is carrying the
same amount £ ( acc. to definition (2)). The total flux is
topologically quantized. The S:‘.]JS - plateaus contain pure
Abelian gauge fields with all links along the flux direction
equal to one. Thus, the observed S1DS - value is >asily under-
stood for our lattice of size 8%, Since £ = 1/8% = sin ¢ /2%
(?P denoting the U(1) plagquette angle), eaoh of these pla-
quettes contribute 1-cos (fP to the action yielding finelly
3,75 = B;-8%( 1= cos ¢p) ¥ 12.4 . By writing out the @,
values for all plajuettes we convinced us that in each slice
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perpendicular to the flux direction there is a distinct Pla~
quette with @ differing by 2W from all the others. This
is the panner the Dirac string singularity well-known from
continuun considerations is showing up on the lattice.
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QUARK-POLARIZATION EFFECTS FROM DYNAMICAL QUARKS'

M.Faber,W.Feijlmair,H Markum

Institut fiir Kernphysik, Techn.Universitiit Wien
Wieduer HauptstraBe 8-10, A-1040 Wien
Austia

The lincar gluonic potential between a static quark-antiquark pair becomes screened in
the presence of the dynamical quark sea. This is usually explained by polarization
effects from virtual quark-antiquark pairs. We investigate the polarization cloud
around a static quark charge. We find that the correlation <L(O)¥(r)W(r)> between a
static quark and the fermion condensate increases with increasing distance.

INTRODUCTION

Lattice QCD has proven to be an extreme powerful method to investigate non-pcnurbativé
phenomena in QCD. In the last years even the effects of virtual light quark loops have been
taken into account in numerical investigations. The inherant fermionic determinant in the
partition function became manageable by new algorithms and new computer power in a
satisfactory way /1,2,3/.

In this frame the potential between a static quark-antiquark source has been investigated for
Kogut-Susskind fermions and Wilson-fermions /4,5/. The main result was that there is no
longer a linearly rising confinement potential but the confinement potential becomes bounded.
This is an effect due to the dynamical quarks. It can be explained as a screening of the static
sources by virtual quark-antiquark pairs similar to the polarization of an electron by virtual
electron-positron pairs in QED. But one has to be careful with such a comparison because
QED is an abelian theory and QCD is not.

This has for example a dramatic effect on the running coupling constant. Results of
renormalization group theory indicate that a single quark is surrounded by virtual gluons
which carry the same color charge as the Quark. Therefore, the coupling constant decreases
when the distance to the quark source goes to zero and the momentum transfer to infinity. One
reaches the region of asymptotic freedom /6/. In this picture it would be interesting to
investigate polarization effects in QCD. This paper presents first results.

fSupported in part by "Fonds zur Férderung der wissenschaftlichen Forschung” under
Contract No. P5501.
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THEORY

We investigate the behavior of a static quark within full lattice-QCD which in Wilson-
Polyakov theory can be described by a thermal loop

N
Lﬁ)'}"n Unaffka) s

where N is the temporal extension of the lattice with spacing a and Uy, are the link variables

of the gauge field. To measure the polarization cloud around the single static quark we decided
to evaluate the correlation function between the Polyakov loop L(r=0) and the local fermion
condensate W(r)W(r). The last operator also can be interpreted as the occupation number of

virtual fermions per spatial lattice site /7/. So we have to evaluate the path integral
| DU L©) %) () o (S0 + Sp)

< q’ ‘l’( >m
L(0) ¥(r) ¥(n) ID[U.‘!’.‘!’]e “Sa+ 59

1)

on an Euclidean lattice by means of Monte Carlo simulations. Sq s the gluonic action in
Wilson formulation and Sg is the fermionic action in Kogut-Susskind formulation

Sp- r*l’ { Z%‘P"“ (q‘,; U:u‘l"qﬁ'q’;*U;“‘y‘)"'mz q‘,‘l‘,) } -

n *

= Z ¥ (D(U) + m)xp ¥yr
X

where nr is the number of flavors, m is the mass of the virtual quarks and W, and W, are one-
component Kogut-Susskind spinors carrying also color indices. The factor%-ulku the fermion

doubling into account. Eq.(1) can be integrated analytically over Wy and'¥y applying the
formula of Matthews-Salam

D 4 o -(Sa + Tr In(D+m))
<L V¥ > | o) o) e@qy+m) -G % - e
| DiUe -(Sa + Tr In(D+m)

= <L(0) tr(DU)+m); >y

where tr stands for the trace in color space and Tr is the trace over the fermionic matrix and
the subscript U denotes the remaining evaluation of the integral over the gauge fields, Asa
result of the above integration (2) ¥ (r)¥(r) has to be replaced by tr(D(U)+m)',:. This
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represents a pointlike propagator. In hopping parumeter expansion this propagator is a sum of
closed virtual loops. This we define as our measurer for the polarization effects.

RESULTS

For the evaluation of expression (2) we used a 83x4 lattice with perlodic boundary

conditions for the gauge fields and antiperiodic boundary conditions for the fermion fields,
The number of flavors ng was set to 3 and the inverse coupling B = 5.2 was taken below the
phase transition to deconfinement. The mass m of the dynamical quarks is 0.1, We performed
300 Monte Carlo iterations with the Metropolis algorithm for the gauge field and the fermionic
determinant and fermion propagator tr(D(U)+m);} were approximated by the pseudo-fermion
method using a heat-bath algorithm with 50 fermionic steps per gauge field.
The correlation function <L(0)¥(r)¥(r)> Is displayed in fig.1. We find the surprising result
that the correlations increase with increasing distance r. This means that polarization effects in
the near surrounding of the quark are supressed. This is the opposite effect to QED in regard
1o fermionic vacuum polarization. The horizontal line in fig.1 is the cluster value <L><%¥>
for LYW for r--e0 , For distances greater than r=3 the correlations reach the cluster value,
Beyond this distance the two operators do not feel each other,

Quark Polarization

0090}
+,¢"¢"
0088} S +
5 oosel Y
ooder m=01
oe2r
2. 3
rialny))

Fig.1: Correlation <L(0)¥(r)¥(r)> between the
Polyakov loop of a static quark and the fermion
condensate. The horizontal line gives the value
expected from the cluster theorem.
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RISCUSSION

How can the behavior of the correlations be explained? The main question is why the bare
vacuum fluctuations seem to be supressed near the quark. Maybe this can be solved in analogy
to a spin system, If we insert a fixed local spin in 8 magnetized spin system the presence of the
fixed spin will influence the neighboring ones. When the fixed spin is not parallel to the other
sping the local magnetization in its surrounding is lowered, The correlations between the fixed
spin and the local magnetization will increase with distance r /8/. In QCD <¥¥> acts as an
order parameter for the chiral symmetry. It has a phase transition at the same Pcrit as the gluon
field. For P < Perit the chiral symmetry is broken spontaneously. The chiral condensate is
unequal zero because there is an ordering in the system with regard of fermionic vacuum
fluctuations.This becomes plausible if one imagines that the virtual quark-antiquark pair
creation leads to the formation of colored dipoles pointing in a certain direction, Now the
external static quark disturbes this ordering becnuse it induces a repolarization of the virtuai
quark-antiquark pairs towards the charge, Thus the chiral condensate as an order parameter
has a smaller value near the quark,

This leads to another explanation interpreting <¥'¥> as occupation number density. Near
the quark source it is energetically disadvantageous to create polarized virtual fermionic palrs
having a finite mass. Therefore, the system tries to become colorless by means of virtual
gluons which are massless, This gluons carry the color charge away from the statlc quark and
will end in virtual quark-antiquark pairs outside of the near surrounding of the quark.
CONCLUSION '

To summarize we found the remarkable result that the vacuum polarization seems to
decrease in the vicinity of an external quark source compared to vacuum fluctuations of the
quark sea in empty space. At a first sight this might seem to be in disagreement with the idea
of the running coupling constant but one should bear in mind that in a system with static
quarks the momentum transfer is zero.

OUTLOOK

As next work one should try to study this feature by strong coupling expansion. From our
data we have a hint that the chiral condensate can be written as a function of L /3/. It would be
also very desirable to distinguish in the virtual quark-antiquark production the parts stemming

- from virtual quarks and antiquarks, respectively. To get further information we are going to
extend our calculations for different dynamical quark masses and different B-values,
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eventually also in the deconfinement region, In a recently started work we are trying to
investigate a static quark-antiquark with regard of polarization effects from dynamical quarks,
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Fext-next-to-leading 0 (ol g’
QUD corrections to G, .(e"e”—= hadrons):
analytiocal caloulations and estimation of the
parameter AFx .

8.G.0Gorishny
Joint Institute for Nuclear Research, Dubna
A.L.Kataev, S.A-.Larin
Institute for Nuclear Research, Academy
of Soiences of the USSR, Mogoow

Abgtract.

We have calculated next-next-to-leading o( K, ) QCD
oorrection to @& tot(° e —m hadrons). Taking into account
this correction in the fit of the combined PETRA and PEP
data. at V@ = 34 GeV deoreases the value of Az
in twice.

1e Introduction

The prooess e'e™- annihilation into hadrons is one of
the most informative processes in elementary particle phy=
slcae. Both theoretical and experimental analysis of the be=
haviour of ite basic characteristic R(s)= O oy (670"~
hadrons) /G' (ete —’J« M ~) allows us to obtain important
information about the properties of hadrons and their oon-
ptituents i.e. quarks and gluons. In particular, the compa~-
rigon of the QUD prediction for R(s) with the experimental
data above the thresholds of J /4 -system allowed to obser-
ve before the experimental discovery of the b=-quark that it
is highly desirable to introduce in the theory the fifth he-
avy quark with the charge Q = - /3 (1]

The zeroth order perturbation theory (PT) QCD predioti~
on R(s)aBZQf is in qualitative agneement with experiment.
However, in order to perform quantitative examination of the
Q0D theoretical prediction it is necessary to take into aoc-
count the effects of higher PT corrections. The, Q0D expres-
sion for R(s) up to next-to-leading order O(eoly ) has been
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calculated in £2]. In this work we present the resulte of
caloulations of the next-next-to-leading O(o{g>) corrections
to R(e) and obtain the new egtimates of the parametsr /\;;3'
based on the analysis of the combined PETRA and PEP results
L3l.

2« The outline of calculations.

Throughout this work we shall follow the calculational -
program outlined in refs.[ 4,5 and use d*ntroduced there
notations. In cource of calculations it is convenient to use
the quantity = acs
D(Q"):l - %Q‘ad-d\nCd')E Q'. ,S.CRS—-;-é-')"dS (2'1)
2 e e .
where Q is the emcledian transfered momentum and ﬂ(&) is
the hadronic vacuum polarization function. It can be tshown3
that in order to calculate the next-next-to-leading 0( o«
correctione to the D-function 1t is necessary to use the
iwo-loop approximation of the bare charge Qg= (‘#)n .
to calculate the three-~loop approximation of the bare expres~
sion n., (“a) of the hadronic vacuum polarization function
and find the four-loop aepproximation of the photon wave func-
tion renormalization constant Zg‘ At this level over 100diag-
rams contribute to Z.« All the calculations have been done
within the dimensional regularization in D=4-2g space-~-ti~-
me dimensions and the minimal subtractions (MS) scheme. The
application of methods of infrared rearrangement [[6,5] ana
the infrared R" - operation [7,'] allows us to reduce the cal-
culation of the four-loop approximation of Z3 to the evalua~-
tioa of the three-loop massless propogator-type integrals up
to O( g°) ~terms. These integrals as well as the three-~loop
approximation of ns( Qg ) have been calculated with the help
of the integration by parts algorithm [8] . Some basic sca-
lar integrals used in the calculations has been calculated
with the help of the Gegenbgsuer polynomlal x-~space technicue
[5]. The methods of calculations lhiave been briefly discussed
in the review [9] . All analytical calculations have been do-
ne with the help of the SCHOONSCHIP program {101 The whole
running time at the CDC=6500 computer totals aboit 200 hours.

)
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3. The byproduct of calculationg: the four-
loop approximation for the P-function in QED.

A1l calculations have been done at two stages. At the
first staze we have found the countetermz of 58 diagrams
which contribute to Z3 in QED. As the resalt the four-loodp
approximations of the P-function of QED in the MS and MOM
(momentum subtractions) schemes have been calculated [11].
For QED with N=1 types of fermlons the result for P-functi-
on in the MS-scheme reads:

4
&2 2 26l -ﬁm(d)' 365 """’sgﬁrr);" (3:1)
1
46::?;03 + 18 8?(3) 3200 ?“‘))('4#‘)

After the transformation of (3. 1) to the MON~acheme, defi-
ned by performing subtractions in the photon propogator at
the encledian point q == A2 , the last two coefficients of
the p-function change thelr values. The correspondent app-
roximation of the Gell-=Mann-Low function of QED takes the
form

(et Haﬂ) ﬁﬂou ("(Non) = ﬁf‘zNS) = (3.2)
= (@) 4GH)~ ‘-’-“w)- 202)(£Y’,

4
“ (49:33 « €£5€7(5)-~ 10330?(3))(__#)

where of = olypy - Using the numerical values of Riemann
¢ ~functions  ¢(3)=1+20205+++, $(5)=1.03692++. and pre-
genting the resulte (3.1), (3.2) in the numerical form we
obtain
Pas (1) = 0.0833( -é) + 0. oszs-(z'a)’-o ozss(‘*)q-
+ 4. 2.02.5'(1#)’" (3¢3)
Y ()= 0.0833 (—rr) + 0.0625 (%) + 0. 0124 (5:Y%+

+4.1882 (&
Notice positivety and relatively large numerical values of

both four-loop coefficients. Thus in the region of applica=
tion of PT there are no indications on the existance of
ultraviolet fixed point in QiD. Other discussions of the
obtained regults can be found in L1137,
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4o
4+ _The 0CD regultge
At the second stage of the calculations the QCD result
for the D=function has been obtained. However, to compare
the theoretical results obtained in the eucledian region
Q 2} 0 it is necessary to transform them into the physical
region of energies by means of the following representations

)
th Do)
Ritsy= 55 jdG oy (4+1)

~s~iE
It can be ghown that taking into account of egs(4¢1) leads to

the appearance of the additional scheme independant correc-
tions in the PI order we are interested in:
+h 2 : 3 4
sa)=3 a’*+ O¢a’)
Rts)= Disa) ;&ez,#-&—s (402)
where aﬂﬁ and o 1s the firat coefficient of the
QCD. P-function which has been calculated in [12] in the KS-
soheme at the three~loop levels
4 g2 el 2 30 = = o BoQ% q -
FOERE= g Pl Lo

= -j&aa (1+c, a+c,_a Y
Pl,:(“..g:.j).i. ﬁ,=(402- :"_55.)

P (28574 L GEe L 4:3)

The additional contribution to R(s) in eq. (4.2) appears af-
ter taking into account the effects of a.nalytical continug-
tion in the terms !lr'(a/‘/vj-» (51(5{/9‘)-&517‘) + Thease effects
have been discvesed earlier in the case of e’e —wannihilation
[73,14] and 7 (T)* & — hadrons process [15] - The analo-
gous correction also appeared in calculations of the next-next
~to-leading order corrections to the total hadronic decay
width of the heavy Higgs boson of the standard theory [161.

As well as in the case [[16] taking into account of the J'p?
terms decreaes the numerical value of the analysed PT coeffi-
clents. Thus we will not redefine the sxpansion parameter is
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the space-~lyke region in contraat to the proposals of refs.
[13,141.

Solving renormalization group equation we obtain the
following analytical expr@smion for R(s) in the ¥S-acheme
in QGD:

%y = 3ZQp { 4+8+[C B2~ 1367)~ (L2~ 2w)f T L 57
+E LJSDSBSI 4:.;1; 2 B’.',ZMZO {U‘J) -
+ (S4ZU - AERE gy thooy oy o ( 482 falbyyy)
ol (BT N9y 5‘] At~ (Ee) C“" #2000\ 73 (4:4)
In the numerical form eqe. (4.4) reads:
R g=3=qf {4+ A (4. 986~ 0.050) T2
+ (70.985~1.200f~ 2 00543} - (@) 0.890 &

The last term, which does not appear in the previous orders
of PT appears from the QCD analogs of the QED light=-by=-ligt
abe

(4+5)

diagrams with SU (N ) = group factors proportional to d
d°b° and is scheme independant. However, other cosfficients
do depend on the subtraction scheme used. We have obtained
the results in the MS-scheme and the (& -scheme [[4,5]
which is very convenient modification of the MS-acheme-.
The results ghows that as well as in the case of other
physical quantities (see e.g.[6,17]) in the & =acheme
the values of the scheme-dependant coefficients are smal-
ler. The transformation toc the MOM~scheme 1s not so atra-
ightformand. However, the corresponding result can be in
principal obtained after ueing the information about the
third coefficient of the p-function in the MOk~scheme [18,
19].

' 5. Digcussions of the results and determination

of the - eter .

We have obtained that the coeffioients of the O(E°)

corrections to R(s) are large in the & , S and MS-sche-
wmes. Thus the question arises: at which energies is it
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necessary to involve O(EB)-terms to determine the correct
value of the parameter Aﬁg from the fit of experimental
data for R(s)? Indeed, it is known that PT geries of quantum
field theory are asymptotic ones, see e.ge the reviews [2Q].
In QCD they have gign constant character in contrast with e.ge.
g‘(‘-theory and QED. Thus, they should be trancated in some
way for correct comparison with experiment. However, it would
be very strange if asymptotic character of PT geries would
begin to manifest itgself at the level of the next-next-to-
leading corrections. Indeed at the model g‘f’" theory the
asymptotic n! growth has not been observed even at the five~
loop level [21]. Therefore we will include the calculated
corrections in the analysis of the experimental data.

¥e shall use the data obtained at PETRA and PEP colli=-
ders far above the thresholda of production of b-quarks. The
- recent analysis of these data by means of the method RQ: -
= Rth(s) with taking into account the O(T 2) corrections in
the MS-scheme gives [3] ? 0?; (34%Gev2) = 0.169 % 0.025,

e = § 200542 0.008 wherindex nl wmeany that
the next~to-leading order corrections have been taken into
account.

Let us now take into account the calculated next-next—
to-leading corrections and find the corresponding value of
the parameter /\,T;' « The analysis will be made by two diffe-
rent ways: (I) the direct analysis in the MS-scheme and (II)
the analysis in the framework of the invariant charges appro-
ach [227] known in the lkeatrature as the fastest appearent
convergence (PAC) criterion (this approach has been elso dis-
cussed. in 23] ).V&will call it"the effective scheme approach".
Substituting f=5 into eq. (4.5) and introducing the index
nnl to indicate the next-next-to-leading PT order and index.
. eff for the effective scheme results we obtain:

R = 3EGTen B+ OB 4GB+ T (5o0)
= 3,%@’; CA+a ] ‘
Tis L4l oo 64 838
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From the result for ot_, we have that "eﬁ*%efi-rﬂqhd-

= 0.058 £ 0.009. Solving now numerically the equation

q'cﬁa g4 we obtain the new corrected value of
+ o.005™

Is(342(}ev2) in the ﬁ-schem: Ej‘neao,o4g~,.°os
A5 (34 eevt)= 01512 g:g{g . The corresponding numerical
form of the PT series for R(s) in the ¥S~scheme reads:
us 5 2 + 0,053 +0.00§ + O.010% --
R (‘)”32Q§{1+ D.048 +0D,003 * D.LOT v } (5.2)
. du + 0.042 +0.002 + 0.005++ '

Thus at V& = 34 GeV the contributions of the next-next=-to=-
leading order correction is 2.5 times as large as the pre-~
vious O(& 2) -~ corrections..

There are several methods of extracting the estimates
of AM—S from the numerical values of a « The first of
them is based on the exact solution of RG equation (4.3).
Let us introduce the following designations:

q’nefa)=;:;*£""€n ca

Pe :t-rc.z (5.3)
ol - < +C19)

hne(q 2) = ‘ﬂe() eh d+cia+czat
ZC'L Cr

[autg 42289 _ paate £

where A =4C -c12.

In the next~to-leading order the solutions of (4.3) in
the MS - and effective mchemes are:

'éh ~ (q ‘f > 40.)
A;? U—"3469V h( he) hA‘#tﬁ"MGu rﬂj

The parameter Ahs ia connected with ‘_AEI and /T
by the following ways AB"’ Aﬁ? (C'(ﬁ) 2P
Nz = Ney expCri/pe)= Ay @prype) (cujpe) P .

Solving eqs. (5.4) we obtaln the the corregponding estima-
tes: '

eff
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(A )= s25"t0 tev (Ampe=$53"i5t her

5+5a)
In order to take into acocount the next-next-to-leading PT

corrections both to R(s) and the p-function one should sol~
ve the following equations:

= Mﬁ;}-‘"}S*)

_S_ = Y —s—-
o A lﬁ-.i"luv Foe(Fme,c); Tay

VSn3¢cev
O
where Ca can he found from the property that the quanti-
ty P:=C;,+ n-Gn- r‘.‘ is the scheme invariant [[24-

269 + In the effective scheme ryer, ® 0, thus we have
that ¢, = P, Hence we have from (5.6) in the MS-scheme
directly and the effective scheme approaches:

o+ 139

(Aﬁ)lmea 326"?‘09, (1% (A Ns)‘ 224/'~ nt MeV (547 )

. Let us now £ind the values of Am in the framework of
the second method which presupposes the expansiong of the
golution of RG equation (4.3) in powers of A/Ea(S/A%) .
The corresponding represantations for the running coupling
constants can be expressed in terms of the following functi-

one - o bHbisn)
JB @.cs/A‘J Fe fn‘(S/A‘) (5.8)

+ Ca~C,
In the next-to-leading PT order we have q, A eillﬂ,(; (AHS){\T‘?(

aé)a = "PAE CAC.Ff) lﬂ?v-?‘lGel/ from which we obta-
in the following estimates

— g6 (

(Am)he‘*‘ é00 ~320 MeV Aﬁ?) °“o—zﬁ MeV (5.9)
After using the information about the next-next-to-leading
order corrections we obtain q‘ e \PMC (Am’ C,_)

q,ﬂ ‘emf CA?#; Cz) , from which we obtain

Aef)
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(A MS)M e= = 325, +::: NeV/ (Aﬁ)mfz?‘” :;:f; Hey

(5.10)
Thus the values of /\#F do depend on both the method of

representing the solutions of RG equations and the ways of
extracting the numerical values of the M§ -parameters
Nevertheleas we arrive at the definite conclusion that taking
into account of the calculated O(a °) next-next-to-leading
corrections decreases the values of / Ms in twice. The nu-
merical results (5.7), (5.10) are in better agreement with
_the values of /&3 extracted from other processes L[277
then the results (5.5), (5.9). This better agrsement can in-
dicate that in the presently evailable region of energies
of PEP and TRISTAN the corrections calculated by us are ex-~
perimentally sensible and tils they should be included in

the procedures of analising e+e' data not only at the pre-
sent machines, but at the future ones, say LEP. I{ should be

noted that this interpretation presumes that both the unknown
o(z 4) corrections to R(s) and the next-next~to-leading PT
corrections to otler observable physicel quantities are smgll.
Thus frow the point of view of studying the region of appli-
cability of the asymptotic PT predictions of as the whole

it is highly desirable (i) to decrease the experimental er-
rur of ete”~ data and (ii) to analyse the effects of the next-
-next-to~leading order corrections to other physical quantiti-
es, say the Gross~Llewelyn-Smith sum rule for deep inelastic
lepton~-hadron scattering where the next-to-leading correcti—
ons have been calculated in ref. [ 24].

6. Conclusion.

We have calculated the next-next-to-leading O(e{ 93)
QCD corrections to R(a) = & 4.4 (e*e™> hadrons)/0 (e*e”
3[""}!')- The obtained corrections are large e.g. in the
MS-scheme at \/§=34 GeV +they are over two times lerger.
then the previous next=t{o=leading correction. Of course it
is possible that the asymptotic nature of the PP series ma-
nifests itself gt the level of the next-nextQto-leading cor=—
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reotiona. Howaver, it can not be ruled out that some cont-
ributions of the lower PT oorrectiona are accidentally small.
That is why we include the O(c( ) oorreotions in the proce~
dure of fitting PEP and PETRA data- As the result taking
into account of theme corrections drastically (in twice)
deoreases the value of /\ﬁR + For example, for the fit in
the M3~soheme we obtain Am~3262$8; MeV which is in bet
ter agreement with the estimates of the same parameter obtai-
ned in other processes.
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INFLUENCE OF STRONG INTERACTIONS ON ELECTROMAGNETIC MASS
DIFFERENCES

F. Schéberl

Institut fiir Theoretische Physik der Universitit Wien
Boltzmanngasse 5 A-1090 Wien

Abstract

Cualeulating the electromagnelic mass differences of mesons in the framework of a non-
relativistic potential model we find in contrast to ezperiment that B® — B+ < 0. The
reason is that the influence of the my —m, maas difference to the strong interaction can
be larger than the electromagnetic effect. In other words, the qf - bound slate containing
the lighter quark may be heavier than the q§ bound state conlaining the heavier quark.
A generl condition for this problem is given.

The success of nonrelativistic potential models, being guided by QCD is remarkable,
even in the case where a nonrelativistic treatment is questionable (for a discussion of
potential models and various references see e.g. Ref.[1,2,3]). However nonrelativistic
potential models have also been applied to light quark-bound-states and the predicted
spectrum and decay properties of hadrons are in rather good agreement with experiment
{3,4,5,6]. One of the latter potential models has also been used for the calculation of the
quark core contribution to the electric polarizability of hadrons [7]. Other interesting .
quantities are the clectromagnetic mass differences of hadrons which have been discussed
from different point of views in the litcrature (for a list of references see [6]), 1 will use
here an explicit nonrelativistic potential model to calculate the electromagnetic mass
differences of mesons. One finds in contrast to experiment, that B? — B+ < 0. Since the
B? contains the heavier quark {the d-quark) compared to the B* (which contains the u-
quark) this result looks rather peculiar, because the contribution of the electromagnetic
interaction is smaller than the mg4 - m, mass difference. 1 will discuss this effect in some
detail later, First let me review the potential model under consideration [6],

This model should, as usually, be guided by QCD. It should have a Coulomb like
part for the short-range behaviour and a confinement part for the lung-range behaviour.
Concerning the light mesons a perturbative treatment of the spin-spin interaction is not
allowed since the spin-spin interaction is of the same order of magnitude as the mass
itgelf. On the other hand the spin-spin interaction arising from the Coulomb interaction
is proportional to the §-function which cannot be treated nonperturbatively. A nonper-
turbative treatment of the é- function would lead to an unbounded Hamiltonian. One
should note that the § -function appearing in the Breit-Fermi Hamiltonian is simply
an approximation, resulting from the nourelativistic reduction. One c'in overcome this
problem by regularizing the Coulomb potential which physically is justified by the fact,
that at very short distances various relativistic effects such as quark pair creation arise,
and the original Coulomb like behaviour will be destorted.

In addition, the physical justification of a nonrelativistic treatment of light quark-
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bound states, is questionable. These bound states should be highly relativistic. However
Rosensteln (8] argues that the Schrddinger equation with a linear potential and the zero-
mass Klein-Gordon equation with a quadratic potential transform to each other by a
duality transformation. The first equation describes the main features of the potential
models, while the second describes the main features of the spectra of the MIT bag-
model. This is the reason that one obtains the same spectra even for light hadrons from
the two very different models. From this point of view the nonrelativistic ireatment of
light hadrons in the framework of potential models seem to be justified.

Having all this in mind we use a phenomenological potential with a Coulomb short-
range behaviour regularized in the simplest passible way plus a confinement part.

4 ag
3 (r+ ro)"
Usually the Coulombic part is purly of vector type while the confinement part is purely

of scalar type. We allow bath parts to have vector as well as a scalar contributions,
Thus we split the potential into two purtu, a vector part

4
3(r+r »

——ta:r?+V (1)

W=- (l=c)+a:rP. (l—d) 2)

and a scalar part

V=~ cet+arP.d (3)

a5
(r+ 7o)
with 7o = ky(2p)~" and V = Vy + V5.

All parameters are obtained by solving the Schradinger equation numerically (9] and
performing a x? best fit. The obtained parameters and quark masses are:

ag = 0.740, n = 1.107, c = 0.421
a = 0.222GeV1¥, p= 0910, d =0.752 _
Vo = 0.856GeV, k; =0.617, ky = 0.040 4)
m, = 0.340GeV, m, =0.553GeV, m = 1.826GeV :
= 5.195GeV

Using these parameters we have calculated the meson spectrum for L =0 and L #0
heavy and light quark-bound-states. Also the leptonic decay width of light and heavy
vector mesons have been calculated and are in very good agreement with experiment.
Since I restrict myself to electromagnetic mass differences I do not give the above pre-
dictions here (these predictions can be found in Ref. (6])

The electromagnetic interaction in which we are interested here is given by the Breit-
Fermi-Hamiltonian and reads

Vi = Ql Qz

21ra, 0, P
3 mum,

aQ:— &(r) (6)

where Q;,Q; are the quark charges and a is Sommerfeld’s feinstructure constant.
In Eq. 5 we have omitted the Darwin term since its contribution is negligible, at
least in our potential model. The expectation value of Eq. 5 is given by

RO}

L Vem >0-=a < Q1@: > {< ! >+
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1

ﬁmlm,

<Vllm>l‘=a<QlQ1>{<%>-

IR{0)"} (6)

< Q1Q; > is e.g. for #*,2/9 and for x% —5/18."
In the neive nonrelativistic quark model the mass difference of e.g. K° and K* would
be

O gt a2 1 1 :}
K® - K* = mq~my - 3 {< + >+ g 1RO )
Experimentally we know that K°® — K* is positive, thus from Eq. 7 onc sees that my
is larger than m,. However Eq. 7 is too naive since the contribution of the strong
interaction to the mass difference is important. In fact, it turns out that the latier may
be larger than the contribution of the clectromagnetic mass difference itself. .
Thus we split the mass difference into two parts, one part AM; originating from the
strong (gluonic) interaction and one part AM.,, originating from the elctromagnetic
interaction Eq. 5. The total mass difference is then given by

AMyp = AMs + AMum (8)

A Mg is the analog to A M, just replacing aQ;Q3/r in Eq.5 by our potential Eq.1 and
replacing in the second contribution aQ,Q16%(r) by the Laplacian of the potential V4
from Eq.2. Following our discussion that the § function is simply an approximation and
that, in fact, taking into account relativistic effects it would be a "smeared” function.
We assume that relativistic effects are incorporated if one replaces R(0) in Eq. 6 and
Eq. 7 by R(1/2p) i. e. the wave function at the Compton wave length with x the
reduced quark mass.
With the wave function obtained from our potential model and from Eq. 7 we find
the quark mass diflerence
my —my = 6MeV (9)

We now choose the quark masses to be
my = 0.343 GeV, m, = 0.337 GeV (10)

and calculate the mass differences A Mg and AM,;,, which are displayed and compared
with other predictions in Table 1.

Particle AMs | AMepn | AMyot | AMeep Rel.[10] | Ref.[11] | Ref.[12]
7f -0 [0 3.1 31 4.6043+0.0037 | 3.2 - 1.61
pt—p® |0, |11 11 |-03£2.2 1.6 06 |0.94
K°- K* |[6.0 -1.8 42 4.05 £0.07 4.07 6.0 1.62
K- K*+11.0 -0.8 0.2 6.7 +:1.2 0.27 2.7 1.11
Dt -D° 0.7 2.9 3.6 4.7 0.3 1.37 6.0 -

D+ -Dp®|~0. |20 2.0 2.9 +1.3 0.57 4.6 -

B° - B+ -0.2 |-1.3 -1.5 4.0 £3.4 - - -
B°—p* |.04 |-11 -1.5 - - - -

Table 1. Comparison of the predicted electromagnetic mass differences with
experiment and other predictions. The units are MeV., AMj is the contribution of the
strong interaction and AM,y,, the contribution of the electromagnetic interaction.

i
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As one can see most of the results obtained are similar to the results obtained by
Oelmaster [10) and that in fact the contribution of the strong interaction is larger than’
the contribution of the electromagnetic interaction itself, eccept for x and p where the
strong interaction contribution cancels because of the same content of u and d quarks
n the charged and neutral particle.

In the case of the B meson the strong interaction even overcompensates the my—m,
mass difference. Thia looks rather peculinr{10,13] but in fact this effect appears, and
1epends strongly on the detailed form of the potential and its parameters. This is casily
demonsirated using a simple example.

