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Pre face 

I t became a good t r a d i t i o n t h a t Czechos lovak p h y s i c i s t s 
i n t e r e s t e d i n e lemen ta ry p a r t i c l e p h y s i c s meet t o g e t h e r w i t h 
t h e i r c o l l e a g u e s f rom abroad a t the l ladron S t r u c t u r e c o n f e ­
rences e v r y y e a r . The p r e s e n t book r e p r e s e n t s the p roceed ings 
of t h e Hadron S t r u c t u r e '87 con fe rence w h i r h was h e l d in 
Smolenice C a s t l e near B r a t i s l a v a on November 16-20 , t h i s year 

The programme o f the con fe rence c o n s i s t e d o f l e c t u r e s 
and s h o r t commun i ca t i ons . The main t o p i c s covered were : 

- n o n p e r t u r b a t i v e c a l c u l a t i o n s i n f i e l d t h e o r y ( QCD in 
P a r t i c u l a r ) 

- P a r t i c l e p r o d u c t i o n i n h a d r o n - n u c l e u s and n u c l e u s -
n u c l e u s c o l l i s i o n s and the q u a r k - g l u o n plasma 

- r e c e n t e x p e r i m e n t a l r e s u l t s . 
The arrangement o f papers f o l l o w s c l o s e l y c h r o n o l o g y of 

t a l k s us they were p r e s e n t e d a t the con fe rence w i t h t h e 
e x c e p t i o n t h a t l e c t u r e s ( p r e s e n t e d d u r i n g morn ing s e s s i o n s ) 
and s h o r t communicat ions arc grouped t o g e t h e r s e p a r a t e l y . 

ГП the coiiLv«.iL:s wc l i s t a l l papers p resen ted a t the 
con fe rence s p e c i f y i n g those wh ich were no t made a v a i l a b l e 
fo r p u b l i c a t i o n i n t h e p r e s e n t vo lume. 

The e d i t o r s would l i k e t o th&nk a l l a u t h o r s s u b m i t t i n g 
t h e i r papers f o r p r i n t i n g i n t he camera ready f o r m . V»e are 
a l s o g r a t e f u l to the Vela P u b l i s h i n g Ho'ise f o r t h e i r i n t e r e s t 
to P u b l i s h t h i s p roceed ings and f o r t h e i r a s s i s t a n c e . 

F.d i t o r 
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Supersynunetric gauge theor ies can be sui tably quantized in non-
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1 • Introduction 

The general superf ield treatment of renormalization problem 
in eupersymmetric gauge-theories £lj cannot evade the choice 
of a gauge which breaks super symmetry, at least sof t ly Q2] . 
This suggests the study of general noncovariant supergaugee 
which, on the other hand, allow the inclusion of celebrated 
gauges l ike the Wess-Zumino gauge [3,4,5^ in a supergraph 
formalism. 

2. Gauge-Superfield and Notation 

The ordinary gauge-field v in supersymmetry becomes a 
component of a hermitian superfield [6/73 V = V 

(2 .1 ) 

which contains powers of the Lorentz 2-spinor Grassmann-varia-
bles eQ and ?• (a, & = 1 , 2 ) . The basic anticommutatór for 
the Bplnor charges Q< and Q̂  in supersymmetry reads (Pm i s 
the generator of the t r ans l a t i ons ) 

(2 .2 ) 

Supereymmetric covarlant derivatives ( ̂ a УлВ* ' 

anticommute with Q K and 5* , but obey the same relation (2.2) 
with P„ = 1Э . m m 
The supergraph-renormalization problem [2] i s a consequence 
of the (mass-) dimension zero of V which in turn follows from 

12 



the dimension 1 of the vector-fiold v_ and from the dimension 
1 m 

- •£ for e. The scalar component of V has dimension zero too 

and, for purely dimensional reasons, the c-propagator must bo-

have like 1/k . Thus a now type of infrared (IR) divergence 

appears, except the "unphysical" components of V are fixed 

appropriately. Only vm and one spinor-field are physical de­

grees of freedom. Fixing the gauge in a way which does not 

break supersymmetry will not provide a solution of this problem. 

Sufficient for such a solution is the choice of the Wess-Zumino 

gauge [ij which eliminates all fields except v, \ and £) 

Such a gauge clearly breaks supersymmetry. Nevertheless, in 

order to be able to still use the powerful modern versions of 

supergraphs £8} j.t is desirable to extend the latter method 

to such gauges. 

3. Gauge Fixing in Supersymmetric Yang-Mills Theories 

The super symmetric Yang-Mil]о Lagrangian [6,73 is (the 2 factor p/g depends on the convention for the component fields 
of V = T^V1, Т г т М = 6^) 

i / TI-L -iVn qV (3.1) 

with the "chiral" gauge-invariance (Л* = Лг) 

e " е- e" g (3.2) 

For an infinitesimal change 6Л+ , V = V + 6V one arrives at 
U x Y = [)f,[v, fv.Yl]...] 

= R(VUA+ + /^(v; «ГлГ < 3- 3 ) 

i.) 



This implies for the vector component v of V 

where A is the scalar component of the chiral superfield 6Л,. 
From (3.4) we see that V contains a vector-gauge-field vliith 
proper gauge-transformation properties, embedded Into a larger 
set of supersymmetric transformations involving also the other 
components of V. The gauge-function Л+ has 8 degrees of free­
dom, allowing as many conditions for the components (c,X/M,vm, 
A, 2) ) in V. E.g. in the celebrated Wess-Zumino gauge the 8 
conditions are 

c - X" • M - ^4' ° 
where e is a fourvector which determines the (homogeneous) 
gauge of v (i = »„ for the Landau-gauge, i = n„ for the 3 3 m m m 3 m ra 
fixed fourvector in the homogeneous axial gauge etc .)- This 
gauge clearly breaks the supersyitimetry. The (homogeneous) co-
variant supergauge is given by 

D l V - D'V - o ( 3 - 6 > 
yielding for the component field с the (spurious, but awkward) 
infrared singularity of covariant supergauges referred to above. 

Because some sort of supersymmetry breaking cannot be 
avoided in the treatment of quantized superfields a general 
gauge-breaking Lagrangian Гз] 

и 



i s considered/ depending on-a nonsupersymmetric operator К 
(В К = О) and on an auxiliary chira l f ield B. In the following 
we consider the special case a = 0 in (3.7) of homogeneous 
gauges [5] . This represents s t i l l a large gauge-family 
parameterized by К and i t contains also e.g. the Wess-Zumino 
gauge (3.5) . In that case al ternative versions of (3.7) are 

= Tr j > * (B+ В)1* . * V-)V (3.8) 

The las t equation follows from the vanishing of the cross-terms 
BK_V and BK_V in d x, because these expressions have fixed 
ch i ra l i ty . I t shows that the longitudinal part as projected by 
Pr = P. + . i s relevant for the determination whether К i s 
admissible or not. (3.8) implies the gauge conditions 

5*KV - i ř K V - О (3.9) 

and hence by the standard argument the Faddeev-Popov Lagrangian 
(u1 and u are chiral anticommuting superfields) 

Vf.f. * Tr / А ^ К ' Л ^ » 1-е- -
(3.10) 

(cf. (3.3)). 
The to ta l (bare) Lagrangian consisting of (3.1), (3.10), and 
(3.12) depends on the breaking of supersymmetry only through 
the expl ici t appearance of K. This is a strong reminder of the 
dependence on a fixed direction n in the axial gauge of 
ordinary gauge theory. Although n breaks the Lorentz-invariance, 
i t i s sufficient to carry i t along in a l l expressions in order 
to maintain formal Lorentz-covariance [9] . In the case of 
supersymmetry with K, the s i tuat ion is more complicated, because 
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(anti-) commuting K with the algebra of D-s and Б-s an enlaryed 
algebra is produced, whose elements must be considered as well. 

The subsequent derivations are greatly facilitated by a 
supersymnietric generalization of the elegant compact notation 
of deWitt ' Г10 ! 

f a**. Si ?, — a*4 a-' 
(3 .11 ) 

Writing a l l f i e l d s (Yang-Mills-fields V1, and matter f i e l d s 
Ф and Ф_ ) as components of one "vector" 

(3 .12 ) 

with 

Ц* = Rurf t *А а*Л г = RA5 M ( 3 . 1 3 ) 

and with ťhe de f in i t i ons 

( 3 .14 ) 

the t o t a l Lagrangian formally looks l i ke the one in ordinary 
gauge theory 

* N # w 4 B ? K ? / 1 ^ * 4 f KfA ^ " u ^ (3.15) 

Ifi 



the main difference being the nonpolyromial dependence R(V). 
This notation is also well suited for the evaluation of the V-
propagator. The (at most) quadratic part in V of (3.1) in 
(3.18) is 

*- I фЛ (0 9T)At 41 , £ » K M * * {3-16) 

We take the propagator to be the negative inverse of Г, the 
"matrix" in (3.16) : 

We'know make the assumption that any admissible К must be such 
that (KPLKT) ha; an inverse. In this case ДГ = -1 yields 

n (3'18} 

(no propagation of В !) and 

Д - i = P L K T 1 X (3.19) 

with a matrix upa 

uT = - (wpLKTr1 

and 

U. - W- = ~ ^ ^ ' ( 3 . 2 0 ) 

A W - ( ! D V ( P T + Р т К т икр<_ + P tk rUKPT t 
t PUKTU.K PT K T U . K P t ) (3.21) 

Since the inversion (3.20) for 0 is r e l a t ive ly simple in 
prac t ica l cases, the fu l l knowledge of the algebra enlarged by 
К i s not required. 

17 



We now turn to a discussion of different choices for K. 
The simplest one is to make К a scalar superfield depending on 
6 and в only. E.g. 

к- л- 4£e**v (3.22) 

has the property that (3.9) is the same as the covariant super-

gauge (3.6) with a change in the highest component of V 

V - K V = VI 
A -» Л - ye-

Thus the с-fieId in this case propagates with mass u and any 
mass-term for с is an artefact of gauge-fixing, a result also 
obtained in [2} . A "local" ansatz for, К like (3.22) is not 
sufficient to produce a gauge like (3.5). We therefore consider 
the most general "bilocal" К = К(в,в,в' ,§'). It is straight­
forward but lengthy to write down this expression which in fact 
is just an N = 2 scalar superfield. An alternative way to write 
К uses the derivative operator К = К(в,ё,Эо, Э̂  ). It clearly 
has the same number of components and is, in fact, simply 
related to K: 

к-- * a*M> (3.23) 

Historically, the first noncovariant supergauge was the "N-
gauge" [3} . Defining (nJn is a fixed Lorentz-vector) 

№ - X - í W\< 

Afe. » \ + i (jf в), 

2 
and К = N , the algebra of the covariant d e r i v a t i v e s i s en­
larged in a very transparent manner. The superpropagator i s 
rather complicated for t h i s gauge but the c-field-component 
propagates with a mass n and n^v = 0 ( a x i a l gauge) . 

18 



The advantage of the "FD-gauge" [O 

is the simple set of new projection operators. 

There are infinitely many choices of К yielding the Wess-
Zumino gauge (3.5), but differing in the sector of the auxiliary 
field B. A very simple choice for К is \b\ 

Kk ^ * i? Г teste)] (3.26) 

Recently, Johanson \1 ť\ has proposed а К of a general chiral 
type. 

4. BRS-Invariance, Identities, Remarks on Renorroalization 
and Gauge-Independence 

The similarity of (3.15) to the Lagrangian of ordinary 
gauge theories immediately allows the introduction of a BRS-
transformation [12] with a special gauge transformation 
6ЛР = iup6A. involving the Faddeev-Popov field and the anti-
commuting quantity 6Л.': 

h< • -i -ffsT ucu.r Д- - 4 u » f t 

du.4 - - i 3 * M -- 4 u f Í X 

ÍB* = О 

19 



f й = f-5- are the structure constants in our supercompact 
notation. The invariance of JPiL, f ofя« + if- under (4.1) 
follows from the validity of the "group relation" 

5ф 

Quantization proceeds through a generating functional with a 
path-integral of the fields 

where the sources are contained in 

As usual, additional sources are introduced for the "composite 
operators" in (4.1). The latter are BRS-invariant by themselves; 
therefore, only •£ breaks the invariance (4.1). A change of 

variables (4.1) in (4.3) does not change W: 

0 = -i JW , £f 5W "I A §U _ e ? fa 

This "Slavnov-Taylor" identity does not depend explicitly on K. 

The second important identity obtains for the change В •+ В + 6B 
in (4.3) : 

30f iíjA * ^ 

(4.6) 

20 



and the third one for the transformation u' •» u' + 6u' 

E.g. from (4.6) the "transversality" of all Green's functions 
with respect to К follows immediately 

к'А' £v— j . о (4.8) 

In a similar manner an identity for the change of W with 
respect to an infinitesimal variation of К is derived. 
A Legendre-transformation 

Г - Ze - ] V - .... (4.9) 

with ад = 6Z/6J etc., which does not involve к and l however, 
leads to the standard Lee-identity which is quadratic in the 
functional Г of one-particle irreducible vertex functions: 

S f l - ď I f 4- íf i f .0 
(4.10) 

In order to make contact with previous proofs of renormalizat ion 
[2"J a c r u c i a l observation i s tha t any К with bosonic gauge 

parameters N,^ (underlined indices mean no supercompact 
notation) may be wr i t ten as [4} 

К - 1 % &i(ft »,jy 0lff* G; (P, 6, ÍL) « - 1 1 > 
•4 
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replacing formally 

6V9 -» hr - e V i-w (4.12) 

with an external gauge-singlet field w', the Ward-identity 
for an arbi t rary supersymmetric quantity A (Q is the generator) 

Q*A - GM»4 {£, (4.13) 

may be extended to the present broken case. If, for a "physical 
quantity" w-independence can be proved, supersymmetrý follows. 

The inclusion of the gauge-parameters N,.. into the BRS 
transformations (4.1) turns out to be very convenient: 

л Ы;- -- M_;í , 4 % - 0 <4-14> 

Further gauge parameters p. appear in supersymmetric gauge 
theories because the dimensionless V may be redefined V •• F(V,p.) 
Writing sp. = z. , sz. = О allows the i r inclusion in the 
extended BRS-transformation as wel l . 
Similarly also w in (4.12) acquires a corresponding BRS-trans-
form v. Both terms may be summarized by N(M) in (4.14). An 
action which f u l f i l l s (4.1) and (4.14) i s 

£ - f - *;. u ; Эк<У _ г ; Д Д 7 ) (4.15) 

where Л. (F) can be given exp l ic i t e ly {$~\ . The general izat ion 
of (4.10) contains two further terms: 

ň'' & - ° 5 ( . Г ) + a i IT , rt;ř ЭЕ' -_0 (4.16) 



л 
where Г is defined like L subtracting out L . . Then 

gb 
«normalization can be reduced to the solution of the cohomology 
problem of a nilpotent operator 

even in the absence of a supersymmetric regularisation scheme 
£>} . It can be shown that all gauge-dependent counter-terms 

are necessarily of the typo В' Сл • The cohomoloyy for the 
rest has been done (under certain technical assumptions, ex­
cluding anomalies) in ref. [2~} . 