Let us assume a potential of the fgrm V(r) = ar. We know from the scaling behaviour
of the Schrédinger equation that the bound state energy is given by

a 1/3
E = (2“) €+ m+my (11)

where ¢ are the zeros of the Airy function. Introducing the ratio of the masses A =
ny/my, one obtains
1 A+41a?

1/3
E= (;T,T?) € +ma(A+1) 12)

‘The equnhon for the cnhcnl A; (where the derivative of the energy with respect to
A it zero) is

M- (5) g = “9)

In order to treat this problem more generally, we shall deal with the derivative
}E/8m, and see if it is negative or not [16]. First let us make clear about our notations
and foolings. We are dealing with the following equation:

a
(—-2-‘;+V+m,+m;)\ll =Ev¥ < (14)
where u is the reduced mass, V is the spherical symmetric potential which does not
lepend on the mass, E is the energy eigenvalue and ¥ the normalized wave function
-espectively, We rewrite Eq.14 to
A -
- ¥=EV¥
( oM +V) (15)
where E = E — my — m; . By definition one gets the following relation

OE dE m,’

T TR R A )
Tollowing the way of dcnvmg the Feynman-Hellmann theorem(14,15], we get
_dE(W) _ 1 x5y oy
Ll LG8, D (17)

vhere

B) = @), O) = C@ ), O) = nl) = (2
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Now we are ready to state our result. Let the potential satisfy the following conditjon
(C): rdV/dr has a global positive minimum Cy, then

- (18)

d
on BE _ Co ma__ 1

Bk Ot S N - 11
8m1 - 2 my m +m; + (19)
As one can see from inequality 19, there are always masses which make the derivative
8F/8m; negative.
Examples of potentials which satisfy!condition (C) are shown below:
1)
a k
V(r) =~ +br (20)

a>0, b>0
S 0<l<?2, k>0

2)
V(r) =alogr +b, a>0 (21)
In this case the right hand side of Eq.19 is equal to the left hand side. That is
8FE am; 1

— = em——— 4]
.Om; 2m,m|+mg+

i.e. @ = Cy.

At this point I would like to mention thai a number of inequalities and equalities
among the masses of ground-state hadrons in the framework of potential models have
been derived by D.B. Lichtenberg [17].

Summerizing one finds that considering energy eigenvalues F(m,,m;) with respect
to two particles whose masses are my, m3, respectively, one would expect that if M > m
then E(M,m3) > E(m,m;), but actually the opposite can happen if one solves the
Schrodinger equation. In other words the derivative 8E/8m, can be negative. This
means, the quark bound state containing the lighter quark can be heavier than the
quarkbound state containing the heavier quark. Exactly this happens in our potential

model, the strong interaction overcompensates the myq — m, mass difference and thus
B° — B+ <.
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CONDENSATICN OF H.DROLIC MATTERT

Ludwik Turko

Institute of Theoretical Fhysics
University of wroclaw, u. Cybulskiego 36
50-205 Wroclaw, Poland

ABSTRACT: A particle number oconsexrvation should be taken in-
to account even if other chemical potenticls related to the
" internal symmetries werc introduced. The condensation of
pions is taken as an example.

It 1s believed that in the case of relativistioc particles
with internal symmetry one should not introduced a chemical
potential related to a particle number oonservation [1,2,3].
A sinple example of noninteracting pions will show that this
is not the cage. Let us congider an ideal gas of plons. We
write the partition function as [1]

Mo, R Y (v | .-_q' --(5(~‘I~f)~
1=V § g4~ EE T p eyl S04 fog i )]

The first term corresponds to m*, the seoond one to ¥° and
the last one to n-. In the case of pions the isospin oonser-
vation is equivalent to the charge conservation.

Dengities of pions are given by

. - S 4
/28/ ¢ x*y = g(%:_,sm
2/ ey - Ok
(TT 72 s g(‘lu,;"w
<y s (&
(”-“)5 E;\:;E(&(Qi-p-)] 1

;fﬁork supported by the goverment research project CFBP
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/20/
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In the uncondensed phase |ml¢m @and the oondensation ocorre-
sponds to the values u = tm
We have for the charge density

" a’}n 4 - ___:1_____ ]

13/ ¢ 4> = &Hb [_""e’p(_,._":‘",-d LM
We can notice from the Eqs. /2a,b,0/ the exceptional situe-
tion of x°. The corresponding density is a function of a tem=
perature and we would have an almost diminishing density of
n° except for the temperature of the order 1012 K, This pa=-
tology does not appear if we consider only e doublet of par-
ticles or we restrict ourselves o the charge density [2,3).
In the theory of free particles there is no physical reason
for such an exceptional behaviour of neutral pions, Let us
iutroduce also a gubsidlary chemical potential related to
the conservation of the globsl number of pions. This will
provide a conelstent treatment of a condensation phenomena
and it preserves the isotopio symmetry because a common po-
tential is introduced for all kinds of pions.

The improved partition: function has & form

+ Log (4= A4 Log (4. gALsresr el
where M is a chemical potential related to the charge
conservetion
¢l & chemical potential releted to the particle
number conservation

The physical range of ohemical potentials is given by the
inequalitiea

150 Rt P S Moam g <

There ere two condengsation lineg

16/ Myt = ' e P = |
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It is immediately seen that the gtate equations obtained
from the partition functions /1/ and /4/ are different.
The dengities of pions have a form

» S, .4
e <= Y e R FA_ 4

4 A
LZE)', Q(’J(Q 'j‘z)_ i

my <wer =

Mo/, . - ¢ dk A
<0 7 S(Z‘DB Q(b(gf};‘-)at)_/i

The charge density is
/o <g% =< ¥> <K
Expanding the Egs. /7,8/ we get from the density of pions

/9/ nl )
no= T E L L

il
end for the charge density ¥ Qf’ /‘?-)“'J
)

S Alpar ) B agea,)
/1°/<$>-’-'—;‘ %7Ktmﬁ JLaPgrarpa) _ B epa]

where K2 is a modified Begsel funotion.

In the low temperature limit Jmy» 4 we have
N 3 ':?| 4 (5“‘()*47‘11 UV\.) (5&.()4.1 \M.)
/ryy <my= ("“) 7_, P

ZuP
i e (n (/"Z')“A‘M")j

- 3’7_“\ A {-’;n( " 1."") (5,“( - =
<a,) -(E[:) 2, L [ lalk ]

M=

2/
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Let us consider a behaviour of the system on the ocondense~
tion line pu ¢+t w Mo

We obtain a eet of two equations for the oritiocal tempera~
ture

113/ & my =-(zz;_;)’ m; ,,%4 [;1 Pt («../.,) —2{4:&(%-' "J

1{‘ -z(;ﬂtm-/bz)
nas <97 3 (”P) m_m. L1-e ]
We can directly obtam tho oritical temperaturs only in the
oase of zeroth net baokground charge what corresponds to
the velue usm« Then

?
ns/ T --—- <” ,,)]

<

We have in general a nontrivial dependence on u,,i.e, the
oritical t{empsrature will depend on the charge densiiy and
on the plons density /or on the pressure/.

Using the asymptotio formula for x = O*

20 -nn
S = [Tx + OO
pes 7 Lo = 5(3) - 21
we can approximately solve the kqs./13,14/ for ;u,mm

Such a choice of parameters gives {nd> » <> = 0%,
We have after simple algebraic manipuletions the results

/17/ T - 2» [{w) L A*G <$> ]1/3
()
Conoluding, wé& oan say that the subsldiary ohemical potentiasl:
a/ 1s needed to unify particlas belonging to the same multi-
plet

b/ modifies the equation of state
o/ modifies properties of the condensate
liore details will be given in the subsequent publication.
REFERENCES: (1] L. Turko Phys.lett. 104B, 153, /1981/

[2) J.I. Kapusta P.R. D24, 426, /1981/

[3] HeE, Haber and H.A., Weldon Phys.Rev.lett, 46

1497, /1981/
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INFRARED ASYMPTOTICS OF THE QUARK PROPAGATOR IN GAUGE THEORIES
ZOLTAN FODOR

INSTITUTE FOR THEORETICAL PHYSICS
ROLAND EOTVOS UNIVERSITY, BUDAPEGT

The well known problem of quark confinement is, why do not
we see free quarks in final states. The question is rather
oritical, because the quarks behave approximately like free
particles and their masses are pretty small.

Thé absolute confinement of gquarks can manifest itself in
the lack of singularities of the quark propagator in the

infrared limit.

As it is well-known in QED the fermion propagator is:

Bj(r)=oonst.;1f:§f§: (1+p2/m?)-* » (1)
where
p=(3-a)d/2n ; p? near nt ,» (2)
and
Dyy= —:HL - (1-a)—§L"¥1 . (3)
k*-1« (k*-1¢q)

87(p) has a branoh point in the infrared region.
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In QCD the problem is far more oomplicated. If we use for
the gluon propagator a k~* term,then it gives a non-
confininig quark propagator and a nonconfining potential
proportional to Jxi~!, while for a gluon propagator

Dp*k~* we will get a confining statioc potential in x spaoce,
namely V(x)~!x!. That is the famous linearly confining
potential, The case of Dp~k~* has been studied solving the
Dyson-8chwinger equations

1=(-m)8" (p)+103 4 75%71 Jadkr, DpV(K)A(P-K,p) , (4)

where

Ay(p-k,p)®8° (p-k)Fy(p-k,p)8’ (D) . (B)

Most of the considerations use an approximation, namely on
"the one hana one can determine Iy, using 8°(k) and the Ward
identity, but on the other hand they negleot the transverse
part of M,, In various gauges and approximations there have
been shown that the quark prépagator is vaniuhés on the mase
shell (e.g.1-5] while in other approaches the quark propagator
is the free one in the infrared region [6,7]. All these
considerations have not said anything about the case when
Dkl , vut Led.

A sipilar treatement is a resummation of quark lines with
many dreased gluon propagators, both ends of which are
attached to the quark line. This caloulation has been done
for L4 in this paper, and shown that for L33 the mass shell
singularities of the qﬁark propagator are cancelled. These
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values of L correspond to confining s.atic potentials.

We are working in axial gauges n2#0 where ghost loops are
absent. In the infrared limit effeots of Quark loops are
neglected. The quark propagator oan be expressed by
functional derivatives in the following form

sp(x-v)=N[G(x,y 1+ $512(3)]3=¢ . (8)
where
Z(J)=exp[ifd‘xhl(% ] -
exp [-3]a%y [d4yd . (x)85Y, (x-¥) T4y (¥) ] ,
and

N 1=2(J) | 5=¢ (8

The Lagrangian Lj oontains the self-courlings of gluons,
J4(a) is an external colour ourrent, G2J,(x-v) 18 the free
gloun propagator in axial gauge, and G(x,VI|A) means the
Green’s funotion of the quark moving in the external gluon
field A. The dressed gluon Green’s functions are given by
the functional derivatives of Z(J) at J=0 multiplied by N.
The Green’s funotion G(x,ylA) satisfies the equation

1y, {o8-1g3%a8% (x)}-m]G(x,y 18) = 5%(x-¥) , (9)
»ioy

m means the mass parameter of the quark, 28 is the colour
matrix. Let us introduce the funotional H(x,ylA) by the
definition '
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[1vu188-1g3 A2 (x) 4m]H(x,y 1A)=G(x, ¥ 1A) . (10)

The Fourier transform of H(x,ylA), ﬁ(p.qlA) determines the
quark propagator in momentum aspace as follows

(27)*8p(p) 84(p-q)=8l+811
8l=(v,p*+m) [H(p,a18)N2(3) ] 529 , (11)
sII=§Tg;77v”aa[ja“q'ia”(q')ﬁ(p-q'.qlA)NZ(J)] ,
here A%2*(q°) is the Fourier transform of A%¥*(x).

Following the fifth parameter method of Fock we represent
fi(p,qla) as the integral

fi(p.a1a)=-1[avi(p,q; via)elV(PP-mP+ic) , (12)

where the new functional obeys the normalisation

U(p,q;01A)=(2n)%8%p-q) . (13)

Substituting (12) into the definition equation of ﬁ. using
(13), leads to the definition equation of U(p,q;vIiA). For
the infrared limit one could get

1450(p,a; vIA)+g*2p*AR(2Pv)Up,q; v14) =0 . (14)

(14) has the usual time ordered solution wich, making use of
(11), (12) and (13) yvields
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8lz-(2m) *154(p-q) (V0" +n)

‘l‘dVQIV(P’-I)"-l-i €) [1+n§1 ( 1‘)n1§11a1p”1 (15)

v v, _
fodV,...Iond%n<TA::(2pv‘)...A::(ZPVn))o] ,

sII=-3& fa‘x»*13eiX(P-q)

t_ 2 ® a; »
Javelv(p*-m*rin) [aaaix)yos £ apm B a%p™ (10
\'4 \'4 -1

Javse . J) avacTadong zev,) . AR (zEVY O]

Now we calculate (15) and (16) in esuch an approximation
where glouns starting from the quark line are absorbed by
the same line corresponding to keeping the gluon propagator
in the dressed gluon Green’s funotions in (15),(16). /This
is the only possibility in QED/ The summation of the
remaining colour factor is extremely complicated even for
SU(2) gauge group in case of arbitrary L, therefore ,we
confine ourselves to an Abelian gauge group. Hence

TZ}Tafd‘qSI=-1(vﬁp”+m)f:hv exp[iv(p*-m*+i¢)

v v (17)
"182‘rodv‘~ro‘dvzf(v"v3)] ’
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Tzhyefatasii= 1§zj‘:dVJ‘;v"p"G,.v( 2PV, )dv, exp[iv(pi-mi+ic)

v v (18)
'182I0dvafold”zf(”1‘vz)] '

where f£(v,-v,)zp,pe6%P(2p(v -v,}].

A similar type of exponential v dependence has been shown
with a dipole gluon fiel too [8].

In covarian and axial gauges one has for GEP(k) in d

dimensionns

“k"

-2 P P
ORI R (18)

kamp!lp:a o, P 2

P _ QU2 «p_
6ga= - %r-[s (kn) ' (km)®

(20
+ (942 (e*P- 1Y)

where 1Ggp(x-y)=(TA“(x)Ap(V))o: «=0 (1) corresponds to the
Landau (Feynmann) gauge. 2 is.a constant and § is a
parameter. The choice =0 i3 used in (7], 8=-1 reproduces
the usual axial gauge. Fourier transforming (19) and (20)
one can calculate f(v,-v,) in general covariant /f,/ and
axial /f,/ gauges. Substituting £, and f, into (15) and (16)
we get SI ana gII,

In the above approximation 5T and SII become entire
functions of p® in the infrared region if 2iL-d+2>0 in
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ocovariant and 3>L-d+2>0in axial gauges (d=4+¢). The upper
bounds come frome the existence of (17) and (18). For
inastance in covariant gauges the violation of 0<L-d ocan
induce both regular ( vanishing or nonvanishing) and
singular Sg depending on the value of L.

In covariant gauges at d»4 Sp=0 for L=3,4; otherwise for
4>L>2 8p is nonvanishing and regular.

For these values of d and L. the infrared eingularities'of
the quark propagator are cancelled, thue no quark can appear
asymptotically.

A static potential can be defined from the gluon propagator
- EEEZ by the equation

(@ - gb-2
V(x)={_ dxo[adke=ikx [ 27] (21)
One ran carry out the integrations and gets for d-L-~170

~gl-2,20(L/2= C(d/2=/2-1/2)Fd-
Vix) " r(L/2)r(d/2-L/2) uué‘E‘I (22)

and V(x) is proportional to ln(x) if d-L-1=0. Hence L-d+1
leads to confining astatic potential.

In four dimensions and in axial (covariant) gauges 5>L23
(4>L23) S§ ie regular in the infrared region so 1t
corrasponds to confining static potentials. In both gauges
for 3>L>2 (nonconfining static potentials) the singularities
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of 8¢ are verified to depend on the regularisation chosen.
For L=2 one obtains the well-known results of QED,
independently of the regularization. For L<2 8p is singular
and these L°'s lead to nonconfining potentials.
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CONFINEMENT AND QUARK STRUCTURE OF HADRONS

Bfimov G.Y. and Ivanov M.A4,

Joint Institute for Nuoclear Researoh, Dubna

I. Introduction

At present oonsiderable efforts are made to desoribe
physioal processes ocourring in the quark-oonfinement region
on the basis of the fundamental representations of QCD [1].
However, QCD is not diractly applicable to low-energy physics
due to the matnematical problems assoclated with a nonpertur-
bative theory. Therefore, various models and approaches
criginated from QCD are developed to obtaln qua.ntit.ative
results for definite low-energy processes by means of
different assumptions and hypotheses. An approach may bde
oonsidered quite reasonable if 1t contains a few free para-
meters and the hypotheses have a olear physical meaning.

We have developed { 2,31 the quark confinement model
(QCM) based on a definite representation about the hadroni-
zation and quark oonfinement. First, hadrons are treated as
colleoctive colourless exoitations of quark-gluon interactions,
Second, the quark oonfinement is realized as averaging over
the vacuum gluon fields for the quark diagrams. Strong, weak
and electromagnetio hadron interaoctions can be desoribed
in the QCM from a unique point of view. The preliminary cal-
culations ‘_2,3] of the meson and baxryon prooesses have shown
that the model reproduces the quark structurae of hadrons
quite correctly.

IXI. Hadronization and Confinement Hypotheses

A starting point of the QCM is the Lagrangian of interao-
tion between the hadron field H with quantum numbers Jf¢
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and the quark current QH
H 9n
£y =z H 8

For example,

_ M
H=M(PV,$ A) Bu=9, I N 7.
H = B (M A) QB = 4:“‘3_ 7,[, 7.[’_ ?d

where | >\ R are Dirac and Gell-Mann matrices.
The hadron interaction is desoribed by the S-matrix

(”[ VAc {“ID/" Z: }

The quark propagator has the following form

$ (x, X, By ) = <o \ T (96) 7(%)) /0) =
(m BVAA §(x~xz),

Here m is the quark mass, BVA ¢ 1s the vacuum gluon
fielgd, c[O}',Ac is the indefinite integration measure over
the 91uon f£ield.

The measure ‘{q’Ac 1s defined so as to provide the
quark confinement, that 1s the singularities of the S-matrix
elements which correspond to quarks in the observable hadron
spectrum must be absent.

The confinement ansatz is that the integration over
rVA ¢ can be changed by the 1nte_gra1

! /
do; -_-[a( _
‘ ‘ 2 ' ~ f,z m
=.4_(,(_".’2;L°. =4 “(‘%)ﬁ)»fe— (5 7——7)]
A, A, ) /\7‘_ A A, /\7 /\7 /\f
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where the parameter /\7 oharacteriges the confinement
range.

The confinement function is an entire analytical
function on the Z -plane which deoreases faster than any'
degree of Z .+ The analytioal structure of quark dlagrams
1s expressed in tems of a(z’; %\ and 5(32, m//\)

We used the following functions for the numerical
caloulations of physical quantities

2
a(u)=2.12 exp (-u"-1.24\ )

g(u): 2-exp \~ul+ 04 u).

The ccupling constants y are defined from the oom-
positeness condition by which the remormalization constant
of the hadron wave function is equal to gero

~/
ZH =1—3: 'TT (my) =),
Here ﬁ(P) is the hadron mass operator.

III, fThe Fundamental Meson Processes

Vie define our single free dimensional parameter A
by fitting the mailn meson decays? 7

1. T . This decay is defined by .,P,, that
is the basic parameter of the chiral theory.

2. ¢%scte”. This decay 1is defined by o
the basic parameter of the vector dominance model.

3. ﬂ"wax,d)—-ﬂ'a/ . These decays are defined by the
Mler anomaly. .

4, P-<T . This 1s the strong @ -meson decay.

In the QCM these decays are described by quark diagrams
(see Table I). The best agreement with experiment is
achieved for f\q = 480 MeV thet ocorresponds to

m, =/\ /a(0)= 226 MeV. One can see that there is a good
agreement with experimental date (4]
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Table I

g 2 0.0722 7C
Coupling constants \= ——) = 0,075 ¢

— i 0,0671 <
¢
I a exp
ECX g f; = 134 WeV 4 =132 MeV
P X . =
= fiy = °2° Yy = 018

m° exp?
X .
cap?
hnd T g oy, 22425 eVt (?,,,, 2,54 eVl
Y k !
P T expt .
{n ™ 52 Gonz = 6.1

It is essential that the QCH allows us to caloulate
not only integral characteristics, like decazy width, dut
also the momentum dependences of physical matrix elements.

For example, let us consider the elestromagnetic pion
form factor.

Tne corresponding dizgrams are shown below?

7

g
<+
€)) (2)

2 2 )
For the spacelike momenta ¢ =-@<0 the pion fom
factor F;l( Q?) can be Tepresented in the form
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Ry C )
L"_’) q 3(02/’\2)

2 m’
F-(Qz):F;mz(Q). m,
n F' () 2

enn %) m, x(

where

e (B) = fduézc)-:- = fdu/(u "‘1)11 /1‘-_']

P () = [dudu) 2 fmru VAT

z/y

14 | Fp(Q)
$
\
\
L
4 — Q%rsB?)
0 I 3 4 5 6 7 8 - 9 10

@ocd agreement with experimental data{ 5.} is observed.
IV. The Electromagnetic and Strong Nucleon Form Faotors

In paper { 3] we bave calculated electromagnetic and
strong nucleon form faotors., Static electromagnetlic characte-
ristios (magietioc moments, the ratio GA /@V ; etc.) and the
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strong meson-nucleon ooupling oconstants were oaloulated too.

The experimental data on elsotromagnetio nuocleon forme
faotors are desoribed quite aoourately by the empirical di=
pole formula, Our results are shown delow,

One oan see a qualitative agreement only with the dipole
formula for Q%€ 2 Gev?

The meson-nucleon form factors play & fundamental role for
for the desoription of NN-interaotion{d). They are imtroduced
phenomenologioally and are ohosen from the beet desoription
of the experimental NNosoattering data. In the QCM these
form faotors are caloulated in a standard manner without any
assumptions. Their behaviour is shown below, The obtained
results are in agreement with phenomenologiocal ourves [6].

In future we plan to oalculate the NN-soattering phase
shifts. ’
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The QCD sum rules, their validity and applicability

P. Kold#
Institue of Physics 8SAV, Prague

ABSTRACT

Modifications of the QCD sum rules are investigated.
It is shown that, for practical applications with the
preaent knowledge of condensates, the gtandard Borel sum
Tules are the moat convenient ones out of the modifications
considered.

1. Introduction

The method of the QUD sum rules is very successful in
applications to the low energy resonance parameters.
Nevertheless, there are some problems which prevent us from
obtaining the needed acouracy. In the case of light quark
systens the form of sum rules (SR) is given by the relation

jwm Im (U)ol = 'fw/«')ﬂ/r)m -

where ff(s) is the polarization‘&unction, w(s) is an
weight function end Op 1s the oircle with the redius R o
We choose w(s) to be en entire function in s. Retaining
R finite we get the Finite Energy Sum Rules (FESR) while
the limit R—® leads to the SR of Shitman, Vainstein
and Zaekharov [ 1]. The choice w(s)- T e - Y72
coincides with the Borel sum rules, In the following we

exactly

restrict ourselves to the case of Jo-meson generated by
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the current é.. '2‘( %"'%4 We mostly parametrige Im/7/S)
by the J:-tunotion and the step function:

h 176 = 7_»-.}{__&-:_3),}% (14 38)8(0-5) (o

where 8, is the starting point of the continuum.
The practical use of the QCD sum rules oan be difficult

due to the following facts:

(1) the'continuum contribution is known only at high ener-
gles;

(11) the condensates corresponding to higher-dimensional
operators are ,in general, unknown;

(i11) the effeotive parameter s_ 1s not directly

)
measurable quantity; the correst value of 9, is not
known;

(iv) the correot parametrizations of resonance and conti-

nuum is also unknown.

In practicel applications s, is considered as e
parameter and 8 consequence of (i) and (ii) is the
necesslity to introduce the fiducial intervalDJ in which
our ignorance of higher condensates and of continuum does
not change the predictions of SR within reesonable limits.
It was proposed in [2] that the fiducial interval should
be estimated directly in the qﬁantity to be extracted
from the SR. Thus, the praotical problens of QCD sum
rules are: the correct determination of the fiduciel in-
terval and the correct determination of Sg o Can any
modification of SR improve the situation?

The modification of the QCD sum rules can be under-
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stood as a choice of the weight function. We shall consider
three classes of the QCD sum rules for light quark systems.

2. Modifications of the QCD sum rules

a) The Geaussian sum rules.

It was proposod by Bertlmann et al.[3] to choose

P2
W (€~ r)- .e(?o/— .rf ) (3)
This choice of the weight tunction can, in principle,
gerve as a formulation of the local duelity.( 220 ). The
detailed 1n5p;ction of the corresponding sum rule shows
that the suppression of higher condensates is weaker in
comparison with the Borel sum rule.

b) The weight .f.unctions /

We (5 77%) = W (4)
were considered in [2]. The corresponding modification of
SR provides another formulation of local duelity ( k- ).
Note that the both approaches to local duality requires
the kmowledge of higher condensates.

The Borel sum rules represents the special case of
eqs (4) for k=1 and are the most suitable ones out of
the class (4) in practical applications. The reason is

the week suppression of higher condensates for k>1.

¢) Finite energy sum rules.

We shall define the FESR with nonpositive weight func-
tion by generalizing the approach of Kremer et el.[4]
(this approach is called as analytic continuation by dual-
ity ). We denote the condensate contributions as ‘,; (see [2]).
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The equation (1) can be rewritten into the form

ity
? 7
-£ / wtc) Im [70)te - A%, B) <L fut) 104
¢ G
The contribution g
7 o
A[‘&If)= ?.‘4'”/»/)/& 77
is, in general, unknown and should be minimalized. We define
8p @8 the last point of the first resonsnce and the weight

function w(s) can be chosen in the form

w(s) = ff‘r)“e/‘) 6)
where /3/(5) 1s & polynomial in & § the fumstion £
ie an entire function. The simple examples are f = e"’ §
and f = $Y . The coefficients of the polynomial
are determined by the least square f£it and are depemident on
R ¢ To 1llustrate this kind of FESR we choose {wo veight

v py
function W, ()= 8 22,0 - 2, s 7

and 7)

We (<) = $ w0 / att.t'“/
Using the parametrization (2) we get from (5)
—_ ™ w(m) 4 f”/)w/‘r)** A (,r ,e) (8)
4-».3 Q LY /p 4
-4[&'!/”%“)/" /")"l “"}

~pq

41 + zaﬁlf— /4»‘.2’i€) ("" o)™ 4»4} (9)

where we have neglected higher perturbative corrections,

Hence
2.

To doterm:l.ne k we require

Cwirs) Pl as= 0
for any polynomial ’@ of order & «A8 8 consequence k
is the order of polymomiel which epproximates Im /7/L)
sufficiently well. The formule (9) contain® the con-

221



densates up to the dimension 2(k+4).

The resulting SR are very sensitive to the’values of
condensates and to sp o The practical applications are
restricted only to the values k=0 and k=i where the experi-
mental mass can be reproduced sufficiently well. It should
be stressed that the sum rules with a positively indefinite
weight funoction have the problem in the estimate of fiducial
interval. Nevertheless, the SR proposed above can be useful
in the determination of the condensates from the experi-
mental data.

3. Conclusion

The modification of the QCD sum rules considered here
can not signifiocantly improve the results of the standard
Borel sum rules. They could be used, in principle, for
consistency tests of the QCD.
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Messes of High Spin Hadrons

M.Schepkin
ITEP, Moscow

This report is devoted to the problem of spin effects
in spectrum of orbitally excited hedrons. We will consider
rather high orbital angular momenta for which spin effects
look as spin-orbit interaction its sign and strength being
defined by character of forces between quarks at large
distances.

There exists widely accepted point of view according
to which hadron with high spin looks as rotating string
with quarks at the ends /1-3/. The string is understood
as8 a flux-tube of chromo-electric fileld with the emplitude
defined by color charges at the ends, In the simplest
version, when quarks ere massless, the model prediocts
linear Regge trajectories with the slope oL'= (2% U}—’ , where

V 1is the string tension. In reality, however, quarks
localized at the string ends, acquire effective masses, and
velocities of the string ends become less than speed of
light.

For the application of the model to reel hadrons it is
necessary to take into consideration quark spins /4-6/. Thim
gives rise to the problem of spin-orbit coupling /6/. It
is clear, that the only source of ls-coupling is Thomas
precession because in the co-moving frame the gluon field
is pure electrioc., The frequency of Thomas precession of

apin of purticle moving along the given trajectory is equal
to

-3 [?r v
RT=—(%I)—7r—, (1
. L
where 7 - velocity of the perticle, 'C’f ,I{}‘/,/'L‘ ,
Y=t/ff-vE . For circular motion [J«V] =& v ,
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where w is rotation frequency. Hence, Thomas correction
to hadron mass is equal to

A== (5 +5,)(¥-1), . (2)

For high orbital excitetions when the system can be
treated quosiclessically the relation between the mass and
total engular momentum (spin) of the siring is given by
following equations :
. 1
M= Z;,‘-’(mcs'nnv +ﬁ) + aEr,

J=5,+Suw +£i(u¢s‘1'uv +’-;-’)) (3)

mvwyi=V,

The last equetion follows from the equilibrium conditlon
vor the querk at the string end. Effectlive Quark mass m
and string tension V are paremeters of the model.

The correction aEy 1is negative for spins parallel
to the rotation axis. Thus for high orbtital exeitations
the model predicts the inverse order of levels with different
sign of 18 as compared to that in elecirodynamics. This is
due to the fact, that for the motion in vector field there
exists nonzero magnetic field in co-moving frame; its
contribution to the spin precession is larger than Thomas
effect in magnitude and opposite in sign. In the flux-tube
model megnetlc field in co-moving frame is absent. Hence,
inspite of the vector nature of gluon field.i the spin at
the end of the string behaves like spin of particle confined
in scaler potential, This anmlogy can be used to reproduce
quasiclassical result (2) from quantum mechanies in the
1imit of high orbital excitations /7/. Consider Dirsc
particle in scalar potential m(y) :

(F- N(")) 4’ = 0.

Let us calculate the matrix element of Hamiltonian aqua.red
e d
<> = (gt ytd ¥ . For Direc particle K=df +fim ,
therefore
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-
2 Pt im (RE), AT/, W2 (2

The expression for ¢*= < H®> can be presented as a
series /7/

)
LI T + Q) m -
£ =¢p >-‘[¢ z—;;[m - ""‘“.: + (“,); J‘/p/i‘%
(5)
@)
+ ¥ m '"
f:/, [,.,_ el (“,)z . ]«h{r

where m¢ -B“M/'Dr" s R a=(1+ eﬁ" ) . For high
orbital excitations ‘/‘ -function is different from zero
in the vicinity of the point of classical motion Y9, .
In that case 1ls-splitting is apprroximately equal to

22 [ n() m (“'-)_'.“_] (6)

For reletivistic rotation in the potential ma " the
main contribution to ag€, for 15> n is given by the
first term proportional to m’ . 1ls-splitting is then
equal to A&y = ¥:aEpwst , where ¥= £/m , a4 Epot -
distance between neighbouring rotation levels (with
coinciding signs of -]‘.3). As is known in qQuasiclassical
limit 4 Egqt 15 equal to rotation frequency w . So the
result obtained coilncides in the relativistic limlt with
the expression for Thomas correction in eq.(2).

For exponentially growing potentials the series in
eq.(5) can be summed explicitly.

For the cases considered so far the standard definition
of ¥ -factor for circuler motion is correct if the size
of localization area A is not small as compared to

/m(e)» Otherwise fermion mass should be substituted by
the effective mass Mgy ~ /4{‘- and correspondingly
¥ -factor should be defined as \QH =£/m,H . This
situation takes place, for instance, for messless fermion
confined in spherical cavity. Inside the cavity Dirac
equation has the form F ¢ = 0 + Confinig boundary

AT,
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condition is /8,9/ _
i",a Xr ¢ = QL. (7)

This boundary condition breaks ¥y -invariance as it
should be for soalar confinement. We are interested in the
energy splitting of levels deseribed by wave functions /10/

: R, R
bomoly [ 0T} g [T
' : R N N A A
. =Ry ST, 401 -t Vol
R f§ =~ spherical Bessel functions, JZS,C - gpherical
spinors, ¢+ end % correspond to the total angular
momenta 4 =Lt ' and energies £2, respectively,

Boundary condition (7) leamds to the equations for energies
8.'. H

Rp-y(2-R) = = Ry(e-R), (9)

Reer (8,R) = Rg(erR). 0
Solutions of these equations for large 1 ere

&, = Ri[l +C,, e‘/3+ (ﬂ(/)], €,,£0.809 \ (1)

g aé [l +C, X (p(!)l ¢, = 1.856 (12)

Energy difference increases for large 1 according to
teog's -
s_-s+=EC , C =6 ~,

- >

the level with § parallel to 1 having lower energy. The
distance between rotation levels as is seen from the same
formula is equal to

AEp TAEL =AE_ = /a .

Thus, for lerge 1 g _-g, > 4€rot . The same inequality
took place for Thomas correction in the string model,

eq. (2). The analogy with the string can be iraced further,
To do that let's define effective ¥ =factor for massless
fermion confined within cavity, Using properties of Bessel
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functions it is easy to see, that the wave function is
localized within rather thin layer near the surface. The
size of the layer a4t ~ R /C"’ , hence the effective
formion mess is m TR (4 ’3/2 Fermion energy £, ~ /R R
and so effective Y ~factor 1s equal to ¥= =2y /me 4«.[ s,
It is seen now that spin-orbit splitting is ¥ times larger
than distance between rotation levels.

Thus, relativistic quantum mechanics reproduces
quasiclagaical result for ls-splitting caused by Thomas
preceasion.

Let us stress one more time, that in relativistic
1imit 46, » w =4 Epyp ., In that sense Thomas precession
represents nonperturbative effect,

Let us consider now orbitally excited mesons, Because
of the Thomas precession of quarks spine particle on

P -trajectory with quantum numbers a®, P=(1)7  has
lower mass than its partner on W -trajectory with the
spin J-~{ and the same parity, To estimate the effsct we
need to know ¥ -factor for the setring end. For high
orbitel excitaetions ¥~ '/ , therefore, let's say, for

J A 10 le-splitting is of order of distance between iwo
neighbouring points on one and the same trajectory,

Numericel predictions of the model for masses of
orbitally excited gq-mesons (q = u or d) are shown in Fig.1
in comparison with experimental deta. Parameters My eand
vV  have been fixed by position of two points on trajectory
1, Mg = 340 MeV, (279)2 = 1,07 GeV. s there are no
dependences on isospin, particles with T = 0 and 1 have
equal masses, Quantum numbers of resonances on trajectory
1are JPc =2%*, 377, o4t ... Number of particles
on the trajectory 2 is twice as large, here J°P = 1"',» 27,
3+. ess and C = +1 or =1, In particular, JD -excitationa
mot lle on trajectory 1, and excitations of ‘© -type -
on trajectory 2. According to experimental data the tendency
for “inverse" order of levels is seen. There is a certain
optimiem in the last statement because the data aveilable
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need to be clarified. It is more interesting,of course,
to have experimental data on T -trajectory for I 3,
Equations (3) can be obviously generalized for
different quark masses. Introducing one more parametexr Mg,
strange quark mass, enables to calculate K and K* -
trajectories, The results are shown in Pig, 2 in comparison
with experimental data. It is seen that the model predictions
are in agreement with experimental data for high spins,
Of course, it 1s also desirable to have more precise data
on K =trajectory.
Descrepancy of model predictions with experiment

for small J is explained by the fact, that besides
Thomas precession there exist another essential spin effects
due to the presence of vector (fow example, Coulomd) inter-
action. To estimate contributions of different spin forces
let us use potential approach, Let £(+) be the sum of
scalar and vector potentiala., (In nonrelativistic 1limit
string is equivalent to lineary rising scalar poteniial

9% /11/), Then to the first order in 1/m®>  the
effective potential, depending on apins, can be presented
as

5, > s S SirS. \
- ._.L —3 L oy =2 22t
Vc..H =€-a 2m’+ £+ nu‘ zmg * e )f *
‘ A o -3 (13)
FC o, Tt d s s,

where .37

=7
?) 1(&9’5)_3133 ?-x-»

=5S,+8
RIARD, ’ R

2. ¢

Here m; and ¥, - masses of quarks. In what follows
spin-spin forces will not be taken into account because
we consider nonzero orbitel angular momenta. General
forma.ism of celculation of functions a,b,c,d in QCD was
developed in Ref./12,13/. a(r) is determined by scalar
potential; functions b,c,d - by vector potential,
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Proceeding from general form of potential (13) we ocan
estimate contributions of separate terms to the masses
of P -wave analogs of light mesons and then to predict,
for instance, spin effeots for mesons made of light and
heavy quarks,

Similar model-independent analysis was mads recently
in Ref./14/. For that purpose we will use experimental data
on P -wave strange mesons K, (1280) and K, (1400)
representing mixture of 31’1 and 11’1 ~levels with mixing
angle 8 x 56° /15/, and K3 (1430) with quantum numbers
of 3P2-ntato. Let us rewrite eq.(13) in the form

VQ.H ‘24'0((5.:-;:)2. +P(?I*R)Z+XT. (14)

§d, p and ¥ are now understood as matrix elements of
the ocorresponding operators, Then

”(3&) = f.+|1-3-‘; .

Mase matrix of axial mesons has the form

e-prly  alR

fré ) (15)
T £ /v

Eigenvalues M« and M; of this matrix are masses of

physioal states, o is straightforward expressed in
terms of experimental data

2T ] = (My- 1) 4in2 6
Omitting details we write down the answer for matrix
8lements
o = 45 MeV, /!« = 50465 MeV, ¥ = 0450 MeV (16)

Uncertainties in these estimates are due to experimente.i
errors., Estimates of matrix elements of the originel poten-
tial (13) depend on quark masses W, =My and My = Mg
For g = (1.341.5) My  spin-orbit contributions of
goaler and veotor potentials are comparable (see also
Ref,/16/). When J dincreases the size of the system gets
larger and spin forces due to vector interaotion vanishes
more repidly than the contribution of scalar interactions.
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(For lineary rising scalar potential and Ooulomb-like
vector potentisl we have a~ /¢ , ba ‘/p8 ), This
should lead toc the "f1ip" of sign of spin-orbit splitting,
Experimental data do not contradict such interpretation
(see Pigs.1,2)., However, it is highly desirable to have
information on i and K -trajectories for I > 3.

Let us consider now P -wave mesons made of heavy
and 1ight quarks, for example, b @& . Por estimate we
put my & e, Then matrix elements (which we write
with index e ) sutisfy equations

ot =~dgy, Voo -0’
and nass matrix of axial mesons has the form

(c.. 4ol e ot..J:-) .
(7
“ufl- Coo

It is eaBy to see that mixing angle is fixed:
192 0w =212, B =357
Massea of 31’2 and 3P -gtatos in that oame are equal to

pP)z g0, pOR) = 244200,

As a Tesult, relative position of four P -wave states
looks approximately es shown in Mg.3. The splitting of
pairs of, degenerate particles is equal to 3ol .

Thus, the inverse order of levels for mesons with
M, 5> M, is expected already starting from P -wave,
Analogous conclusion was made in Ref./17/. cle o081 be
estimated from eq,(16) if the ratio of radii of ¢ end
. b§ -mesons 1s known. Por (Rsy/Ry;) 2 epin-orbit
splitting 3 oo™~ 50 ¢ 100 MeV,

For charmed mesons large corrections arise from taking
into acoount finite C =-quark mase /18/. However, for
D -like excitations inverse order of lévels is also
expected to take place for lower J than in mesons made of
quarks with equal masses,

In conclusion let us stress one more time the impor-
tance for experimential investigetion of the problem of
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high spin hadrons spectroscopy. It may provide us with
the information on spin effects, which are defined by the
particu’ ar character of interaction between quarks at large
distances, If we accept quasiclaesical approach of QCD-string
thon spin effocts ocour to be large and rather unusual,
Energetically*preferable orientation of spinas corresponds
to positive CE* « llognitudo of spin-orbit splitting is
comparable to the mass difference of two neighbouring
particles on one and the same trajectory. From the model
independent anelysis based on QCD it can be concluded that
in mesons made of light quarks the "flip" of sign of spin=-
-orbit term happens for J > 3, Por mesons constructed
of 1light and heavy quarks these effects should take place
for lower spins,

Besides investigntions of meson spectroscopy 1t would
be highly desirable to have more accurate deta on baryon
trajectories /19/.
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DECAYS OF GLUGNIUM IN THE GENERALIZED
QUARK MODEL OF SUPERCONDUCTIVITY TYPE

M. Nagy
Institute of Physics of the Electro-Physical_Research Centre,
Slovak Academy of Sciences, 842 28 Bratislava, Czechoslovakia

M.K, Volkov
Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research, Dubna, USSR

Abstract

In the generalized quark model of superconductivity type
{GQMST), obtained by the introduction of gluonium into a
quark model with four quark interactionsl, the calcula-

tions of G(€") decays into 2;v, 2K and 2n are performed.

One of the motivations for construction of GQMST was the
problem of the description of scalar mesons in the framework
of quark model, namely the interpretation of #975) and £(1300)
states (in the new notation 10(975) and £ (1300), respectively).
It is difficult to answer, in the framework of pure quark mo-
dels, why the €(1300) state, consisting mainly of light quarks,
is heavier than S¥(975) state, consisting mainly of the stran-
ge quarks. The next question is connected with the problem of
existence of the third isoscalar meson which should be lighter
than 1 GeV. The existence of this meson (well known as O-meson)
has been predicted many years ago in the framework of phenome-
nological chiral sigma models,

It was Shownz, that in the GOMST the three scalar states
¢ €(550), S¥(1070) and €(1200)) appeared in natural way. The-
se three isoscalar states arising in the scalar sector were
identified with mesons in following way.
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The tirst resonance consisting mainly of light u and d
quarks snd possessing the large width of the decay into 2x
equal to its mass, i.e. it is difficult to observe, This
resonance is a good candidate for the role of the well known
O-particle.

The second resonance is close to the scalar meson s*(975)
and it consists almost completely of the s-quarks; however,
owing to the small admixture of the gluonium, this resonance
decays into 2N with the decay width corresponding to the
experimental value.

Finally, the last resonance is almost completely defined
by the gluonium. This state ﬁossesses the properties close to
the €£(1300) meson. It decays mainly into 2% with the decay width
not contradicting the last experimental data”a, with smaller
probability also into 2K and its decay into 2n is suppressed.

A qualitatively reasonable picture expressing the existence of
three such states is in the agreement with experimental data.

The inclusion of the gluonia into the quark model of super-
conductivity type1 have been carried out in the stheme proposed
in paparss’é. We have obtained the following expression for the
Lagrangian describing the interaction of the gluonium field G
with quarkonium fields (of scalar and pseudoscalar mesons)2

£
Ai = - Hoe4G/fg (lnﬁg- + -[g—-) + (1)
g

+

2
m,
(ezs/fg - 1)'{(m3 - —7%) [(ﬁ2+ nﬁ)z + (Ou - Zl/zfn)zl
2 2
m m+ m My T
2 _ 2_'122) [n2z + o, 2/21,02] + [c - 552, _ _2_:5_],‘2},

+

11 2

v:hereH;:':%Go,b:—?Nc--}-Nf (Mg = 3 is the nupber of
colours, Ny = 3 is the flavour number), G -(Ollf Gﬁv o |0> is

the gluon condensate for which we use following value Go=0.012
GeV4 according to 7, fr = 93 Mev, fs= 1.28 f; are meson decay
constants, Z = 1.4 is the constant occuring from the inclusion
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n- A1 transitions s ( mn 2 700 Mev, m, =200 Mev, mg= 455 MeV ).

In the Lagrangian (1) thare are three new uncertain parameters

c, fg and Mg (gluonium mass). They have been fixed by choosin92
three conditiona giving as a result tg = 212 Mev = 2,28 f and

me= 1.16 GeV., In the corresponding Lagrangian thore appear the
nondiagonal terms containing G °u and G g,

&(6g,, Go )= - ;%97;—[(2m52 - m$)£r0h+ (2m§2 - m;s)fsas] (2)
g

The direct decay of the gluonium G( €°) into 2T , 2K and 29 is
allowed by .

‘

Xon?, 62, on?) = %— (2n2z - 224 (2 7 - aDIK? + 5

2 2 2 2 2
« [aamlz - adrasn’Co - @y) + (2022 - nf roos’tp-g,)] 7}

where we have taken into account the mixing
nfn'cos((P- ‘po) ~nsin(y - Qo) (4)
ns=ﬂ'sin(¢- ¥,) +Ncos(P -~ @)

with mixing sngle ¢ - @ = - 539,

Thg G¢¢’) — 2N decay goes in the direct way as well as
via the intermediate Uu state and for the total amplitude W€
obtained as a result2

(2m, )2
tot -1 2_2[ ]-z (5)
To wwon® g (2m 2 - mp)f1 +T__T 'ﬁGﬂ
9y

and the corresponding decay width_is

r

15 agraament with the experimental data"‘. The amplitude of
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the G(&') — 2K decay, following from the Lagrangian (3), leads
to the width2

M6 — ok = 30 MeV (7
which is in qualitative agreement with experimentj. The process
being taken into account via intermediate 0&(5*) state increa-
ses twice the value in question.

For the amplitude of the diract G(C')-—o-Zn decay we get

To 2 fal {(2m32 - m2)sin?(p-9 ) +

(8)
+ (2n2z - m,?]s)cosz(tp- ¢} 6n? = Fon?
which leads to the width
M6 e gy = (BMm™" §2(1 - 4m'21/m[2;)1/2 = 7.5 MeV (9)

Sa far, there are no reliable experimental values for the decay
‘width of this process. However, there is some evidence that de-
. 3 :
cay was seen as claimed by PDG,
As a whole, the picture wse have obtained2 is in agreement
with the experiment. GQMST offers thus some other possibilities
in investigation of gluonium properties.
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YANG-MILLS PROPAGATORS IN BACKGROUND FIELDS
H. J. Kaiser
Institut fir Hochenerglephkyslk der AdW, Berlin-Zeuthen, DDR

K. Scharnhorst
Sektion Physik der Humboldt-Universitét Berlin, DDR

E. Wieczorek
Institut fiir Hochenergiephysik der AAW, Berlin-Zeuthen, DDR

In & EBuclidean Yang-Mills theory with a, for the moment,

unspecified gauge group (structure constants fabc), gauge
parameter o«, and background fileld Bﬁ(x) we calculate the
gauge resp. ghost propagators qﬁ?(x,y,d) resp. Gab(x,y)

by inverting the kernels
) a l c
grv = (?t;rv + (a‘"‘\ Pr ?V) : + '7"3 b (X)

(1)
Kq‘ - (9,_)-‘
I N -2 abe B (x)
where Do(B) =T 4} £ 5
making use of
(-t)G " ey, = -3 "), Jh-y), L('leb'/r.y)s—f“ Jlx-y), (2)

It is possible to express the gauge propagator for arbitrary
o« 1in terms of the special propagator for o=1

G;_‘; My, o) = G‘,'.t le,y,4) + (4-o) L("', fey)

u'rb\' fey) = [dz 6/:: {1 2,4) (.P.. P,) 6Av /2 y'4) (3)

To verify (3) we use the identity (valid if Dab b

D5, 00 + (200" + 258 BT ] = X ¢ )

= 0)

and the functional équations with respect to y
Dt Gty o) Dt = w5 Tley)
)r

Dr ;; (xy «) = - G‘l’ xy, o) D be
.3
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Now we specify the YM theory to the gauge group SU(2)
(1.e. gabe _ £abc) and a constant homogeneous magnetic
background field in the colour 3 direction

e L re3
B,.(x):—i r:")(y , F;‘y = t/"' J B (4)

We use the notation

2 2 E S
X, = x4 +X 4 ’ (-]
L - 2 s
5',..,*- ( 4".;)- J;“’ =( O‘A)

xr = xany
(4
¥ o4 00
xf‘ "V CJ:,t: (‘10 60)

2 r Do owvw
Jl -J"J‘H Jorgr ov o ol

We diagonalize the kernels
Koo = 3, (D" + 248 g8 £° 3
b
SNSRI ‘J“" +3B M md) e

in colour and space-time indices and arrive at the problem

to invert the operators

RE = -4 + (8P hred) 7 iaBlnd %)

as well as h*+2gB and h™+2gB. After separating the X5 4
dependencs by means of a Fourier transformation we obtain

2-dimensional harmonic oscillator Hamiltonians and calculate
from their eigenfunctions and (infinitely degenerate) eigen-

values the inverses

.:Hx»y)
A + tofx,
el = 5 e v f,z T I (ab) ()

and analogous expressions for (h+2gB)’1 involving I(a+2,b)

instead. In writing down (5) we have used the notation

-h’_'t.- b=-+—"'— {1)—- LB(I X A .
a= QB ’ }.B ' QX\[ ky.l. ).Y) (6)
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The function I(a,b) has the

b tw
odr : I(a,b) integral representations
1 I/a' b) = T‘-r &-.t-—b h'kt’
g I . Cosh T
f (Re a >=4)
!
L
{ - p=h [ i et .
=€
6 : o LW T (7)
| ay 05" [ebfmtonk®)_y _om27]
| \ -b
4t | + %ET (Re a>-3)
!
i ()
as ! I(a,b) has a tower of poles
I
2' 1 0.5 as can be seen from its ex-
/A : 4 pression in terms of Laguerre
0 1 —  polynomials
-2 [] l a

b i" " L-{2b)

Tlah)ele 2 Taesd (8

In x-space we have the dependences ()=ng,2/2, r::ngf/?)
1+ (AR _iky - 28 P4r ~& - pctanh T
D)= [ DO =iew liaxe ¢ 7T

_lﬁ ‘," ,“-..o)

(9)

> -ah
= 3—% et 2 LoM2) k‘,[z_m) ~ gig ey,

o

pFO= 5 (o et Tlata,y)
pPa DP4DT ps 207
2

' 2

More details about the long- and short-distance behaviour of

p°, D%, and D" are derivea in 74/,

The propagators for «=1 are finally

G‘b(a:,y).-_- 4)"'/\',\,) Do/x-v) + m a3 Sb3

5;‘; Py = g [T poteey) + & DFr-y)] (10)
+ & Ixy) £4 D™ix—y) + lm—:_,_..w ;a*wa‘ry
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Where the phase factors

b «c _cb3
¢A"(x'y),= JI"“,, gfk,y) + {ab.! fin 9“’”) ’ $ = 4) £ (11)

involve ¢(x,y) defined in (6).

The large-distance hehaviour of the gauge propagator is
Gy fy,4) ~ "*‘ 22 7583 DT [ dr + ¢y et ] <

r———-_ 8L o g3 rI¥dy (12)
e‘- 4B fry=ya )+ »/".l. 1) + W .
To recognize that the integral expression Uﬁ? in (3) is

well-defined we need besides (12) the relation
7 =y B g
Y [phngt + Frmstle” S MYEAGR SR =0 (g3

which holds due to the structure of the phase factors.
To evaluate qu we use partial integration to let Eﬁf

operate on 62%(x,2,1), apply the relations
t{)' 5/&,1)4'572,\/) - ::F'ab/.";, ?h{,ﬁ) 4’““"‘/”-)
4,&[;(";\ $h'/!,‘1) - &,‘-"/k,a.)l 4""/:.\[, &'“‘ /\——,y,z)

i}

b}

and , D12} 4 8822 pra) o 2 pera)

gz¢ Dffa) 4 s5, D) = - t}‘ 23 D°R)

with the result
/x,\y).: f.lz. { 4' /*’Y,Z) R /-vlf ’[) + d»“/x \/,z)l. ” ‘l)i

.‘.,;;;,; {c"”l et $hivey) Eﬁv
- ¢ 2n) '
where
k: X -2

Ryl = (57, ¥ D"/t)/“ﬂzvv)D"fv) 1 Y. ()

It is easy to show that for real fg
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(in 4**hey,2) fren) g rauy) m 4*¥A0) R Q + 5*0y) % Q

(da F¥ g2 [1rer) pray) m -4 W) B Q 4 F7400N) S0 Q 15)
o ' 1

0= fay ! BT pryam,  ye 42,

<

Using these relations we get
U o) o 4709) Re Qo Frey) 4 FoH10y) e Ly r-)

L peghe (AUR g chivey) !f$: (16)

f2ny

with Q,(x-y) given in terms of P(f,;) Zfrom (14)
8
Quten= e ¥R patray | qoxpry, (17)

In the expressions (14),(16),(17) we have now a convenient
form which provides a starting point to construot a compact
integral representation for and to study the analytic prop-
erties of the general gauge propagator Gﬁ?(x,y,u) in a

constant homogeneous background field.

A short summary of calculations of the 2-loop contributions
to the imaginary part of the effective potential in terms of
the background field propagators will be published in the
Proceedings of the XXI International Symposium Ahrenshoop/
Sellin 1987,
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CRITICAL EXACTLY SOLVABLE MODELS AND CONFORMAL FIELD THEORY

v.v,Baghanoy
Institute for High Energy Physios,
Berpukhov, Moscow Region, USSR

Abstraoct, The migenvalues of the transfer matrix of the generalized RSOS mo-
del are exactly calculated. From the consideration of the thermodynamics of the
quontum systom on the one-dimensional chain connected with the RS08 model, we
calculate the central charges of the effective conformal field theories descori-
bing the oritical bohaviour of the model in differont regimes,.

The underlying slgebraic structure of the 8~vertex model is a deformation of
the universal onveloping algebra of ll(i)/u. From this point of view, the ori-
ginal B-vertex model 3,3/ corresponda to the spin m=1/2 representation. The
authors of/4/ developed s method (called the fusion procedure) to construct the
vertex models corresponding to the arbitrary spin representations, The generali-
zod B-vertex models obtained in this way were considered in ref, L

In rets./6,7/ 1t has been shown that one can associate the ordinary 8-vertex
model (of the spin swl/2) with a series of integrable RS08 (Rostricted Solid-on-
Sol1id) models which are of considerable interest due to their non=trivial ortti-
“OBI behaviour,

Recently Date et nl/s/, using the fusion procedure, have obtained integrable
generalizations of the RSOB model of ref,/7/, corresponding to the "higher spin'

8~vertex models. The fluctuating variables in these models are integer 'he-
ights" {0 ], assigned to mites of a square lattice, The Boltzman weights are
non-vnn:llf! ng only 1if
(21'2"‘14)/3‘{0,1'0-”1‘}' (1)
168,411, 2
L<d,+ § <ar-L, »

where Lap for a horizontal pair of adjacent sites (1,J), L=q for a vertical one;
mq,r (ranax(p,q)+2) are positive integers characterizing the model, Moreover
there are two more parameters  and v (as usual, v enters Yang-Baxter equations,qd
is related to the modulus of elliptic functions, paramotrizing the weighta).

Note, that the generalized RBOS model is closely related to its vertex coun-
terpart, the generalized 8-vortex model. Indeed, using the results from/s/, one
can show that it can be considered as a "higher spin" B-vertex model with some
specisl boundary conditions.

In this paper, wo presont several exact results for the generalized RSOS
model,

Using some spocific properties of the Boltzman weights we obtain a system of
tunctional equations which allows to calculate exactly the spectrum of the trans-
fer-metrices TP:d(v), As uaual, the eigenvalues are determined through the solu-
tions of a syatem of transcedental equations, We show that up to an overall nor-
malization and ] shift 'of'the parameter v the spectra of the transfer-matrices
P4, TP,49°, TP +Q, TP 9, where p+p'=r-2, q#j'mr-2 coincides, This means, that
all phyaical characteristics of the model (e,g., such as critical exponents)
should not change under indepondent transformations p-»r-2-p, q-er-2-q,

The model becomes critical when ﬁ-o. In this case there are two physically
distinct regimes at p=q

1) 0g vgR/r; 11) -K/2+%/r& v4 0. (4)
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In \vork/ 9/ Belavin, Polyakov, Zamolodchikov have developed & conformal boot-
strap programm to classify possible types of a universal critical behaviour and
to calculate oritiocal exponents, According to this approach, the critical beha-
viour of a two-dimensional statistical system at a second order transition po-
int is described by some unitary 10/ conformsl f1eld theory, specified by a va-
lue of the central charge of the (Virassoro) algebra of the conformal transfor-
mations, The parameters of this conformal theory can be extracted from the in-
for,ltion about the spectrum of the transfer-matrix of the statistiocal nys-
tem 11-]3/' .

At present,a number of conformal field theories are been constructed, in which
the spectrum of the conformal dimensions ia known oxactly (sde, e.g./9:10,14-16/,

Returning to the RS0S model under oonsideration, define a (local) hamiltonian

d PP
#Py — b2 Pevy . (5

dv N vsQ
of a one-dimensional quantum RSOB model on a chain of N-sites. In the critical
case hamiltonian (5) has a gapless spectrum with the linear dispersion law in
the vicinity of the Fermi level E(p)wvp p-prl. The value of the central oharge ¢,
of the corresponding conformal field theory may be oaloulated/ 11-13/ , on the one
hand, from the leading finite-size correction to the ground state energy of ha-
miltonian (8) for the periodic boundary conditions

fOV’ 1
Bo=NEq- -G—N-w(n—z) )

and, on the other hand, from the low-temperature asymptotics of the specific
free energy of the quantum system with hamiltonian ¢8) at N —»>oe

T™< e-’n) e PIF(P) .

P ™
r@rrg- 58087, B>,

where }-Ir'] is an inverse temperature.

We take the second way and investigate the thermodynamics of the gquantum
RBS0S model, In doing this, we use some hypothesis on the types of allowed string
solutions to the transcendental equations, determining the spectrum of hamilto-
nian (5) within a thermodynamical limit, We verify our hypothesis for the cases
prl, r=3 (completely ordered model) and p=1, r=4 (lsing model), when the eigen-
values may be calculated exactly at finite N and suppose, that it is valid in a
general case, In particuler, this hypothesis leads to the true asymptotics of
the dimension of the space of states of the quantum RSOS model, when N-+co,

The results for the central charges for two critical regimes (4) are of the
form

3p _ 2(p+2) 6
Do et e ®

Both expressions are symmetric respect to the transformation per-2-p, discus-
sed above, .

Note, that calculations with formula (6) should give the same values of the
central charges, Using the method of ref,”17/ one con show that it is indeed so
for the case p=1, of regime 1). Moreover, we numerically establish this corres-
pondence for several values of p and r in the regime 1), Moreover, we numerical~
ly establish this correspondence for several values of p and r in the regime 1),
These results confimm our hypothesis used for the derivation of eq. (8).

The basic results of the talk wero obtained in collaboration with N.Yu,Re-
shetikhin, The author is grateful to him.
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A NON-RELATIVISTIC MODEL OF TWO~PARTICLE DECAY: RESONANCE
AND BOUND STATES

J. Dittrionl, P. Exner 112
lyNuclear Physics Institute of CSAS, Re%, Czechosloveakis
2lab. Theor. Phys., JINR, Dubna, USSR

With the aim to verify some general properties of
unstable particles on a simple solvable quantum mechenical
mocdel, a spinless| particle deceying into two lighter particles
is considered. The model ig similar to the Lee [1] and
Friedrichs [2] ones. The meromorphic structure of reduced re=~
solvent [4], decay law [5], mutuel scatiering of two light par-
ticles [6) and the existence of bound states [6] are studied.
A gample of resulte is presented here. Further details, proofs

and references are given in [3 - 6].

1, The Model

After sepazjating the center-of-mags motion, the relative
-motion part of the model moquires the following form. The

space of states
®= ¢ & 12 ®%)

contains the subspaces ﬂu =¢ of undecayed unstable
particle and ¥ = 12(R3) of decay products; corresponding
to the relative. motion of two light particles. The Hamilto~
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nian in the momentum representation acts on the state pek

as

o pal® g¥) [ & Ed + 5(V.f)
g } 7 -..2 A - = MR 5 yr
g7 (®) =/ \e@ de¥(B) + o ()

where E>O0 is the energy released in the decay, m the
reduced mass of the decay products, and g the coupling
constent. The function ¥ determining the interaction is

assumed to satisfy the following conditions:

1) (D= v UPD with ¥ € 12( B, plap)
(rotational symmetry)

ii) defining v,(p)= 'Gl(p)'zp and v3( 2= vyl V2ma) ,
the function v; can be holomorphically extended into
a neighbourhood of real positive semipXe8 in the
complex plane;

1) H(VZTE) £0 ; _

iv) Ix'}l[aﬁc.l y Vo4mC , |Vé'$°1 , I |Vé"£c]_

for some constant Cl .

2. Reduced Resolvent, Decay Law and Scattering

The reduced resolvent is defined as
R,(2) = B (B, = 2)71 B, =r (2) E, (z € ¢ ~ &)

where Eu is the projection onto the subspace 3‘. in #& . The
function r, can be analytically continued from the upper

half-plane into a complex neighbourhood L& of E . For a suf-
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ficiently small cougling constant g, the continued funetion

rtfhas in & just one singularity - a simple pole at '

Z = Zp(s) with Im Zp(g) < 0. |
The decay law P(t) = Iu(t)l2 is given by the function

u(t) defined by the relation -

~iH_t (1) u(t)
e E =
B 0 0 .
FPor a sufficiently small g, the inequality

=iz t 2
fuct) -2e P | < S . (1)

. 2 -1
A= [1-8°060(2)]
holds for t » 0 with a consteant C » 0 independent of g.
Punction G, 1is the analytic continuation of

T 2 2
2 4
6(2) = 45 j 'vl(p); i

0 Z-E—a

from upper complex half-plane into L . Inequality (1) shows

that the decay law is approximately exponential with the
width given by Im Zp = O(gz) in the region of times compa-
rable with (Im 2)7" .

The mutual scattering of two light particles is well
defined since the wave operators &g can be shown to exist
and be complete (i.e. Ren f# = Ran Pac(ﬁg)); if 91' has
piecewice continuous derivative, they are also asymptotically .

complete (i.,e. @

sing (Hg) = @). The R-matrix can be’

written as
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2
REE) = 2rim g2l ()2 p o ( o2 (2)

where § and 8' are the initial and final momenta. We See
that the scattering is isotropic and that the snalytically
continued S-matrix has the same pole as the.reduced resolvent.
The presence of the pole Zp leads to the resonance behaviour

of the cross-section and s-wave phase ghift.

3., Bound States

The following statements about the existance of bound
states (eigenstates of Hg) can be shovn essuming g # 0 .
i) € > 0 is an eigenvalue of H

\Arl Wome )=0

and

g if and only if

9 . A
€= E+ 41e’ p ,

° c..,zam_

11) €= 0 1is an eigenvalue of Hg if gnd only if

e . . 2

(
I.!-vl_?p_)_'—dp<“
° p

and
o

E= s gln | 19,2 a .
[ )

11i) There is at most one bound state with a negative energys
it exists if and only if

o
g2 > g2 ae[ern [ 9% ] .
[
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THE TRIPLE PROBLEM OF CONVERGENCE IN THE PERTURBATION

EXPANSTIONS WITH NON-DIAGONAL _PROPAGATORS;

M. 7n0ji1®/ M. F. Fiymn® end R. F. Bishop®

8/ Nucl. Phys. Inctitute, Ke%, Czechoslovakia

b/ UMIST, Manchester, United Kingdom

Let us consider the stenderd perturbaiion theory of the Rayleigh-

‘Schrodinger type, with the Hemiltonien split

and pair of ansatzs
- 2
E - E + 8 El + g E2 + es o

0

p> = 1>+ plta>+

Their insertion in the Schrodinger equation
leads to a RS hiergrchy of relations

Hy | §o2= B 1y,Y

and

/1/

72/

Hiy? = E y>

/3/

Ho"f'k\'+ Hl""rl:-l\'= Eo""l?+ cee * By "Vo, 74/

with k = 1, 2, o0,
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In a textbook spirit, we may interpr:t El’ Ea, «ss 88

abbreviations,

E‘= _1~ <%'(Hol%)“ H4’%)-E.'?‘,)'“./5/
4 AL A
and, insertirg them in /4/, eliminete formelly elso the wavefun-

ction corrections,

g, > = —L—(H,hp,) -E,l'f,)),'.... /6/
E,~H,
In this wey, perturbetion theory mey be interpreted as a reduc-
tion of the full problem to its simplified version /3/.