The proof of gauge-independence refers to an S-matrix-
element, consisting of an amputated Green's function, decorated 
by "polarization vectors" and renormalization factors at external 
legs. The definition of "polarization vectors" (physical sources) 
is not without problems in supersvmmetric theories [l 3} . 
Nevertheless, at least to *"v\o rtenree of rigour achieved in 
ordinary gauge theories, the proof can be carried through. The 
"extended" BRS transformation again is able to exhibit its 
superiority to other techniques. As a by-product also the co-
variance of the S-matrix with respect to ( globally) supersymmetric 
transformations can be shown \\ 2\ . 
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COMPUTER MEASUREMENT OP THE YANO-MILLS 
VACUUM (AND STRING) WAV EFU NOTION Л LS 

J. Groonslte' 

Physic* and Astronomy Department 
Sun Francisco State University 
Snn Francisco, СЛ 04720 USA 

ABSTRACT 

A Monte Carlo simulation of the exact path-integral representation of the Yang-Mill* vacuum 
wavefunetional is carried out in three dimensions. The data for long-wavelength field configurations 
is accurately fit by the lattice version of 

•MJ«tfe*p(-|iyArlr|ffc)) 

By insertion of Wilson line* into the path-Integral representation it is also possible to measure the 
wavefunetional of a «tate containing heavy quark-antiquark charge*. For large quark separations, 
this state represents the QCO string. Preliminary numerical results are consistent with the "gluon-
chaln" model of string formation. 

'Work supported by the U.S. Department of Energy under Contract No. DE-AC0J-81ER40003. 
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The llflinlltoiilnn foriniilntloii of quantum Ynng-Mllls theory is quite simple to express in tem­

poral gauge; the problem Is just to solve the Scbrodingor wnvcfunctlonsl equation 

subject to the Qnuss Law constraint that Ф[Л] he invariant under time-independent gauge transfor-

inntloiis. Unfortunately, this equation is much easier to formulate than to solve, It would, however, 

be very interesting lo know the solution of the equation for the QCD vacuum state, or for a meson 

state, or for an elongated string state. Presumably a lot of interesting physics is contained in the 

eirilctlif)! of tin- Corresponding WaV(-fllllf liofinlS. 

For a theory of free photons (pure QED), the Schrodinger equation is soluble. The solution for 

the vacuum state is simply 

*И1 = e**-tfiJj*fllFiil*Wv)j~gji) (2) 
hut for QCD, the corresponding solution is unknown. Some years ago I argued (hat for long-

wavelength field configurations (i.e. field configurations A(x) for which Tr(F7) varies slowly com­

pared to the confinement scale), the QCD vacuum should have the form [1] 

4i[A]^exp{-,,Jd3xTr(F^)) (3) 

Note that the probability density Ф3 looks likee"* in one lower dimension ("dimensional reduction"). 

In fact, it is possible to prove that the QCD vacuum hoe precisely this form in strong-coupling lattice 

' gauge theory, where [2] 

*[{/] = eip(/3^Tr[t/(/l/»t/'] + O{0')) 

is the ground state, and there is a systematic expansion for obtaining higher order terms in the 

exponent. But, of course, we are really interested in the structure of the vacuum at weak couplings. 

One rather general argument in favor of cq.(3) is based on the concept of magnetic disorder. It 

is believed that confinement is associated with disorder in the Mold-strength Fy • Wavefunctionals 

with the maximum possible disorder in the field strength must have the form 

ЩА] = J l0 r [TrF J (a; ) ,rrfV) . - - l 
r 

where фг depends on Tfy only at the point x. Then the only correlation that exists between field 

strengths at different points is through the Dianchi identity. Such maximally disordered wavefunc-

tionals can be rewritten as 
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. = №t{-JM-lnm - - ^ Tr(F2) + 0(F<)]) 

и соп«(.хегл(— /i fdxTrF*) 

for small amplitude fluctuations, in agreement with eq.(3), 

However, this form cannot bo completely correct. In particular, because of asymptotic freedom, 

wc expect the QCD vacuum to resemble that of the free theory, eq.(2), at short distances, Л simple 

interpolating form, which contains both eq(2) and (3) as limiting саягя, is 

ЩА] = Схр{-1а31а3уГг[Рц(хтх,у)Рц(у)У(у,х)]ф(х-у)) (А) 

where V(r, y) is a gauge connector (e.g. a Wilson line) between points x and y, and 

white <P(i — y) damps exponentially to zero as | i - y\ exceeds the confinement scale L. For field 

configurations A(x) which vary slowly compared to the confinement scale L, we then have 

*[.4] = r.rp(-;</rfVrr(F2)) (5) 

where 

,< = jd3x^( 

But, although 1 believe this reasoning is correct, it is obviously desirable to go beyond such 

heuristic arguments. I will now describe a method for actually measuring the relative values of 

Ф3[Л] in an arbitrary (but finite) set of field configurations, by the Monte Carlo method. The 

method is bawd on the exact, path-integral representation of the ground state in temporal gauge 

Ф[Л] = J DA(t < Щ6[Ай]ехр(- J dtL[A]) 

Let {"/l(r)}, n = 1 A/ be any set of field configurations on the time slice t=0. Then 

4\"A? = JDA(x,t)6[A(x,0) -" АЩА0]ехр(-Г dtL[A]) 

N 
^UtnAOmnC 

m=l 

where 

r " 

• /£ ' 
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DmA = DA6[A(x, 0) - m АЩАо) 

Now rescale the wavefunctionals as follows: 

»[M]=>^/ [ , M 1 

so that with this resealing 

л pi 112 _ ÍT2mDmA6mne-S 

Г ' " JLmDmAe-s 
This expression can now be latticized in the obvious way: 

where 

1 ' ÍT.mDmUtxv(0T.Tr[UUUWn ' w 

DmU = Ц<М(х,<)«[{/,(*.0) -m Ui(x)]6[U0-l] 

Observe that the denominator of eq.(6) 

Z = /$>тУехр</Э£Гг[С/£/1/'ГЛ])' 

is just the partition function of a lattice gauge theory with the fields on the t=0 time-slice restricted 
to the finite set 

Ue{mU,m=l N) 

It is clear that in this statistical systt.n, the quantity <ř5["í/] just represents the probability that 
a random fluctuation selects U(x,0) =" U(x). Therefore, in a Monte Carlo simulation of (6), we 
simply have 

where Ntt is the total number of Monte Carlo iterations, and JV„ is the number of iterations in which 
the n-th configuration nU was selected by the Monte Carlo algorithm on the time-slice t=0. From 
this data, it is possible to check whether or not the vacuum wavefunctional fits the form 

* a = ЛГедт>(^:Гг[УУ1/»{/1]) (7) 

for small amplitude (t/«l), slowly-varying link configurations. 
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The Monte Carlo calculation of cq.(6) was carried out on a mictovax computer. In order to keep 

the computer time required within reasonable bounds (<ss20 - 40 hours cpu time for each coupling 

/9), some concessions were required: the computations were done in three dimensions, and on fairly 

small (4s, б3,83) lattices. On lattices of this size, в "slowly-varying" configuration should have almost 

no variation over the length of the lattice, and in practice I have used only non-abelian constant 

configurations 

"t/, = ( l - a i l ) h + ifln<n 

where 

°" = 20£' 

and L = no. of sites/side. Then 

The constant Sp was chosen (by trial and error) so that JVi/Af|o«50. 

From the data obtained in the Monte Carlo calculation, there are three things to check: 

1) Does * J fell exponentially with £Гг[1/1/1/(/]? 

If this is true, then the parameter fi(/3) can be extracted from the data. If it is not true, then 

the form (7) is obviously false. 

2) Is /<(/J) independent of lattice size? 

This question is related to the long-distance behavior of Ф{х) in eq. (4) 

(4), it was assumed that Ф(х) damps exponentially to zero at large distances 

not true, but rather 

u = I <Рхф(х)-юо 

in an infinite spatial volume, then /i would increase as the lattice size increases, and again eq. (3) 

would be incorrect in the continuum limit. 

3) Does ii(/3) scale correctly at weak couplings? 

If eq.(3) is the continuum limit of (7), then as /?—oo it is necessary that 

li(j)) = const. x/J* 

which is the correct weak-coupling scaling behavior in 3 dimensions (for strong-couplings, ц = 0). 
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In ref. [3] it was found that weak-coupling scaling behavior for Wilson loops sets in around 

/? = 6 for SU(2) gauge theory in 3 dimensions. The data for • ' as в function of £7>[t/t /U(/] at 

0 = 5 is shown in Fig. 1, on an 83 lattice. There is little doubt that this data accurately fits an 

exponential curve (slraight-line on a semi-log plot), so ц(0) can be accurately extracted from the 

slope, 

In Fig. 2 the same data is shown for coupling 0 = 6, for three different lattice sizes (43 ,63 ,83). 

Error bars (not shown) are roughly the same as corresponding points in Fig. 1. The data is almost 

independent of lattice size, which is good evidence that ц(0) has a finite limit in infinite volume. 

Fig. 3 is a plot of (i(0) as a function of 0. We see that the data in the strong-coupling region 

(0 < /? < 2 follows the strong-coupling curve ц = 0, while data in the weak-coupling region is closely 

fit by a parabola ft = .405/7', which is the correct weak-coupling scaling in 3 dimensions. 

In summary, the Monte Carlo data obtained thus far supports eq.(3) as the QCD vacuum for 

long-wavelength field configurations in three dimensions. More work needs to be done, of course, 

using larger lattices with non-constant field configurations, and in four space-time dimensions. 

Next we consider the QCD wavefunctional of states containing static quark-antiquark charges, 

i.e. "string" wavefunctionals. Л state containing heavy quark-antiquark charges is given, in path-

integral representation, by 

«o»M =JDA(x,t < 0)Wat[C-]6[F[A]]exp[-( dtL[A]] 

where Wab[C_] is a path-ordered Wilson line, and C_ is the semi-rectangular path running from 

(x'.i = 0) to (x',« = - Г / 2 ) to (x",l = - T / 2 ) to (i",£ = 0). We then have 

< ФД|Ф« >=l < TrW[C] + Tr{W{C+]Wl[C-] > 

< Ф/1*/ >=\ < TrW[C]-Tr{WlC+]W4C-] > 

where C+ is the semirectangular path from (i",0) to (x",T/2) to (x',T/2) to (x',0), and TTW[C] 

is the RxT Wilson loop TrW[C] = TrW\C+]W[C-]. 

It is important to note that the antihermitian part of the wavefunctional, tyj' = Фс<г^ has a 

node at A = 0, i.e. 

*J»[/1 = 0] = 0 

which is implied by the fact that ТУФ/ = 0. The existence of nodes in the QCD string wavcfunctional 

is crucial to the "gluon-chain" model of string formation [4,5], which I will now describe briefly. 
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The gluon-chain model is based on the idea that Nature does not tolerate charges of arbitrarily 

large magnitude, and that large charges tend to be screened, both in QED and QCD, by particle 

production. For example, it is impossible, in nuclear physics, to have a heavy nucleus of charge 

greater than some critical value Ze»170- If a nucleus has a charge greater than this value, it 

becomes energetically favorable to pull an electron-positron pair out of the vacuum. The electron is 

then captured by the heavy nucleus, reducing the nuclear charge below the critical value (Fig. 4a). 

Similarly, in QCD, as a quark-antiquark pair separates and the effective coupling increases, there is 

some critical separation Rc where it becomes energetically favorable to pop a light quark-antiquark 

pair out of the vacuum. The light quark binds to the antiquark, and the light antiquark to the 

quark, so that the original quark-antiquark charges are screened from one another (Fig. 4b). Again 

there is a natural limit to the growth of effective coupling. 

Now consider the case of QCD with no light quarks (only in this idealized case is there a linear 

quark potential at arbitrarily large distances). In this case a type of charge screening is also possible. 

As massive quarks separate and the effective coupling grows, there is again a critical separation where 

it is energetically favorable to place a gtuon in between the two quarks, as shown in Fig. 4c. From the 

point of view of the heavy quark (antiquark), the antiquark (quark) charge has moved to the position 

of the gluon, and therefore the average separation between color charges has been reduced. As the 

heavy quarks continue to move apart, an upper limit to the average charge separation is maintained 

by dragging out more gluons between the quarks. The eventual configuration of the confining QCD 

"string" is shown in Fig. 5; it consists of a chain of gluons between the quarks, with each gluon 

held in place by attraction to its nearest-neighbors in the chain (in the large NColon—»oo limit, 

there are only interactions between nearest neighbors). Let Rav be the average separation between 

neighboring gluons, and £(Л„„) the average (kinetic + interaction) energy per gluon, nfiuonl the 

number of gluons in the chain, and L the distance between the heavy quarks. The total energy of 

the chain is then roughly 

Ecliain = "jjuont E(Rav) = —5 £ = CÍ" 

so that a = E(Ri,v)/Rau is the string tension (assuming n îumi = L/Ral, which is an approximation 

that ignores roughening). This is the origin of the linear potential between quarks in the "gluon-

chain" model of string formation. 

The gluon-chain model is motivated in part by large-N considerations. In the iVccior»—*oo limit, 

QCD has the rather striking property that the product of gauge-invariant quantities factories, e.g 

< W[Ci\W[Ci\ >=< W[Ct] >< W[C2\ > 

where WfCi^] are Wilson loops. This has the immediate consequence that adjoint (gluon) charg' -
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are also confined by a linear potential, and that the relation between the string-tensions of adjoint 

and fundamental (quark) charges is simply 

"oifcoinl = lajundamintal 

Simple relationships cry out for simple explanations. Dut models of confinement which arc based 

on analogies to abelian theories (e.g. dual superconductors, Z\ fluxons), and depend on isolating 

some abelian subgroup of the full gauge group, find it difficult if not impossible to account for these 

conditions. In the gluon-chain model, on the other hand, factorization at largc-N is built in. In 

fact, suppose that large Wilson loop» are dominated by very high (but finite) order planar Feynrnnn 

diagrams. Л time-slice of any such diagram (Fig. 6), in a physical gauge, reveals a state which is 

simply a chain of gluons with quarks at each end, as envisaged in the gluon-chain model. 