The "simplicity" of Ho is usuelly specified a: & possibili-
ty of its compdete diagonelisetion. In the modified RS /MRS/
approachl, tﬁe "gsirplicity"of Ho 1s weakened: in a given
"unpertur-bed" basis [0, (1), -..., we edmit all operators
Hy = T + |0 g€0| with e free pesrameter g and "invertible"
matrix T, i.e., with such a matrix that we may obtain elso an
explicit form of the operator R /with, say, R = 1/(E. - ’1‘) where
E, is a funciion of 740

The main MRS idea is simple ~ we heve noticed thet an expli-
cit knowledge of R and V specifies already all the correctioas
/5/ end /6/, while & presence of a free parameter g enables us
also to get rid of the elgenvelue problem /3/1. Indeed, we may

write, in en explicit manner,

N’.) = R'O), (0’%) , (a[%) + o0
g = g(8) = 1/<0IRCENOS .

1/
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In practice, it is useful to write g = g{Eol and treat E,
as a free parameter itself.

There is one important reason for using non-diegonsl T in the
split /1/ = we may meke H - H, es small es nececsery for
a good convergence of the expensions /2/. There it a price
to be peid of course - we must gusrantee e quick precticel con-
vergence 8lso in a transition T % R e&nd in the corresponding

MRS forms of preceriptions /5/ and /6/.

1, The T - R _ convergence,

The simplest way how to define R is a brute~force numerical
inversion of the truncated metrices N x N. In Ref.l, the
related N - oo convergence hes been reduced to a continued-
fractional convergence, by means of a restriction of T's to
tridisgonal matrices. In Ref.z, this proce_dure has been
extended to 2s+l1 - diagonal T’s. An slternative, purely non-
numericel type of the T -» R transition3 represents one

of the possible final solutions of this prodblem - we may re-
construct any triesl T® into an "invertible" one sirply by ite
fixed-point re-arrangement T = T + corrections. Numerically,
this has been illustrated elsewhere3 - we may only summerize
here that there are no problems with the first, N -> o0

type of convergence in practice, since its ‘"restduum" mey

simply be incorporated in the perturbstion itself.
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2. _The intermediete~summation convergence.

Each MRS contribution, scy, Ek s 1s defined as a RS-type sum
over intermedlate gstates. Each incertion of R represents &
single summation in the RS formalism - here, the summation
goes over the two /left and right/ indices. The related
"additional"™ convergence problem may again be eliminated in
the same manner &8s above - we may modify the input unperturbed
propagator R’ /general matrix/ and use its 2t+1 - diagonal pert
only, R'=» R/t/, t € 0o. Agein, the related modification of
e VY (= = general matrix now) is, in effect, egain & mere
re-definition of the perturbation.

The numerical tests of the above idea mey again be found

elsewhere4

and illustrate, for the cut-cffs t dedreasing from
infinity, an emergence of the RS-tmpe asymptotic-series diver-
gence, espescilelly for smell t(= 0 or 1\ wi an opposit setting,
the analysis of the t » oo 1limit supports & hypothesis of the
MRS convergence — see Table 1 here, which.lists the "optimal

odrders” /giving the ‘optimal esymptotic-geries MRS results/for

anhermonic oscillators as anelysed in Ref.4.

Table 1. An "optimel order" No as a function of t.
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3. The numerical indicetions of the MRS con.ergencex of energies,

A
For any coupling of anhermonicity x4, we way chooge H with
another coupling X- es a matrix T. For a broad range of Aé .

we obtain results exemplified here in Figure 1.

PRECISION .
A similer pattern is obteined also N Fiq. 4
for the very broad renge of para— 19 4 ’
A
meters E . For the varieble A, ¢ '\_}_ﬂi‘iﬁ"
. wd
we obtain the dependence 1llu~- U S 2 " 0vdey,
’ 4 st
strated here in Figure 2 for A= 1o 4 1" orde,
PRECIS(ON L " T —
10 1 AN 2,20,99A |
8 4 [ We may see that the <l
¢ N 10 0den w A
1,‘0 dew part of the latter Figure
- ’ -
L ld”d" is cureve with an inflec
2 N tion point which is elmost
Y 14 ——T ->
" 1 i Ao order-independent. - We
Fc‘i' . believe that the MRS con-

vergence 1is very good for A‘, x(inflection) and conjecture that
A(.inflection) &£ 1 is a "netural” boundary of the convergence
domein, or et least of & domain of & reliable use of the MRS

asymptotic series.

Réferences.

/\/ M. 7nojil, Puys. Rev. A 35 /1987/ 2448.

/4 - " - , Dubna, JINR communicetion E5 - 87 - 634.
/i/ ibia., ®4 - 87 - 655, 4/ ivid., E4 - 87 - 66T.
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Remarks on engular distributions of muon pairc
in high energy hadronic col'isions

Mikulds BloZek
Institute of Phyoiocs, EPRC, S8lovak Ace 'emv of Scianceco,
842 28 PBratislava, Ozechoslovekia

Experimental investigation of the hadronic pro-uction of
muon pairs brought just recently very interesting raesults.
In the precent contribution the angular 4istributions of tho-
se muons ere studied. It is shown thet a simple approesch in-
volving coherent ntate expanoions allows to obtain a olosed
expression for the angular distributions under consideration.
It generalizes the well known exprensions Yike the "neive"
Drell~Y¥an end the lowest order QCD enguler dirtribution of
dimuons arining from decays of virtusl photonn &nd 2%ga, The
influence of the parity violating terms is mentioned too.

1. Introduetion., An eerly enalysis of the enguler distributi-
on of muons in the dimuon rest cystem le” to the "neive"

Prell-Yan model [1] with
26/dcosVdg ~ { +Aeoo?d (1)

where ) ={ end V' characterizes the poler engle. (In fgcor-
dence with other approaches also our analysis iz perf-rmed
in the Colling-Soper reference freme [2] where the effects of
smearing end puclesr reinteractions ere minimel.)

If the trancverse momentum Pp of dimunns is not negli~
gitle, the cylindrical symmetry of (1) 1is broken and depen=-
dence on the ezimuthal engle ? appeears,

a6/4acosVdy ~ 4 +Xcosd} +unin2deony +(9/2)oina"cwn2¢{ . (2)

Especiélly, if it is escumed that in hadronic col'isisns the
dileptons erise from deceys of virtual photons snd Z°'r et
large mess end finite trensverse momentum, the engular disc-
tribution of the form (2) is obteine! in the lowect orier

Contribution to the Hadron Structure’87 Conference, Smolenice,
Czechoslovakia, November 16-20, 1987
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Q0D and the Weinberg-Selem mo‘sol with three fermion gener.ti-
ons 3], The right hand oide of (2) 1o influenced only by the
parity conserving terms.

The NA 10 Colleboretion hao teken data &t the OERN Spps
Collider and it studied the production of muon pairs of high
nacs by high=-intensity negetive pion beams of 140, 194 and
286 GeV/c off deuterium end tungnten targets. The eanalvsis
of the angular distributions of the muons in tha dimuon rest
freme already published for the 194 GeV/c data [4] hes been
refined end extended to the 140 and 286 GeV/c date [5]. In
this respect the conclusions of ref. [6] cen be shortly for-
ruleted as follows: (i) the perameter A in (1) is observed
to be eroentaliy constent and cloce to unity, at all three
energies, (ii) the perameter 4 1s found to be compatible
with zero, (11i) the perameter V is observed to increase
merkedly with Pp » in clear disegreement with the perturbati-
ve QCD prediction {7); (iv) then the Callen=Gross relation

A =X =2y (3)

enptablished for the perturbetive QCD is evidently not patis~-
fied by the data of ref.[6]and (v) the anguler Aistributionc
of muon pairs produced off the deuterium target et 286 GeV/c
sre in excellent egraement with those produced off tungsten,
indicateng that this discrepency (mentioned in (iv)) is not
due to & nuclear effect.
Those conclusions call for generalization of rel.(z).

In the next sections we show that such & generalization can
be obtained in a simple &pproaech involving the coherent ata-
te expaensions.

2. _Anguler dintributions in terms of coherent states. In the
present approach we apply the coherent ctate expencsions &és
they were treated aocentidlly by Glauber [8] end Lechc [9].
First of all, the conclusion (v) of the prece’ing sec=-
tion 1leads us to the essumption that in the phase npace the
number of emitting centers (or modes) depends (if at e11) on-
1y very weakly on the kind of the nucleus. With respect
to the recults obtained on the Aeuterium we chall deel only
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with one emitting cell (mode). We aciume that the one-mode
field (1) is a mixture of stochastic end coherant ctates [8]
with <nT> baing the avereage number of ctochantically produ-
ced ceconderies end <np> 2 |(5| correnponds to the coherently
produced ones; the perameterﬁ is the complex eigenvalue of
the coherent field [8],[9]. The aversge value of the total
(cherged) multiplicity <n» = <np> + <nc$; and (i1) it gives
rice to secondery perticles whose x-, v- and z-cnhordinatesn
sre correlated (in the phase space) .

In the one-dimencionel cese [9] the probebility to ob-
rerve the coordinate q 1is given vv P{g) = fP(d)I(u iq)l d"z&
where for the mixed field P(s) =[4 /(‘R.(nlb)]exp[-ld At/
(‘nTs] and

[¢actal® = eonot, expf~[(q=b, Ree) / (V7. 5)]" }. (4)

With respect to that one-dimensionel cage (4), now the cor-
responding three-dimensionsl Gaucsien Aistribution is invol=-
ved containing the dispersions 63, the peremetersc b, chersc-
terizing the non=centrelities &nl the correlation m&trix P';k

(clweys 3,k=1,2,3) where iy =p.s end pgy 3 1 (0 Put p1p=py,®
P32 £)-

Introiucing the sphericel coordinates,
x = roina'com( y Yy = rnin&sinf ’ z = reond

&nd performing the necessaery integretions we obtein eventuel-
1y the marginel probaebility in angular veriebles (cosnid,y) in
the following exset form,

d6/dcos3'dvf = const(2g,)" /2 [exp (v2/4)] D_3(v = 32/(234)1/2 ’

In rel.(5) D _3(v) is the function of the perebo'ic cvlinder.
It holds,

[D (W]exp(v?/4) = 2732 [ @ B(3/2, 472, v¥/2) -
2(Z.v F(2, 3/2, v?/2)] (6)

where F(a,b,u) it the Zegenerate (confluent) hypegeometrical
funetion, ’

2
F(a,b,u) = 4+ Bu + %&H)TET + ee .
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The functions g, and g, in (5) ere given &n follows,

8) g, = aoo(" +é znvn)/z (7)
where
vy = 000217 ’ V2 = ninzfcos?.( ’ V3 < sin?s'cfmf ' ()
v, = cindfein2y , Vg = oin2foing
end
&= (2833'344 '322)/300 y €5F (&y =822) /8,54 (9)

£" -2343/300 g 64 = -2642 /eoo ’ ES = ‘2323/800

with a_, =8, +a,, . In(9),

og4 = (44p)/[265(4=p) (1+20)] - £2/n ,
= 9/02656(4-p)( 4 +20)] + 2403/ , with j# k

and

f:j = {(bj/ﬂ’j) "[9/(4 +29)1‘ i (bk/b'k)} /[26'..5 (4-9)] ,

: e .

A =Lnp™ [ ,‘i‘ (o /6] + P[,‘t.,("k"’\)} |4
[2(4=p)(4+201] .

The enguler functions V, (n=1,...,5), r" .(8), =ntering

(7) repre art the perity conserving terms, 1.0, thev ‘o
not chenge the cign under the tranaformetion

=~

/

FoVaz-F,  poq = (19)
b) the function g, in (5) is given er fo‘lTows, '

8y = -z(e,,l + a2 2 * €5 ) (1)
where

14= ain?‘cosq . 12 - ..in9'sin:( , 183 = cosy (12)

end

ey = £3.Ref/(¢npa) . (13)

The angular functions (12) represent the parity violetinp
terms (they change sign un’'er the trensformetisn (1)) . If
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they do not venish, their even powers ~appesring through the
even powers of the variable v in rel.(5)= contribute &lno to
the parity conserving pert. The normelization factor “const"
in ral.(5) cen be expres:el in terms of the parameters a:j and
a4yi we don’t give here its explicit fornm.

3. Agelication of rel.(5) to the dats of the NA 1) Collsboras=~ -
tion [41.[51,06]1.[10). From the enelvcis [4] we now that thg

perity violating terms eare very smell; we put all ta:j =0, 1.
@., €, = 0. Then

46/dcosi dy ~ (g")'w2 . (14)

Now, let us essume thet the suwmetion in g, , ra) .(7), natic-
fies the following conditinnm,

s
[Zeaa (< 4. (15)
Then
dG/dcosad:{w' 4+ “i.; (=372)6,v, 4 Q16)

All NA 1) enelyses conclude thet not only the peremeter . (in
the present approximation, L= (-3/2)83) is compatible with
zero but elso the paremeters 54 and 55 do so. Therefore we
can write,

d6/dc0s3'dc¢ ~d + (-3/2)ey, + (-3/72)€,V, (17)

where ¥y, V, end ¢,, ¢, are given bv (8) end (9), respectively.
In our approesch, rel.(17) ic obtained from (5) if there
is no correletion in the phase space (p = 0) end a1l three
Geuscien distributions ere eentrel (all b, = 0}. In this ca-
se the crefficients €,, & contain two peremeters, rey
(6, /6,)2 2 S, end (6’2/1’53)2 £ S, . If they ere independent
there 5 no CallenGross relation. However, if they are related
by the relation S, = (6 +#.5,)/43 then the relation (3)
ic satinfied.
Moreover, if 6‘42 = 6’22 = 602 then the cylin“ricel rym-
metry appears (in (2) elso V = 0); now the Drell-Yan distri-

bution (1) is obtained with 6'02 = 2632 .
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If only the perity violating terms vanich (o.g. “ue to
Refl ~ 0), the angulur dirtribution i+ given by (14) or (16).
Those expressions contein five coefficients, En (n=1,. .,5).
In this cuse, with the acsumption 1like b; = b, = by = b,
and 6, = 62 g 60 we meet five free perameters, nemely
9 » (nT) » by s By 63 .

Let us retain the parity violsting terms in (5). If
thevy are cmell and the condition (15) ic asatisfied then
their precence in the enguler distribution is manifested by
the terms like cosV, ninﬁhosq, sindtiny, cosd ete (and
moreover they will influence &lso the coefficients multi-
plying the psrity conserving terms as it ic seen in (5)).

In thi: way one cen conclude about the precence of the peri-
ty violation.

Relotion {16) cen be epplied elso to the Aescriptisn
of the muon-proton deta obtalned bv the EMC Csrllaboration,
rer.[11].

4. Conclusion. We chowed thet the applicetion of the cohe-
rent stete expansionc allows to derive the ~xpresrion for
the anguler digstribution of the muon pairs (5) which genere-
lizec the Drell-Yan distribution (1) as well an the one ob-
teined in the lowest order (CD (2). This generalize? ‘'istri-
bution can be applied also in the ceces when the Callen-
Gross reletion (3) is not seticfied.
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ENTROPY IN THE MULTIPARTICLE PRODUCTION

V. Simak
Insgt.of Physics,Czech.Acsd.Sci.,
Na Slovance 2,CS 180 4@ Prague,Czechoslovakia

H.gumbera and I.Zborovaky
Nucl.Phys. Inst.,Czech. Acad.Sci.,
CS 250 6B Rez near Prague,Czechoslovakisa

Experimental results from the CERN EfFpS Collider have
considerably changed our understanding of asymptotic behavior of
multiparticle production/1/.Multiplicity distributions of
particles in the full phase space and also in different rapidity
windouws are ugsually analysed uging the statistical
moments/1-4/,their energy dependence beeing interpreted in terms
of KNO scaling /5/ and its poscgible violations{,2,8,8/.

In the present contribution we would like to point out and
exploit a difterent strategy/6/.We introduce a new quantity
characterizing charged particle multiplicity distributions -
entropy /7/3

.8 s = 3 PIN)InPND (1)

Let us mention some properties of this quantity:
(1) The entropy describes a general pattern of independant
partlicle emigsion.Total entropy produced from ¥ statioticaly
i ndependent phase space regions (e.g.Pcimgon distributed clans or
superclusters /8/) i8 equal the sum of entropies of individual
sources

§= 5+ 5¢*+ ... +5,.

Hence,tor correlated sources whith known entropy,their total
entropy can be used to evaluate correiatiaon strenght among them.
(11) Contrary to the statistical moments the entropy is Invariant
under arbitrary distortion of multiplicity scale (i1.e, diferent
shapes of multiplicity distribution can have the same value of
entropy).For instance the entropy ealculated from charged and
negative particles data in the full phase space give the same
value of S,
(111) There 1s 8 simple relaticn between S ,average multiplicity
<N> and KND function ap(2):

S = In<N> + H/2 {2)
where .

H o= - [paiincy cznaz (3
is the entropy of KNO function 1’(:).normalized

I\'/(z)dz - jz\{'(z)dz = 2. (4)
(iv)There exists a natural bound:

S - In(<N>/2) = 1 : {5
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which follows from the maximizetion of the entropy H within the
class of KNO functions fulfilling usual normalization conditions

(4) given above.

Entropy in full phase space.

Experimental situation concerning evolution of the entropy
with c.m.s. energy V€ for pp,BP, ¥*P,n-Ps K+psK-P» inelastic
interactions/1-4,9/ is presented in fig.1.|ncrease of entropy
with energy seems to be approximately simi|ar for all hp
interactions and reveals a univereal asymptotic linearity with
Inss

5 = @.4InyE + 0.8 (6)

In addition to this,when expressed as a function of a maxinmum
rapidity of produced hadrons ¥m = ln(FE)lmt):

S = (0.41740.005)Ym 7

This suggests, that in hh collisions the entropy per unit of
rapidity S/Ym i{s universal and the energy jndependent quantity.

The observed behaviour of entropy together with limiting
property (5) puts severe restriction on the energy dependence of
both <N> and 4(2) of charged particles.We jlustrate this
statement in fig.2.Expe¥intal data up to ¥§ = p0® GeV are yet far
from gaturation of the bound

-I'{Hz)/ZIn(Y(z)/Z)dz = S -In(<N>/2) g1 8)

Approximate energy independence of ~f (2} (early KND scaling)
ie violnted by Coliider data,but the behaviour of multiplicity at
stil]l higher energies must be governed by the upper bound
(8).Consequently the onset of ultimate multiplicity scaling is
expected in a few TeV region(ftig.2).Furthermore either the
entropy S5 must slow down ,violating (7), or the average charged
multiplicity <N> must grow faster with the energy then the
present parasmetrization of the data indicates/i/.1n the later
case extrapolation of (7) to the asymptotic region gives:

(N>~ S ol o 0

Using the FNAL /71@/ and ISR /11/ data on multiplicities of
charged or negative particles from pd,pel ,le inelastic
interactions we try to extend the observed regularity to the case
of high energy collisicns of lightest nuclei(fig.3).Agreement
with the universal hp curve s surprisingly good and helps to
1111 the gap between pp ISR and pp Collider data ( for
calculation of Ym ve have used the tota! c.m.s. nuclieus-nucleus

energy).

Entropy in rapidity windows.
Data on multiplicity distributions {n central intervals of
centre-of-mass (pseudo) rapidity /y/<y,/3,4,12/may be used to
study the evolution of entropy with the central rapidity window

width y¢ starting from a8 very smmnll central windows up to
¥Ym.Charge conservation, which restricts the muitiplicities of
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charged particles in the full phase space to their even vslues
and makes entropies,calculated from data on negative and charged
particles equal to each other,is no more applicaple when
discussing the vindowing data.At present only one set of
experimental data exists on multiplicity distributions of both
negative and charged paricies in different rapidity intervals(at
{& = 22 GeV /3,4/).Ve have studied the dependence of entropy on Ye
using these data.Contrary to the entropy of negative
particies,the entropy of charged ones reveals a non monotonic
behaviour with y‘.This may be understood as a resuit of long
range correlations between oppositelly charged particles which
maniftest themselves in full phase space.Supposing that particles
are produces via neutral clusters consisting of two oppositely
charged hadrons/13/,one can,with the help of information from
the first three moments of the multiplicity distribution of
charged particles/i4/,extract the multiplicity distribution of
negative ones for Collider data,too.

The dependence of S on the éentral rapidity window width Ye
18 not linear contrary to {ts dependence on Ym.Extension of
energy independence of ratio S/Ym into a smaller rapidity
intervals is nevertheless possible.The data,when ploted in the
torm Sy, )/¥Ym versus a reduced rapidity f = Yo /¥m, indeed reveal
a satisfactory scaling behaviour(fig.4).

From fig.4 it follous that the entropy reaches its full phasge
space value quite early,for f2> 0.5;8 remarkable fact,bearing in
mind that first two moments of multiplicity distribution are
stil] noticeably changing /3,12/within this region.Thus the
entropy production in fragmentation region seems to be
negligible,

For semfiinclusive rapidity distributions the scaling In
reduced rapidity Y has been proposed a long ago /15/.1ts
connection with observed violations of KNO scaling has been
revived recently from the point of view of clusters/16/.0riginal
arguments in favor of this scaling law were based on Feynman's
analogy between statistical properties of (one dimensional) fluid
contained inside finite volume and distribution of produced
particles in rapidity space.The longitudinal geometric
scaling/15/ states that this distribution of particles does not
change with external volume Ym provided we use instesd of
rapidity y i{ts reduced value ‘ to label particle’'s position
inside the volume.Such type of selfsimilarity need not be
generaly true for any fluid.On the other hand an extensive
character of both the volume and the entropy of the fluid
guarantees that entropy of the multiplicity distribution should
be always a homogenous function of its volume Vet

StAy ) = A Sty Q)
Taking A = 1/¥m we get the scaling 1aw of fig.4.

Particle density in the central region.

To study consequences of the above regularity for particle
praoduction in the central region we present in fig.5 dependence
of S on <N> for windows wltrx§'< ©.25.For these small rapidity
intervals all energy dependence of S is within a reasonable
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accuracy given entirely by {ts dependence on <N>.Analytical
epression

S = IN(CNIIC(CNI+1D INn(E¢1/<ND) 10}

valid for the entropy of geometrical digtribution, represent also
a good approximation of the data.Given the values of yo and Ym
one can,using the entropy scaling (fig.4),predict S and hence
(trom 11g.5) also the average charged nuitiplicity and particle
density in the central region at Collider énergies/i17/ and
beyond(fig.6).

In conclusion,we would like to stress the general character
of observed empirical regularities in entropy,which underlines
onoe again the statisticasl character of mulptiparticle production
in soft hadronic collisions,
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Figure Captilons

Fig.1 Entropy of the charged particles multiplicity
distributions (eq.1)for pp.Pp (8) and §-p, S+p,K-p, Kep
(b),inelastic datarsi1-2,8/.Full line corresponds to eq.7.

Fig.2 Energy development of the entropy of KNO functiony(z)
(emlculated from S -In(<N>).Shaded corridor corresponds to S and
<N> parametrizations given by eq.7 and of ref.i,repectively.
Region with arrow indicates our prediction of the onset of
multiplicity scaling in the few TeV region.
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Fig.3 Summary of the energy dependence of hadron induced
inelastic interactions(from fig.1) together with data on high
energy nuclear {nteractions/i11,12/.

Fig.4 Entropy as a function of the width of the
(pseudo)rapidity window y, for V6 = 22 GeV/3/ and 546
Gev/i2/rescaled by Ymteq.8).

Fig.5 Entropy of the negative particles in the central
rapidity wirdow ({< 0.25).The curve corresponds to the entropy of
the geometriocml distribution (eq.10).

Fig.6 Predicted density of charged particles for two values

of reduced rapidity ¥ as a function of c.m.s. energy.The data
points correspond to ISR and Collider experiments from ref.i7.
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Coherence, Chaos and Entropy Scaling in High Energy
Collisions

M. Plimer, 8, Raha' and R.M, Weiner
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Mainzer Gasse 33, D~-3550 Marburg, Ped.Rep. of Germany

'On leave from Saha Institute of Nuclear Physics,
Calcutta, India

The remarkable recent finding1’, that the experimental mul-
tiplicity distributions of charged secondaries produced in pp-
and pp-collisions exhibit "entropy-scaling" in a range of CM-
energies between /& = 19 GeV and /s = 900 GeV, has raised con~-
siderable interest and attention. For symmetric rapidity in-
tervals |y|<yc, the authors of ref. 1 have calculated the en-
tropies

8(y,8) = =X P(n,y,s8) 1n P(n,y,,8) m
n

from the respective data on multiplicity distributions
P(n,y4,8), and vhen they plot s(yc,S)/Ymax against the scaled
rapldity variable £ = y/yp.. (yp.. = In(/s-2M,/m_)), they find
that for tha above-mentioned range of /s all points lie on one
curve. As will be shown below, a calculation of the entropy
via eq. (1) relies on two implicit assumptions: (i) the densi~
ty matrix o of the system does not have any off-diagonal ele-
ments in the particle number renresentation, and (ii) all par-
ticles are emitted by one source which is described by a nega-
tive binomial (n.b.) multiplicity distribution. Since these
assumptions are not expected in general to hold it appears ne-
cessary to calculate the entropy under different assumptions,
Among other things the fact that we are dealing with a guantum
system suggests that non-diagonal terms of p are important.
Furthermore there exist indications, that the negative binomi-
al fit does not work at large y and therefore more than one
source exists. For these reasons we have computed the entropy
in a two-component modelz), which does not rely upon assump-
tions (i) and (ii) and replaces the poorly understood s- and
y-dependences of the n.b. parameter by a heuristically appea-
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ling interpretation of coherent and chaotic sources, We show
that in the context of this model the entropy scaling reflects
itself in a scaling behaviour of the mean multiplicities and
rapidity distribution of the chaotically produced particles,
and we write a master equation for the rapidity dependence of
the chaotic multiplicity distribution. '

The entropy of a system characterized by a density matrix p
is

p=="Tr (p ln p) (?)

For instance, consider the case of k independent sources des-
cribed by density matrices pyr i.e,

p-p1092000009k (3)

Then the multiplicity distribution and the entropy are given
by

k k
P(nyyesoyn ) = N P.(n,) = N <n {p,|n,> (4)
rrecermg) = B Baingd m Tongleging
k { )
§= L 8 8, = -7 1 5
4o 4! i r(Di n 91) (

where'n1 is the multiplicity from the i-th source. Only if all
the p, are diagonal in the n,~representation, 8 can be calcu-
lated from the multiplicity distribution:

<mi|p1|n1> - Gmini Pi(ni) (L =1,..4,k) (6)

S= =3 Pin,,...,n.) 1n P(n.,...,0n.)
{nil 1 x 1 Tk

In general the <m1|pi!ni> will not necessarily vanish; e.g.,
in the case of one coherent source, p=|a><a|, where |a> is an
eigenstate of the annihilation operator, a|a>=a|a>, one has

2n 2
P(n) = l%%—- e-lal r $30<¢< - P(n) 1In P(n) {(7)
n

i.e. eq. (1) does not hold.
However, even in the cage described by eq. (6), where the
off-diagonal elements do not play a role, when one has more
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than one source eq. (1) may not be applied to the convolution
?(n) - {z P(n1,...,nk) én,zn" since
ny ) i
§= - L Plngseuuny) 1n Pings.ioon)>=I Bn) 1n By (8)
{ni] n
We shall now proceed to apply that formalism to the above-men-
tioned two=-component model. The multiplicity distributions of
the chaotically and coherently produced particles, Pch("ch)
and Pc(nc), are given by a Planck-Polya and a Poisson distri-
bution, respectively, and since the sources are assumed to be
independent, P(n,, ,n ) = Pch(nch)'Pc(nc). Thus, the model has
two parameters, the total mean multiplicity <n> and the chao-~
ticity p = <ng,>/<n>; for a given /s and a given rapidity in-
terval, they can be determined by fitting the first two mo-
ments of the measured multiplicity distribution., It has been
shownz) that at fixed /s p decreases when one goes from the
center to the wings of the rapidity range; at fixed rapidity,
p increases with s,
. S8ince the entropy of a coherent state is zero (cf. eq. (7)),
wve find

Blygs8) = 8, (v s8) = (<nyp(y,,8)>+1) In (<n (v .8)>+1)

(9)
- <nch(yc,s)> 1n <nch(yc,s)>

3) 4)

In figure 1, for data obtained at /s = 21.5 Gev”’', 200 GeV'',
546 Gevs) and 900 GeV4) we have plotted S(yc,s)/ymax against
§ = yc/ymax' Clearly, we f£ind the same type of scaling as in
ref. (1), but with a different scaling function F({) = s/ymax‘
Eq. (9) then implies a scaling behaviour of <nch(yc,s)>, that

is to say it depends on Yo and s through the variable

US Yooy F(£) only; in the 1limit of large <nch(yc,s)>, we
have 1 /o F(E)
Non(¥er8)> = E(_) (10)
m‘ll'

and for the rapidity distribution
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SESE &« F'(§) ° %(ZE)F‘E) (1)
dy m

It is noteworthy that for the entire rapidity range eq. (10)
together with the observed F(1) = 0,46 implies that

ngp> = 50‘23, which is not far off the 91/4 behaviour predic-
ted in the Landau model.

Eq. (11)dﬂhows that, if the entropy scaling will persist at
higher vs, dCh will (asymptotically) develop two distinct
symmeta%c maxima that move away from the center. In figure 2,
where ch as calculated from the data has been plotted, one
may alrezdy see the onset of such behaviour, though at these
energies the values of <nch(yc,s)> are not yet large enough
for eqa. {10),(11) to be good approximations,

As a further consequence of the scaling behaviour of
<nch(yc,s)> exprassed in egs. (10),(11), Pch(nch,yc,s) can be
shown to satisfy the master equation

9 P(n.yc)
- —T-_— = F'(£) {{n+1) P(n+1,y_) = n Plnsy.)} (12)
Y

Changing variables from Yo to t = Ymax ~ Yor one finds that
(12) describes something like an absorption process; t plays
the role of time coordinate: as the system evolves in time,
the particles initially present (at t=0) are absorbed (or de-
cay), F'(€£)dt gives the "time"-dependent probability for a
particle to be absorbed in the interval (t,t+dt).

It is a challenging task to ascribe some physical meaning to
the master equation (12).

In conclusion we see that the scaling behaviour found in
ref. 1 is recovered in the present approach, with the diffe-
rence that the entropy refers now to the chaotic part of the
system which has more direct implications for the investiga-
tion of thermal equiiibrium. The fact that the entropy is con-
centrated in the central rapidity region confirms the observa-
tion of ref, 2 that the chaotic source dominates the same ra-
pidity range. Furthermore new predictions for the rapidity
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distribution of the chaotic component are made and a master
equation for this component is derived.
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1 Abstract

An analysis of correlations in rapidity of charged pasticles produced in proton and antiproton
. interactions on hydrogen, argon and xenon at 200 GeV/c is presented. Positive, loug-range cor-
relations were observed in interactions on heavy targets. The dependence of rapidity correlations
between forward and backward hemispheres on number of projectile collisions is discussed.

2 Introduction

The study of correlations among particles produced at various rapidity regions reveals the mech.
anisms of particle production, Mauy experiments show strong positive short-range correlations
corresponding to clustering of particles over regions of about one unit in rapidity. In particular,
correlations between particles emitted at the central rapidity region are dominated by these
short-range correlations. On the contrary, correlations which extend over a longer rauge in ra-
pidity [ul'e observed in hadron-hadron reactions only above cnergics of the ISR (above /5~ 30
GeV) [1]. ‘

It has been suggested that long-range correlations might be much stronger in hadron-nuclens
interactions than in hadron-hadron scattering at the same energy per nucleon [2]. Interactions of
hadrons with nuclei, a8 commonly described, are assumed to proceed via independent collisions
of a projectile or its constituents with constituents of the target. These multiple collisions
result in an abundant production of particles in the backward hemisphere while, in the forward
hemisphere only a small excess of particles is observed in comparison to the corresponding
hadron-hadron collisions. At presently available energies this excess extends to ahout one unit
in rapidity from a cms rapidity of zero [3]. To analyze mutual relations of multiplicities of
different rapidity regions, which are characteristic for nuclear target interactions, an appropriate
selection of rapidity intervals is necessary [2].

The correlation strength between the multiplicities in two rapidity intervals (yp;,yp2).
(yr1,Ur2) is often measured with the slope b of the following linear relation: .

< Ng>=a+bNp 1)
where .
o < Np > is the average value of multiplicity in the interval (yp1,yp2)

1
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¢ Nr is the multiplicity in the interval {yr,, yr2).

In the present analysis the estimation of the parameter b is given for full unbiased samples of
events of p — Ar, p ~ Xe, p — Ar and j — Xe reactions. A sample of hadron-nucleus events
corresponds to a distribution of the number of collisions v, average of which is usually estimated

Aapy
[V

D=

where
o A is the atomic number

o oy and 0,4 are the cross sections for a hadron h interacting with a nucleon or nucleus,
respectively.

Aucstimation of a shape or a width of the distribution of v is the matter of models. In our earlier
publication [4] we have discussed certain model calculations [5] of the distribution of v in relation
to a number of slow identified protons Np, observed in an individual event. It was shown that a
sample of events with fixed number of N, corresponds to a narrower distribution of the number
of collisions v than the full unhiased sample. We refer to this model estimation also here to test
the dependence of the correlation strength on the dispersion of the v distribution. It seems to
be obvious to interpret the origin of the long-range correlations in h-nucleus interactions as a
consequence of the fact that a sample of h-A events consists of a mixture of events of different
number of collisions and, consequently, a differcnt particle production in forward and backward
directions.

In the following section a brief description of the experimental data and analysis is given.
The results are presented and discussed in Sect. 4, followed by concluding remarks.

8 Data and analysis

The data on proton aud antiproton interactions with hydrogen, argon and xenon nuclei at 200
GeV/c used for the present analysis were collected in the NAS experiment at CERN SPS. The
details of the expcrimental sct-up aud the reconstruction procedure can be found in our earlier
publications {3,6].

For the following analysis we have selected the test rapidity intervals:

(yB1, yB2) = {0.75, 1.75) lym, yr2) = (3.25, 4.25)

as suggested in [2]. (The values are given in the laboratory system, in which the rapidity y=3.028
corresponds to a cis rapidity of zero for p-p scatteriug at 200 GeV/e.) Introducing a gap of 1.5
units in rapidity between the intervals one expects to eliminate considerably the contribution
of short range correlations. On the other hand, selected intervals scem to be far enough from
phase space limits aud effects of the intra-miclear cascade are eliminated to a large extend [3].
As a matter of fact the proper choice of intervals is crucial: it was shrwn (3] that for the interval
{yF1, yra2) chosen further in the forward region, where the density of particles does not vary
considerably with the mumber of collisions and is very small, the long-range correlations are
unmeasurable.
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4 Results

The values of the slope b - the result of a linear regression of scatter plots of events on the
Np, Np plaue - are shown iu Table 1. for all analyzed reactions. (For completeness, the results
for our own data on elementary p — p and §i - p iuteractions are a'10 given.)

b b
P—p 0L £ .01 P—p 00 £ .01
p— Ar 28+ .04 p—Ar 35 + .04
p— Xe A1 + 04 P—-X 44 + .04

Table 1. Slope b for full samples of events.

The observed correlation strengths are large for interactions on argon and xenon as suggested
[2] and negligible for the elementary interactions.

A similar analysis has heen performed for sub-samples of events churacterized by the multi-
plicity of slow identified protons N,. As mentioned ahove, sample of events with fixed N, may
be associated with the distribution of v which is narrower than for the full unbiased smnple
[4). To ztudy the depeudence of the strength of long-range correlations on the v distribution we
have calculated the slope b for samples of events of a different contents of N,. The sample of
events with N, = 0 correspouds to the narrowest v distribution. a sample with Np = 0 and 1
corresponds to the wider one and 20 on. The detailed model caleulations can be found in [4].
E.g. the sample of p— Xe events with N, = O corresponds to the distribution of v with the
average 1.56 and the dispersion .95 while the » = 3.32 and dispersion equals 2.20 for the full
sample . Fig. 1shows the dependence of the slope b on the number N by which we denote the
hlghest N contained in the sample. A strong dependence of b ou N is observed for all analyzed
reactions.

Finally, we apply the model calculations of ref. [4] to relate N scale to the dispersion of the
combined v distribution for each sample. As illustrated in Fig. 2 slopes for p — Ar and p — Xe
interactions, which can now be plotted together, show a similar and strong dependence on the
dispersion squared of the distribution of the number of collisions. This confirms an intuitive
interpretation of the origin of long-range correlations in hadron-uucleus collisions at energies at
which no such correlations are observed for elementary interactions.

5 Conclusions

Large positive long-range correlations among particles produced at various rapidity regions in
proton and antiproton interactions with argon and xenon nuclei at 200 GeV/c were observed.
This observation confirms the earlier theoretical predictions [2]. The strength of thesc correla-
tions, measured with the slope of the relation (1), depends on the distribution of the number of
slow identified protons contained in the analyzed sample of events. With certain model assump-
tions such a distribution may be related to the distribution of the number of projectile collisions
v inside the target nucleus. It was shown, in the framework of these assumptions, that the wider
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is the distribution of » the stronger are correlations.
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Transverse energy distributions in hadron - nucleus
and nuecleus ~ nueleus collisions

J. Pidnik

Depariment of Theoretical Physics, Comenius University
842 15 Bratislava, Csechoslovakia

Recently we can observe ralsing Interest In the search of quark -~ gluon plasma,
The existence of plasma s predicied by QCD (for review see [1)), but it 1s not known,
whether high enough energy densities can be reached in heavy fon collisions. Several
dedicated experiments [3,3] have already published first results on transverse energy
distributions In collisions of 0*¢ with various heavy targets at 60 and 200 GeV/nucleon,
In attempt to distinguish in By distributlons possible QCD plasma formation signature
from conventional physics we have developed a simple non-plasma model for calculation
of Er distributions in hadron ~ nucleus and nucleus - nucleus colllsions.

.Our simple model aims to describe the qualitative features of Ep distributions in
the absence of plasma formation, In this model we assume the total Er of the event to
be built up by the independent contributions of nucleon - nucleon collisions., Each of
these nucleon ~ nucleon collisions is supposed to be similar to proton ~ proton collisions
at the same energy in what concerns rapidity distribution of produced hadrons and
their transverse energy distribution. After fixing the parameters of the model using
data In central rapidity region (where we don't expect the contribution from cascading)
we underestimate Ex distributions in target fragmentation region. This we interpret as
the evidence for the contribution of cascading which we have to include into our model,

The calculation of Ep distributions in our model is based on the determination of
three probability distributions. At the beginning we have to determine the total number
of nucleon ~ nucleofl collisions N at the given impact parameter b of the colliding nuclei
P(N | b). This is mostly the question of geometry of the collision, We combine geomet-
rical considerations with ideas motivated by Glauber model. Knowing the number of
nucleon - nucleon collisions we can estimate the probability for the production of the
total number of hadrons ny (both charged and neutral) P(ns | N). Here we use the
similarity of nucleon - nucleon collisions with p-p collisions and the simple assumption
about energy losses In consecutive collisions of projectile nucleons. Finally knowing the
total number of produced hadrons in the given rapidity interval we need only to deter-
mine the probability for the production of total transverse energy in the given event
P(Er | na). This probability is calculated from the probability distribution of Ep for
one produced hadron. Knowing all three probabilities we only need to integrate their
product over all possible impact parameters and sum over all values of N and ny to
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obtaln the differential crods sectlon
o |

5= [ @ 5= PUEr | )P | PO
(L]
We will now describe the actual calculation of the differential cross section.

Proton - nueleus eollisions
e P(N|})

Calculation of the number of nucleon - nucleon collisions N at the given impact
parameter of the proion b s motivated by Glauber model and iv based on simple geo-
metrical picture, We estimate N as the number of nucleons in the target nucleus being
present in the tube “seen” by the incoming proton with the base area equal to the
total Inelastic cross section of nucleon ~ nucleon collision oun. The expression for the
probability P(N | 8) then reads

o QR

where N4(b) = onn j'dl #4(s,b) and for the density of nucleons we take standard Wood
« Saxon parametrisation
A
palr) = 1+ ezp(r— By
with 74 being the normalisation constant and parameters d = 054 fm, By =
1.1041/% — 1.614-1/® fm. For nucleon ~ nucleon cross section we use the value
Oan = 26 mb.

o P(ny | N)

For the estimation of the production of hadrons we need to calculate the average
number of produced hadrons 4. For the number of produced hadrons we use negative
binomial distribution

P | 1) = (0 et - ®
where = = fis/(As + k). From the data on proton - nucleus scattering [4] we fix
the value z = 0.3. For the calculation of N, we have to estimate energy losses in
consecutive collisions of proton with nucleons of target. We use simple geometrical
filter By = (1 — u) By where By is the energy of the projectile after the n collisions
with target nucleons. The probability distribution for u is P(y) = au*-!, a=2. In
each proton ~ nucleon collision we expect the rapidity distribution of produced hadrons
to be equal to pp collisions at the same energy. For the rapidity distribution dfix/dy we
use parametrisation (5]
7”-'-‘- = 8,16(1 - 8)**(1 - 5_)*
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where s = mp/(E + p) eap(y), s= = mp/my exp(-y), mr = 0.4 GeV. The average
number of produced hadrons in given rapidity region Is obtained by Integration of the
sum of mch distributions for all proton ~ nucleon collisions.

* P(Br |m)

For the calculation of transverse energy produced in proton ~ nucieus collision we
use the phenomenologically successful expression for one particle Er distribusion

PU)(Er) = 75 expl~Ex/T)

with < Br >= 2T, T = 02 G¢V. For n produced hadrons we are able to perform
convolutions analytically with tho resulting distribution

P(Exr | ) = Nﬁlfm oriT (% )an.-a @

Using Eq.(1) for the fit to the NA 36 data on Eyr distribution in p-Au collisions at
200 GeV we have fixed our moat important parameters o, = 256 mb and a = 2. Data
were taken in the rapidity interval 2.2 < y < 3.8 corresponding to central rapidity region.
The result of the fit can be seen on Fig.1, Using the same set of parameters we have
performed the calculation for target fragmentation region data of Helios collaboration on
p-Pb collisions at the same energy for the rapldity interval 0.1 < y < 2.9, We interpret
the discrepancy between the model and the data as the indication for the substantial
contribution of cascading to the Er distribution. We Intend to include cascading into
our model in the near future,

Nucleus - nucleus collisions
o P(N |b)

For nucleus - nucleus collisions the calculation of the total number of nucleon -
nucleon collislons is much more complicated then for proton — nucleus collislons. We
are using simple Gaussian probability distribution

PN |1) = by o[-0 ®

around some mean value N (we take also D? = N). For mean value N at given
impact parameter b we are again using “tube” approach. We approximate N as the
sum of products of the mean number of nucleons in all possible tubes in nucleus A and
corresponding tubes In nuclsus B N = [ d%s/0a Na(#)Np (5~ 7) where # is the impact
parameter of the tube within the nucleus A. N4 and Np are again mean numbers of
nucleons in corresponding tubes given by expressions Na(7) = onn [ d3pa(s,3) and
Np(b — @) = oun [dspp(s,b — 7). The density of nucleons is again parametrised by
Wood - Saxon parametrisation for nuclei with 4 > 185.
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e P(ny| N)

For the total number of produced hadrons we are using the approach deacribed al-
ready for proton nucleus collisions. For P(ny | N) we use negative binomial distribution
in the form of Eq.(3). The only difference is connected with the fact that nucleons from
nucleus B are interacting with several nucleons from the projectile nucleus A. After
interacting once nucleon from nucleus B starts to move in the direction of projectile.
Therefore it has smaller relative velocity with respect to the next incoming nucleon
from nucleus A. This causes shifts toward positive values of the beginning of the rapid-
Ity plateau of produced hadrons in consecutive interactions of nucleon from nucleus B.
Taking this detail into account we can repeat all the reasoning presented for proton -
nucleus collisions.

o P(Er | m)

For this distribution we can again derive the parametrisation in Eq,(4) using the
same arguments,

Using the same set of parameters used already for proton ~ nucleus case we are
able to fit the data of NA 35 collaboration on Er distribution in 60 — Pb collisions at
200 GeV /nucleon in the central rapidity region (see Fig.3). On Fig.4 we compare our
model with the data of Helios collaboration for 140 —W collisions with the same energy,
but in the target fragmentation region. Both rapidity intervals correspond to quoted in
proton ~ nucleus case. We again clearly see the need for some additional mechanism of
Ep production in target fragmentation region - in our opinion it is cascading,

We have shown that the recent data on Er distributions in heavy ion collisions
can be understood as the sum of the contributions of individual nucleon - nucleon
collisions, This strongly indicates, that up to now we have not observed the creation
of QCD plasma. However, we have found evidence for the substantial contribution of
cascading in the target fragmentation region.
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CHARGED PARTICLE MULTIPLICTTY DISTRIBUTIONS AT 200 GeV AND 900 Goev

The tIAS Collaboration
Bonn -Brussels-Cambridye -CERN -Stockholm
presented by
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Inst. of Physics, Univ. of Stockholm
vanadisv, 9. 8§ - 118 48 Stockholm, Sweden

ARSTRACT

Momants for corrected churwed multipticity distributions in limited regions of
phase space are given. An accldental scaling of the multiplicity distethutions is
seen in the preudorapidity interval less than 0.5 in sabsolute valae, Negative binomial 7/
distributions are shown to fit multiplicity distributions in all pacodorapidity
intervals at 200 GeV and in small intervals at 900 GeV, The values of Lhe parametor
k for the fitted negative hinomial distributions are given.

INTRODICTION

The KNO scaling law (1] which wis derived using Foynman ascaling [2] states
that the normalized charged particle multiplicity distribution should become
energy independent at very high energies if plotted in the variable » - n/a,
Although Feynman scaling was known nat to hold st ISR energies (20-63 GeV) thr
concept of KNO scaling was nevertheless very successful for energies up to 63 Goev.
Nowever, the UAS collaboration showed that at 546 GeV (3] the scaling properties
were brogen. Futhermore the UAS collaboration showed that the multiplicity
distribution of charged particles at 546 GeV could be succesfully described with
the negative binominl distribution [4). This distribution is given by:

- . ntk-1 LV (R
P(n;n.k) [ k-1 ]['1+n/k (i+n/K)"

It. only has two free parameters n and k, where n is the mean of the distribution,
It was shown that the negative binomial did not only fit the multiplicity
distribution in full phase space but also in different. pseudorapidity intervals
and in pp collisions at various energies |5). The negative binomial distribution
has after that been fitted to multiplicity distributions obtained with different
beams and- at various energies [6,7). In this contribution the results on the
nultiplicity distribution obtained in proton-antiproton collisions at 200 GeV and
900 GoV will be discussed.
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THE DETECTOR

_The UAb6 detector was wel] sujted for the study of charged particle
multiplicity distributions. The charged particles were detected in two large
streamer chambers, one placed above, the other below the heam pipe. The
geometrical acceptance of the chambers was about 95% in the psewdorapidity range
ml < 3 falling to zera at. Imi = 6. The spatinl resolution of the tracks was
very goad. No magnetic field was used, so the tracks were straight and easy to
mcasure, The stroamer chambers wers triggered by scintillation counter hodoscopes
at each end. For the sample analysed here, a minimum hias trigger which exclucded
most single diffractive cvents but recorded abomt 95% of the non single
diffractive events was used. For a description of the detector see vef, (8,9
Tha results presented here are based on about 3800 events at 200 GeV and about
8500 events at 900 GeV.

THE CHARGED PARTICLE MULTIPLICITY DISTRIBUTION

The corrected charged particle multiplicity distributjons were determined for
full phase space and for a set of symmetric intervals defined by the pseudorapidity
cut n_ from 0.5 to 2.0 in steps of 0.5. One small central interval for which e is
0.25 18 also udded. The results in fnll phase space at c.m. energies of 200 (,ev and
900 GeV confirm the UAS finding at 546 GeV that KNO scaling is not observed in the

T UNA22 ' uAS '
Prel. ot 200 GeV 1 900 GV
o -
Imi<0.25
2.4 b
t
~
& i
2gheos ——nu 1 .
16 mi<1.0 / E
Ini<t.s
<20 . "
L2} vy g™ e 1
10 700 000
Vs

Fig. 1. The ca-moment for the charged particle multiplicity distributions found
in full phase space {10) and in different m-intervals plotted [4,7] versus the

centre of mass energies. The ca-momenm in full phase space are plotted as squares.
The straight lines are fits to the cz—moments in the various m-intervals.
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non singlte-diffractive component. In fig. 1 the cz--mnmc.-nt in various m-intervals
has been plotted versus the contre of mass energy. For comparison NA22 data [7]
and earlier published UAS dsta {4]) are given in the figure. The definition of
C-moments is C_ = <275, where z = n/<n>, from which follows that KNO scaling
impHes energy-independent C . moments. In fu)l phase space this is approximately
true below 62 GeV but not ahave 200 GeV. As cap be seen the 02-— moment. increares
with anergy not only for multiplicity distributions in full phase space but also for
muitiplicity distributions in large pseudorapidity intervals. In very small intervals
however, the Cg-Amomt‘.nt deereases with energy. This shows, since Cy-1 = {(N/<n>)? where
D is dispersion. that the multiplicity distributions are getting relatively broader
when the energy is increasing, in large m-intervals but in small m-intervals the
distributions are getting relatively more narrow with increasing energy. It is also
secn that the C,-momont Increase with decreasing m-intervals at a)) energies.

The lines shown in the figure are fitled straight liner to the cz-nonents in

each psendorapidity region, The slope of the lines is plotted versus the size of
the psendorapidity region in figure 2. In this figure the corresponding slopes for
the Cs-moments are also shown, As can be seen in the figure, the slope is zero
* in the psendorapidity region Iml < 0.5. This indicates an accidental scaling in

that. region, for c.m. energtes between 22 GeV and 900 GeV.

c
L
05} * 4
G
0 71— °
s ¢
m-o.st 1
-1.0} ]
-15 —L s i

ncut

Fig. 2. The slope of the straight lines given in figure 1 plotted versus the
n~-interval n whore h"""cuc' The corresponding slopes for 03 are
also given.

cut.
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THE NEGATIVE BINOMIAL DISTRIBUTION

‘The negative binomial distribution has been fitted to multip}icity distributions
in regions of pseudorapidity centred around zero. In all pseudorapidity intervals
the fits are good at 200 GeV. At 800 GeV the fits are good in small n-intervals but
not in large intervals. In the large intervals the fits are still good in the high
multiplicity tail. However, for e.g. the region |nl < 5.0 at multiplicities around
20 the data exceed the curve while in the multiplicity region of about 35 the curve
exceeds the data, This unexpected bad fit in Jarge n-intervals at 800 GeV lead to
futher investigations of possible systematic errors. A comparison between
multiplicity distributions measured at our different laboratories with different
eﬁuipmemn showed that. all the measuring machines give consistently the same result,
No asymmetry between the multiplicity distribution in the upper chamber and in the
lower chamber or between the nultiplicity distribution in the forwsrd and backward
region has been found. There is no contamination of events at the energy of 200 Gov
in the event sample at 900 GeV. The events occur on the sawme film and are labeled
200 resp. 900 GeV. If the Jabaling should have malfunctioned during the run a
contamination of lower multiplicity events at 200 GeV could have bren mistaken as
900 GeV data. However, an independent test exiasts since the level of the beam was
slightly shifted between two the differcnt encrgies. No contamination was found.

The conclusion is that we have not found any systematic error that caunses the
deviation between the negative binoimal distribution and data. In figure 3 the

NA2Z & 22Gev
o 200 GeV

sk UAS { e 546 Gev
4 900 Gev

Prel.at
200 GeV & 900 Gev

R 1
) ¢ & i
¢
+ ¢ o (&)
*
Jl o ¢ [ (:l
¢ 22"
T
t L 1 1 L ]
1 2 3 4 5
ncut

Fig. 3. The value of the parameter k plotted versus Nout? where h“(“cut
for data at 22 GeV [7], 200 GeV, 546 GeV [4] and 900 GeV. If the value is
given in parenthesis the fit is not good.
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fitted k values are given for 200 GeV, 546 GeV and 800 GeV. If the value is given
in parenthesis the fit is not good. For comparison also NA22 {7] data are given.
The parameter k increases almost linearly with increasing pseudorapidity interval
at al]l energies and it decreases with energy.

SUMMARY

At all energles Investigated the multiplicity distributions are getting
relatively wider (the dispersion divided by the mean multiplicity is increasing ) -
when the n interval is made smaller.

In mnst m intervals the multiplicity distributions are getting relatively
broader with increasing energy. However, in the smallest m interval ('nc<.05)
they are getting relatively morc narrow with increasing energy.

The negative binomial distribution fits data in all pseudorapidity intervals
at 200 GeV and in small intervals at 900 GeVv.
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New Remulis obh Pcoton Structure Functiops from Dmep
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Clistract: New results on the proton structure functions
Fol,l#) and R = 6,/ 6y mrasured in a high
statistics deep inelastic muon- hydrogen scattering
¢.periment are presented. The analysis is based on
2%10* events recorded at beam energies of 100, 120,
200 and 280 GeV. The kinematic range covered is .06
< % < .8 and 7 GeV2 { @2 ¢ 240 GeV=. The observed
scaling violations are compared to predictions of
jertubative GQCD. They allow to determine the GCD
mass scale parameter A and to estimate the
distribution of gluong in the proton.

The one- phaton exchange deep inelastic muon—-proton cross
uectiom can be written as

»
2.2
da%6 ol 1oy 2, y2e%s @2 fotx a2
dxdQ? 0% 4E2 2E%(R(x,Q2) +1] 2t
where £ is the enerqy of the incident beam, ¥ the squared

four monentum transfer carried by the virtual photon and % and
y are the Bjorken scaling variables. Fa(x,8®)is the proton
structure  function and R = 6_/6; is the ratio of absorption
croay aections for virtuwal photons of longitudinal and
lransverse polarization. Fa and R contain all the information
ahout the structure aof the nucleon ubtainable from unpolarized
lepton-proton scattering.

e data was collected at the CERN SPS muon beam with a
high juminosity spectrometer which is deucribed elsewhere /1/,
1l ecensists of 8 segmented iron toroids of Om length
magnetized close to saturation. FEight Sm long liquid hydrogen
targets are located in front of the apparatus and in the
central bore. Muons scattered in the target are deflected into
the spectrometer iron. Each magnet module is instrumented with
ring- structured trigger counters and 8 planes of MWPC for
coordinate measurements, The resplution of the spectrometer,
limited mainly by multiple scattering and effective chamber
resolution, isdp /p = 10 % and ¢ a®/a= = 8 %, almost constant
over the kinematic region.

The momentum of the incident muons was measured with a
spectronater consiasting of an airgap magnet and four
veintillator hadoscopes upstream of the apparatus.

The anslysis is bhased on 2x10% prentas after all cuts,
recorded at beam energies of 100, 120, 200 and 280 GeV. The
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data sample and kinematic ranges are summarized in table |,

Table 1. The data sample

Beam energy X range Q2 range Number of
(GaV) (BaV/c3) events
100 L06—~.80 7- 80 570000
120 . 06~.680 8-106 420000
200 0480 16~150 800000
YH0 « 06— .80 262460 190000

In view of the high astatistical accuracy of the data a big
effort was invested into the calibration of the apparatus in
order to reduce the systematic errors to a similar level, As a
summary  the accuracy reached for the main sources of
systematic errors will be given. More details can be found in-
vef. 72/.

calibration of the incident energy AE/E < 1.5x10~—3
-~ calibration of the s-attered muon momentum

magnetic field AB/B < 2x10~3
energy loss AE i caw/Eices < 102
- normalization, absolute < 34
relative < 1%
- correctiaons for the finite resolution
of the spectrometer AC!E < Sxio-=

Particular effort has been devoted to the muon energy lons and
the spectrometer resolution. The energy loss was measured in a
dedicated enperiment and simulated taking into account the
utpchastic nature of all contributions /3/. The momentum
resolution of the spectrometer was measured in special runs
with beams directed into the magnets.

In order ta isolate the one-phaton exchange cross section,
corrections for higher order processes have to be applied to
the measured cross section., We used the formulae by Bardin et
al. 74/, which contain

vacuum polarization by leptons and gquarks °
- lepton current processes up to order.x*
-~ hadron current processes of order ¥
- contributions from ¢-Z interference

The error on the structure functions from uncertainties of the
radiative corrections was estimated to bhe leas than 1 .

The comparison of cross sections at dif{ferent beam energies
allows to determine R by minimizing the x® of the four data
gets with respect to each other. This is done separately for
each u-bin amsuming R to be independent of @3. The result is
ahown in fig. 1 . Also shawn is an earlier measurement of tho
EMC experiment /5/. At %>0.25, ‘the measured values are small
and compatible with zero. At small x,the data shows a risno
well destribed by the QCP prediction (solid curve). Racn was
used - to compute the Fz at the four different beam energies.
Their excellent agreement, especially at large %, is a power-
ful cross—check of the systematics /2/. The final Fa from the
comhined data setgs is shown in fig. 2 together with the EMC
cdata and with the SLAC-MIT results from electron proton
scattering at low @2 /S5/. The agreement with the EMC data
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Inading order (LO) partubation expansion and tn & next=to~
leading order expansion in the A8 renormalization scheme.

The region of x 2 ,270% and O0® > 20 GaV"® was used in the
nun=singlet approximation whare the gluon distribution is
fignored. The results of these fite are summarized in table 2.

- Table 2 ) Results of non-singlet fits
Ao x®/DOF N AR x */pov

ref /8/ 182420 149/180 211422 1697180
ref /9/ 184420 170/180 204420 160/180

T ~T - T

0BCOMS H,(O’ﬂOM’) (ur best estimate $or the
: 1

Q0D masw scale parameter at
mmt~to~leading ordaer is

o1}

AR = 210420 (ntat.) MaVv

corresponding to a straong
coupling constant of

Ow *~ 0.1874 0.003 (mtat,)

at G* = 100 Gavs. The
dotailed evalustion of the
syntamatic error on A  ham
not yet heen completed, but
il is  expected to be
similar to that of our
carbon target measurement
(AA = 40 MaV (msyst.)/2/).

Conventionally, A has
bown detearmined from global
gCD fites to Fa(x,02), which
q not, however, constitute
0 a2 o0+ 05 Qe ' 5 sensitive test of acCD.

X The x> af such fitm
describe mainly the
F0.3 ayreement with the s-

depenaence of the Fx which is not predicted by the thaory. A
more stringent test is obtained by comparing the x-dependencn
of the scaling violations observed in the data to the one
expectead from the GCD evolution. This is the only prediction
of pertubative GCD for dwep inwlastic scattering which can be
tested experimentally. The nonsinglet case is whown in fig. 3
where the logarithmic derivatives dinFa(x,03)/dlnQ2 are
compared to the next-to~leading order predictions for A
210 MaV. The measured x-dependence of the scaling violation-
in fig. 3 is in excellent agreement with the predicted one
within statistical errors.

For the GCD analysis over the full x range of the data, the
proton structure function is decomponed into a singlet (8) and
& nonsinglet (NS) part as /7/

Fuin,0%) = 5/10 Fu"(3 ,02) + 1/6 FaN®(x Nrod
whare Fa™® and Fu® follow different Q% evolutions. All data

‘ points at @® > (0 GeV® are used in the fits.  The gluon
momentum is parametrized as xG(x,@%) = A(+1) (1-x) at Qo* =
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5 Gev® und iw allowed to evolve with Q%, From energy-momentum
sum rule, A equals the fraction of the total proton momantum
carrind by gluone and is found to be A = 45 at 0¥ « B GaVN,

The rasuits for A and rn from two different  methods
/8,9/ ara given in table 3.

Table 3. Results of singlet + nonsinglet QCD fite to
Falx ,A%) at x> 0.07 and Q% > 10 Geav®

Avo n wo x #/DOF Afa neAe % =/DOF

ref./a} 196419 %,241.5% 281/282- 214419 10.3%1.% 282/202
ref. 19 183428 S.441.°% 2460/277 19%4+20 8.941.8 270/277

The results for A are in good agrrement with those of the
nonsinglet fits. The measured scaling violations are compared
in f1g.4 to next- to ~leading order fite for differant values
of N and show again very good agreement with the theoretical
prediction, The gluon distribution has been deturmined for
the firet time from singlet fits in next—-to-leading order QCD.
As can be sesn from fig., 5, it is significantly softer than
in leading order, which also explains the ohserved weak
dependence of A on q .
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SCALAR GLUEBALL INDICATION IN PION SCATTERING *

D.Krupa
Institute of Physics of the Electro-Physical Rescarch Centre,
Slovak Academy of Sclences, 842 28 Bratislava, Czechoslovakia
V.A.Meshcheryakov, Yu.S8.Surovtsev
Laboratory of Theoretical Physics,
Joined Instltute of Nuclear Research, 141 980 Dubua, USSR

Abstract

The production A% —» KR s-wave amplitude calculated from
the x —,®x 9 s-partial wave scattering amplitude by means of
the coupled channel formaliasm indicates the importance of
coupling of channels above 1.2 GeV. The possible interpreta-
tion of partial wave eingularities supposed to be due to the
lightest glueball is glven.

There are several independent theoretical lndlcaclons1
thot tne lightest glueball should be the state with no spin
and positive parity, and that it should have the mass between
0.5 and 2.0 GeV. The natural way to see such state is to look
at the I=0, s-wave XX scattering. The Particle Data Group2
lists two such states - £,(975) and f_(1300), previously called
as S"I and & , respectively. Since there was a lot of contro-
versy concerning the nature of these states we have done a new
attempt to establish these mesons from the data on s-wave gx
scatterlng3 .

Because the 5* mass is very close to the KK production
threshold energy, above which there is a large coupling of- the
«% and KR channels, we have used the 2x2 S-matrix coupling
togrther xx and KK channels:

l -
5 .
21 S22 2

K

(
(K

7

)
)

In order to describe the f5f scattering data the analy-
tical continuation of the S-matrix to the unphysical sheets

*ralk presented at the Hadron Structure'87 conference.
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in the s variable was used where s is the total centre of mass
energy squared., Each elaostic resonance is parametrized by four
zero-pole pairs as the result of this continuation. Their
position is determined just by two parameters corresponding
to the mass and to the width of resonance. The first two zeros
are placed on tht “irst sheet complex plane symmetrically
around the real -:xis. The second pair is at the same position
on the fourth sheet., The poles are also at same positions in
8 variable but they are placed on the second and the third
shcet., However, due to the absorptive effects the zero-pole
pairs on the third and the fourth sheets are shifted relatively
to those on the first and the second sheet4 .

The 4y S-matrix element can then be easily parametrized
by a suitable rational form. In order to take into account
the Riemann sheet structure generated by unitarity we write
this ationa. form in a new variable

kl(s) + kz(s)

Z = 2 (2)
k|(4mK)

defined by the centre of mass momenta
Vi aia2yt/2 _ Ve a2y1/2
k'(s) = 5(5 4mn) and kz(s) = 5(s 4mK) (3)

in the 5o and KK cannels, respectively.

By this means a very good and effective description of
all X a7 s-wave data from W' threshold energy up to 1.89
GeV was achieved, Moreover, the two other coupled S-matrix
elements for processes KK — KK and ;7 —KR were predicted
from the x T data assuming the validity of 2x2 S-matrix unita-
rity, Our prediction of the K5 -» KK production process is
shown in Fig.! and Fig.2 where the absolute value of phase
of the S12 matrix element is compared.with experimental datn§'7
This comparison shows the remarkable agreement with the data
up to 1,2 GeV. For higher energies there is deviation of the
predicted values and the experimental ones. This means that
the 2x2 S-matrix unitarity is violated at these higher energies
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and that in order to
achieve more realistic
results the yy coupled
channel should be also
taken into account at
least. This would result
in 3x3 S-matrix coupled
channel calculation.
Having these three copled
channels the 7T scatte-
ring amplitude analytici-
ty structure requires to
consider more complicated
Riemann sheet structure
consisting of eight con-
nected Riemann sheets.
The elastic resonance
will now be described by
eight instead of four
zero-pole pairs at the
same complex~conjugate
points in the s-variable
on all eight Riemann
sheets.

In the January issue
of this year CERN Cou-
rier® there appeared an
article about interesting

analysis of Au,Morgan and Pennington in which they analyse the
scalar glueball sector including the new CERN ISR double pome-
ron exchange data on pp —» PP yryr and pPK'K” processesg. Their
conclusion is that a single narrow resonance is not enough to
fit the data and they find as much as three different states

in the 1GeV energy region.