Returning to the computer measurements, one would like to use these methods to test the model 

outlined above. Consider any excited state of the form 

•W = £/dx'-"dl"/(*b.*n)/U*.)-../HA.)*oH] 
n J 

This state contains constituent gluons in some spatial volume V if 

Ф[Л] = 0 

for any configuration A(x) such that A(z) = 0 for any x£V. For our purposes, a "constituent gluon" 

is just an A-field multiplying the true ground state. 

In particular, Ф/ contains at Itaat one constituent gluon somewhere in space, since *j[0] = 0. 

This fact is useful, because it means that the ratio 

<Ф; |Ф/> 
C ~ < Ф|Ф> 

< TT[W\C] - W[C+)W4C-)) > 
2 < TrW[C] > 

is a lower bound to the probability that the QCD string state contains at least one constituent gluon. 

This is a quantity which can be readily measured by the Monte Carlo method. 

The concept of gluons, of course, only makes sense in a fixed gauge. On the lattice, the gauge 

must be fixed well enough so that the link variables fluctuate around U = 1. The lattice Coulomb 

gauge, in which the quantity 

Я е ( Г г ^ > ( ( х ) + (/ /(х-е.-)]) 
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is maximized at each site, is appropriate for this purpose. Monte Carlo calculations in Coulomb 

gauge can be readily carried out using the iterative gnuge-fixing procedure of Mnnduln and Ogilvie 

[6]. 

Before proceeding to the non-abclian case, it is useful to know what is the expected behavior 

of £ in an abelian theory. In the free abclian case, it is easy to show that £—-0 as T—oo, i.e. a 

state containing two static +/- electric charges contains no constituent photons. The reason is that, 

as Г—»oo, the state is dominated by instantaneous Coulomb interactions, which only contribute 

to the real part of the wavcfunctional. The imaginary part of the wavefunctional is generated by 

transver&e photons originating at i = —T/2, and propagating to I = 0. Л» Т—!>o, ibis contribution 

is suppressed. Another way of seeing this is to note that the ground state of the Schrodinger 

wavefunctional equation with static external charges, in Coulomb gauge, is identical to the vacuum 

state with no external charges, since the Coulonibic part of the QED Hamiltonian is independent of 

the transverse A field. 

The SU(2) data for £ as a function of quark-separation R and loop-length T, in D=3 dimensions 

at a weak-coupling of 0 = 5.5, is shown in Fig. 7. It can be seen that there is very little probability 

for the state to contain a constituent gluon at small separations, but that the lower bound on this 

probability rises to roughly 70% at R=6 lattice spacings. Moreover, the tendency of f to fall as 7' 

increases does not seem very pronounced; and the evidence favors ^—•consf./O as T—>oo. It appears 

that, for /2>6, the QCD string state contains a! least one constituent gluon. 

tt is even possible to map, roughly, where this constituent gluon is on the lattice, although here 

my results are very preliminary. Define 

IV =<*;|*/>(l/(reV)=t) 

so that Гу = 0 if there is a constituent gluon in volume V, and 

rv 
rv„ 

As already noted, the antihermitian part of the wavefunctional Ф/ contains at least one constituent 

gluon. I have measured the ratios rv for a quark separation of R=3 (T=6) lattice spacings at 

/3 = 5.5, with V a strip at t=0 one link in width. The values of »-v, for three incquivalent positions 

of the quarks relative to V, are shown in Fig. 8. From this data, it seems that the constituent gluon 

is most likely to be in the center region between the two quarks. 

In summary, the data for £ does seem to indicate that the QCD string contains at least one 

constituent gluon. To check the validity of the gluon-chain model, however, it would be highly 

desirable to detect more than one constituent gluon as quark separation increases. This could be 

done by the ry calculations described above, which in principle could locate more than one node in 
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the wavefunctional in different regions of the string. Such calculations, however, at larger values of 
R and T, arc extremely «pu-time intensive. Further work along these lines will require the use of a 
supercomputer. 
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i|jur-c 4: (a) Screening of nuclear charge by e'e" pair production; 
Screening of heavy quarks by (b) qq pair-product ion, and 

(c) valence-gluon production 
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NONPKKTIIRIIATIVK I'KRTURIIATION THEORY 

('ail M. Mender 
Dcpartnieiil of Physics 
Washington Univcr.sily 
SI. Louis, MO 63130 

In this talk we propose a new pciturbativc computational scheme lor .solving 
sell-interacting scalar quantum liclcl theories. To solve a X<//' theory in d-
diincnsional space-time, we introduce a small parameter b and consider а \(ф") 
Held theory. We show how to expand such a theory as a series in powers of b. 
The resulting perturbation series appears lo have a linite radius of convergence 
and numerical results for low-dimensional models are good. We have computed 
the two-point and four-point Green's functions to second order in powers of b 
and the 2n-point Green's functions (/i>2) to order b. We explain how to rcnor-
malize the Iheory and show that, to first order in powers of b, when f»0 and i/>4 
the theory is free. This conclusion remains valid to second order in powers of b, 
two we believe (hat il remains valid lo all orders in powers of b. 
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In two recent papers1,2 a new perturbnlive technii|iie was proposed for solv­
ing self-interacting scalar quantum lie-Id theories such as V>'' theory. The tech­
nique consists of expanding the //-point Green's function G("'(.v | ,лч, . . . ,Л'„,Л) 
for а \(Ф~) theory as a series in powers of Л: 

G ("4vi.*2 л„,Л)=>]Л^.(»)А(л-1,л-2 д-„) . (1) 
к -о 

Diagrammatic rules were formulated for calculating the eocflicient of 
Л* (k=i), 1.2, • • • ) in this expansion for any (uiirenonnnli/.ed) Green's function in 
(/-dimensional space-time. In the Л expansion it is only the parameter Л which is 
considered small. Thus, like the \/N expansion, the results are nonperturhalive 
in I lie physical parameters snrli as the mass and tin- coupling constant. 

Perturbation methods have played a central role in the quest lor approximate 
numerical solutions to quanliim-lield-lheory models. In this talk we distinguish 
between two different kinds of perturbation series: a /iiiumil expansion, which is a 
series in powers of a physical parameter that appears in the functional-integral 
representation of the theory, and an artificial expansion, which is a series in 
powers of и new parameter fi, which has been introduced temporarily as an expan­
sion parameter for computational purposes. Weak-coupling expansions in powers 
of the coupling constant X, strong-coupling expansions in powers of \/\, and sem-
iclassical (loop) expansions in powers of Planck's constant are all natural pertur­
bation expansions. 

Unfortunately, natural perturbation expansions suffer a number of disadvan­
tages. Weak-coupling series are divergent and may not even be asymptotic to the 
solution of the theory. Semiclassical approximations also give divergent series, 
are very dil'licull to obtain beyond leading orders, and therefore may give very 
poor numerical results. (For example, in a simple quantum-mechanical system 
with tunneling, when tunneling occurs rapidly because of a low barrier potential, 
the WKIi method gives a very poor approximation to the tunneling amplitude.) 
The compulation of strong-coupling series requires the introduction of a lattice 
and the subsequent taking of a continuum limit; such series are often very slowly 
converging with many terms being required to give a reasonable approximation. 
The principal difficulty with natural perturbation expansions is that the analytic 
dependence of the solution to the theory on the physical parameters is lost; by 
forcing the physical constants to play the role of expansion parameters they are 
no longer available to display adequately the true functional dependence of the 
physical theory on them. (For example, in electrodynamics the anomalous mag­
netic moment #—2 is an unknown, but surely complicated function of cv. Its 
weak-coupling expansion, (•— 2=ci<\+c,2<*~+ ' ' ' , only makes sense in the limit 
ii—>0. This expansion does not even begin to suggest bow g — 2 depends on the 
parameter a when о is not small.) 

The advantage of artificial perturbation expansions is that, if a parameter /) is 
inserted in a clever way, the resulting scries in powers of b may be easy to com­
pute and rapidly convergent. Moreover, the terms in this expansion may exhibit a 
very nontrivial dependence on the physical parameters of the theory. One such 
perturbation scheme is the large-N expansion, where /V is the number of 
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components of a scalar Held. In nonrclnlivislic quantum mechanics, large-/V 
expansions are surprisingly successful.3 For a («P2y theory the very first term in 
the largc-iV expansion gives a nontrivial and rcnoniiali/.able quantum lield theory. 
Also, quantum chromodynamics at large N displays interesting theoretical and 
phenomenological features.3 

We illustrate with a very simple example of an artificial perturbation expan­
sion. Consider the problem of finding the (unique) real positive root of the lifth-
degrce polynomial 

.v5+.v=l . 
We introduce a small parameter Л, 

.vs+.v-M . 
and seek a solution in the form of a scries in powers of />. Such a series is very 
easy to find. The first few terms are 

л-(Л)=1-Л/5-Л2/25-сУ'/125- • • . 
If we evaluate this series at í=l we get .v(I)=0.752, an extremely good approxima­
tion to the exact root, which is at .v=0.754'J • • • . 

The problem of course is lo find a method for expanding the Green's func­
tions of a quantum lield theory as perturbation scries in powers of />. We are con­
sidering the Lagrangian 

L~\(i>.:ý+±i?.:?+\M-,!?(tfM
2-'ý (2) 

in (I-dimensional Luielidean space. In (2), /; is the bare mass, X is the tlimension-
less bare coupling constant, and M is a fixed mass parameter that allows the 
interaction to have the correct dimensions. The problem is that if we expand the 
Lagrangian in (2) as a series in powers of f> using the identity 

v»=4..M„v = 1 + ň l n Y + ^ l ( l a Y ) 2 + Í Í ( l n v ) 3 + . . . 
2: л! 

wc obtain a horrible-looking nonpolynoinial Lagrangian: 

^(Оф)Ч^и'Ч2\М2)фЧ>Щ2М2\п^гМ--^ 

ч4г\£м2 
n(ó2M2- ' ' |+ |-Xó2A/-[l . i (^M-- ' ' ) ] ,

+ - - - . (3) 

We have devised a very simple and orderly procedure for calculating the //-
point Green's function of the l.agrangian in (3) as series in powers of <S. It con­
sists of three steps: 

(i) Replace the I.agrnngian L in (3) with a new I.agrangian /.-„,/,„а„ having 
polynomial interaction terms. 
(ii) Using /-,,.;,„ct„, compute the Green's function C'"'^,,^,, using ordinary 
Feynman diagrams. 
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(iii) Apply a derivative operator D to G("\„/,„c*„ to gel the delta expansion 
lor G<"\ 
The new Lagrangian /-„,/„„.4,, and the derivative operator D depend on the 

number of terms in the f> series that we intend to compute. For example, if we 
need one term in the i> series we take 

Then we compute the n-point Oreen's function G*"'„,/,„,./.„ to order h, apply 

and sel n =- 0. 
Now suppose we need two terms in the Л series expansion of G^"\ We lake 

L„iuKk«=\w2+±Ur+2\M2),!? 

-KH/fyW i<srM2_7f + +(-<НЙ2),\М'' LÍTM2"') + . 
Then we compute G^"'„,/m(;/t0 to order A2, apply 

D~2(da mi* ť ik? +df?* ' 
and set ci=,3=0. 

For three terms in the f> series expansion of G'"\ we lake 

^,ы„4(эд2+т ( , ,2+2ш2)'' ; 

+[Ну(1+п)+Л3 |ХМ'' [ ^Л / 2 - ' ] " " 

+[^-+-^(íW-/)-r* ,|XW''(i'rA/:!-'')' 

As above, we compute G'"'lv/I(ici.„ lo order l)', apply 

- I , 3 , -> 0 , t'K , 1 , сЯ , З2 , •> i? ч , 1 , с? , сР , tP . 

and sel o=.i=-/=0. 
If we need four terms in the delta expansion, we take 

2 • , £ 2 . • 2 \ л i r / VV4-1 

r.+l 

43 



We compute the Green's function G*"\„/„ltn„ to order #*, apply 
cř . čP сГ _ _ l , _ ů _ _ . j ) c L , - J K , l / _ j r si_,_ii i^_\ 

. i , (? ,. a3 ^ . <? ч . i , iř . /У . iř . tř 
l^JM 

? ' я. Л ^ + Oft * ;.-i„4 + ÍI,J» + я J + л..-» ^ * • 24v &.3 T* S/33 ŮY1 di? ' % V Ort4 т 0/í» T
 (97

4 A' 
and set n=;•?=-,=)/=={). 

We cfo not have the general form of the I.agrangian L„,/(„c*0 iwi'tled to obtain 
N terms in the delta series. However, we do have the form of the derivative 
operator O: 

, N N p2m(\-k)JlN í ;, V 

я-тгЕЕ1—п N / - U - I ) ' • ůtvi. 

Low-dimensional models 

To examine the form of the delta expansion and to verify its numerical accu­
racy, wc consider a zeroKlimcnsional and a one dimensional lield theory. The 
functional integral for the vacuum-vacuum amplitude Z of а ф4 lield theory in 
/ero4limcnsional space-time is an ordinary Kiemann integral: 

Z = / </.v 

Now we insert the expansion parameter к 

Z - J IF , ( . » • = ) ' • (4) 

Recall that the ground-state energy E is given in terms of Z: 
£(ó)=-lnZ . 

For this simple theory wc can, of course, evaluate directly the integral in (4): 

£(á)=-ln _l/3 
i f ' 

Г 2ň+3 
2Л+2 (5) 

To find the delta series we merely expand the right side of (5) in a Taylor series in 
powers of 5: 

• £(5)=ftf<f)-f N<f)+V/(f)]+^-l24./<|)+12.//(|)+^(|)| 

,3 1 4 ^[1т<р+шщртЩ)+г(р]+- • • (6) 
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Notice that the structure of the delta scries in (6) is rather strange in that the 
coefficients all depend on polygamma functions evaluated at 3/2. The polygamma 
function Цх) is defined as the logarithmic derivative of a gamma function: 

* > - $ • 
There is a general formula in terms of zcta functions for the /ith derivative of a 
polygamma function evaluated at 3/2: 

^'°(3/2)=(-1)"л![(1-2 ,+1Мл+1)+2п+1] . 
-2 

The first two .. • 'ygammn functions are V<3/2)=2^7-2ln2 and т/'(3/2)=——4. 
We list below the numerical values of the first few polygamma functions: 
1ДЗ/2) = 0.0364899740; 
V/(3/2) = 0.9348022005; 
l//'(3/2) = -0.8287966442; 
^"(3/2) = 1.4090910340. 