Their analysis is based on the coupled channel K-matrix
approach. The advantage of this approach is that the K-matrix
does not have the right-hand cuts generated by unitarity and
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therefore one does not need to bother about the complicated
" Riemann sheet structure. However, after jidentifying the reso-
nances by means of the K-matrix one is still interested in

placing them into an appropriate Riemann sheet of the S-matrix
in order to iterpret them properly.
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The S-matrix poles
found by Au and col-
laborators

in Fig.3., They are
displayed in the k,(s)
complex plane. In dif-
rent solutions the
poles were placed in
the regions of the
complex k2 plane de-
noted as A through G,
One can see how these
poles reproduce the

symmetry pattern that a pole on the 2nd sheet has a counter -
part image pole on the 3rd sheet. The average pole positions
and the couplings of the corresponding resonancec to 7t and KK
channels are in the following table: .
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Position

1.001-0.0261
0.985-0,0201

0.87 - 0,381
0.94 - 0,351

1.42 - 0,231
I .42 - 00221

0.988

Name

51(99')

£ (900)

e (1430)
5,(988)

Table 1,

Couplings Sheet
g 8x
0.22 0.28 I
I11
0,52 0.27 Vi1
Vi
0.58 0.16 II
I1I
0.02 0.35 L-H.C.



They have very intercsting interpretation. S| is inter.
preted as the glueball, 82 is interpreted as the KK molecule
and £ (900) is a broad state where,all three states together
reproduce the old s' phenomenon.

What can we say to these interesting results in view of
our approach? First, we have not found any need of other states
beside the narrow S' in the 1GeV energy region, But we have not
analysed such rich ammount of data and namely, we have not ana~-
lysed the CERN ISR data as they did and which make essential
contribution to their analysis. Second, we came to the conclu-
sion that in order to have a reljiable results above (.2 GeV
one has to perform the 3x3 coupled channel analysis. In Ref,9
the data up to 1.6 GeV were analysed.

We can therefore ask the question what would happen if
the poles in terms of the K~matrix would be projected onto
the S-matrix with 8 Riemann sheets ( corresponding to 3x3
coupled channels ) instead of the 4 sheets? Would not the
poles denoted as D and E fall on the VII-th and VI-th sheet
as they are denoted in Table | and also in Fig.3 in brackets?
But that would mean that all four poles A,C,D and E describe
the same one fhysical resonance.

The pole denoted as B with coupling to KK but not to %
chunnels‘could simply simulate the KK background comming for
instance from the left-hand cut which starts at s = 4(m§-m§),
i.e. just below the KK threshold where it was found. This pole
does not appear in the sji channel S-matrix element since it is
lJocated almost on the g 5 channel physical region, l.e. on the
s variable real axis, and so it is cancelled by the correspon-
ding zero approaching the same position from the I-st sheet.
Therefore it is not seen in our analysia’o.

Though our arguments concerning interpretation of these
poles are rather tentative we hope that i-veresting results of
Au et al. will stimulate further research both experimental as
well as theoretical in order to clarify the scalar mesons
physics.
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INVESTIGATION OF (e,e') SCATTERING ON ELECTRON
SYNCHROTRON AT YEREVAN PHYSICS INSTITUTE

D.S. Bagdesaryen, G.B. Kazaryan,
H.G. Ikrtchyan, I.A. Trosrenkova

Yerevan Physics Institute, kiarkarian St. 2,
375036, Yerevan, Armenia, USSR

Abstract

Experimental cross sections of the (e,e') scattering on
Li, 9Be. 120 and 2831 nuclei in the region of quasi-elastic
peak and J\ -resonance at 0.1 & q2 £ 0.5 Geva/c2 have been
reported. Theoretical calculations in the nucleus shell model
reproduce successfully experimental spectra. In the quasi-~
elastic péak region the results for 9Be and 120 show a good
Y-scaling behavioure.

It is well known that at a given energy of the incident
electron, E, end at sufficiently large transferred three-
dimensional momenta, § » 400 MeV/c, in electron scattering
energy spectra at E' close to E one may observe a character-
istic peak corresponding to elastic scattering of the elec-
tron on the nucleus nucleon, the so-called quesi-elastic peak.
With increesing transferred energy (or virtual photon energy
W= B - E') the next peak appears which may be compared to
the resonance pion production on the bound nucleon of nucleus.

hs shown by the recent (e,e') experiments, particularly by
the experiments /1,2/ on the separation of contributions of
the trensversely and longitudinally polarized photons on nu-
clei, systematical measurements, especially in the region of
quasi-elastic peak end A -resonance, at higher energies and
q, respectively, remain an urgent problem so far. Of great
interest is as before the study of A and q2 dependence of the
extent of the excess of experimental cross sections over the=-
oretical calculations in the region between quaesi-elastic end
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A -peaks.

On the extracted electron beam of the Yerevan synchrotron
{$here have been carried out measurements on (e,e') scattering
on 6Li, 9Be, 120 and 2851 nuclei in the region of quasi-
elastic peak and [ -resonance in the initial electron energy
renge (1.0 - 2.1) GeV and @ = 15.5%- 20%.

The layout of the magnetic elements of the spectrometer
and detecting equipment is shown in Fig., 1. Slowly ejected

electrons with AE/E ~ +0,5% and

intensity ~ 5 X10%¢~/¢c were fo-

suvamlyy pueime Mcused to remote-controlled tar-

;&(// &l gets. The beam monitoring was

o “52:;;“ “ realized with a secondary~emis=~
sion monitor and a Gauss quanto-
meter with an accuracy no worse

... ) then ~ 2%. The beam position and
sizes were monitored by flag in-

dicators.

Fig. 1 Scattered electrons were re-
gistered at & 215.5° with a
qggnetic spectrometer consisting of two MA-16 type quadru-
pole lenses and an CMN~137. type vertically deflecting magnet.

'"“wmgg detecting equipment of the spectrometer may be function-

ally divided into three parts: the aperture counters (01-03).
the electron identification system (dE/dX) and the pulse ho-
doscope consisting of 11 (or 417) scintillation counters. The
spectrometer pulse capture was upto 17%, angular acceptance
A~(1.9 - 0.75) msterad, depending on the value of angular
collimation of scattered electrons (+2.5° or +1°); the spec-
trometer momentum resolution was ~ +0.5%.

The absolute calibration of the set-up was realized by
comparison of measured spectra of elastic ep-scattering (by
the method of subtraction of qﬂz and C spectra) with calcu-
lated ones.

More detailed information on the experimental set-up and
its calibration technique one can find in Ref./3/.

The mein source of the background are the electrons pro-
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duced from the process y-;e‘i'e" and nonsuppressed Y -me—~
Sons.

The level of random coincidences at ~ ‘57&109 e~ /sec beam
intensity and ~ 0.5 msec ejection time was less than ~2®.
The background from the beamline residual gas was determined
by measurements without target and did not exceed ~ 1%. Con-
tributions from the g—»e*e:‘ process and from nonsuppressed
ﬁ—mesons were estimated by measurements at the spectrometer
reverge polarity. The background mede up ~ (2-5)% in the
quasi-elastic peak region und reached ~ (5-16)% in the A -
resonance region.

Some experimental deta obtained at Yerevan Physics Insti-~
tute for "Li, 9Be, 120 and 2851 nucleil are presented in Fig.2.

The errors indicated in Fig.2 include only statistical
(3-5)% ones and those connected with the determination of the
set-up efficiency. The systemetical errors, due to the beam
monltoring and normalizing factors, make up ~- 10%.

The results have shown that for all the nuclei there is
observed a characteristic peak of quasi-elastic scattering
whose width increases with atomic number of nucleus. Ailso
another peak was observed, corresponding to the A =reso-
nance production. '

Theoreticel curves represent a sum of contributions from
the quesi-elastic peak and D ~resonance and are caloulated
in the shell model under assumption that the cross section on
the nucleus 1s a noncoherent sum of cross sections on indivi-
dual nucleons. The model parameters obtained in Ref./4/ were
used. Calculations on the shell model, in general, reproduce
successfully experimental spectre. To compare experimental
results with calculations, radiative distortions correspond- '
ing to experimental conditions were introduced into theoreti-
cal cross sections. A

The eccounting of radiative corrections wes reslized by
the method worked out by Mo and Tsai /5/.

The A -resonance maxima ere strongly smoothened by
Fermi-motion of nucleons. The overlap of the threshold region
of N-meson production with the "tail" of quasi-elastic peaks
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imitates the shift of the A -resonance maximum towards the
quasi-peak by 20-30 HeV.

In the quasi-elastic peak maximum the cross section norma-
lized by the number of nucleons decreamses with increasing. .
atomic number of the nuclei. While in the region of A -
resonance maximum the cross sectlon normalized by the number
of nucleons within the experimental errors does not depend on
the atomic number.
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For further analysis it is necessary to subtract from
measured spectra the "tail" contributions of the process of
elastic scattering of electrons on nuclei at E £ 1.45 GeV @as
well as to remove radiative distortions.

The extraction of nonradiative cross gections is connected
with measurements at (9 = const and different initial ener-
gies 1, while the requirement q2 = const (the necessary con-
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dition for the separation of R end Ry ) is provided by the
change of the angle. To match these programs, the search for
the optimal plan of meesuremenis is necessary for a given
set-up. B

In Ref./6/, by means.of mathematicel modelling of spectra
of the (e,e') process in the region of quasi-elastic scatter-
ing and A-isobar production, there has been worked out a
method to obtain from initiasl experimental material date free
from radiative distortions.

It was shown that at the Yerevan set-up the measurement
progrem aimed at separation of longitudinal and transverse,
components of the crose section of (eA) 'nteraction is quite
real. Ibidem the practical aspects of the ..2lization of such
investigations at energies of initial electrons E 21 GeV are
considered.

The given series of measurements wes carried out with ac-
count of namely these programs.

I Fig. 3. Experimental points re-

i [ -."'ﬁ.‘f-.f 1= w{;:?f::;{:n fer to: A(A) - 1.45 GeV,

i & ™ 77 1 160(189); O (m) - 167 aev,
€| Y 16° (18°); 0 (@) - 1.93 GeV,
\‘E : : 16° (18%); O (@) - 2.13 GeV,
- . 16° (189).

2 wl. {4

- . ] N Fig. 3 shows results of our

* " ywmeasurements of (e,e') reactions

in the quasi-elastic peak region,
processed in accordence with the Y-scaling concept /7/.
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HIOH ENERGY HADRON S8CATTERING IN FORWARD DIRECTION

V. Kundrét, M. Loksj{Sek
Institute of Fhysios, OBAV, Prague

D. Krupa
Ingtitute of Physics SAY, Bratislava

In the high-energy elestic differential cross section experi-
msnts with unpolariged partioles the quantity which is measured
is the counting rate A N(t) (i.e. the nuaber of counts per
second per small interval At of four-momentum transfer squared).
This coum.gjzuto is normaliszed to the dirferential oross
¢

section in the following manner /1/
-1 4
N(t a—
AN(t) s L < ¢ § (1)

the normalization factor L 4is the lumincsity for oolliding beams.

Theoretically, the &ifferential cross ssction is given by
the abgolute square of the total elastio amplitude P(s,t) whioh
is the complex function of the CMS energy 75 and t . It means
that one oan determine only the module of the total amplitude fron
the experinmental data.

let us confine ourselves to the case of ths hadron=hadron

or hadron-nuoleus elastic scattering., The Adifferential oross seotion
is being determined for -t € (103 . 1072, 1,- 15.) Govzg i.0. the
measured interval conru the region where pure nuoclear scattering
with the amplitude il predominates and also the region where the
Coulomb amplitude plays a significant role and which can be exeotly
caloulated within the framework of QED. Therefore the total ampli-
tude F can be decomposed inte two componants

y « 499, (2)

Evidently, only the module of the nuclear oomponent r“ can be
determined from experiment; its phage being introduced by expression

Wie,t) =1 |P¥(s,t) o=t F(Bst) (3)
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remains completely unknown funotion of e and t . Do we need
to know it7?7

The answer is yes. The reason is that instead of studying
the properties of elastio soattering in the t=variable one can
investigate it in the impact=parameter space b using the
Fourier=Bessel transform

n(e,b)~ | A T2 7V (a,t) 3o(0 TR0, (4)

where J_ (x) ls tha‘aoasel funetion of zero order. The absolute
square ?h(a,b)l 2 of the image of the nuclear component gives us
the distribution of elastic scattering in the impact parameter
space which tells ue something about the range of nuclear foroes
acting between colliding hadrons.

Physically, two kinds of this distribution are of great
interest, The first one called oentral has its maxioum at b=0
and deoreases with increaeing b 4in such a way that ‘(bz remains
saall, In this case one uses for the nuolear component ¥ the
smplitude with dominant imaginary part in a rather great interval
of ¢t around ¢s0 and vanishing at the dip., The real part which
smoothly increases with increasin jt| 18 introduced in order to
obtain the non-zero value of at the 4ip., However, it meane
that one uses the amplitude with slowly varying phase f§ (s,t)
being taken practically as constant. After performing the Fourier-
Beseel transform (4) to such an amplitude one unavoidably obtains
the central distribution of elastic scattering which has very im-
portant logical consequences. Firstly, the protons in "head-on"
collisions must be rather transparent, which seems to be a "puzzle”
/2/. 8econdly, there is a disorepancy in the description of
diffraction scattering, if elastic scattering is central, since
the inelastic diffraction, being produced by a similar production
mechanian, is being always described by the peripheral profiles /3/.

The socond kind of distribution called peripheral can be
characterized by a rather large value of <b2> and has its maximum
at some positive value of b or at least a broad plateau, It can
be obtained if one has rather strong incresse of §(s,t) with
increasing |t| in such a way that Im r"(a,t) =0 at t|€0.1 Gev?
/4/.
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Comparing it with the previous case one uses again the amplitu=
de with dominant imaginary part but now only for very small values
of |t| . There is, of course, a great difference in physical con-
sequances and basic assumptions. It is evident tght the mentioned
troubles related to the first kind of central- behaviour can be
removed if one regards the elastic scattering as peripheral process.
Moreover, the arguments leading to the "old-type" amplitude and
giving the central distribution are based fully on asymptotic pro-
perties and can be hardly Jjustified at present energies, which
all lead to the conclusion that all elaatie collisions should ba
peripheral /5/. Therefore, wa prefer the peripheral picture of
elastic scattering for which the strong t-dependence of the phase
is oruocial,

One of the methods which could in principle decide bhetween
the mentioned two poseibilities is the interferonce between the
Coulomb and nuclear components of the total amplitude. Let us mention,
first, the case of pp scattering, The currently used analysis
/6=8/ uses for the total amplitude the following form

Fo,t) = %8 20 ot%P 4 Sy 15 (pen) HV2, (5)

The firet term in (5) corresponds to the Coulomb compgnsgt; here
ols 1/137 is the fine structure constant, fp(t) = ('EfTT:?')a is
the conventional proton dipole form factor and
o« @ = -1n((~Bt/2) + f ) is the total West-Yennie phase with Euler
constant b = 0.577. The second term describes the nuclear compo-
nent where B is the diffraction slope, G&ot the total oross
section and @ is the ratio of the real to imaginary parts in the
forward direction., Thus, applying this formula to the differential
cross section data one can determine the values of free parameters
q;;ot’ B and @ .

However, formula (5) is valid, provided three assumptions
are fulfilled:

(1) spin effects can be neglected,

- (i1) there is the characteristic exponential t-dependence of
the nuclear component in the interference region,
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{(411) there is the same t-dependence of the real and imaginary
parts of nuelear components.

The firat two assumptions seem to be fully Jjustified /9-11/.
The third assumption means that the t-dependence of the phase is
neglected, but there are no reasonable arguments for it. If we want
to obtain peripherality of elastic acattering the phase $ (s8,t)
must be strongly t-dependent. Therefore, conventional formula (5)
cannot be used. Instead of it one has to use the modified Cahn’s
approach /10/ (see /11/)

Fla,t) = H& £2(1) + Fl(s,t)

{1- id...[odt' P S [:f,u’) 5;{?-33]} (6)

y0)
with the nuclear component

and with the following parametrization of the phase

it = %o+ § l‘%ln"jt ' f=|‘f:|a- to = 1 0eV%  (8)

here f§., gl’ %, 7, f A are the free parameterg which can
be in principle energy-dependent. The form of used parsmetrization
(8) is based on our previous results /4/ and allows the peripheral
as well as central distribution.

We have applied it to the cage of the pp elastic scattering
for asven different values of Piap = 100 =« 2081 GeV/c (for details
see /11/. We have performed two types of the fits: firat one
with the parameters 51 = §2 = 0, which corresponds to the case
of constant @ = tan fo « The results are in Table 1. In the
second type of the fits the parameters gl and 1f2 were allowed
to change. Under some constraints leading to peripherality (for
details see /11/) we obtained nearly the same values of X* dis=
tributions as in the previous case (see Table 1) with slightly
modified values of Griot’ B and ¢ (for the values of other free
parameters see also /11/. The obtained peripherality is characterized
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by the quantity <bH°S = 1,6 « 1.9 fm which is much greater
than in the case of the constant phage ( V<b2> = 0.66 - 0.69 fm).
Due to the same level of X values we regard the results of both
the fita as indistinguishable experimentally.

_ The second invesgtigates type of slastic scattering is the
cage of p-4He process at Piab = 200 GeV/c. Again the conventional
analysis /12/ uses a similar foruula as (5)

i 2 '
F(s,t) = &% £(t) £y (LI 22t 5 (gei) ofBVCI (g

where
yelt) = (1 = (2.56t)8) gile70t (10)

is the %He eloctromagnaetic form factor. Formula (9) is valid under
similar assumptions as in the cage of pp scattering and leads

to the central distribution. The peripherality can be again
obtained if one addmits the strong t-dependence of the phase. In
this case instead of Eq. (9) one must use for the total amplitude
analogically to Eq. (6)

PO, t) = 2R £ (t) £, (1) + PV,

o ’ Nu ’
. { 1- 21 § at’ 10 L [fp(t') £uelt”) .imui(é%l]}(n)
8

-go ’
where the nuclear amplitude is

PM(g,0) ~ o(BHCEE)/2 = 1 £ (5,t) (12)

and the phase is parametrized as

)
§@ = fos 6 || e 6

) ty = 1 Gev? (13)
0

Again two types of fits (the first one with constant phase
and the second one giving the peripherality) have been performed.
The preliminary results can be found in Table 1. The obtained
peripherality is characterized by v<bz> = 2.9 fm, while in the
case of constant phase ¥ ¢b<) = 1,22 fm. Both the fits exhibit
the same value of )62' and are experimentally indistinguishable
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again. The corresponding peripheral distribution (together with
that one which belongs to pp scattering at Prap = 1487 GeV/c)
is shown in Fig. 1.

On the basis of our results we can conclude: the concept of
peripherality is in a full agreement with the experimental inter-
forsnce data. But we must admit that the analysis of these data
cannot decide between the two different pictures of high-energy
elastic scattering. The preference should be given to the periphe-
ral interpretation due to logical reasons. The doubts concerning
the domineance of imaginary part are also supported by the last
experiments at CERN Collider giving an unexpectedly large value
of Q for pp scattering /13/.
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C=-24.93 (GeV"4)

Co-36.34 (Gev™4)

Tt 1 Fit II
Type} Pray Qot B L'/08 G‘tot B
GeV/c) cev2 R z*
(Gov/e) ¢ ) ¢ by ¢ 5 ¢
100 38.43 11.78 -0.096 81.15/69| 38.49 11.74 -0.090 851.44
150 38.73 12.03 <0.038 T4.61/64 | 38.73 11.86 =-0.040 75.14
250 39.26 12.03 ~-0.043 43.70/60 | 39.29 11.94 -0.039 43.72
1063 41.88 13.10 +0.056 59.70/53 | 41.93 13.10 0.061 51.84
1487 42.38 13.11 0.075 45.51/37| 42.38 13.10 0.082 43.06
2081 43.49 13.14 0.086 30.58/30 | 43.82 13.20 0.089 28.70
p-*He| 200 122.69 33.03 0.027 44.40/40 [122.18 32.60 0.021 45.55
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ABSTRACT

We consider a left-right symmetric model with the standard assign-
mente of fermion and scalar fields which possesses a strictly con-
served lepion number.
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1, INTRODUCTION

In many extensions of the standard model neutrinos are massive, We know
from experiment that neuirino masses must be much smaller than those of
their charged counterparts [1]. In models with only Dirac mass terms this fact
is hard to understand. Since neutrinos are electrically neutral they can also
have Majorana mass terms. If in such a theo:'-y there is a heavy scale small
neutrino masses are obtainable via the seesaw mechanism. However, this mech-
anism usually creates a large hierarchy among the light neutrino masses and
the cosmological bound ’

Y. m,S100eV (1)
vlight
is difficult to satisfy if m,, is of the order eV, Therefore one has o make the
vy and v, sufficiently unstable to ciccumvent the bound (1). This requires in
general the introduction of additional fields,

Here we want to discuss a three generation left-right symmetric model [2]?
which has a strictly conserved lepton number of the Zel’dovich-Konopinski-
Mahmoud (ZKM) type [3]. It contains a light Dirac and a light Majorana neu-
trino, Moreover, the seesaw mechanism is effective despite of the existence of
Dirac neutrinos, the cosmological bound (1) can naturally be satisfied with
the right-handed scale in the TeV range and there are no additional fields in
the model other than the minimal set which is required by the gauge group
SU(2) x SU(2)r x U(1}p-1, and its spontaneous breakdown to U(1)m [4].
Therefore we call it a minimal left-right symmetric model (MLRM).

2. THE MODEL
The Yukawa interaction of the leptons in the MLRM is given by

Ly = ~$1G1¥¥p — ¥1Gr¥Yp + ¥1C'GicaAr¥s + ¥5C " Grioa Appr + hec.
(2)

where the lepton doublets transform as
10[,"'(1/2,0,—1), YR ~(011/27"1)
and the Higgs scalars as

(I>~(1/2’1/2,0), AL~ (1,0,2), AR"’(01112)

2See Ref. (2] also for further references,
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under the gauge group. These scalars comprise the set of Higgs scalars in the
MLRM apart from fields® which appear only in the potential and which are
necessaty to obtain spontaneous CP violation and a small vacuum expectation
value of Ay, at most in the eV range. If this were not the case the mass of the
electron neutrino would be too large as can be seen from the mass matrix.

After spontaneous symmetry breaking the neutrino mass term is obtained
as

Lomen = 20TC Muw + e with  w={ % )
vman = 5 ’ v «C. wi w= vr

being the right-handed neutrino fields and

Vv2uiG; Mp
M, =
M3 V2upGn

the neutrino mass matrix. The vacuum expectation values are given by

@=3 (0 0) @ae=5(0 0) ®

From a consideration of the K°K? system the mass of the predominantly right-
handed charged gauge boson W; and therefore also the value of the jug| should
be at least in the few TeV range [5]. Henceforth we shall assume that we can
neglect uy. Furthermore, one has to impose the condition det Gr # 0 for the
seesaw mechanism to be operative. Otherwise, there would be light neutrinos
with masses of the order of those of their charged partners.

The three generation model we want to discuss is given by the Yukawa
coupling matrices

) with Mg=%(00.+w'0,) (4)

0 g 0
G, diagonal, GL=Gr=}19g'0 0 |]. (6)
0 0 h

This model can be obtained in two ways from symmeiry requirements:

i) Imposing the ususal left-right symmetry and a strictly conserved lepton
number,

The usual left-right or parity symmetry gives the condition
G:,z =Gy a, G .- Gr. (7)

. "In the simplest case one can take a pseudoscalar gauge singlet.



Apart from a case with extensive fine tuning in the charge lepton sector there
is a unique way to impose a lepton number under the condition det Gg # 0,
namely

Yrm — € Yr, ViR e Yrrs,  Yrma— Va3 (8)

This transformation gives rise to the model (6) with the conserved lepton num-
ber L = L, — L; of the ZKM type. This symmetry remains intact after the
spontaneous breakdown of the gauge group because the Higgs fields have zero
lepton number.

ii) Imposing a generalized left-right or parily symmetry.
A generalized left-right or parity transformation is given by

vulz) o Upre(E)  Dule) - —Ba(d)  B(e) s E) )
Ya(z) — Vpy'%L(2) Ap(z) — arAr(F)

with |a,| = 1, & = (2% —£) and the gauge bosons transforming in the usual
way, The unitary matrices Up, Vp act in flavour space. Such a transformation
leaves the gauge part of the Lagrangian invariant but induces restrictions on
the Yukawa sector. For the simplest case Up = Vp = 1 and a;, = —~1 they are
given by Eq. (7). One can show that there is a unique case giving restrictions
on all three generations. This case coincides with the Yukawa couplings of Eq.
{6). The simplest way to realize it is by choosing

1
Up‘—‘l‘,'" Vp = ( -1 ) N ar = -1. (10)
1

Thus one can regard the generalized parity transformation (10) as the reason
for the appearance of the lepton number L = L, — L,.

Cousidering the neutrino mass matrix of our model it is obvious that it
decays into a Dirac part with non-trivial L = L, — L,

0000 . ab
ME,D"; e 00 d with m.,t,:'l—d-l, myp, = |d| (11)
0 6doO

and a Majorana sector (L = 0)

(M) 0 ¢ . C2
MM = c e with m,,, ~ |-;|, my,, ~ |e}. (12)
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vp, va denote the light Dirac and Majorana neutrinos, respectively, whereas
Np, Ny denote the heavy ones with masses of the order of the W, mass.

Using the cosmological bound (1) and taking a, b, ¢ of the order of the corre-
sponding charged lepton masses one gets bounds on my,, and my,,, respectively.
For the three possibilities to choose L the lowest bounds are obtained by taking
L =L.- L,. Thus one gets, e.g., m,,, ~ mi/my,, ~ 10keV/mn,,(TeV) which
requires my,, 2 100 TeV to salisfy (1). A right-handed scale of such an order,
however, virtually exchides any left-right effects at low energies, e.g. in K°K?°,

Fortunately, one can find a further symmetry, namely a generalized CP
transformation {6] which does not destroy the relations (6) but sets G, = 0. In
this way one can easily see that

m - IEI, MMy 10eV
vo v my, ~ my, (TeV)
: (13)
my 2P m . _100eV
W=y mn, ~ mn,, (TeV)

because |w/v|? is naturaily of the order (m;/m,)? $10-2, Now the cosmological
bound is easily satisfied with my,, mpy,, in the few TeV range.

3. RESULTS AND PHENOMENOLOGY

i) The model has a light Dirac neutrino vp associated with both the electron
and the tau, and a light Majorana neutrino vps coupled to the muon. m,,
and m,,, are both "naturally” in the eV range. "Natural” means that m,,
and m,,, are related to the masses of the charged leptons and the gauge
boson W, by a symmetry. The mass of W, is assumed to be in the few
TeV range as suggested by consideration of the K°K® sysiem. There is
also a heavy Dirac neutrino Np and a heavy Mujorana neutrino Nas with
masses of the order of the W; mass.

The most remarkable feature of this model is the fact that all light neu-
trinos can have masses of the same order in contrast to the usual seesaw
mechanism. With the right-handed scale in the few TeV range the cosmo-
logical bound on the light neutrino masses is automatically satisfied.

ii) The model possesses a conserved lepton number _E = L, — L, of the ZKM
type. Thus, classifying the leptons according to L we have

e, rtup,Np. with L=1
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iv)

and i}
ﬂt,UM,NM with L=0.

For three generations this is essentially the unique possibility of assigning
a lepton number in the MLRM.

As a consequence of the conserved lepton number the processes p — ev,
p — eee, e"pt — pTet ue-conversion, K* — w-e*tet, neutrinoleas
double 3 decny (Z,.1) — (Z + 2,4) + e~ + €7, neutrino oscillations etc.
are ail forbidden.

* conversinn which is. how-

Among the allowed processes we have e™ — 7
sver, of second arder in the weak interactions with additional suppression
factors. The probability of geiting 7+ instead of e~ in vp-scattering is of

the order (my,, /m.)? < 10-? for neutrinos coming from .3, K,z decays.

At high energies the heavy neutrinos can be produced which decay like
Np — e Wl r*IWy and Ny — p*117,. Thus one could have charac-
teristic signatures suchase”p — ' X and pp — e* r* X, u*u* X with X
heing purely hadronic.

At low energies the only obvious test of the present model seemns to be
the determination of the vy mass.
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1, GENERAL OP TRANSFORMATIONS

In the standard model (1) with a single Higgs doublet OP violation (2] oc-
curs through the Kobayashi-Maskawa (KM) mechanism (3] for at least three
quark generations (ng 2 3). The hard OP breaking is achieved through com-
plex Yukawa couplings and manifests itself only in the mixing matrix of the
charged current interaction, Higgs exchange conserves OP and flavour In a nat-
ural way,

However, the standard model does not offer any explanation why some
Yukawa couplings should be complex. An atiractive alternative Is provided by
the concept of spontaneous CP violation (SCPV) suggesting a common origin
of gauge and CP symmetry breaking. In this case one has to find the genernl
conditions that a given Lagrangian is CP invariaut (before spontaneous sym-
metry breaking). As an explicit example I will discuss a model based on the
gauge group SU(2); x U(1) with an arbltrary number ny of Higgs doublets

_|¥a
’u— 0 ’ lSaSn”. (1r1)
¥a
The wenk eigenfields of the quarks are denoted by
qir = [ :‘ ' PiR iR,y 1<si<ng. (1.2)
1]

The existence of generations is now an important point. Prior to spontaneous
symmetry breaking these generations are completely undistinguishable, The
same is, of course, true for the scalar flelds where we have ny identical copies
of Higgs doublets, So, a general OP transformation (4,5,6] is given by?

(2, 8) — ViCqi(e°, -7},

pa(2% @) — VR Cpp)a®,-&),
na(z%8) — V§Cnp(a®-3),
Da(0”,8) — Virap $5(2° ~#),

(1.3)

with the Dirac charge conjugation matrix C. Vy,, VE™ are ng-dimensional uni-
tary matrices in generation space and Vy is an ny-dimensional unitary matrix
in the space of scalar doublets, There is a priori no reason to prefer certain Vj,

‘1The gauge fields transform in the standard way,
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V™, Vi, Of course, a lot of freedom In the cholce of these OP matrices ls really
redundant because under a basis transformation we have

Vi - A}‘ VL Ay,

VR - A’,’l VR AR,
VR - AYVRAY,
Vy — A’, Vu Ay,

(14)

with unitary Ay, AR", Ay. One may even have the suspicion that one can alwaya
chaose a hasis transformation in such a way that Vg, V", Vi are transformed
into unit matrices recovering the usual OP transformations, We have recently
shown (7] that this is in general not the case: nlthough Vi, V™", Vy may be
brought to certain real standard forms, the resulting matrices are in general
non-diagonal,
Quarks and scalars are allowed to interact through Yukawa terms in the
Lagrangian, -
Ly = Z‘(qbr;‘l’a"n + fuAabapr) + hoc., (1.8)
an
with &, = 12,02, Nontrivial CP invariance will constrain the Yukawa couplings
[ay Aq In & possibly more severe way than simple CP transformations (Vi =
VA" = 1,,, Vi = 1a,) which enforce real Yukawa couplings. In a certain sense,
CP may act like a discrete horizontal symmetry, although generalized CP is in
general not equivalent? to the combined action of the simple OP transformations
and a horizontal symmetry,
To demonstrate the non-triviality of generalized CP, let me mention the
following example fort ng =ny = 2:

V,,=V,’,""=[_(l’ (1)] Vi =15. (1.6)

In this model neutral flavour conservation (NFC) in the Higgs sector is enforced

[6] in a nontrivial way without constraining the Cabibbo angle. This is known
to be impossible (8] via & horizontal symmetry.