It is crucial to determine for which 5 the scries in (6) converges. Note that 
E(S) in (5) is singular whenever the argument of the gamma function vanishes. 
There are an infinite number of such singular points 6^ in the complex-5 plane 
given by the formula 

2*4-3 
"2Л+2 

Each of these singular points is a logarithmic branch point. Note that these 
singular points form a monotone sequence on the negative-^ axis beginning at the 
point 5==—3/2 and converging to the point 5=- l . We conclude that the delta 
series in (6) has a radius of convergence of 1. 

А ф4 theory corresponds to 5=1, which is situated on the circle of conver­
gence. Thus, to compute the delta series with high numerical accuracy we use 
Padé summation. Here are the results: The exact value of the energy is 
£(1)=-0.0225104. Because we are on the circle of convergence we do not expect 
that a direct summation of the delta series will give a good result, and indeed it 
does not: ten terms in the power series give -0.367106 and twenty terms in the 
power series give -0.517356. However, a (3,2) Padé gives -0.02252 and a (5,4) 
Padé gives -0.0225103. 

Now let us sec how well the delta expansion works in one4limensional field 
theory (quantum mechanics). Consider the Hamiltonian for the anharmonic 
oscillator: 

2rf.v2 2 
Our strategy is to insert the parameter 8 in the .v4 term: 

H — <*- 1 / 2ч1+Л 

k=-~^, *=0,1,2,3,. 
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The ground-state energy £ for this Hamiltonian has the delta expansion: 

*«>-£+T#T) 

128 
#'(f)+8f(f)In2-8[^|)]2+16i/<-|)-32+32In2 1-

This scries is extremely accurate numerically. The exact value of E(l) is 
0.530176, while the sum of the above series to order # is 0.534385. Notice that 
the form of the series is similar to that in (6); the coefficients arc all constructed 
out of polygamma functions evaluated at 3/2. 
Rcnornifllization 

We now consider the problem of how to renormalize the J-expansion. It was 
pointed out in Refs. 1 and 2 that when d>2 the coefficients of a1 in the expan­
sions of the Green's functions are less divergent (as functions of the ultraviolet 
cutoff Л in momentum space) than the terms in the conventional weak-coupling 
expansion in powers of X. However, the coefficients |f^*(*i»*2»' " ' >xn) m t n e * 
expansion are still divergent and it is necessary to use a renormalization pro­
cedure. 

We will show how to regulate the theory by introducing a short distance 
cutoff a (which is equivalent to an ultraviolet cutoff Л»1/я) and we compute the 
renormalized coupling constant Gn in terms of the bare mass ju and the bare cou­
pling constant X. We then show that if we hold the renormalized mass MR fixed 
at a finite value, then as the cutoff a is allowed to tend to 0 (А—юо), GR can 
remain finite and nonzero only when rf<4. When rf>4, GR—»0 as o—*0. This 
result is the continuum analog of the numerical nonperturbative results already 
obtained in lattice Monte Carlo calculations.6 

We have computed the rínlimensional two-point Euclidean Green's function 
G®(p2) to second order in powers of 6. From G^(p2) we can obtain the wave-
function renormalization constant Z and the renormalized mass MR. The conven­
tional definitions arc 

a 

and 

z-'^+^l^V)]-1!^ . (?) 

мн
2^г[с^{р2))-'\рг^ . (8) 

We have also computed G^(pi,p2,P3,P4), t n e connected d-dimensional 
Euclidean Green's function with its legs amputated, to second order in powers of 
S. FromG{4> we can obtain the dimensionless renormalized coupling constant GR 
in the usual way: 

GR=r-Z2G^(0,0,0,0)MR
d-* . (9) 

We do not discuss the calculations of G^2\ G**\ and the higher Green's func­
tions such as G^ here; the calculation is long and detailed and it is presented 
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elsewhere.7 It is sufficient to state that the calculation follows exactly the rules set 
down in Kefs. 1 and 2, Mere arc the results for Z , MR-, and GR to first order in 
Í: 

Z-l - fO(#) , (10) 

Л/„2=/г+2\М2+2ХШ2 r"l]+c 1+^)+1п[2Д(0)Л/2-"1Н-О(^) , (И) 

G « = 4 X Í ^ - + 0 ( < f ) . (12) 

In (10)-(12), Д(г) represents the free propagator in rf-dimcnsionnl coordinate 
space; Д(л) can he expressed as an assoeoeiated Hessel function: 

A ( . v ) = ( 2 ^ ) - " / i / ' / / ; - ^ T jr+m-

=(27r)-'//2(.v/m) ,-'//:!/f1_(/p(/m), (13) 

wliere m2=ir+2\M2. 
The function Д(л) is tinile at .v=0 when rf<2: 

A(0)=2-d7rtl^m,l-2V(\-<l/2) . (14) 
However, we are concerned with quantum field theory, in which </>2. For these 
values of d, Д(0)=оо, and it is clearly necessary to regulate the expressions for the 
renormalizcd quantities in (10)-(12) because of this divergence. 

To regulate the theory we introduce a short-distance (ultraviolet) cutoff a; to 
wit, we replace Д(0) in (11) and (12) with Д(я), where 

A(e)«.(2ir)- / / 2(e/w) ,- r f^ l_ J / 2(»ifl) . (15) 
Apparently, there are three distinct cases which we must consider: 

Case 1: am«\ (a—*0). Mere we can approximate the liesscl function in 
(15) for small argument: 

а(а)*±:Г(^-1)(т2)1-"Г- . ( lň) 

Case 2: ши=0(1) (я—0). Mere. 

A(a)x(constant)m''-2 . (17) 

Case 3: am»I (a—*0). Mere we can approximate the Hesscl function in 
(15) for large argument: 

Д ( « ) * Т - ( — ) ( , " / ) / 2 e - • О») 
' 2/M m 
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Now we consider each of these three cases in turn. In easel we substitute 
(16) into (12) to obtain 

\b={constant) GR (aM)2-d . (19) 
Then we use (19) to eliminate \6 from (11). The result is 

MR
2=m2+(constant) [logarithm term] GR M2 (aM)2~d . (20) 

It is necessary that the renormalized mass be finite. But as a—»0 the second term 
on the right side of (20) becomes infinite when d>2. Thus, both terms on the 
right side of (20) must be infinite and must combine to produce a finite result. 
Hence they must be of the same order of magnitude as a—>0: 

(constant) [logarithm term] GR M2 (aM)2~J*m2 . (21) 
If we multiply (21) by a2 we obtain 

(constant) [logarithm term) GR (aM)4 - < /s(am)2«l (22) 
by the assumption of case 1. Thus, when rf<4, GR can remain finite and nonzero 
as а—Ю, but when d>4, GR—*0 as a—»0 and the theory is free. 

Next, wc consider case 2. We substitute (17) into (12) to obtain 
>£=(constant) GR (m/M)d~2 . (23) 

We use (23) to eliminate XS from (11) and obtain 

MR
2=m4(constant) \n(m/M) GR M2 (т/М)а~2 . (24) 

As above, we argue that the left side of (24) must be finite so the two (infinite) 
terms on the right side of (24) must be of equal magnitude: 

(constant) \n(m/M)GRM2(m/M)d-2»m2 . (25) 
We divide (25) by m2 and solve for GR: 

GR=(constant)(m/Mý-d/\\\(mlM) . (26) 

Again we observe that when rf>4, GR—*0 as m—*oo. 
Finally, we consider case 3. We substitute (18) into (12) to obtain 

\d=(constant)GR(aMÝ-d>>l2(m/M)^-^l2e-m" . (27) 

We use (27) to eliminate \6 from (11) and obtain 

MR
2=m4 М"оп2пТ] G«M2(aMf~d)r'(m/Mf,~i)r~e-ma • (2S) 

Once again, we observe that the two terms on the right side of (28) are divergent 
and must be of the same magnitude: 

^^^^G^HaMf^^m/^V-^e-^'^m2 . (29) 

From (29) we then have 

GR*T, (confflnf) ,ein"(ma)(d-l)/2(m/Mý-d . (30) 
[logarithm term] ' 
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Thus, when rf<4, GR—*OO as am —кх>. Hence, case 3 may be excluded when d<4. 
It is interesting that when rf>4, GR can remain finite as am—к» so long as m/M 
grows exponentially with am: 

m/MBÍconstanty^W^Kamf-*№-«) . (31) 
However, this possibility can be ruled out by computing the 2л-point Green's 
functions G®"\ To order 6 we have 

G^\0,0, • • • ,0)=S\(n-2)\M22n[-A(O)]l-n-H>(61) . (32) 
If (31) holds, then (32) implies that for all я>2, G(2/,)—»0 as am—ко and the 
theory becomes trivial. 

We have been able to generalize these arguments to second order in powers 
of 8. However, we do not present the calculations here. We merely present for 
purposes of illustration the result for the renormalized mass to second order in 
delta: 

MR
2=/Í2+2XM2+2X«AÍ2S+ÍJAW2[S2+1-I-ÍÍ'(3/2)]-4X2A(0)AÍ4S/<Í , 'A-Z 

-4\2A(0)M*JddxJdt^^-[zt+la(l-zt)] 
о t 

44X2A(0)Af4/dd.v/rfr^^ln(l-zr);+O(i3) , (33) 
o ř 

where S=4@/2)+ln[2b(0)M2-d]+l and г=[Д(.г)/Д(0)]2. We cannot evaluate the 
integrals in (33) in closed form except in particular space-time dimensions; 
namely, when d=l and when d is even and negative semidefinite 
(d=0,—2,—4,—6, • • • )• F°r these special values of d we give the explicit evalua­
tion of these integrals in Rcf. 7. 

Because the ideas presented in this talk are so new we cannot say at this 
point how useful these methods will ultimately be in quantum field theory. Much 
more research is required. However, it is already clear at this early stage that the 
delta expansion has very wide applicability. For example, the delta expansion is a 
natural tool for supersymmetric theories because global supersymmetry is 
preserved for all values of delta. 
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QUASI-EXACTbT-SOLYlBLE PROBLEMS IN QUANTUM MECHANICS 
A.V.Turbiner 

Institute for Theoretical and Experimental Physics 

There are no doubts about the importance of exactly-
solvable problems in quantum mechanics. They serve as a ba­
s i s for modelling different physical situations. As a matter 
of fact these models are quite rough and don't reproduce many 
essential properties of the phenomena considered. In th is re ­
port we wil l describe so-called "quasi-exactly-solvable" quan­
t a ! problems of two types» (1) when we know whole information 
about the f i r s t IT eigenstates (N = 1 , 2 , 5 . . . ) , which are re la­
ted to each other by means of analytic continuation, and (2) 
there are N potentials of the same sort, which are different 
from each other in the magnitude of the potential parameter, 
with the same i - t h eigenvalue of i - t h potential; these poten­
t i a l s are related by analytic continuation. All the above 
problems are nontrivial and in the limit H*+»s the well-
known exactly-solvable problems in factorization method ' ' 
are reproduced. I t i s worth emphasizing that their analytic 
properties are strongly different from analytic properties of 
exactly-solvable problems '2~^' . The calculation of the 
f irs t N eigenvalues in quasi-exactly-solvable problems i s 
equivalent to finding the eigenvalues of some NxN Jacob! 
matrix. 

A. One-dimensional case. Let's consider the Schroedinger 
equation 

HV-EÝ CD 

and make the substitution ''' 

W*ř(*)*-*p(-№) C2) 
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in i t where p(%) i s a certain function containing the i n ­
formation about wave-function nodes in some minimal fashion 
(e .g . for the n-th excited state the simplest choice of the 
function p(x) i s a polynomial of n-th power with n real 
roots* Letting H-^' &nd substituting Eq. (2) in (1)» we 
obtain 

Oar purpose to choose the coefficients in the polynomials /7 
and И in such a way that the ratio £ p'-2 yp'j Jp i s also 
a polynomial. Moreover, we-will re quire i t to he a two-term po­
lynomial i n certain variables. I t ' s worth noting that in 
exactly-solvable problems the result i s one-term polynomial. 

Now, l e t ' s proceed to consideration of particular cases. 

1. Generalized Morse potentials. Let's take as 

и = - л е " + é + се. j «*<?, *>o (*) 

and p = 1* Substituting eq. (4) t o eq, ( 3 ) , we obtain 

Thus, the potential (5) depends on the parameters a, b, c,«( 
and we know the ground-state energy, which i s single-valued 
analytic function in any variable a, b, c, oč . The potential 
(5) grows at / / / - • DO , and the ground-state wave function 
decreases and i s posi t ive . Let p* ё"**+А • The parameter A 
wil l be sought by requiring the absence of singularities in 
the resulting potential (see eq. (J) ) at real x . As a re ­
sult the addition to potential (5) appears 

and 
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where plus corresponds to ground state (wave f(motion IB po­
sitive) and minus correspond! to the first exoited state In 
the potential (5) + (6)* bet*в note that eigenvalues and eigen-
funotlons of the first two states In the potential (5) + (6) 
are plaited and two-sheet Riemaan surface appears with square 
root branch points at (J-*Zt)= £Ф</а7 • Obviously, when 
/'»í"'w+j} )í"''"''^ <•• +Ац *ne oanoenation condition in 
(5) leads to the potential addition VÁ/*-2UA//ť"i*» I n t h i e 

potential the first 8 states arise from oertaln algebralo equa­
tion of (Nfl)-th power which is a secular equation for certain 
Jacobi matrix of the size (К* 1)х(ИГ+1)« They create the(N-áheet 
Rlemann surface. The limit N-+ «* corresponds to o«0 
under the suitable choice of the parameter dependence on N $ 
In this oase the spectral Riemann surface i s unplalted and the 
exactly-solvable Morse potential appear* 

There are two other families of quasi-exaotly-solvable 
problems, which are associated with the Horse potential* It 
takes plaoe when 

-34* un 6 
Wac-c« +x€m ч 6, o,o,4>o ^ 

3̂ = C£ -š+aC f CbOfu>o (a) 

The both quasi-exactly-solvable problems turn out to be of the 
second-type unlike the quasi-exaotly-solvable problem generated 
by (4)* There exists plaiting of potentials in parameters a,b, 
o, U, at certain energy* 

2. generalized ťonchl-Teller potential. Let's take 

Substituting (9) to (3) at/> a 1, we get 

^^-а1л*л)еМ'1ЛХ--с(с*г^-1л)скги>(*<.г^лу> E,*2at-A%~*t (10) 

and hence we know the ground state in potential (10), which is 
not plaited with the rest spectrum* It J>*é/f*ix , certain 
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addition to potential (10) arises 

where 1Ц - i s the energy of the l'irot excited state in the 
potential (10)+(11). Hence, we know the energy or Lh« firut 
state in the potential (10)+(11). Due to t,he parity of the po­
tent ia ls under consideration, the Riemann surfaces of ovon and 
odd states are separated ano they are not crossed. When p a 
ai^JX +A ( t n e sector of even s tates ) , then the addi­

tion to (10) equals to Уд s -2U (ZCL + S4)CA'*I(X and 

I f ps UUM (№** + A) (odd sector) the addition to 
(10) i s \tl--U(a+iu)ck-l>'.* and 

This situation i s different from that which i s described in 
section 1} the Riemann two-sheet surface i s formed by the sta­
tes of the same parity. In the general case, when й« ^ 
+ Aiik*'~'4**',,+Ak ' t h 0 a a d i t l o n *° C° ) equals to 

VL *--tk(uk+>i+Z»)bk'i«l* • I n t h i B potential the f i r s t 
№[4ti]*4 states of parity (-1) are known. They plait 

forming N-shcet surface. In the limit //-* <=*=> the Riemann 
surface i s unplaited, parameter fi a 0 and the exactly-solvable 
Poschl-Teller potential V <v tM~zUx. arises . This quasi-
exactly-solvable problem i s the first-type one. 

The other quasi-exactly-solvable problem of the second 
type associated with Foschl-Tellet potential i s generated by 

Уга№3<1* + л-и**, &>в td>o (12) 
The l imit к -* «-=• corresponds to b - » 0 . 
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?. generalized harmonic oscillator. Let's consider as in /Ц~7/ 

y=a*l+4xf a » o (15) 

I t ' s clear that the utates of different parity form the separa­
ted Riemann surfaces. Let p = 1, then 

and at D = /X , we g e t 

V/hen pv-x^+A t the addition to potential (14) equals 

Av2 «-***« and 4±=[*±Jť7ni]/2é;B*2=3<i±z(-\072T). 
If p *x(*L + A) t the addition to (15) is д l£ and At = 

= f a * fa^sJ]/2Š , £<i2 = !ГЛ1:1(~ /а*7бТ) Eigenvalues 
E0 2 ^B1 ''? í o r m u two-sheet Riemann surface with branch points 
at' ik±2L\fP, Sstt/IT . i s to /ЬяХе+/,хк:'+:.. + 44 
the aodition to (14) equals to ьУ^=. -Zakx* » i n t n i s po­
tential i t is known V=/"^7f/ eigenstates of parity (-1) . 
Each eigenvalue f • (eigenfunction ^- ) contains (1Г-1)-ралгь 
of complex-conjugated square-root branch points in a . I t 
corresponds to the crossing of the level under consideration 
with the reut Levels of family given. I t is worth noting that 
the different types of potential curves appear depending on 
various relations between parameters: (>of éz* <i (zk+ i) 
(single-well potential); £<o 4^^a(zln-s) (triple-well po­
tential); £l< o.(iL-n) (double-well potential). If 
ji-*«3-o t then a—*0, the spectrum is unplaited and potential 

V- l1**4 appears. 
B. Multidimensional case. The radial part of the d-dimen-

aional Schroedinger equation with spherically-3ymnetric poten­
t ial can be considered in an analogous manner 

(compare (5) ), where t is an angular quantum number. 
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4 . Generalized multidimensional harmonic oBci l la tor . 
Apparently, the multidimensional analog (13) has the form 

^ a i ^ / i t a " ^ a>,0, с tl + d/г. 07 ) 

If D в 1, then we get 

V^cfc-ll-^flft-^+é+wJlr^atrWr6, E. 4{lb*-li) (18) 

for which the ground s ta te i s known. The addit ion to (18) 
itfj/b-ýř/tLr3- gives the po ten t i a l with (N+1)-known l e v e l s . 
I f V - * o-o i then a—J>0, the spect ra l Riemann surface i s 
unplai ted and the exact ly-solvable problem appears (see e . g . 
/ 9 / , P.158). 
5» Generalized Coulomb problems. L e t ' s take 

^ = а.ч-СГА->(г , i*Ot cce+fy (19) 
I n the case of ground s t a t e (p = 1 ) , we have 

I t ' i ^^ j^^ .^ i i ^ i r 1 , £9*i(U*d-by* (20) 

when p s f - ^ Д ^ " ^ . - - -^Ai/ » tbere i s the family of poten­
t i a l s which are r e l a t e d to each other by analyt ic continuation 
i n parameters a, b , c ; the i - t h s t a te energy of the i - t h poten­
t i a l has the value El/z:{(2M-i-zCfJ-2c)-ai7- . I t i s the quas i -
exact ly-solvable problem of the second type . At b=0 unpla i -
t i n g takes place and we get the exactly-solvable Kratzer po­
t e n t i a l (see e .g . '°' , p.157)5 i t i s the genera l iza t ion of 
Coulomb problem to non-integer angular momentum. 

Other genera l iza t ion of Coulomb problem i s generated by 

yx=*. + cr~1+iir-* f a>o t Uo (21) 
At b=0 we get the Kratzer p o t e n t i a l . I t i s worth not ing , 
the case a=0 was inves t iga ted by E.Korol ' Ю / # 

Now, l e t us give the l i s t of the quasi-exact ly-solvable 
problems of the f i r s t type with(N/fcnown states» 
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V= *4-u*-(i[ii+<t(iW)]er'l*+c(zt-u)t'l*+ с*-еш 

and the list of the potentials of the second type (the i-tb 
eigenvalue in the i-th potential equals % )* 

V*= *V*f /řřc-гt-J+s)ir'l+ [ct-iL-d+z)+2*t*iyi«(M2£*j-i-*.)fj 
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where tf=[%] + i .The eigenvalues ££ for 
(I)-(IV) end the values jlt- for ( V ) 4 U ) (where in1,2,. . .U+1) 
cone from the roots of certain algebraic equations of the JT-tn 
power. One can prove that there are no potent ials with the 
above properties a t N> О among polynomials in Xj/r,r~4J 

6. Generalized UathJBu problem. There i s a quasi-exactly-solva­
ble problem v/ith u periodical potent ia l . Let 's take 

| j *a ta у* <22> 
If +ai, then 

V0 = - a l k V x -aufcd*, £„=-*.*• (23) 
for which the ground s ta te i s known. I t ' s well-known that there 
are four types of solutions in a periodical potent ia l : with pe­
riod Itc/d. (oven and odd) and v/ith period *»/£< (even and odd). In 
these cases per-exponential factor in eq.(2) i s o/ty/>/£,**),where 
^K)S1 , IŮMU tCn^/z iJ/Mftxfa, correspondent^, and ys/fe^Jis po­

lynomial in (лЛЖ • In General case we get 

If N *$k+l , k = 0 , 1 , . . . v/e know (k+1)-plaited levels of the 
f i r s t type and к plai ted levels of the second one. If N=Zk 
Ic=1,2,. . . , i t i s known к plaited levels of the third type and к 
plaited levels of the fourth one. In the l imit M*o« Llathfeu po­
t en t i a l emerges. Unfortunately, V/G could not obtain Bril louin zo­
nes appearing at non-zero Ploke's index. 

In a conclusion, i t i s worth noting that the above quasi-
oxactly-solvable problems (I)-(л) сои be exploited as inputs in 

/11/ 
Hill determinant method (see e.g.7 ' ). 
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Results on 1 б О - and 32S-m»cleus collisions, 
from the HELIOS Collaboration 

presented by Luciano R&mello 
Torino University and INFN 

Introduction 

The CERN heavy ion program consists of в large experiments and several emulsion 
exposures, all of which took data with 60 and 200 GeV/A , 6 0 beams in December 
1986 and with 200 GeV/A 32S beams in October 1987. 

Its physics aim is the study of extremely dense, extremely hot nuclear matter over 
extended volumes. This should provide insight into non-perturbative QCD topics, 
and possibly lead to the formation of quark-gluon plasma, a macroscopic system of 
deconfined quarks. 

The experiments must be able to handle complicated events with large multiplicity 
(several hundreds) and large energy deposition (several TeV). 

The HELIOS experimental setup 

The components of the HELIOS setup which are relevant for the heavy ion exper­
iment are calorimeters, multiplicity detectors, external spectrometer, muon spec­
trometer and emulsions. In the following the first three such components will be 
described in more detail. 

Calorimeters 

A set of Uranium/scintillator, Uranium/Copper/scintillator and Iron/scintillator 
stacks surrounds the target at 120 cm distance (Fig. 1 and Ref. 1). They feature 
good granularity for -0.1 < r\ < 2.9 and a coarser granularity in the forward region 
r? > 2.9 (this section was replaced in 1987 with a much more finely segmented 
Uranium-liquid Argon calorimeter). 

The energy resolution is good, thanks to compensation, from moderate energies 
(Fig. 2) up to the full oxygen beam energy, where ff/E is 1.9 % (Fig. 3). 

The ion beam composition can be clearly seen in the total energy spectrum, which 
shows very little contamination from breakups of the projectile occurring in the 
beam line (Fig. 4). These events are rejected by a dE/dx measurement in the beam 
counter. 

Multiplicity Detectors 

These are finely segmented silicon detectors (400 elements each), located a few cm 
behind the target (Fig. 5). The ring counter has a geometry specially designed for 
dN/df/ measurement, and provides a total multiplicity trigger. The silicon pad is 
used for the interaction trigger. 

In 1987 the configuration was upgraded and contains now 3 ring counters. 



External spectrometer 

A "slit" through the wall calorimeter, at 0.9 < 17 < 2.0 and 3" < в < 7°, is equipped 
with momentum measurement, a time-of-flight and a Cherenkov system, forming 
the external spectrometer (Fig. 6). 

Measurements of particle spectra, average pr of different kinds of particles, rapidity 
distributions and 2-particle correlations are provided. 

Photons are also measured with the help of a converter, sandwiched between two 
proportional chambers, which is placed in front of the spectrometer. 

Targets 

The standard targets are thin discs (0.1 mm to 1 mm) of various materials (W, Ag, 
Al in the 1986 run). The same material with different thickness is used to unfold 
any target-thickness dependence of the measured quantities. 

An "active" target, i.e. a drift chamber containing several thin Pt target wires, has 
also been used in 1987. Its purpose is to minimize (and tag) secondary interactions 
and still keep a substantial total thickness (4 % of an interaction length for 33S 
ions). 

A special configuration with a movable emubion stack is used to collect and measure 
completely "interesting" events, defined e.g. by high multiplicity or high transverse 
energy. 

The results discussed in the following have been obtained with a set of thin disc 
targets (Ref. 2). 

What do we expect to observe ? 

A generally accepted scenario for the time evolution of the quark-gluon plasma 
(QGP) is the following: 

1. at sufficiently high enegy density (c > 2.5 GeV/fm3) the QGP exists as an 
ideal gas of massless quarks and gluons, imbedded in a colour-conductive 
perturbative vacuum 

2. as the system cools down, there is a transition to a mixed phase, where 
deconfined quarks and gluons coexist with "blobs" of physical vacuum, 
containing hadrons 

3. finally, after further expansion and cooling, the system becomes a gas of 
ordinary hadrons. Statistical QCD simulations predict a very sharp phase 
transition between QGP and the hadron gas at a temperature around 200 
MeV. p 

The task of current experimente is then threefold: 

1). demonstrate that a sufficient initio/ energy density has been achieved, at 
least in some of the collisions 

61 



2) show that a thtrmalized state, behaving like a fluid rather than a collection 
of independent particles, has been formed (thermodynamica! calculations 
indicate a transverse expansion) 

3) find signatures of QGP which are not easily affected from final state inter­
actions, such as: 

a) photons and lepton pairs, 
b) strangeness production (reflecting the thermodynamical equilibrium 

of QGP), 
c) dissolution of resonances (p, J/ф, ip1) in the colour-conductive QGP. 

HELIOS results 

Trigger and event selection 

The highest energy densities are reached in central collisions of nuclei, where most 
of the nucleons participate to the reaction. Various methods to select central in-
teractions, such as requiring little forward energy (i.e., the projectile is completely 
destroyed), high transverse energy or high multiplicity, have been found to be equiv­
alent, as illustrated by a 32S -* Ag(Br) central interaction (Fig. 7). 

Our main trigger requires high E T in the region -0.1 < r?iai, < 2.9, which contains 
the highest dEr/di; point at J?/ab =* 2.4. Four different thresholds are used to cover 
the full Er range. An interaction is required by asking > 10 particles in the silicon 
pad. 

Further offline selection consists of: 

i) requiring Eror and beam dE/dx consistent with a single incoming l sO, 
ii) rejecting non-target interactions by using silicon pad and ring counter 

multiplicity, 
. iii) subtracting the remaining non-target contamination, which is <1 % at 

E T > 50 GeV, by using empty target data. 

Energy flow 

The measured E7- is related to the true ET via a detailed Monte Carlo simulation, 
which uses realistic assumptions about particle composition and energy flow in fj. 
The E T resolution is found to be a = 29 % у/Eř (Бг in GeV), and the total 
systematic error on the E T scale is 7.1 %, of which 5.1 % comes from the M.C. 
correction and 4 % from the overall energy calibration uncertainty. 

E T cross sections for 60 GeV/A and 200 GeV/A ,eO on W, Ag and Al targets have 
been measured (Fig. 8). Values of ET in the trigger region up to 200 GeV have 
been reached, which correspond to 280 GeV when the forward TJ region is included. 

The kinematic limit for E T can be evaluated assuming full stopping of the projectile 
and an isotropic distribution of the available energy in the center-of-mass system. 
For a central 1 6 0-W collision at 200 GeV/A about 50 target nucleons participate, 
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y/š is 550 GeV and EJ?" is »г/4 х (у^-ббМд?) = 383 GeV. The maximum observed 
Er is then 73 % of the kinematic limit. 

A simple geometrical scheme explains the shape of dcr/dEr as a superposition of 
collisions with random impact parameter. A geometrical model (Ref. 3), postulating 
Er production from N independent nucleon-nucleon collisions, with N given by the 
overlap integral of the nucleon densities, reproduces fairly well our data (Fig. 8). 

The dEr/dr? distributions for the two beam energies, and for three Er regions 
corresponding to the plateau of da/dEr, to central collisions (defined as the Er 
where the cross section is half the plateau value) and to the extreme tail, are shown 
in Fig. 9. 

As KT approaches the kinematical limit, the dEr/dt7 distribution gets narrower, as 
would be expected from a spherical fireball in the center-of-mass system. 

An estimate of the energy density can be done in the following way. The average 
1 6 0 - W central collision involves 16 projectile and 50 target nucleons, in a cylin­
drical volume of 7rR£, x 2Rw « 320 fm3. In the * 16+50" center-of-mass system the 
effective volume (contracted by a LoTentz factor " j c m of 5.8) is 55 fm3. The energy 
density is then Í « Er/V = 3.6 GeV/fm3, or alternatively, using the Bjorken model, 
f « (dEr/dn)m e , /(TRoc r) = 3.5 GeV/fm3. 