. 5Ap§lfing jene}QI cp i;icé.;lwuyl yields a horisontal symmelry, which may, however, be
teivial.
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2, NEUTRAL FLAVOUR CONSERVATION (NFQ)
Spontaneous symmetry breaking leads to quark mass matrices

ny ny .
M, = 2 Aqvy, M, = 2 TavVa, (2.1)
am] asl

with v, = (p2)vae. The weak eigenfields p, n are related to the mass eigenflelds
%, d by unitary transformations

pea=UlguLn, nea=Ulpdin (2.2)

leading to the mixing matrix
K, =Ufup. (2.3)

In the basis of the physical quark fields u, d the Yukawa couplings are given
by . ’
fa=Upr, Uz, A.=UNA.UL. (24)

In general, ', and A, will be non-diagonal inducing flavour changing neutral
Higgs exchange, Instead of invoking large enough neutral Higgs masses one can
impose the condition that f‘., A, are diagonal. The simultaneous diagonaliz-
ability of the Yukawa matrices through (2.4) is called NFC in the Higgs sector
t8

We have studied [6] the consequences of the joint requirements of SCPV
and NFC within the framework of the SU(2),, x U(1) multi Higgs model. For
ng = 3, SCPYV in its general form and NFC were shown to yield a CP conserving
mixing matrix if phenomenological consiraints are taken into account,

For ng > 4, SCPV and NFC admit complex mixing matrices [6,10,11]. We
have completely analyzed the consequences of NFC together with real Yukawa
couplings (simple CP invariance). Contrary to a widespread belief (12}, the
mixing matrix violates CP in general. If it does 8o, some of ita matrix elements
must be equal in absolute magnitude. Only if there are no such relations between
matrix elements, the mixing matrix must conserve CP. For a specific ansatz we
have also performed a detailed phenomenological investigation [10).
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On_quark masses in otantial models
K., Lewin, G. B. Motz

~-

1. Nonrelativistic (QF) potentials

The heavy quarkonia occuring as families of narrow resonances
can be successfully described as bound states of heavy quark-
antiquark pairs. In nonrelativisiic Schriédinger theory with a
local, central potential the wass spectrum of a quarkonium
family is computed by

My (B8) = Zwq + E, (wa, V), (4)
[-EA+ V) ]t = B0 0 . (2)

The correct (QR) potential V(r) has so far not been determined
from £irst principles. Therefore we are refered to a variety
of more or less theoretically motivated flavourinvariant (QF)
potentials which describe the experimentally observed levels
Mn(QQ) of the cc and bb systems with surprising accuracy. There
exist both successful pure phenomenological potentialsttzd
and QCD-motivated potentials taking into account the known
asymptotic behaviour of the static (QR) potential in QCD for
large and short dlstances and choosing the behaviour in the
intermediate regiori 0,1 fon $r € 1 £ ad b.oc[S-?J (see
Table 1). '

The open parameters of the potentials are adjusted to describe
the ¥ and Y spectroscopies remarkably well. According to the
equations (1) and (2) the static quark masses w, and m, appear
in this approach as additional fit parameters. They differ for
various potential models as shown in Table 2,

2, The b and ¢ quark masses .

Whereas the heavy quark masses obtained within a definite
potential model ‘depend obviously on the structure and the
speclal parameters of the choosen potential, the mass differ-
ences mw, - m, are nuch better constrained (comp. Table 2).
This remarkable model independence of the heavy quark mass

329



Table 1

Examples of §_0_§2 potentials

Potential V4 Potential parameters

A=-CM 200G ,amo,4262002
L4]

Vat) = Av e
b= 522 14,06V

e n 1
Vit a-br gy a= 445 o GV L2
b= 0,44 {m’h: Cuv J
V,tr)= - £ t
4= - =+ ae k= 0,434 ; & = 0,433 GV C3]
- L
V, 0= (k+ar) F:,f) k = 0,216 20,20 Cel
F(") = 4 + Z. c“ “-" (hT‘) aw O‘OC ‘(—91‘. 0‘01 GLVL
'Y L}
€= 4,02F 2 4 ¢
&‘ 4 t ;
’14*"_' CL=0,5%1 o223

Cy= 0‘336 + 0‘35

Vs(?f')"“' ' 4 _—4_— A = 3s 5
- zu(_ T etz e o, (s)
AT AU 27, + 5%,
s f{(ﬂ [4 ‘i{_‘(;\—?i-- A=t G L[¢]
- Yi
Hel zu. (r)] +a¥F a =030 Gt
625 L) amEc ) b= 499
¢ = -0,81 GaV

ted = b [ 1050 4 0]

‘.
v ) = - (Al‘) ‘/4‘.
() a——f— + + (c,+c, M) e qar ) 'a.:o“liGL\fl C#2]
=r1 3s
= 4,45
1‘. = o,S? va
A= 084GV
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di.fference = o, has been mentioned already dy other
authors "]

Table 2
The masses m, and a, in differeny potential models

Potential [Refal) m, (GeV) m:b(GeT'r) m, - w, (GeV)

v, L 1,7 5o 3,38
A\ L2] 1,80 5,20 3,40
A£) L3 1,35 4,77 3,42
A/ (%] 1,36 £0,17 4,77 £ 0,15 3,41 £ 0,02
Vs (3] 1,50 4,91 3,41
Ve Lé] 1,11 4,83 3,42
Vo [4] 1,58 4,99 3,44

To study the interdependence between a given potential Vi(r)
and the f£itted wass m,, belonging to it we start with a
potential U,, in the following general form containing
erplicitoly the mass termss

Ug; (N = 294.,(5‘.‘:- " ‘." "+ Vicr, sy - ,s‘"") . (3)
Here the index i denotes again the type of the corrasponding
flavour independent potential V:L characterized by its general
dependence on the interguark distance r. The n; parsmeters
8y k) occuring in Vi are adjustable to fit the energy levels
%(QQ) of the charmonium and bottonium syatems together with
the mass parameters mqix .

Mo (Ugi) = 2wg; + E! () "

[- A + Wy (r)] 'H"“(r) = Mau (Ug;) 74' . ts)
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To compare potential models of this kind it seems to be
necessary and reasonable in the Schriddinger theory that the
quark masses have to be independent of the structure and
parameters of the choosen potiential Vis

mq..(s?;“.’ S(‘.wi) - Wa , (Q=bc) . (G)
This leads to a correlation among the parameters, £. i.
“" m tu; -4)
' = {Q- (S ) $; ) ) ("F)
and the potentials u.a: would obtain the form
_ o) Cu;-a)
Lai = 2ug + W,; SRR 1 ) @)
where
“) H,-A) «) (h, 1) (u;-4)
W.,(fls“...,s V(f‘ S, S; a.(s”. o S ,)_ 9
Flavour—independence of the potentials Wi needs
(a ( ~A
@a.‘(s;,’. “‘ ’ = Cs ’) . (o)

Bquation (10) follows, however, from equ. (?7) under the
condition that

‘« ( || *= (‘“‘)) we c (:,, $"") = AW (44)

is model and parameter independent. For the potentlals of
Table 1 this is fulfilled. To ensure this mass condlition, it
is ugeful, to consider one of the parameters si(k) CH-T s(-“'., )
as an additive constent term V, in the potential Vy [s,12]

which facilitates the variation of the quark masses w o in
the £its L12] .

We conclude that the constancy of the quark mass differences
Ry = Byy appears as o condition to f£it the charmoniuvm and

- bottonium spectra with flavour invariant potentials Vi end
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unique b hnd ¢ quark masses.
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UNITARITY BOUNIS FOR HIGH-ENERGY SCATTERING IN MANY DIMENSIONS

Masud Chaichien
Department of High Energy Physics, University of Helsinki,
Siltavuorenpenger 20C, SF-00170 Helsinki, Finlend

and

Jan Fischer
Institute of Physics, Czechoslovek Acedemy of Sciences,
Ne Slovence 2, CS=18040 Prague 8, Czechoslovakia

There has been recently an inereasing interest in the high-
energy behaviour of string scattering amplitudes. It is a rather
complex problem which combines both short and long distance phy=-
sics, and apparently combines them in a different wey than it
does in strong interactions. During the last year, remarkeble
progress hes been made in correlating the atring theory with
the general properties of scattering amplitude. Soldete /1/ in-
vestigated the high-energy unitarity of the partial-wave expen-
sion of a closed four-scaler tree amplitude in flat space-time
of & general dimension D> 6, and gave a general argument that
such partial-wave amplitudes would violate uniterity at suffici~
ently high energy. Gross and Mende /2/ and Amati, Ciefaloni end
Venezieno /3/ studied the high-energy behaviour of the string
end the superstring emplitudes respectively and found dominating
contributions ih different kinematic regions. Muzinich end Sol-
date /4/ looked into the behaviour of string emplitude by summing
muliiple Reggelized graviton exchange in the eikonel epproximetion.

I will give a short report on our contribution to this de-
velopment, which we made in the same period /5/. We obtain an
upper bound on the high-energy behaviour of the elastic scatter-
ing amplitude imposed by unitarity &nd anelyticity in higher-di-
mensional space-time. We first show that the methods of Froisscart
/6/ and Martin/7/ can be generalized to any space-time dimension.
Assumptions are analogous; let us mention that analyticity of
the elastic scattering amplitude in the comblex cos® plane in
an ellipse with foci at cos®=+1 is essential., We calculate ex-~
plicitly the high-energy bounds for forward end non-forward
scattering in the flat space=-time of a genersl dimension D.
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If N is the number of on-mass-shell particles involved,
the number of independent kinematical vaeriables is N{(N-3)/2
and (D-l)N - D(_ml) /2 for ND and N2D respectively. In partic-
wlar, this number equels 2 for N=4 (elastic scattering) end any
Da3; we therefore define s, t and u in the usual waey.

The partial-wave expansion of the four-scalar elastic
scattering amplitude in D dimensions has the form

F(s,t) = ‘d(sslz (u;)"c;m c}@fkﬂ 5() » ()
where

= (p-3)/2 (2)
g(s) = 2r(D/2-1) (167()D/2'1 g2-0/2 (3)

»_ ol=2d 5 F(le2)
ey oy (+)

L F(E+2))

“0= 2rran ¢)

and the Gegenbauer polynomisls C (x) can be repraesented in
the following form:

C;(x) = ll(“)f(x + x-1 cos?) @in'f) d*f , (¢)

r(t+m r(\+f) )
i Cled) T2y 1y

They are obtained tn(i) by integrating over irrelevant angles
from the generalized spherical functions which spen the repre-
saentation space of the SO (D-l,l) group corresponding to unit-
ary irreducible representations of its maximal compact subgroup.
The normalizetion is such that

HUCES | (&)

Using the 1ntegral representation (6) we can derive, in
analogy with Martin’s result /7/ for D=4, the following lower
bound on C (x) (see ref. /5/ for deteila):

M l’l*)=
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. ¢ - 2+
Cl(x) ] ll(l,k) u [(sinf) ‘If ¢

for eny ¢, , O<fcw , where u =(x + o x°<1 cosf,) .

We shall now assume that, for s fixed, the emplitude
F(s,t) is enelytic in cosd in @ region G conteining the seg-
ment [—1, +1] + Then, in analogy with the D=4 case, the expan-
sion (1) will converge inside the largest ellipse conteined in
G end having the foci at cosd® = 1 (see /8/, theorem 9.1.1).
Let 1+2R/s be the semimejor esxis of the ellipse, where R is
the smellest (true or effective) mass of the theory. Then we
use the bound (9) to obtain the following inequaliiy for the
imeginery pert A(s,t) of F(s,t:

, L
A(s,t) > d(s)[émy}“&h; g‘(l) u(la) u‘/N: (o)

©)

where L = L(s) mekes the pertiel-wave expansion of A(s,0)
meximel if & =Im f, ere chosen such that g,= 1 for all ozf=1,
end 8y =0 for ell £ I+2.

Further steps of the derivation include the determination
of the high-energy behaviour of the inequality (10) for a gener-
al energy dependence of L, which is unknown. Details are discus-
' sed in ref. /5/. The resulting high-energy bound on A(s,0) is

A(s,O) < K, s(ln s)D'z (1)

where the constaent in front of the energy dependence depends on
the dimension D, on the gquentities R and f, and on the power of
the general polynomiel bound which is assumed to hold for A(s,t)
in the ellipse. If D is equal to 4, this formula gives the
high~energy beheviour of the Froissart-Martin bound for forward
scattering in the Minkowski spece.

In a similar wey, methods of obtaining high-~energy bounds
on the non-forward scattering amplitude can be generalized to an
erbitrary number of dimensions D ® 3. The Gegenbasuer polynomials
obey, similarly es the Legendre polynomials, a bound which for 2
high enough end € fixed gives
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(‘::(x) < K, ,lH/e"

where x = cos® and K2 is again a constant. This estimate
can be used in the imeginary part of (1) to give

Ast) < K, s (-0 (1 @-1)72 G-D)/2 (12)

for sufficiently high s . Choosing D=4 and replacing O by
sin® , we obtain the Froissert-Mertin bound at fixed &ngle in
the case of Minkowskl space.

It is interesting to observe that while the bound, (11)
becomes looser with increasing D , the factor s 7-@?& on
the right-hend side of (12) makes the fixed-esngle bound partic-
ularly stringent with increasing D. On the other hasnd, if +
is kept negative and fixed near forward scattering, (}2) takes
the form

afs,t) < x, s(in s)(D‘l)/alt]@‘DY“ . (23)

Also this bound coincides for D = 4 with the well-known
fixed-t high-energy bound.

To discuss the results obtained, let us consider
elastic scattering of two scaelar particles in D-dimensionsl
flat space~time in tree approximation. The physical interpre-
tation of this exemple is not straightforwerd; its relevance
to string theory is shortly discussed below.

It has been pointed out in ref. /1/ that this amplitude
violates partial-wave unitarity at sufficiently high energies.
Indeed, due to the graviton term, the scattering amplitude in
tree approximation will be dominated by 32/t for t near O
and s —>ow; thus, the [-th partial wave corresponding to this
term will rise unboundedly with incresing energy.

This term also violates our bounds (11) end (13), end even
if the graviton=exchange term is replaced by the messive spin-2
boson term sa/( t-ma) the violation tekes place (pote that this
latter choice is more appropriate because our bounds were obtsin-
ed under the assumption that the partiel-wave expansion converges
outside the physical interval of cose).
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8ince atrings are dominated by Regge trajectories at tree
level, it 18 of interest to discuss the behaviour of typicel
Regge termo, We can easily cheok that a Reggeitred massive boson
exchange term vio1ltol(;i) for any intercept greater than i ,
and also (1] st lesst in en intervel tl(-t,o), where £ 1is
8 positive number.

The violation of the bounds (1), (12) md@:) by the closed=-
string four~gceler amplitude in tree epproximetion is not sur~
prising for various ressons. While the exaot emplitude eould
well be unitary, one can hardly expect its tree approximetion
gseparately to setisfy the unitarity condition., But tres approx-
imation is widely used as guidance for general considerations;
it 10 therefore of interest to know to what extent it ip conoin~
tent with general principles. Our result suggests that the
string perturbation expsension about flat opace-time is otrong-
1y coupled at high energies (@oo a oimilar conclusion /1/ in a
different oontoxt). Further, the dominance of Regge trajectoriec
essumed in string theory represents esnother approximation whioch
may lead to further unitarity violations. Pinally, the assumed
finite mass gap can be relevant to string theories only in a
rough epproximetion; one c¢an ergue, for inostence, that the am-
plitude is, for physical reasons, smooth in coe®, eopecially in
higher dimensions, .due to phese space suppression; this indicates
that the singularities of the exact amplitude cannot be too
strong. Further analysis can elucidate these problems; see also
a more detailed discussion in ref. /%/.
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SUPERSTRING- INSPIKED LEFT-RIOHT SYMMETRIC MODELS

AR.Kereselidre, A.Q.Liparteliani, 0,0,Volkov

Institute for High Energy Physios,
Serpukhov, Moscow Region, USSR

Of all known superstring theories, the heterotic de10 theory with EgxEg ga-
uge lroup/ 1/ appears to be the most phenomenologically viable. The requirement
of unbroken Nsl supersymmetry (8USY) in four dimensions suggests Y ) that in-
ternal six dimensions form the Ricci-flat, Kiéhler manifold X with 8U(3) group
of holonomy (Calsbi~Yau manifold), The embedding of the spin conneotion in the
8U(3) subgroup of one Eg, breaks the latter dowmn to Eg. Matter fields left mass-
loas after compactification are chiral u‘ gonerationes of 27 representations of
Eg (see table 1) and by 3 coples of (37 +1), by 1?1 being the Bottl-uo’r
nusber of manifold K. 11°K admits a discrete synhetry O that acts freely/4:3/
then instead of K we oan consider the multiply connected manifocld X/G with rea-
sonably smal) number of genersticns; )l'-l/zrxw)/lt(dﬂ, X(K) being the Euler
charadteristic of X and N(G) number of elements of G, For example, superstring
theory formulsted on K,/G, where K, is Calabi-Yau manifold with X «~200 and

-]
by,y*2 defined as the subspace of cp? with P zg =0,and -dmmmg/ 3/ 4 dis-
=]
orete symmetry group GeZgxZ,, will have 4 genorations, For such multiply con=
neoted manifolds the nontrivial ¥Wilson-loop operators

U,-upl{ ? ')Juj} )

osn give rise to "flux brnlung" of E; down to some subgroup V satisfying

[V, u,j-o (Hosotani mechanisn’/ /). In eq. (1) H, are the elements of the Car-
tan subalgebra of group Xg. The requirement of embroken 8U(3)x8U(2);, group
uxul ass -[-o,c,u,b,o,O]. -

In tl’w case of by 1»1 light fiolds from b (27+327) surviving after flux
breaking are those components of T for whicgn'ﬁc\m =|27p and the correspon-
ding coples in 21/3/. Such fields we will denote by subsoript s.

Recently the great deel of interest have arised the manifolds constructed
by Ylu/w, which gives the models with three generations. The simplest of them
with by y8 is determined as the cubic polynomials in the space CPIXCPJ and
admits the discrete symmetry group G=23. The Hosotani mechanism breaks Eg down
to BU(3)cxBU(3);x8U(3)g which is the group of unification in four dimensions.
Yields left 1ight after flux breaking are 8 coples of SU(3)g-singlets and 4
copies of collor fields,

The further ¥ and D flat breaking of gauge symmetry V at an intermediate
scale of order 0(101918 Gev) 1s possible, provided after "flux breaking” thera
are left light fields from b,', (27+57), which are singlets under standard
model.

Eg is not the only e,hting symmetry group left unbroken after compactifica-
tion, The pouibuity/" of constructing stable irreducible, holomorphic SU(B)
or BU(4) vector bundles over some Calabi-Yau manifolds, result the 8U(6) or
80(10) gauge groups respectively in four dimensions, S8o it 1is natural to consi-
der left-right symmetric models in such theories with 80(10) group of upifica-
tion, The flux breaking of BO(10) is analogous to Eg-breaking, with :t-h,o,
c, -e,e] and the low energy spectra in four dimensions; N‘16+‘(16+T§)+210, Ng,
gnnd € being the non-negative integers defined by the topological properties
of inertial manifold, In Table 1 we give diagonal elements of Wilson loop for
Rg and 80(10) case, together with fields on which they act,
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In the present paper we consider soveral left-right symmetric models inspi-
red by superstrings and the pouibutt! for existence of low-lying scale of
right-handed symmetry bresking (Mz~103$10° Gev),

The analysis of the parameters sin and My, using one-loop renormalization
group equations for gauge couplings of the standard BU(3)gxBU(2)yxU(1)y sym-
metry shows, that in the case of V& BU(2)1x8U(2)p symmetry (with by, 131) the
scale My must be very highi Mg 31014 Gev, as in Eg (see ‘table 2) so in 80(10)-
models (see table 4), In the calculations we have assumed that group Eg was
broken down to subgroup SU(I)ox8U(2)1x8U(2)axU(1)1xU(1)g via £1lux mechanism
(conditions bs3oc and am2c in eq, (1)), One can see from table 1, that 1ight
fields from by 4 (27-057), in this case, are Eg and 5%, forming the representa-
tion Hg (1,2,5) and the SM singlet field Ng (1,1,1) together with their mirror
components from T7, At the scale <N,» =1015 Gev the group U(1)y, x U(1)p will
break down to ¥(1)p.;, and thoe "new" fields D, DS, E and E® will acquire masses
0(101% gov)., After flux breaking of 80(10) down to 8U(3)ox8U(2) 1 xBU(2)Rx

xU(1)g 1, light fields from 5(16+18) (¥m1) are Ly, and LM-\“ together with

their 'mirror" partners from 16, and from €10 (f=2) fields B and %O, “lomin
representation H (1,2,2), As for the Eg model with by 391 the VEV« ,>-101§oov
breaks [90(33]3 down to SU(3)gx SU(2)(x8U(3)pxU(1)p.1. The further symmetry
bresking leads to the standard model with three generations and is the same as
in 80(10)-symmetric case, In Eg-models with by 1=1, with the existing Higgs
content it is impossible to break BU(2)g lymohy at such a high scale, at the
same time leaving unbroken sU(z)hnnd supersymmetry. In addition the neutrino
mass problem is left unsolved in this model, The existence of right-handed do-
ublet Lp, in 80(10)~models with by ywl, and Eg-models with by 41>1 opans the
possibility for the golution of both these problems, but lln-lhlo remains highs
Mp )1014 Gev (see table 4). The situation will totally change if after flux
breaking of Eg and 80(10) only the U(1)p,, part of 8U(2)p-symmetry is left un-
broken. In this case we can obtain pormi“ible values of sin2), and M, for a
quite biy range of Mp, and even the right-handed scale close to 103 Gev 1a pos-
slble (ve. tables 3,8).

'raiuo 1, Matter fields and corresponding Wilson loop diagonal elements

Fields (:“ gy us d° (2).1, ¥ o°

U‘ for Be expi(-c) | expi(b-a) |expi{a-c) | exp(ib) expi(~-a-c) | expi(a~b-20)

U' for 80(10)| exp(le) | expi(~c-e)|expi(c-e) | exp(-3¢c)| expi(3e~c) | expi(c+le)

+

Fields (:f)-u (:o)-¢° D D¢ N
U_‘_fcr Bg expi({2c-a) |expi(c+a~b) | expi(2¢) | exp(c-b) |expi(b-3c)
Uy for BO(10) | exp(ie) exp(-ie) exp(=12e) | exp(i2e) -
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Table 2. My snd sin®9, values in

the onse of BU(3)xBU(2) x

xBU(I)RxU(l)wﬂ(l)n. All
scalesin tables are given

v-sU(:;)oxsum,,um,u’x
xU(1)gxuU(1)p (condition a+cwd

Table 3, M, and sinfg, values for of

in Gev, in eq, (1)),

My 7y Mx »in%9, MR Ry My sinBy
108 109 p,4.1020 0,295 103 103  3,8.1010 0.316
0% 10°  1.001020 0,288 103 108  5,3.101®  o,310
108 10° 5,7.1018 0.271 104 10°  1,9-1018 0.218
1010 103  8.0.1017 0.261 106 109  2,3.3018 0,234
101 104  1,2.10%8 0,211 10° 10% 1.4.1014 0.252
1018 104  4,4.3010 0.436 1022 101 1,841013 0,273

Table 4, stn’e‘, and M, values for

BU(3)gx8U(2) 1 x8U(2)px
xU(1)p.1, gauge symmetry

My

Table 6. 8in%,, and M, for SU(3)cx

xBU(2) xU(1)p snxu( 1 )CB-L)

[ u?ﬁ

"s My m M, '1“,3:
103 102  1,8.1017 0,313 103 102  1,43-.1033 0,234
106 102  7.8.1018 0.296 108 209 1,34.1032 0,231
108 107  2.501010 0.278 109 10 1,7.1013 0,230
1031 109  1.2.1018 0.260 109 108 2,3.101% 0,238
1014 109  5,4.1016 0.241 1010 103  9,0.1003 o0.248
1018 104  4,241010 0.228 1014 108 2,7.1014 0,208
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NONLINEAR PIELD EQUATIONS AND INFINITE DIMENSIONAL LIE ATLOEBRAS

P, M8bius
Department o6f Physios, Technical University of Dresdemn, GDR

1. Introduction

In the preceding lectures enough motivations were given te
study nonlinear field equations and to look especially for
exact solutions. They are of great importance for further
modelling, because they bear in general new notions being more
adequate to describe the behaviour of the excitations in such
systems. A typical example is the "soliton", a stable exci-
tation moving with constant velocity without deformation
through the system. It is advantageous to look at first for a
rough classification of special nonlinesar field equations
having some physical importance. A good starting point is the
nonlinear superposition principle and it is useful to divide
the equations into those, for which general rules for super-
position can be formulated and in to the ones where no state-
ments can be made /1/. In the case of soliton physics it
means to split the corresponding equations into two types,
the first one, where there 1s only elastlic scattering of soli-
tong, being called "integrable field equations" and the second
one with inelastic scattering where additional decaying wave
tracks or solitons can ocour, In the last time new methods of
solution have been developed for the case of integrable field
equations in (1+41)=-gpace-time dimensions, e, g, the "method
of speotral transform" (MST) and the "direct iterative me=-
thod"” (DIM), involving considerable knowledge of the proce-
dures known for linear problems. Surprisingly a great variety
of exactly soluble nonlinear field equations were discovered
providing a new basis for starting already with a "neighe
bouring" nonlinear problem as the "first approximation".
These exact results gave us elso a more extensive insight in-
to the foundation of physics, providing even a new point of
view for the treatment of problems in classical physics even
in classical mechanics,
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2., Integrable systems of classical mechanics.

In the case of olassical mechanics "integrable systems"
play a preferred role, because there a number of reliable
statementa are possible about the time evolution of the system.
In the case of Hamiltonian systems with f degrees of freedoms
integrable systems are defined in the following way:

Given a Hamiltonien H(p1...pf, Qqeeedy ), where f is finite,
there exist £ globally conserved quantities I (p, q), i. e.
IKp, q) = O, obeying in the framework of Poisson brackets the
following relations /2/

{€, =0 1=, {1, h=0 151, 352, (1

i, e. being in involution. Then action-angle variables can be
introduced and the motion be described as occuring on a
f~-dimensional torus. Now it can be shown, that all systems of
Hamiltonian mechanics, describable by a (fxf)-matrix M(t),
where the time evolution is given by e similarity transfor-
mation

M(t) = B=1(+) M(0)B(%), (2)
are integrable systems obeying the equations of motion
(o) = [ n, &) with B-1(£)B() = A(t) (3)

being essentially equivalent to the Hamiltonian equations. But
now the quantities

spM(4)¥ = spM(0)* Kk = 1...1, (a)

are time-independent and can gerve as constanta of motion,
They are in many cases homogeneous functions of the momente Py
of degree k, the coefficients depending on the coordinates q.
An interesting example is the "Todas~gystem" /2/ of 3 particles
with the Hamiltonian (1)

H(p, q) = 1/2 (p% + 05+ pg) +

-4q5,) - 4q) - q4)
+e(q1 127 L . (93 = 9 + e(q3 Ml (5)

describing in the first approximation 3 one-dimensional har- .
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monically coupled particles and having 3 conserved ouantities
I, = PytPatP3s I, = Hy I3 = 1/3(p4+py-2P3) (Po+p3-2p, ) (P5tp,

-2p2)+(p1+p2-2p3)eq1'q2+(p2+p3-2p1)eq2"q3+(p3+p1-2p2)eq3'q1
which are in involution,

The idea is now to extend this procedure to field equa-
tions in (141)-space~time dimensions,

3. Infinite dimensional integrable systems

The question is if a straightforward extension of the no-
tion of an integrable system to the case of an infinite num-
ber of degrees of freedom is possible, i.e. if field equations
exist, having an infinite set of conserved quantities. Sur-
pPrisingly there exists a number of nonlinear evolution and
wave equations in (1+1)-space-time dimensions having this pro-
perty, admitting solitary solutions, sometimes even N-soliton
solutions. At the first glimpse nonlinear integrable field
equations should obey the following requirements /3/:

i, Existence of solitary solutions.

ii, Existence of N-soliton solutions ( N = 1, 2 ... 0@ ),
jii. Existence of nonlinear supervosition functions,

Now it can be shown, that the existence of N-soliton solu-
tions is equivalent to the existence of N-1 conservation
equations and this is connected with the fact of elastic
scattering of solitary excitations. The third condition about
nonlinear superpogition functions is related to & construction
of Biicklund-transformations /4/. The standard example for the
treatment of bell-solitons is the Korteweg-de Vries equation

) n U "3
¢ U ¢t U L U
TTreTztligzres3=0 (6

while the one for kink-solitons is the sine-Gordon equation

1 2% % e
2027 VP

For both equations /5/ it is possgible to give closed

sin U = 0, (7)
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expressions for the N-goliton solution incorporating a nonlineer
guperposition rule for solitary excitations and to construct

an infinite set of conservaetion equations

-T tURE - 0, (n=1,2, 3 ..0) (8)
where the Dn are densities and the Fn are flows, expressible as
polynomials in the field and its derivatives /5/. The equations
(6) and (7) can serve as revresentatives for "integrable nonlin-
ear field equations"” in (1+1)-space-time dimensions. At least
two different methods are known to solve the Cauchy-problem for
them, one being the method of spectral transform (MST), the
other is the direct iterative method (DiM). But already a non-
linear wave equation of the type

a2 2
1% %, vy = o
piap e .ax2+ ) (9)

is only integrable if the field potential V(U) obeys the
relation /5/

Vir(U) = + ¥V(u).
The question naturally arises, what are the essential differen-
ces between integrable and non-integrable nonlinear field equa-
tions. vhat is the reason that in the firsi case general methods
can be formuleted to solve them and general results are obtained
in (1+1)-space-time dimensions, while in the second case there
is at the moment no hope for general statements? A partial ans-~
wer is related to the fact, that a connection can be establish-
ed between special nonlinear field equations and inifinite-di-
mensional Lie algebras, reflecting the existence of an infinite
number of conservation equations.

4. Infinite-diménsional Lie eglgebras

In the following chapter the basic physical motivations to
construct and apply infinite-dimensional Lie algebras are given.
In the cagse of finite-~-dimensional semi-gimple Lie algebras
we introduce a set of generators of infinitesimal %transforma=-

tions obeying the commutation releations
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ILi, LJ-J = 12 Ly 14, Jj, ksp, _ (11)

where p i1s the dimension of the algebra and fijk are the to-
tally entisymmetric structure constants. So we have a univer-
sal set of generators for the whole gystem. But gometimes it is
desirable to have generators, depending on an abstract coordi-
nate or parameter, to combine the principles of symmetry and
loocallity. It is preferable to introduce instead of a conti-
nuous paremeter ¥ via § - ™ a depence of the generators only
on the discrete values n in the following way

L, SL(E)>L,(gH-=>1] . (12)

Looking e. g. for SU(2) this means

0 1 o §®
1 n 1 n
I, = 2L, (L") = = L
1 '2(1 o) 1§ E(gno ) 10

0 -1 0 -ifR
1 1
2 =2(1 0 )_M'Z( £ = Eki?“ 05 )= %
I3 =Lyt €% = I3,

providing the commutation relations

l:.';‘, Lg] =12, 0" 1¢4,3,k6p, nom = 0,11,32,0, (13)

written already in a general form, The relations (13) represent
the so-called "loop algebra" (Schlaufenalgebra) having already
an infinite set of generators Lg. But as opposed to the finite
dimensional semi-gimple Lie glgebra it is possible to gdd a
central extension operator 1 +to (13) in the form

- A
[z 1 | =1ty s, 0,0 (14)

whose permitted wvalues of i, the "central charges" enrich the
structure of the algebra.

It is advantageous to add a derivation operator D leading to
the so-called "affine untwisted Kac-Hoody algebra" of the form
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A
[L’;, Lg] = it Ip 4 ZmSm’_nJijl, 141, J,kepsm,na (158)

(L@ ]=0 [Lo]=0 [o,f]-uf. wsm

The representations of (15) for 1%0 are infinite-dimen-
gsional. But it is nevertheless possible to introduce an in-
varient scalar product or metric in the standard way. Assuming
Lg are the generators of the ordinary underlying Lie algebra
(11) obeying

0 .0
we try to extend this relation by assuming that even for in-
finite-dimensional matrices the following trace relations for
products of matrices are valid /6/
Sp(4B) - Sp(BA) = O, Sp([A, B]c) + Sp(B[A, c]) = 0, (17)

Applying (17) to combinations of the generators of (15) the
following results can be obtained

SP(.I'T Lsn) ='2Jij§mn’ Sp(DL?) = 0, Sp(D']\..) = 1,

A
se(1, 1) = o, sp(12) = o, (18)

A
S0 the two-dimensional subspace of 1 and D is orthogonal to
the infinite-dimensional apace apanned by the generators ﬂ?.
Assuming at the moment thet

Sp % = x (19)

is an unknown quantity the diagonalization of the two-di-
mensional subspace leads the secular equation

-A 1

2 a
. =0, A°-Nx-1=0, AjA,=-1, (20)

providing that independent of the value of X one eigenvalueh:l
is negative leading to an "indefinite metric", This justifies
the name Lorentzian metric and cast the bridge to "vertex
operator construction". It is possible to choose

Sp D° = O.
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To this algebra we associmte a Virasoro algebra constructed
in analogy to (12) by

() = £ -aﬂg- >0

fullfilling the commutation relations
[Tm, Tn] = {m - n) TO8

which again can be complemented by a central operator in the
following way

[Tm. ‘l‘n] = (m-n) ™84 '11':2' n(n® - ﬂgm--n 1 (21)

where the quantity k can take on special values. ForAseveral
physical applications it is worthwhile to take the semi-
direct product of the Kac-Moody and Virasoro algebra in the
following way

[m‘“, Lg] = -1§*n, (22)

An interesting problem is now to look for the permitted
values of the C-numbers 1 and k and their interrelations, de-
pending surely on the considered physical systems. There are
at least 3 distinct fields of applications:

1. To integrable nonlinear evolution equations with solitarxy
excitations,where 1 = 0. The corresponding field equations
can be derived with the help of Lax psirs constructed from
elements of the Kac-=Moody algebra.