This energy density is possibly over threshold for QGP formation, and certainly 
well above nuclear density (0.13) and hadronic density (0.5). A preliminary dc/dEr 
distribution for 3 2 S - W collisions is shwn i'i Fig. 10, reaching still higher Er. 

A comparison of our data with absolute predictions from the dual parton model IRIS 
(Ref. 4), whose parameters have been adjusted to fit pp and e+e~ data, shows that 
the model qualitatively reproduces the da/dEr (Fig. 11) but is systematically lower 
than data in the high Er tail. However, it has to be noted that the Er systematícs 
is still « 10 %, and furthermore the model does not include cascading of hadrons in 
the nucleus, which could be important at backwards n. There is a good agreement 
between the IRIS prediction and the measured dEr/dq distribution (Fig. 12). 

Multiplicity and particle spectra 

A preliminary charged multiplicity distribution, measured with the ring counter 
and the silicon pad in the range 0.9 < n < 5.0, is shown in Fig. 13. The general 
behaviouT of do/dNch is similar to do/dEr, with a plateau followed by a fall-off at 
high multiplicities, and similar geometrical considerations apply here. 

The multiplicity flow (dNcft/dn) shows a shift towards lower rjasEr, and therefore 
the degree of "centraiity" of the collision, is increased. 

An estimate of the average Р7 is given by <pr > « 0.55 Er/Nch for charged 
particles, where Er and Nch are measured in the same solid angle. The data show 
(Fig. 14) only a modest increase of <pr > as a function of Er (one would expect 
a sudden rise above some threshold energy density, as in the JACEE collaboration 
events). 
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Charged-particle p r spectra have been measured by the external spectrometer in 
the range 1.0 < rf < 2.0, both with p and 1 6 0 projectiles. The regative particle 
spectra show little difference between p and 1 6 0 (Fig. 15), although one might see 
an increase of the ratio I 6 0 / p with increasing pr-

There is a little but statistically significant increase of the < p r > of positive par­
ticles with ET (Fig. 16). The photon p r spectra (Fig. 17) do not show significant 
differences in slope between the p and 1 6 0 reactions. 

Figure captions 

1. Layout of the calorimeters. 
2. Energy resolution. 
3. Measured total energy for identified 1 6 0 events. 
4. Total energy spectrum for all events. 
5. Multiplicity detectors. 
6. External spectrometer. 
7. A 32S-Ag(Br) central collision at 200 GeV/A. 
8. der/dEr for 60 and 200 GeV/A 160-nucleus collisions. The curves are a 

geometrical model fit to the data. 
9. Normalized dEr/dr? distributions. 

10. Prel iminary da /dE T for 200 GeV/A 3 2 S-W collisions (1987 data) compared 
to that for 1 6 0 - W collisions (1986 data). 

11. dff/dEr for 200 GeV/A 1 6 0 compared to the IRIS model. 
12. dE т/dr? compared to the IRIS model. 
13. Prel iminary da/dNcfc for 200 GeV/A , 6 0 - W collisions. 
14. Prel iminary < p r > of charged particles vs. E r for 200 GeV/A I 6 0 - W 

collisions. 
15. Prel iminary p r spectra of negative particles for p - W and i e O - W collisions. 
16. Prel iminary <px > of positive and negative particles for 1 6 0 - W collisions. 
17. Prel iminary p r spectra of photons produced in p - W and 1 6 0 - W collisions. 
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SPACE-TIME EVOLUTION OP. PROTON-PROTON, PROTON-NUCLEUS AND 

NUCLEUS-NUCLEUS COLLISIONS AND THE DI1EPTON PRODUCTION 

N.Pisú*tovó2) and J.PiSut1* 

'Department of Theoretical Physics, Comenius University, 

642 15 Bratislava, Czechoslovakia 

'Department of Nuclear Physics, Comenius University 

A review of our recent calculations of dilepton produc­

tion in pp, pA and AB collisions, performed partly in colla­

boration with J.PtáSnilt and P. Li chart! is presented. The 

emphasis is put upon the connection between the space-time 

evolution of the collision and dilepton production. We dis­

cus» also less understood aspects of the problem and try to 

point out possible ways to separate signatures of the quark-

gluon plasma from other, more procnic, mechanisms of the di­

lepton production. 

tion. 

The picture of the apace-time evolution of hadronic col­

lisions within the framework of the parton model has been des­

cribed in classic paper* by Bjorken [l] and V.Cribov [2j • The 

amendments taking into account the QCD are discussed in Ref* 

[?]. For a proton-proton collision considered in the c.m.s. 

the production of secondary hadrons proceeds via the inside-

euteide cascade consistent with the boost invariance of the 

process. At the moment of collision wee partone of both pro-

tone interact and this spoils the coherence of wave functions 

of both protons. After time t. the coherence is lost and cur­

rent quarks (q'e), antiquarks (q'c) and gluons (g's) start 

their transformation to final state hadrons. Details of this 
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transition are unknown, elnot the proeeee ie governed by QCD 
at low momentum transfer. One of the possibilities [4»5J pro-
oeeda as follows. 
The gluons are oonverted in time t^ into pairs of quarks and 
antiquaries whioh dress themselves into constituent quarks 
(Q*s) and antiquarks (Q*s) and reoombine to mesons in time Tj 
The time order ie given below 

T4 - ooheronoe of q,"q,g lost 
•n - gluone convert to current quarks and antlquarka» whioh 

change to oonstituent quarks 
!*•- oonatituent quarka and antlquarks reoombine to mesons. 

All this happens in the proper time {at у s 0 in the c.m.e.). 
Due to the Lorents invariance of the spaoe-time evolution the 
ease sequenoe of events happens at any rapidity at the same 
proper time. The "oo-aoving" or "space-time" rapidity /£ is 
defined as 

Ъ . X. in Í±S (2) 
*" 2 t-x 

where x is the longitudinal distanoe from the point of the pp 
collision in the e.m.s. The proper time *C is related to t and 
x by the standarfrelation 

Г Jt 2-! 2' (3) 
From (1) and (2) we obtain useful formulae 

t » V o h ^ , x » t » h j 

binee corresponding to a fixed value of 4 are given as 

x/t « t h ^ 

She space-time evolution of the pp collieion is shown in Fig.l. 
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Pig.l 

The three regions denoted as "q.q.g"> "QQ" and "pion gae" cor­
respond respectively to the system of current q's, q'e and 
gluons, constituent Q'B and Q's before the recombination and 
pion gas. 

Aa mentioned above the pioture is rather uncertain in de­
tails» it is e.g. not clear whether the current quarks are 
not dressed into the constituent ones only after pione has 
been formed» 

An interesting and perhapa important fact noted in [4,53 
is that the number of current quarks and antiquarks obtained 
after the conversion of gluons from the Incident protons is 
roughly the same as is the number of constituent quarks and 
antiquarks present in final state pione. This indicates that 
the density of constituent quarks in the "Q*QN stage ia about 
the same as the number of final state pions 

5L.lSL.ac ш 
dy dy dy 
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In discussing the dilepton production «a have to discriminate 
between two mechanisme. The former produces dileptons from 
interaction of oonatituenta created during the apace-time evo­
lution of the collision С4>31 and contributes predominantly 
to low mase, M <1 GeV, dileptons. The latter ia a fast pro­
cess occuring at the moment of the collision and contributes 
mainly to large mass dileptons. A typioal representant of thla 
process is the Drell-Yan annihilation qq -»,e+e~. 

We shall start with discussing the former process. 
At any value of % «11 of the three stages namely qqg, QQ,a*«/ 
pion gas can contribute to the Ion aaes dilepton production 
via diagrams shown in Fig.2. 

e) 

Fig.2 Some of possible subprocesses contributing to 
e+e" production during the space-time evolu­
tion of pp collision. 

Some information about the relative importance of various sub-
processes can be obtained from the data on d6Vdlr obtained 
in numerous experiments, in particular by the AFS collabora-
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t ion at CBHN. Suoh an anályala has not Ъаеп performed ao far, 
but i t la moat desirable. 

Aa pointed out in Ref.fs] interactions of oonetituents 
created during the c o l l i s i o n y ie ld only low aaaa dileptona. 
At any value of time t , the constituents are "excited" only 
in a spaoifled region of co-moving rapidity * . Thie oan 
be aeen from Pig.3 where we plot the l ine tsoonat and two 
l i n e s ^ and "Jt corresponding to the "QQ" region excited at 
th ie t ine . 

é=consů 

Pig.3 

The interaction of constituents with a small rapidity d i f fe ­
rence can produoe only low mass dlleptons. To see th i s in mo­
re deta i l , suppose that J {t ,x ,p„,р т ) denotes the excitation 
intensity of constituents with pfl and p„ i n the space-time 
region x , t . The excitation funotion can be rewritten into va­
riables T, \ and у s (l /2)ln[(E+p ( |)/(E-p,)] and p^. Becau­
se of the Lorentz invariance the excitat ion funotion can de­
pend only on V , y-^, and рт» g » g (t, y-<£ , P T ) . The 
dilepton yie ld i s proportional to the integral of the product 

^ ( Г . у ^ . Р д д ) ^ ( Т » У 2 - ^ ' р Т 2 ) over dx dt = r d r d ^ . 
At any value of fy only interactions with a small rapidity 
difference y^- yg are possible and these give only low maas 
dileptons. 

The calculations in the soft annihilation model are ve­
ry similar to quark-gluon plasma calculations in what oon-
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сerne the lorentz invariance of the враее-time evolution, the 
differenoe ia in the density of ezoitation which ia taken from 
the thermal equilibrium in one oaae and from the density of 
final state pions in another oaae. 

We have to atreaa further that by using diagrame like 
those in Fig.2 for constituents separated by a small rapidity 
gap we can obtain only a rough estimate of the dilepton yield, 
sinoe we are, in faot, using perturbative arguments in the re­
gion where perturb*ťíre. expansion is not applicable. 

This implies also that more general statements/indepen-
dent of detailed properties of various diagrams.are probably 
of more value than specific results. A general statement of 
this kind concerns the dependence of low mass dilepton pro­
duction on the rapidity density of produced pions [6]. The 
argument is simple. Assume that the QQ stage dominates the 
low mass dilepton production. The dilepton yield is propor­
tional to the product (dNQ/dy).(dNr/dy). Because of Eq.(4) 
this product is proportional to (dU^/dy)2. This quadratic de­
pendence has been recently observed by the APS collaboration 
[7»8]. It is interesting to note that the same quadratic de­
pendence is predicted also by the model with quark-gluon plas­
ma formation [9]. The oonetant in front of the quadratic de­
pendence is» of cours?, different [lo] and with increasing 
pion multiplicity one expects the transition between the two 
different quadratic dependences [ll]. 

The available soft annihilation model f5»12] of low mass 
dilepton production takes into account only the QQ stage of 
the evolution of the collision and includes only diagrams 
2a) and 2b). 

The state of matter from which low mass dileptons were 
produced in pp collisions is not yet known, it can be some­
what elucidated by 
- studying the shape of de*/dMe+#- spectrum and looking for 
eubprocesses which might give agreement with the data. The 
soft annihilation model [5»12] should be extended to inclu­
de also the diagram 2d) in the QQ stage and other diagrams 
in other stages of the evolution. 
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- The soft annihilation model should be reformulated in a 
way as close as possible to the thermal equilibrium models. 

- Comparing detailed models of the epaoe-time erolution of 
the pp col l is ion with data extending to as high as possib­
l e dU^/dy. 

The trouble with pp col l is ions l i e s in the fact that the evo­
lution i s rather short. The transverse dimension of the sys­
tem i s about 1 fm and because of that the whole time of the 
evolution i s only 1 fm/c. St i l l» observation and theoretical 
understanding of a ohange of the slope of the quadratic de­
pendence would bring and important information. 

barge mass dileptons (Jf>l-2 GeV) are produced almost 
exclusively by the Drell-Yan process which i s much better 
understood than the mechanism of low шавв dilepton produotion. 
Any excess of the large maes dilepton produotion over the 
Drell-Yan contribution would be an indication of high tempe­
ratures reached during the co l l i s ion. Suoh an excess should 
be also proportional to the square of oINff/dy: 

- a more detailed studies of correlations between JWr/dy 
and large mass dileptons are desirable both from experi­
mental and theoretical s ide. 

§ÉS£S:íiS2_SZ2l3JÍíSS-2í-fi£2ž25"Síí2iS]íS«£2llí2i2S-SSá-í&S-ái: 
leDton_nroductign 

The soft annihilation model described above is a preequi-

librium model, the plasma is not formed because the exoited 

system exists only during a time interval of about 1 fa/c. 

in proton-nueleus collisions higher energy densities can be 

formed and with higher densities of constituents the mean 

free path becomes smaller and the time over which the exci­

tation exists could increase. 

The basic question is whether the energy released in 

subsequent collisions of the incident protons with nucleons 

in the nucleus can be accumulated in the same space-time 

region. To introduce the problem consider the proton-deute-

ron collision in the rest frame of the deuteron (ťig.4) in 

76 



the configuration when proton collides with both nucleons. She 
first collision occurs at x=0, t=0 the second one at x=d 

W.g.4 

and tad/T, where т ia the velocity of the incident proton. 
The врасе-tiee evolution of both collisions is shown in 

Fig.5» She two excitation functions can be described as 

^(x.t.p^.pj) = ^(T'.y-j'.Pj) 
(5) 

where 
т'ш ^ - Л - ) 2 _ ^ - ^ ' */. Л. i„ jt-d/v) * (x-d) 

' v / i> 2 (t-d/v) - {x-d) 

Pig.4. The exoitation region of the first (1) and se­
cond (2) protan-nuoleon collision 
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As seen in Pig.Г both excitation regione overlap for larger 
rapidities, this la also natural. If the collision ie consi­
dered in the proton-nucleon c m . в. the nucleus is bo rent z 
contracted to a pancake with width of 1 fm (due to wee par-
tons) and the centres of both nucleons are separated by a 
small 4 x. So for rapidities near у =0 we can expect a no-
re or less complete overlap of the excited regions, whereae 
in the nucleus fragmentation region the overlap will be snail. 

The low mass dilepton production is given by the total 
:;u»rk and antiquark densities 

f (t.x.Pj.Pj) = fjtt.x.p^.pj) + ̂ t{t,x,p,,pT) 

which enters the expression 

n e * e - = \fa?S v6"(4Q-» e+e" i x) dV dt (b) 

With a complete overlap in the central rapidity region we 
expect qualitatively 

•nd for no overlap in the deuteron fragmentation region 

The difference between (7) and (8) i s due to the fact that , 
in the former ease fafu in Eq.{6) i s effect ively equal to 
* fif< » whereae in the l a t t er case i t i s equal to frfa + ^ tft = 

For co l l i s i ons of a pion with heavier nuclei we argue 
in the same way. in the central rapidity region the density 
of excitation i s the aun of a l l densit ies produced in subse­
quent proton-nuoleon c o l l i s i o n s , in th is way т» hav? 
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«here dHjp/dy la the total rapidity density of plona in the 
final state. Assuming that each of pi0113 has about the ваше 
transverse energy £r(per pion) ~ 0.5 OeV we hare also 
dH^/dy ~ Rp and this gives the last term in £4.(9). 

Uore details can be found in the recent СЕБЯ preprint 
by Feter Lichard [13] and in Hef. [n] . 
- A really deep analysis would probably require an ansatz on 
the form of the excitation funotion containing a few free pa­
rameters, determination of these parameters from low паев di-
lepton production in collisions of protons with lighter nuc­
lei and analysis of interactions of protons with heavier nuc­
lei using these paraneters. Such calculations has not been 
attempted so far. 
- The production of large таэз dlUfbut is given by the Drell-
Yan mechanism. This process is fast and occurs prior to the 
space-time evolution of the collision. The cross-section for 
the xirell-ian production in proton-nucleus collisions ia pro­
portional to the number of proton-nucleon collision and that 
means roughly proportional to the transverse energy released 
in a specified rapidity window in the central region. Detai­
led calculations of this correlation has not been performed 
so far. Apart of understanding how the incident proton relea­
ses transverse energy in subsequent collisions with nueieon, 
it would also require understanding of the mechanism of fluc­
tuations of energy released in individual proton-nucleon col­
lisions. 

2£S22:ÍiSS-SY2l2Íi25.2£_23SlS!i§::2B2iSS2..2Si±!S!22S-§5!L!22 

-il£EÍ25_Pr°5"25i22 

In ion- ion collision, especially with heavy ions, the 
juark-gluon plasma may bs formed and the dilepton production 
is one of the most promising signatures of i t s formation. 
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a'he transition from the quark-gluon plasma to pion gas is not 
yet well understood. She most popular, though тегу simplified 
model need the idea of the first order transition: at suffi­
ciently high energy density the ч(»Р is formed, during its 
expansion the temperature and energy density of the Q.GP de­
creases, and the mixed phase (of QGP and pion gas is formed), 
finally, when the temperature decreases below TQ the whole 
mixed phase goes into the pion gas Ll0,15l• 

Another option proposed £l6] and advocated by Shuryak 
[17] assumes that the transition £oee in two steps. In the 

first one the 4GP goes (via a mixed phase) into the gas of 

constituent quarks and in the second step this goes (again 

via a mixed phase) into the pion gas. Note that the latter 

scenario is closed to the soft annihilation model, at least 

so far, ав the energy density is just sufficient to produ­
ce the constituent quark gas with energy slightly above Tc» 
In the proton-proton collision small transverse dimensions 
of the system prevent longer existence of the gas of consti­
tuent quarks, whereas in heavy ion collision the system can 
live for time whica la sufficient for the properties of the 
system to be manifested. 

The data on production of both low mass and large mass 
dlleptons produoed in 0-U and 32S-U interactions will soon 
become available from the NA-38 collaboration [le] at CEEN, 
The first basic information to be obtained from these data 
concerns the question whether there is any other source of 
díleptons different from what one would expect if a heavy 

ion collision were a simple sum of nucleon-nucleon collision j. 

We shall now describe our predictions for this minimal 

dilepton production. 

For lowjnass dilepton production in the central rapidi­

ty region we consider the collision in the nucleon-nucleon 

cm, в. Both nuclei are Lorentz contracted to pancakes with 
a longitudinal dimension of about 1 fm» The transverse are 
of the nuclei is divided into small areas of 4 S =(Г whe­
re 6" is the nucleon-nucleon cross-section; behind each of 
these areas there is a "tube" containing лц nucleons in 0 
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and n± nuoleona in 2 3 SU. The l-th tube thua leade to m1n1 
nuoleon-nuoleon oollieiona (eee fig.6). Aaauming that in eaoh 
of the nuoleon-nuoleon oollieiono the eaat naount of oonati-
tuent quarke la produoed aa in a pp oollialon and aiauming 
that in eaoh oollleion only the aoft annihilation aeohanlan 
worke we find that the number of low aaae e+e" paira produ-

71g.6 

oed in a oollielon at a given inpaot parameter Ъ la 

n0+e~(b> « 5 1 S ( • ÍV^UÍJPBÍV <»£*"> (10) 
tubea a^n^ 

where Р д ^ ) 1» the probability to find n^ nueleona in the 
l-th tube In the^A-nueleue, ?в(вц) denotea the ваше for B-
nuoleua and ̂ n* • > la the e*e produotlon in proton-pro­
ton oollialon. It la eaay to ealetaate alao the tranaveree 
energy n .eaaed at a given value of b and plot the dependen­
ce of the e*e* production, y,eraua В ф in a given rapidity win­
dow. Yaluea of ^ u * / ^ » * ^ are Pl0**e* v«reua Zg releaaed 
in a oentral rapidity region of lenght 4 у i 2 in rig.7. 

We plot alao the average multiplicity of plena at a 
given value of the traneverae energy. If la eeen that the 

81 



то 

too 

(00 

to 

ш 

; <?'/<*#"> 

• f 

Ш f 

a ^ r 
tfbw /<>] 

1 i .. 
iO HO 

Pig. 7 
<0 fO ВгС««Я 

409 

ratio of e*e"/T i* about 10 timet aa high aa ia an avera­
ge pp oolllaion, The number of e*e" paira ia alao aeen to be 
roughly proportional to Е ф up to the hlgheat values of Eg. 
Mora detaile oan be found in Ref. [jL4j • 

It ie^etreaaed that thia ia the BiSiSS* *•*• o f *ne l o w 

maaa lepton pair produotion, any further lnoreaae would be 
due to eome oolleotive effeota, moat probably thermaliaation 
of axoltatlona of neighbouring tubea and thia would be the 
way to plasma formation. If auoh an axoeaa ia observed, ita 
further etudy may hopefully lead to understanding alao the 
type of the thermalised matter. 

The minimal large mase dilepton produotion haa bean 
atudled in Ref.[l9]. Ve have assumed that the 160-U colli­
sion oan be viewed aa a aum of imeleon-nuoleon oolliaiona 
and that in eaob of these oolliaiona the Drell-ian meoha-
niam ia the only source of large masa dileptone. Each of 
nueleon-nuoleon oolliaiona is alao assumed to contribute to 
a apeoified rapidity window in the oentral region about the 
sama amount of transverse energy. Thia leads to the linear 
dependence of the large maaa dilepton produotion on the to­
tal transverse energy. We understand that the results oon-
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tained in Refe.[l4»19] ahould ba ooneldered ai preliminary 
qualitative atudiea and that more detailed oaloulationi inclu­
ding 
* energy leasee in subsequent nuoleon-nuoleon oollieionn 
- estimates of poaaible contributions from plasma formation 
* speoifio oaloulationa taking into aooount realletlo oondi-

tione in the NA-38 experiment 
ahould be performed. 

We are Indebted to «T.FtáSnllr and F.Liohard for collaboration 
on these topioe and to V.Cerný, A.Nogová, O.Pavlenko, 0.Fab-
Jan» ЕеLevin, JURyakln ank K.KaJantie for discussions and 
correspondence. 
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1 Ш BiiALia.iTIOH OP TIL! IIADnOH-HADROH, 1ШЖ01МГО0Ш13 
/Jíl) IIUCLLIJď-NUCLďJď l'lLiuJAJHTATIOli MODEL 

a.Yu.Ohraakov, V.V.Uzhinskii 
Joint Instltuto for Huclear iiesearch, Jíubnu, UtíSR 

Abstract 
Л new lionto-Carlo realization of the duul parton model 

in aticceotod. The code tukea into account high and low mass 
diffraction dissociation processes, transverse momente, of 
quarks, Percii-motion of nuclear nucleone. The code operation 
results in un exclusive state sutisfying the energy-momentum, 
baryoniс and electric charges, strangeness etc. conservation 
laws. 

Authors of Uonte-Carlo codes realizing the main assump­
tions of the dual purton model ' must solve the following 
problems 

1. How to avoid the low mass string creation. 
2. How to describe the decay of hadrons into quark 

subsystems. 
3. How to satisfy the energy-momentum conservation law, 

especially in the case of hadron-nucleus and nucleus-nucleus 
interactions. 

Since questions like this arise in different approaches 
ut the description of various reactions, we think it reason­
able to give a solution we used when developing the new rea­
lization of the duul parton model. 

The main ideu we were guided with was the uncertainty 
principle according to which muss, energy of particles, 
strings etc. can't be determined with an accuracy 
during the time interaction t . Uo, at the interactions time 
f one can "ascribe" masses different from the table ones to 

initial hadrons. Besides, during this time one may not worry 
about lov/ mass string creation. What matters is all final 
hadrons were on the mass shell. To consider the main features 
of the algorithm realizing this ideas let us take a simple 
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example, namely the diffraction dissociation of hadrons to 
the low mass states, e.g. in nucleon-nucleon interactions. 

In the Born approximation of QCD the diffraction disso­
ciation process is described by a set of graphs (fig. 1). Let 
us suppose that the creation and decay of the string are the 
final state interactions. Then at the intermediate stuge we 
have a system: the baryon, the quark and the diquark of the 
dissociating hudron. Due to the energy-momentum conservation 
lav/ on exclusive state of this system is completely character­
ized by one independent kinematic variable J< , the trans­
verse momenta neglected. Let this variable ratio of the lon-
gitudinul quark momentum to the sum of the quark and diquark 
longitudinal momenta. At a given value of X the kinematic 
characterostocs of all particles defined as 

Here m&t tria , mfo are the masses of the baryon, quark end 
diquarl: respectively; b& and £> are the solutions of the 
equation system 

pe> t p ~ P° 
. Ей + Ef + £<}cf = E° ( 2 ) 

where E9 and Po are the total energy and momentum respec­
tively. It is еазу to see that the primary hadron "mass" 
(Щ у&да) » defined in this way, is different from the tuble 
value tri£ . 

supposing that the value of К i3 distributed according 
to the rule <6'*2.S 

end calculating the fit, dependence of the process amplitude 
by the graphs of fig, 1, one can obtain (see fig. 2) various 
characteristics of the diffraction dissociation process. One 
can easily formulate a similar algorithm for the description 
of hadron decays into a greater number of subsystems. 

;«n independent "simulation" of quark, ontiquark and di-
quurk momenta followed by determination of kinemutic charac-
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teristics of strings created between various badron subsys­

tems may face the occurrence of low mass strings* We inter­

prete them as off-shell hadrons and formulate the "putting-

onto-the mass-shell" algorithm as follows. 

let a set of particle characteristics is given 

fy = (£<. ht. Ы )>*"<. *** 4 v (4) 
Рог some par t ic les /rty Ž fy "fit,- "Д,-. Solving the system 

of equation for the unknown variables C f and С А 

^P«iCc4ecp t l.),cae(-p I t.)j = p0 

we determine the particle characteristics in the final state 
$ ' = (vWc+c<p„S foQfaW*?«W'fa'efri),' 

c< p,u e(hi) > СФ<Qtyi)> fij-i) • 
Here ^o.are the table values of hadron masses. So, we have 
an opportunity to avoid rejecting events with low strings 
created, which in its turn allows an increase in the code 
operation rate. We also have an opportunity to satisfy the 
energy momentum conservation law with computer accuracy, to 
take into account the transverse momenta of the constituents, 
the binding energy, etc. when simulating interactions of 
composite systems. 

In the case of nucleus-nucleus collisions' an additional 
problem of simulation of inelastic configurations of inter­
acting nucleons arises. A large number of elementary interac­
tions aggravates the problem of creation fof low mass chains. 
Our earlier algorithm for the configuration choosing '*' rea­
lized in the code DIAGEN '*' together with the "putt'ing-onto-
the mass-shell" algorithm allow one to solve these problems 
without violating Glauber's relations between cross sections 
of various processes * and without loosing the code operation 

These relations are violated in the existing realize-
tion /5,6/. 
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efficiency. In this case no simplifying assumptions on the 
elastio NN scattering amplitude are required. 

In figs. 3-5 one can see various characteristics of 
proton-proton interactions calculated by us with allowance 
for the processes of diffraction dissociation both to the 
low-mass and high-mass states. Fig. 6 shows the rapidity dis­
tributions of secondary particles in hadron-nucleus collisi­
ons calculated without violation of the energy-momentum conser­
vation law with allowance for Fermi-motion of nuclear nucle-
ons. In figs. 7,8 characteristics of Ы- -particle Interactions 
atv^obt = 126 GeV are given. In fig. 9 transverse energy 
spectra for h-A and A-A collisions are represented. 

For all calculations we used the string fragmentation 
code BAMJET '*?'. As is seen our calculations are in satis­
factory agreement witii the experimental data. 

Thus, our realization of the dual parton model describee 
the available experimental data well enough and permits one 
to analyse more subtle characteristics of h-A and A-A inter­
actions thanks to allowance for the energy momentum conserva­
tion law, the structure of elastic A-A scattering and the 
diffraction dissociation prooesses. 
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Pig. 1. Diffraction dissociation to the low mass state in 
the Born approximation of QCD, 

Fig. 2. Created system mass distribution in the process 
p+fb-ч t>+X . The curve is the calculation, the 

points are the experimental data /2/ 
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Pig. 3» Negative particle nultiplicity distribution in pp-

interactious. Curves are the calculations, the pointo 
/7/ 

are the experimental data " . 
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Pig. 5. Rapidity distribution of secondary particles in pp-
interactions. The points are the data '"'. 
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b) Multiplicity distribution of charged particles 
produced in the central region. The points are 
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?ig. 8. Rapidity distributions of negative and positive par­

ticles in <*<* -collisions (figs. 8a and 8b respecti­
vely). The points are the data ' *' , 
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HADRON INTERACTION AT HIGH HIEROY Hi QOD 

В.Ы. Levin and M.G. Ryskin 

Aoademy of Sciences of the USSR 
Leningrad Nu dear Physics Ins t i tu te 

A b s t r a c t 

It Is shown that the perturbatlve QCD allows one to under­
stand the main properties of the hadron Interaction at high 
energy* Developed on the basis of the leading logarithmio 
approximation in perturbatlve QCD and the reggeon diagram 
teohnique, our approaoh successfully describes the Indus lve 
epeotra of the secondary hadrone including small transverse 
momenta pt f 300 MeV, and the multiplicity distribution in 
a wide region of energy s • 50-900 GeV, using only three 
phenomcnological parameters» It turns out that the main 
source of the secondary hadrone is the production and the 
fragmentation of the gluon mlnijjets with transverse momentum 
qt " qo' w n e r e 4 0 • 2*5 0 e V et s • 0.5 TeV, and q0 - 7 GeV 
for s » 40 TeV» Our approach predicts a rapid increase of 
the total multiplicity Ne*q^*oexp (2*5 In s), the total 
oross seotlon G"t«*ln2s and a comparatively slow increase 
of the diffraction dissociation oross seotion (T^eoln s. 