2. To two-dimensional spin-lattice gystems, like e, g. the
Ising model,where k = %, rermitting to calculate the
critical exponents, being connected with the eigenvalues of
™A 0 for unitary representations.

3. To conformal quantum field theory in (1+1)-space-time di-
mensions, where many interesting problems can be treated.

I hope, I could demonstrate with this short introduction
the fascinating perspectives of combining common properties
of special nonlinear field equations with infinite-dimensional
Lie algebras.
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Phase iransitions of W-condensation in the hot Universe
H. Péreg-~Rojag

Institute of Physiocs, EPRC, Slovak Academy of Soiences
R. Gongdles

Institute of Cybernetics, Mathematioa and Physics, Cuban
Academy of Sciences

INTRODUCTION

In its very well known paper [1] Linde proved that condensa-
tion of W=bosons may be induced by fermion density at zero
temperature. In more recent papers [2] , one of us (H.P.R)
with 0.K. Kalgshnikov studied the problem of induced W=
Bose-Einstein condensgation at finite temperature. It wes
found that the oritical lepton density to start the phase
transition of W-oondensation decresses with temperature

down to Tc, the symmetry restoratlon oritical temperature,
which becomes elgo a oritical temperaiure for W-condensation.
In [2) only lepton number and total electric charge were
oonsidered to be congerved. Later [3] » Ferrer, de la Incera
and Shabad investigated the same problem by using a differ=
ent method than the one used in [2J),and introducing the addi-
tional condition of weak neutrsl charge conservation. Their
phase dlagram is not in agreement with that of [2] , and a
later csloulation made by Kalashnikov and H.P.R [4] by using
the unitary gauge, gave phase diagrams different from that
of [3] ana in agreement with [2] o

One of the consequences of the introduction of the neutral
waeak charge ig the appearance of a divergent term, which
expreas the charge of the vacuum acquired through the symmet-
ry breakdown mechaenism. This charge depends on the weak neu-
tral chemical potential, and its simple deletion, as was
made in [3] and [4] is.not a gauge inveriant renormalization

% 0n leave from Institute of Cybernetiocs, Mathematiocs an
Physica, Cuban Academy of Scilences
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procedure, and it may be the source of the disagreement in
results of the above mentioned papers.

In the present paper we deal agaln with the W-condensation
induced by fermion density at finite temperature. We shall
start from the Weinberg-Salem Lagrangien in which the first
generation of quarks is also included. The distinot feature
as compered with [3], [4] 1s that we propose a gauge inva-
riant substruction procedure of the diverzent weak neutral
charge of the scalar secior. This leads to a high tempera-
ture phase diagram very close to that of [2] .

I. The Tagrangian and the partition functional
The Lagrangian of the present model has the form:

L= 4Gl 50 LT @—'%’wwaﬂ”
- e oy e - QU5 8)0,
.u,zm-fém-cam B)dr

oLt L@%-a) @

1, (Fdecradt) -1 @F s %dQ)

(844 +E9R)

\

ba\«n

where G"va.nd %are respectively the non-gbelian SU (2) and
the abelian field tensors built from W}A and B, respectively.
. All abreviations in (1) are usual and many other details
connected with this model may be found in [2] , [5] . It is
convenient to point out here that the spino doublets are
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¥ jo-mfe) Qef00-5N)

snd the singlets

._.._ g (1./.32. ) i where 42 &1, d ()

()

‘Wie use 1.n (1) Euolidean metrio und thir means that 34'.: -iQ,}
#inelly the nalar field is doﬂnld u

e r"{ () } 7””‘"

vhere ¥ 5‘0 is the symmetry breakdown parameter.

By following the method of Refs, [4][5] we may sntroduce
the chemivel potentialsf, Mo lls ,[408 factors of the Nosther
conserved charges whioh ueount respectively for the eleotrio
oharge, lepton number, weak neutral cherge and baryon aumber.
These produots are used to write the density matrix

Y. =é'ﬂ(%-£:'/q//¢) .

From (5) we get the partition funoticnal

Z =Nga%xf[-ﬁzﬁ:{”]ﬂﬂa"p?&f%@)mﬂ

where m stands for all Bose and f for all Yermi fields c} =0
are the gauge oonditions ana A the Faddeev~Popov mtru.

whioch may be incorporated to-r through adequate ghost £1ields,
The introduction of L/ in (5] leads to the fact that the
gauge fields acquire nongero vaouum expsctation values
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<W:> =9i (e ’mza) &= iolﬁ/l 3mza C?)

where /&a.nd /l, appear as displacaments of the derivatives, L.e.

szf wy =W, +<wj)
By Byt <B>
30» (3 44 Il

8
93234 by )9 @

where £20,€,0¢, 92 %R 5,0
The ohemioal potantiala of leptons, qua.rka and W’s are:

L mA 1Ay, Hlod A 1y 4y lsn B

- o328
/(y /‘l GQE‘ )/azt K—"J'/J, tﬂ‘-}/a %‘5 (9)
Ay i v *Foes28
8" 8 1Ay H
3ear20°8 ) Ay =4, ../, Lo’y
whaere Cosk @

=7 =3cas’€-,di'l’l9) xR = ~Lsinld
A = -ﬁeaﬁ#:in’ajl S Zern’s

and among others the chemical equilibrium equations are
satiefied

Larts P s L= Py tfhw- (20)

We must point out here that the neutral charge whioh should
be obtained frem AV/943 (where V -f ‘™Z)in the one~loop
approximation contains a /13 dependent vacuum <+exm which is
divergent and comes from the infinite weak neutral charge
of the vacuum.

(This 18 due to the contribution of the scalar {erm and may
be understood even in the simple case of theU(fself-inter-
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aoting oharged soalar field ¢=/f(§ ¢ +2h) with eymmet~
ry breaking parameter when a chemical potential /ﬂ (the ana=-
log of /)18 introduced. As the masses of C"and £, are
different (even in the one-loop approximation), this gives

a M =-dependent vaouum contribution to the thermodynamic po=-
tential whioh is divergent,

Even more, when using other gauges than the unitary (ﬂl 2 3_0)
the otherwise masslees Goldetone bosons acquire & /‘3- epen~
dent mass and they are not properly cancelled by the ghost
terms. The latter,on the oontrary, auppress‘soxtra degrees of
£reedom of the gauge veotor field terms.

A gauge invariant way of removing the infinite wvacuum
term may be obtained by adding to the exponent?{-Z,'Al;‘)Vcin
(5) adequate counterterms, If we take the U(l) scalar ohap-
ge counterterm Cﬂ(at’tf?‘wj'if 4()4‘]#"‘9{(&4 * g 2 %iﬂ-'{&)‘fﬁj
we get that for (s /la/casw s the infinite weak neutral
charge term is removed, end in the one-loop approximation,
the Goldstone bosons are ocancelled by the ghost terms.

Ve must emphasfze here that although we refer to the one~
loop approximation, in order to ensure that the Goldstone bo-
son masses vanish we must introduce two~loop corrections to
the scalar m’aaaes; this 1e necessery also in order to have
the thermodynamic potantial and the oharges defined in the
gcalar mass shell at any T (see belowh

2. The Thermodynamic Potential and Equilibrium Equations
Ve shall adopt the gauge conditions

L 5
3, - JFﬁ'i-—— o

2"2:»* 1’7"1?’2 éi-} =0 (11)
31»4;; =0
t . *
where h™s= (‘.17.1.ﬁ2) oy = a;i'/“wJ.{p
After substitution in (6) we get in the one-loop approxima-
tion (after the removal of the divergent term) the effective
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potential per unit volume [5)

V=352, 06805

From V we get the oquation for the minimum of the effective
potential with respeot to

4
B‘E ‘;'54*'9'&' 2 (13)

as well as the oconservation of eleotrioc and weak neutral

charges 9-(2 _ O
3/(13 3/“13 ’ (14)

end the oconservation of 1eptons f and baryone

4
AT ST (R R
Ha My~
Eq, (13) may be understood as a temperatu.re-dependent renor-
malization of the mass parameter az. 1.8, 1t 1is equivalent

to write P
9 Y
_} _all)_ g
where a®(T) = -49_0-A;

In what oonoerns to ege. (14) and (15) to have scalar on-
shell masses we must also replaoce a%» a® ('.I!), whioch is equi-
valent to correct such masses by the two-=loop terme in .f)_ .
This ensures the oomplete fulfillment of the Goldstone theo-
rem and of the Higgs mechanism. In this way equations (14)
and (15) become exaotly expressed in terms of the spectra
of the partioles involved., We shall write only the asympto-

t1o limit, L.e. for M’ my<< T

we have
z 4
}lf—a:’-ﬁ-f—zz-' =0 (13)

(16)
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L
2
z—%[*om*"ﬂ.'-cw,]'rﬁ“w R ALY.

Gllr- 0020 o 0220088 ) - 1220806 pu ] 22000 T
L (s ) oe20( ptgg 0 44, )] = 0 (14)

and
L 2
T(toretqron) el Tlpingecn,)s &

where X2 (3X+ 6€X(1l + 2 00828/ sin® 26) ) (we have neglec~
ted the fermion masses for simpliocity) a.ndﬂ" -f‘; / coa 28
The resulting oritical equation is

m
(l"u./=kot “T"(T’T) . an
where X~V3, Por T> m.., it is estimated as L%~ T (72 - 72 ),
The oondensate is present in the region bounded by both our=
ves in theZ, T plane,

We pee that the high temperature W Bose-Einstein oondensa-
tion phenomenon is produced and follows again the qualitative
behaviour decsribed in [2]. The validity of (17) is resirioted
to the region in batween the ohiral and Higgs symmetry resto=~
ration temperatures where quarks are considered as fres,

(The inolussion of the colour fields require a separate consi~
deration). Nevertheless, if in our universe £>>b, then (17)
may have a wider range of validity, as discussed in (2).
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ON THE GEOMETRY OF GROUP SPACE OF THE GROUP OF MOTION
OF THREE~DIMENSIONAL QUADRATIC FORM

I. Iukd¥
Institute of FPhysics of Electro-Physical Research Centre
Slovaek Academy of Scliences, Bratislava

It is useless to stress once again the significance and
exceptional role of the continuous groups in theoretical phy-
sics. The simplest groups of this type are the rotation group
S0(3) in three-dimensional euclidean space and the group of si-
milar tranformations in three-dimensional pseudoeuclidean space'
- S0(2,1)-group. Properties, characteristic features and repre-
sentations of these groups were discussed in many articles, mo-
nographs  and text-books (e. g. 1~7), Both these groups pos—
sess three~parametrical group space and conserve some quadric
~ in the first case it is a sphere (21)%+ (22)2 (2 )2 = 1,
in the second one it is a hyperboloid (2 132 (22)2. (23)2 =1,
The quadratic forms mentioned above, of course, have been ob-
tained from some general quadric by means of transformations
of an affine group using the classification under correspon-
ding invariants “. Therefore it 1s natural to make an attempt
to consider the group of transformations of some general’quad-
ratic form in three-dimensional euclidean space

cikzizk-1, 1, k=1, 2, 3 1)

with nine (arbitrery) real coefficients cyy. We shall call such
group of transformationa, i. e. the group of matrices Da(x)
depending on the set of three parameters x = Cxl, xa, x )

which fulfil the condition

cy5 Di(x) Dg(x) = cyqy det |Di(x)|= 1,
as the group of motion of three-dimensional quadric and we shall
denote it as SQ(3). Such approach to the transformations of ge-
neral quadrics will allow us to demonstrate the utility of ap-
plication of tensor methods in the group theory. Note the cor-
rect and successive introduction of tensor indices e. g. for
S0(3)-group is impossible ’. Certainly, we are able to make
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the classification under en affine (or centred-affine) group
and corresponding inveriants in all the final formulae.

The concrete form of transformation matrix DaCz) depends
on the choice of a set of parameters x—, x°, x*. It is necessa-
ry to note that each choice of the parametrization determines
the certain coordinate system in the group space and, of cour-
se, the different parametrizations correspond to the different
coordinete systems. Really, the different parametrizations are
mathematically (group-theoretically) equlivalent but from the
physical point of view they lead to the different sets of ob-
servables (i. e. to the different complete sets of quantum
numbers) which correspond to the different (and non-equivalent)
physical problems. We have no place to discuss it in detaill
here.

For the present case we shall use the Cayley'’s parametri-
zation of the transformation matrix D;(x) which can be written
in a symbolic form as D= (C - A) (C + A)"1 8, me symmetri-
cal matrix C has elements 4y ONA A is an antisymmetrical ma-
trix with elements ay, = - &, which cen be expressed (espec~.
ially for three-dimensional space) by means of a vector xk in
the form 84 = °iakxk (eiak is a covariant completely antisym-
metrical tensor).

After some bulky but not very complicated calculations
one can find the explicit form of transformation matrix D (x)
as & function of three parameters x*, x°, x3 (~o00< xf< 05 );

Dﬁ(&) = Rx-l' [(Zco - ax)Sg + aujxi + 2cocikekjmxpﬂ.(2)
The following notations were used here:

i
o det‘cik‘ # 0, u- = jkxk, e kc 3 = Si
Rx = det‘cik - aikl = ey + uixa = ey + cikxixk .
Now having the explicit form of D;(x) it is easy to convince

that the relations written below take place:

b} (0) = o3, idet :g(x) =1, eiakDi(x)D )Df(x) = e s
Di(x) xd = o, Dy (x) v = uss °13Dk(x)D1(x) = ¢y (3)
Dy (x) DJ(=x) = &, pi(x) @) = §; .

358



Note should be taken that the matrix Di(-'x) represents an in-
verse transformation to the transformation of D{(x).

It is well-known what orucial role plays the composition
of parameters in the theory of continuous groups 7! 1°, and
therefore we shall try here very briefly to show how one can
get such relation for the matrices of type (2). If we make two
successive transformations with the sets of parameters x and
y we get some new transformation with the set of parameters z
according to the formula:

B (s) = D3 (v) B} ). (4)
In order to obtain the composition of paraemeters for SQ(3)
it is necessary to solve the matrix equation (4) in regerd to
z =24y,x> . It turned out thet it can be done rather simply.
For this purpose we use the relation (see (3))

Dj(z) 29 = 5t -
which can be rewritten by means of (4) and (3) in the form
i) - Ben ]k =o.
Multiplying this equation from the left side in turn by u.=e ]g:
J
and v:)"°:)kyk (we consider this operation as a scalar produet

of a covariant and a contravariant vectors) we obtain two equa-
tions determining z

o [ -B]= w0 w[f -0 6

The szstem of equations (5) meens that the contraveriant vec-
tor z- 18 perpendicular to two covariant vectors Am end B,

ey [0 - 8], 5= [8- o]
Now it is obvious that the vector zk has t0 have the form:

z¥ = const ¢ A B . (6)

The unknown constant in (6) can be determined from (4) by
means of <taking the trace what leads to the relation

I& (c - o4 X' X 1gky=1,
Finally, one can get a very simple, nice and useful expli-

cit form for the composition of parameters of the group of mo-
tion of three dimensional quadric:
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e, (xt + gt ) - QUK mem ey

2t =<y, xpt = . (M

- Pyed
o = CpgX X

From the composition formula (7) obviously follows:
<x’y>1 ¥ Q’x>1 ’ <°ox)1 = xi’ <y’°>1 = Nis <xo'x>i = 0,

The explicit form of the law for the composition of para=-
meters allows now to get all the characteristics of the SQ(3)
group and its group space like generators, structure constants,
frames, metric tensor etc. Having only very limited volume of
this contribution we shall restrict ourselves here by the
enumeration of the corresponding formulae:

a) Generators J, of SQ(3)
gy = -1/2 (9t ) ugdy .
-i/2c° [coai +uy (xkak) + cockaeknxlaj] ’ 3k = Blak.
b) Structure constants ey 2 of 5Q(3)
m_ _ 2z0/3xl gy = - . X
cia‘ = =i ( % /ax ay )x._.y=o i Oiakc .

Hence, the commutation reletions of SQ(3) have the form:
[Ji. J}] = -1 ey a. |
¢) Casimir’s operator C 2) for SQ(3)
(@) ik . 1k

c 1/2 eqe” " (ydy + Jyds) = 1/2 0t 3,540,
1/4 R [coc:j'k aiak + (xiai)(xkak + 1)] .
d) Frames Ti':(x)of the group space of SQ(3)

Te(x) = 2 ( dy™/9z% Y=g = 26, (&Y - cmaejkixi)/xx
e) Metric tensor g,, of the group space of SQ(3)

sy = Cpn Tj x) TR(x) = 4(Reeyy - u,w )/RE, gijsjk 8,
ik %c(cocik + xixk)/4c°’ 80 = det lgikl = 640.5/1%4 .

g
f) Christoffel’s symbols of the group space of sQ(3)

r‘kl,m =172 Qg + 18, = Opfiy) = ~ By + 18y ) Ry,

M 813‘—‘1:1,;) = - 8 + u8IR .
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g) Riemann’s tensor of curvature of the group space of SQ(3)
i = - i i _Mirr o
R5i1 = akF%l B:Lr';n: + r.rkrjl r'rlr‘:ik
= 1/4 (8575, - g8y Rygp = 1/8 (&yy857 = 84385,)
h) Ricci’s tensor and the curvature of the group space of SQ(3)
Ryy = Ry =1/2 g, R=gF Ry =32> 0.

One can continue this list of formulae, of course, but
it doesn’t add some new essence into the developed tensor
methods. All the details of these calculations will be publi-
shed elswhere. It should be emphasized only that the more in-
teresting results can be obtain in some analogical considera=-
tion of four-dimensional real, three-dimensionel complex or
some other (e. g. symplectic) quadratic forms.
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PROMPT GAMMA PHYSICS:
RECENT EXPERIMENTAL RESULTS

M. Bonesint *
Sesione INFN, Milano - Italy

1. Introduction

The production of prompt gammas (or direct photons) offers a good testing ground for hadron con-
stituent dynamics in high pr collisions [1). To first order in ag, the Born terms responsible for the process
are: the annihilation diagram q7 — g ( dominant in pp — 4X and important in x~p — 74X reactions
at large Xr, where Xy = 2pr/,/7) and the QCD Compton disgram gg — 7g (domimant in xtp — 4X
and pp — 4X reactions). These graphs produce a clear event structure: an isolated high pr direct pho-
ton recoiling against a quark or gluon jet together with two spectator jets ( beam/target fragments). This
naive picture is complicated however by higher order corrections { O{aa3) ), the quark bramssthralung that
provides not isolated gammas, the intrinsic parton &y smearing and possible higher twist effects.

Since the fint published results from experiment R412 at ISR [2], there had been a growing interest
in prompt gamma studies. Now we have an active second generation fixed target program with incident
x%,p, p both at Cern SPS (NAS,NA24,WA70 and UA6) and Fermilab Tevatron (E705,E706) and new results
from Cern pp collider (UA1,UA2). Recent results from Cern ISR (AFS,R110) on pp, pp interactions have
already been published, but some analysis must still be completed. The pf collider data, in the low X7 range
.03—.18, complement the kinematical Qomain of fixed target (Xr = .3~.6) and ISR data (Xr =2 .1-.35). The
advantage of fixed target experiments is the possibility of probing direct gamma production with a variety of
projectiles and targets, in a wide kinematical range, thus allowing the separation of QCD snnihilation and
Compton processes. For example, the difference o(x~p — 7X) — o(s*p — 41X} isolates the annihilation
diagrama, For more details see [1], Here we stress only that: :

- a prompt gamma is directly detectable in the final state (without any jet reconstruction algorithm) and
its kinematics (angle and energy) may be measured with good precision

- & fragmentation model is not required to make a comparison with theory (now available as next-to-
leading log calculation {3]). Theoretical calculations of inclusive direct gamma cross sections are claimed
to be at a 20 % level, so that we may hope in a quantitative test of perturbative QCD.

- prompt gamma production is either sccompanied by gluon emission or initiated by a gluon, thus pro-
viding a way to investigate gluon structure functions (S.F.) and fragmentation functiona.

However, the detection of a prompt gamma signal is a difficnls experimental task :

- croes sections are low, compared for example to jet production {0 /0set = 3 % 1074 for pr 2 30 GeV/c,
as determined from UA2).

- thero is a large background from neutral meson decays into gammas (x® — 47,7 — 77,..). At low

Pr, if one gamma escapes the apparatus or bas a too low energy, the other gamma may foke a direct
photon. At high pr , the two gammas from a % — 4y decsy may not be resolved (" coalescing®), thus
simulating a single *fake” direct gamma.
Additional backgrounds are due to hadrons misidentified as e.m. showers (K3,n,...) and to the
bremssthralung of high energy muons, sccompanying the beam particles in fixed target experiments.
The p halo background is relevant at high pr, but may be rejected using veto counters or timing and
angular cuts,

- having very steep cross sections as a function of pr, s small uncertainty in the energy scale (~ 1%) may
result in a large normalisation error (~ 10%). : -

* Hadron Structure 87 Conference, Smolenice, November 1987.
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3. Experiments and Data Analysis

Two different experimental techniques are used to detect & prompt gamma signal. In the former ("direct
method®) events are reconstructed on a event by event basis. Position and energy of incident gammas are
measured in a fine grain, wide geometrical acceptance e.m. calorimeter. Trigger showers are paired with
any other shower in the calorimeter, looking for #° or n° Unpaired showers are considered as single photon
candidates. This method is well suited for the study of the structure of direct gamma events, as compared,
for example, to high pr x° events, but is limited at high pr due to the coalescing of showers from a #° decay
(NAS [5),WA70 [6],NA24 [7],UA6 [8]).

The latter ("statistical method®) is used instead when the spatial resolution of the available e.m.
calorimeters does not allow to separate high pr x%, 3° and single 7. An isolated e.n. shower is requested with
some additional cuts to distinguish statistically between 7’s and #° ’s. One criterium (*conversion method®)
exploits the different conversion probability in a preshower detector for x% — -y and single 4 ’s (UA2 [9]).
Others use the difference in shower pattern for x° 's and 7 's, such as cluster width (R110) or longitudinal
sampling (UA1). While the *direct method” allows a better control over most of the backgrounds and is
compulsory when the ratio 7/x? is small, where the *statistical method” is dominated by systematic errors,
the "statistical method” has no intrinsic upper limit to the py values that may be studied.

A list of recent experiments is shown in table 1, While the first convincing evidence for prompt gamma
production came from ISR experiments, the bulk of new results now come from Cern fixed target experiments
and pp collider (mainly UA2). As good summaries of new UA2 results are available [9), in the rest of this
talk I will briefly review only results from fixed target experiments, in the X1 range 0.3-0.6.

Final results are available from experiments NAS[5], NA24[7] and WA70 [6],while UAS has presented
only prelininary results on part of the final statistics for the pp sample [8]. The Fermilab experiments are
still in data taking, While experiment NAS uses an isoscalar Carbon target and experiments NA24,WA70
use a liquid H; target, UAG user a novel design molecular hydrogen jet target, put in a straight section of
the SPS,

A typical set-up, from experiment WA70 at Cern Spe, is shown in figure 1. A high intensity , unsep-
arated hadron beam at Cern SPS (pies = 280 GeV/c) hits & 1 meter long Hy target in the middle of &
magnetlc spectrometer (£} at Cern), equipped with MWPC and Drift Chambers for charged tracks and ver-
tex reconstruction. The photon detector is a lead-liquid scintillator sandwich of 24 X thickness, segmented
in depth to give informations on the longitudinal development of showers. The active elements, made of 2m
long extruded teflon tubes, containing liquid scintillator, are arranged orthogonally in channels 1.07 and 2.14
cm wide. A timing system (TOF) is used to resolve spatial ambignities (Y/Z matching of shower profiles).

To obtain sufficient spatial resolution, the NA3 and NA24 experiments use in addition to their em.
calorimeters (taken from old set-ups) a fine grain photon detector. NAS uses a shower chamber at about
5 Xo into the calorimeter, with strip and pad readout on the cathode planes, while NA24 uses a 9.6 X,
additional e.m. calorimeter made of a lead-proportional tubes sandwich. The UAG photon detector is made
interleaving lead plates with 1 cm proportional tubes (alternate x-y readout). All experiments trigger on
the energy deposition in the photon detector.

All fixed target experiments (WA70, NAS, NA24, UAG) consider as direct gamma candidates photons
outside the #? and 5° mass peaks. The quoted resolutions for #° ( n°) mass are 13 (38) MeV for NAS,
10 (29) MeV for WAT0, 16 (30) MeV for NA24 and 20 (35) MeV for UAG. Due to the good calorimetric
spatial resolutions ( ox ~ 1mm), the requirement that the trigger shower points back to the interaction
vertex allows a good rejection of 4 halo events. Timing requirements may improve this rejection and avoid
also pile-up eventa. The fine transverse granularity ( up to 1 cm in WA70 experiment) allows also cuts on
the transverse shower width, rejecting coalescing showers from #? decays.

The overall efficiency correction (geometrical acceptance, trigger efficiency, e.m. pattern recognition
and analysis efficiences) and the background subtraction are performed using M.C. simulations.

Results on direct gamma production are usually imited by statistics (sensitivy of the order of 1 pb=!
are needed to extend the study of direct gammas to high pr and systematic ervors, mainly due to :

- uncertainty in luminosity monitoring (~ 5%)

- uncertainty in background subtraction (~ 20%), strongly pr dependent
- uncertainty iu the calorimeter energy scale (~ 20%)
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8. Recent Experimental Results

All fixed target experiments (NA3S, WA70, NA24, UAS) present results on the cross section ratio 7/x°,
that is less sansible to systematic errors and the invariant cross section E x d%/dp® as a function of pr
(8),6),17],[8). Results as a fanction of Xr or yem are presented from WAT0 and NA24 experiments, While
WATO0 presents ita results in a fine X» — pr grid, NA24 has only resulls versus yem for #~p interactions
where the sensitivity is higher. Having obtained the inclusive cross sections in a fine Xp — pr grid, the
WAT0 collaboration has obtained also a phenomenclogical parametrisation of direct gamma and high pr «°
production.

Comparison with theory is done usually in the framework of perturbative next-to-leading-log QCD,
where the scale ambiguity is removed using an optimisation method, such as the Principle of Minimal
Sensitivity of Stevenson and Politser [§]. Duke-Owens S.F. are used, where Duke-Owens set 1 corresponds
;o Iuloﬂ glue and a value Ay = 200 MeV/, while Duke-Owens set 2 has Aggz = 400 MeV and a hard glue

10J.

The cross section ratios 7/x° from experiments WA70,NA24 and UAS, as & function of pr are shown
in figure 2. A clear signal is evident. The solid line indicates a QCD theoretical prediction, using next-to-
leading log calculations from [2] for direct gamma production and the Lund fragmentation model for high
pr =° production, with optimised scales and set 1 of Duke-Owens S.F.

The reactions pf = 7X and #~p — X, in the studied Xr range, are dominated by annihilation
diagrams and may be used to determine A, as the nsed S.F. are well known. The invariant cross section
Ed% /dp¥(x~p —+ 71X} as a function of p; and Xp ( from WA70 experiment at Cern Sp? is shown in Rgare
3. Next-to-leading-log QCD predictions from [2] are shown, using Duke-Owens set 1 (solid Line) or set 2
(dashed line) and optimised scales, Similar resulta from experiment NA24 (x~p — 1X) and UAS(pp — 4X)
are shown in figure 4. The resulting ratio Data/QCD predictions, for #~p interactions in WA70 and NA24
experiments, using DO set 1, is shown in figure 5. The agreement between theory and experiments is quite
good. The difference in direct gamma croes sections from incident x~ and x*, which arises mainly from
annihilation diagrams, is shown in figure '8 (WA70). Here the two sets of predictions differ in the assumed
value of A, where aguin the value Azz; =200 Mev is preferred.

The QCD Compton graph gg — ¢y dominates the reactions 7.+ p — 4X and pp — 74X and may be used
to extract informasions on the shape of the gluon 8.F. G(x). For pp — X, figure 7 shows the invariant cross
section Edc/dp® as a fanction of pr for the Cern SPS experiments NAS,NA24,WA70 and as a function
of Xr for WA?0. Over a fine Xp — pr grid, in the framework of next-to-leading-log QCD with optimised
scales, WATO data are compatible with theory using Duke-Owens set 1 (soft glue) ¢

A=200 MeV/ec =z-G(X)2(1+9z)(1-2)°
while Duke-Owens set 2 (bard glue) is excluded :

A=400 MeV/c =z-G(X)= (1+498z)(1-2)

These results are confirmed by x+p dats, shown as ratio Data/prediction versus pr,using Duke-Owens
set 1 in figure 8 and by the ratio o(xtp — 7X)/o(pp — 71X}, which is not affected by systematic errors in
the absolute normalisation, see figure 9.

4. Conclusions.

A clear direct 7 signal is seen in a large X7 range from different experiments. All the new resulta from
fixed target experimenta on inclusive direct gamma cross sections, as well the ones from pp collider, are in
agreement with theary over a wide energy range at a 20 % level, in the framework of next-to-leading-log
QCD with optimised scales. A soft glue with Agyz = 200MeV /¢, corresponding to Duke-Owens et 1 S.F.
|10} seems strongly favoured.

New resulta may be expected from a detailed analysis of the event structure for direct gammaas, that has
been made for pp interactions at ISR and is in progress for pp, x%p interactions at fixed target (WA70) and
also from the forthcoming Fermilab experiments (E708,E706), that will cover an Xr region corresponding
to ISR data.

364



References

[1] T. Ferbel and W.R. Molson, ReV. Mod. Phys. 56, 181(1984)
J.F. Owens, ReV. Mod. Phys. 59, 465(1987)
(3] P. Darriulat et al., Nucl. Phys. B110, 365(1976)
(3] P. Aurenche et al., Phys. Lett. 140, 87(1984)
P. Aurenche et al., LPTHE Orsay 87/30
P. Aurenche et al., Nucl. Phys. B286, 50¢(1987)
{¢] P.M. Stevenson, Phys. ReV. D23, 2016(1931)
H.D. Politser, Nucl. Phys. B194, 493(1982)
‘5) J. Badier et al.,Z. Phys. C'30, 45(1986)
6] L. Bachmann et al.,CERN/SPSC/80-105(1980)
M. Bonesini et al., Nucl. Instr. and Meth. A261, 471{1987)
M. Bonesini et al.,CERN-EP/87-185(1937)
M. Bonesini et al.,CERN-EP/87-222(1987)
(7] C. De Marso et al., Phys. ReV, D36,16(1987)
‘8] A. Bernasconi et al.,CERN-EP/87-120(1087)
0] J.A. Appel et al.,Phys. Lett. B176,239(1986)

P.H. Hansen, proceedings of the EPS Conference,Uppsala,1987

(10] D.W. Duke and J.F. Owens, Phys. ReV. D20, 49(1984)
J.F. Owens, Phys. ReV. D30, 943(1984)

EXPERIMENT Ve X, PHOTON DET. HADRON MEAS. METHOD
NAsS =tC 194 0.3-0.8 scintillator/lead  maguet spectromaeter, direct
~C calorimeter+- cerenkov CERN 8PS

pC shower counter
NA2¢ = p 237 0.3-06  prop. tube/lead+ hadron calorimeter direct
=tp scintillator/lead CERN 8PS

PP calorimeters
WA70 =p 230 0.3.0.6  liquid scintillator/ €1 spectrometer direct
=ty lead calorimeter CERN 8PS

PP
UAs Pr 243 0.3-0.6 prop. tubes/lead  magnet spectr.,dE/dx direct
PP calorimeter transition radiation CERN SPS
UAl Pp 630  0.03-0.13 scintillator/lead hadron calorimeter isol.++longit.
calorimeter samplings
CERN Sp5S
UA2 PP 630  0.03-0.18 preshower+ hadron calorimeter isolation+
scint. /lead calor. conv,prob,
CERN SppS
R110 PP 63 0.1-0.35 lead glass+ magnet spectrometer isolation+
MWPC . cluster shape
CERN ISR
Table 1
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