1. INTRODUCTION 

It is well known that the typical hadronlo interactions 
at high energy are soft processes that ooour at large distan­
ces (or small transferred momenta) where the mysterious con­
finement forces should be acted* For this reason, discussing 
these processes In framework of QCD, we are to use some mo­
dels that contain our qualitative improvisation utilising 
rather the QCD terminology (quark and gluon degrees of free­
dom) '1"^', than the explicit form of QCD interaction. 
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Here, we advooate a quite different view point, namely, the 
leading logarlthmlo approximation (LLA) of perturbatlve QOD 
lo a sufficiently good basis for the description of high 
energy physics. We are trying to demostrate belew, that we 
oan aohleve the full and selfconsistent understanding of 
the main properties of high energy collisions on this way 
lnoludlng both the prooesses with email and large transverse 
momenta (q t). We predlot 1) the logarlthmlcal lnorease of 
the Interaction radius Re*a«ln в (the dlffraotlon slope 
B*»ln2s and of the total oross seotlon G^e^ln 2s, 
11) the speolfled behaviour of the dlffraotlon dlssoolatlon 
dcP /tobola s/M2 (In M?)" 3' 2 at high energy, 111) the ra­
pid Increase of the шеаа transverse momentum of the seoondary 
hadrons or Jets, namely qt,..et<K> exp(a (in s) and their 
multiplicity Я»» qt *9^ for typical lnelastlo event. 

In our approaoh we prove the в and t ohannel unltarlty 
and oan easily show that our formulae have a usual limit of 
the perturbatlve QOD at large qt. She main reason why we oan 
dlsouss so oonventlonal soft phenomena as total oross seotlen 
Is the slgnlflcally large mean transverse momentum for typi­
cal Inelastic event, that, as predloted, rapidly grows with 
energy (q^2 • q02o>exp(2.5 f l ň T ) . Suoh a large qt

2 reveals 
Itself In small coupling oonatant of QCDoi. (qt

2) - 4T/b» 
2 2 

1° ^t / Л » whloh smallness oontrolles the acouraoy of our 
calculation In perturbatlve QOD. We see some experimental 
support of the above Ideas even In the energy behaviour of 
the slope of the dlffraotlon peak /'4/'. 
B(p,p) - (10.9 - 0.08 In s + 0.043 In2 s) OeV"2 . (1) . 

It Is easy to see from eq. (1) that the faotor In e, being 
proportional to Pt , where p^ Is the parton perlpherlcal 
transversa momentum, Is extremely small and corresponding 
to p ^ l - 2 QeV since 0.043*» (<*в / p t ) 2 . 
Even at not high energy, I.e. if - 10 - 60 GeV the slope 
of pomeron trejeotory** (В - B„ + 2*' In s) only slightly 
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exceeds the minimal value permitted by t-ohannel unltarlty 
for t - 4m2 /5/. 

< l n - ^ - - ^ . 2 1аЦ./«, 2.0.0в0еУ- 2 

Experimentally / 6 / *' - 0.13 ± 0.02 OeV"2. Thue, the experi­
mental value of *' is oonneoted «1th comparatively rare 
evejits of the plon production on the periphery of a hadr on, 
while the typical transverse momenta of a par ton In the 
fast hadron is sufficiently large (> 1 GeV) to provide the 
application of the perturbatlve QCD. Thus, we olalm that the 
original lagrangian of QCD allows us to build the pioture 
for hadron interaction at high energy on the same level of 
our understanding of the high energy dynamlos as has been 
reached In quantum eleotrodynamlos. In our approach, that is 
based on the LLA of perturbative QCD and taking Into aooount 
the rescattering of partone , we can desorlbe the main 
properties of the inelastic nuoleon interaotlon for 

{в • 50-900 GeV such as 1) the rapidity distribution 
dCT/dft , 11) the p^ spectra d6"/áp£ in the wide range of 
pt from 300 MeV to 10 Gev, ill) the multiplicity distribu­
tion (7*», and iv) the increase of the mean transferee mo­
mentum 4, P+u"> versus N. Fitting experimental data we use 
only three parameters that cannot be calculated in pertur­
batlve QCD and their values have been extraoted from expe­
riments. At the same value of these parameters we reproduce 
the energy dependence of the slope of the diffraotlve peak 

о о 2 2 
B a a Inj and the total oross section <5"t • 8T*a In s, 
and also the inclusive oross seotion with large transverse 
energy E.J. for proton-nucleus interaction (dG"(p, Pb)/dEt)•*"). 
As in QCD we can develop the regular prooedure for the cal­
culations of small corrections to our approach. 

Thus, we have discussed briefly only the positive aspeots 
of our approach, whioh Is based on the well developed LLA 
of QCD '8'and the reggeon diagram teohnlque '°»10'. Now let 
us consider our difficulties. First of all, it is the low 
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praotloal precision of the LLA calculations. Even In suoh 

simple prooese as the heavy lepton pair produotion, the LLA 

formula gives the value of the oroas seotion G'ift* fC ) 
twioe larger than experimental one* Of course, we know how 

to calculate the oorreotlons to LLA but unfortunately suoh 

calculations are extremely complicated. The second difficulty 

Is typical for all many body Interactions. Although the pro­

bability of the «scattering of eaoh pair of part one Is not 

large, In the central rapidity region where there are many 

partone we faoe the usual problems for the many body intera­

ction, and are obliged to use more or less reasonable appro­

ximations for real calculations. Unfortunately, the accuracy 

of suoh approximations is not good, Al least, all oaloula-

tions are related to quark and gluons, and we can take from 

experiment the phenomenologlcal etruoture function for gluon 

(quark) distribution In Initial hadrons and the hadron frag­

mentation function for producing quark and gluon jets* 

Fortunately, al-qualltative features and the most part of 

the quantitative calculations, at least for the oentral region 

depend very weakly on the details of the used structure func­

tions and even on the way how we take into acoount the parton 

-parton Interactions ** • 

*' Let us note that the discussed approach ''~10' allows us 

to solve the problem of screening oorreotions for the deep 

inelastlo scattering '11'. 

It ocours because the parton density grows with energy 
and reaohes Its max: mal value permitted by unitarlty. 
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2. PARDON 7/AWE PUN CTI ОТ OP A FAST HADROT 

1. First of all let us outline two important peculiarities 
of QCD. 
A. Due to tbe spin of a gluon being equal to tbe unit; 

we get the constant orose section even in Born approximation 
of QCD at high energy from the two gluon exchange (see fig. 
la). The radiation of intermediate gluons shown in fig. lb 
leads to the increase of the total oross section, namely 
6ф ILA*" в ̂  Г"- ' S °*̂  • Thus, some chance appears to stu­
dy the processes with rising orose sections already In per-
turbative QCD at small oc . 

B. In QCD a gluon, gradually slowing down in the ladder 
diagram of fig. lb is taking part in two random movements 
simultaneously. One from them is a usual diffusion in the 
Impaot parameters (b+) which is typical for any reggeon ex­
change '12'. At eaoh gluon emission " i " the parton that 
looses its energy shifts its position in bt on the value 
Abt<"-l/qt. Such diffusion provides the increase of the 
interaction radius with energy /12/. The second diffusion 
that was firstly considered In ref. ' ', is the random 
changing in log qt. Since the QCD coupling oonstant is di­
mensi onless, all integrals over any transverse momentum q+ « 

t 2 2 "»*• 
are logarithmloal looking like } oi g (<Ц i^t i ^ qt and 

converge at qx £ • q+ . ^ or qt ^ • q^ , , • In other words, 
at eaoh step of the diffusion (for eaoh radiation) In q^ 
ohanges by the value of the order of unity. As a result of 
such a diffusion the mean transverse momentum of the partic­
les rapidly grows and the main contribution for multlpartlo-
le generation results from the fragmentation of the gluon 
jet with qt • qQ • Л exp(1.26 fin s ) . 
2. Let us oonslder in detaile the development of che quark-
gluon cascade that forms the wave funotlon of low partone 
In a badron +'. We would like to emphasize, that the summa­
tion of the simplest ladder diagrams that has been carried 
out In the UiA of QCD (see fig* lb) In faot means that the 
developed caeoade of gluons Is taken Into account since each 
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produoed parton 'deoaye lato a whole cascade of slowed partone 
as shown in fig* lo. The probability to emit a gluon with the 
fraction x of the hadron momentům p is proportional to 
dwo-»elfl dx/x, and, thus, the multiplicity of the partone 
(I) V • I 0 exp(c 0Lg In 1/x) since dN/H - dw - -*~ 25f )• 
The oross section is determined by the product of the V for 
the slowest partons and the parton-parton oross seotlon 
( G~0) 6"+** €*0 H(ln l/x • In fs) во the Increase of multi­
plicity Jf provides 0*t m 6"0 . S o M' . The question arises» 
what is the distribution of the partone in bt and qt **'• 
Let us oonalder two extreme situations* i) For «aoh gluon 
radiation, log of its q+ grows. Alog q^ • +l. The transver­
se momentum in euoh ladders (shown in fig. Id by vertical 
lines) inoreasee with the growing number of diffusion steps-
" m ". The thioknese of the lines in fig. Id refleots the 
increase of log q̂  am'*. Eaoh step of the diffusion occu­
pies the rapidity Interval Ду • Д1п 1/х»»1/Л в (<1*2)» 
since w*-> oe>g In l/x ~ 1. The coupling constant 0(0^a l/lnq|, 
so the oharaoteristloal value of In q* grows as dlnq^o-oflL dy 
and 

l n <1t> *"" ^ » ^ q t > " Лехр с fy, у • In l/x (3) 
At the first sight It seems unnatural that from diffusion 
with equal probability for Increasing and decreasing log q* 
some grows of q^ follows. 

*' The gluons play the most Important role ln this formation 
and for this reason here we restriot ourselves to gluon 
ladders only although in practical calculations we have In­
volved the quark production as a well* 
++'Strictly speaking, ln quantum mechanics it is Impossible 
to fix the coordinate and momentum (bt and qt) simultaneous­
ly. Suoh a situation is In contradiction with uncertainty re­
lation, but in our case we can use q+ and b* with semiolassl-
cal accuracy since the number of partons is extremely large* 
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Let us present a very simple estimation to confirm this state­
ment. Let us suppose that the In qs distribution has the 
usual diffusion fora /в/ , namely 

ln2qt exp(- • :,. ) a In qt . m 
The mean transverse momentum can be found from a simple ex­
pression 

n « q* i„2 qt 1 ч 
<<Ц>" J в d ln qt = exp -£ 

If we put то?0Св у «о y/ln qt ln the above equation, we get 
eq. (3) for qt. It Is easy to understand that such ladder 
can not shift Its position In impact parameters b^ ; since 
such a shift Is aoout l/qt (&bt/v»l/qt) ana exponentially 
falls down (eq. (3)) with rapidity y. 11) She opposite 
example( the transverse momentum only weakly changes in 
a ladder, qt A. QQ. We can reaoh such a situation ln the log<K 

diffusion if on each step ln q+ • +1 or -1, successively. 
In suoh a ladder the parton can move ln b* up to b+ • 
• mZSibi«om/Q0

coo<B (QQ) y/Q0» and these movements provide 
the inorease of the Interaction radius R »cť'ln s where 
«'e-,o<a/Q0 and у - ln S/QJ . 

3. Of course In full parton cascade all situations can be 
realised that are intermediate between the two above, but 
since the total parton multiplicity grows as a power with 
energy (NK> S0"1 ), in any oase suoh bran oh of the oasoade 
can be found, where the transverse momentum (ln q+) monoto-
nioally increases or the branoh where the parton gradually 
shifts Its position further and further from the oenter of 
the initial hadron (the last branoh is presented in fig. Id 
by sloping wave lines). For example, fig. Id shows the two 
steps of the diffusion (m • 2) when the Initial parton decays 
in four gluons from which two increase their ln q̂  in avera­
ge, while from the two others with smaller q* one shifts to 
the right ( A b t ~ l / q t ) and another to the left further and 
further from the disc oentre bt - 0. Thus, the total multi-
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pliolty of slow paxtons increases and becomes so large that 
the gluons within a unit of rapidity must begin to overlap 
in spaoe of the thin disc whioh they oooupy. At the distan­
ces b* • R - ay apart from the diso centre at least one part-
on at x • e~y oan be found «1th the probability (W) of the 
order ot the unity, but inside the diso (b^c ay) the parton 
always exists (with Я<»1) with the transverse momentum 
qt - qQ (у, Ъ^) that used the rapidity interval у « у - b^ / 
/a +^ for the increase In qt. Thus, 

qj (У, bt) - <j2 + д 2 exp(3.56 jy - bt/a) (4) 

In eq. (4) we substitute the value of the constant о - 1.78'" 
in eq. (3) and the preasymptotla term Q is added, that deter­
mines the initial virtuality. It is useful to introduoe the 
kinematical variables г = In qt and у = In 1/x, whioh are 
given in fig, 2. The solid line shows the equation 
4t • % (y» b^) whioh is the condition that in the point 
b., qt and у at least one gluon oan be found with the proba­
bility W r*l. To the right of this curve in the region of 
large qt * ^ q 0 the probability to find a gluon or a quark is 
small. In this region the parton distribution is calculated 
by Lipatov-Altarelli-Parisi evolution equations, but the ini­
tial oondltlon for the evolution equation should be the gluon 
density along the boundary (4). However, in the H A where 
the smallness of oC8 is compensated by large logs of the ener­
gy 0(fl In s «-9 0(1) (£, Cn(ť*B In -1) n the calculation of 
the parton density along the boundary of eq. (4) has been 
successful only for small z, while on the first vertical 
part of the solid curve in fig* 2 we are to use some pheno-
menological Initial structure function D(x, Q 0 ) . The parti­
cular value of the function 0 is very essential for the cal-
culations in the region of large q and not small x (see 
point 1 in fig. 2) and almost negligible for small x (see 
point 2 in fig. 2), when the initial oondition for Lipatov-
Altarelli-Parisl equation is entirely determined by the parton 

+'In the language ofthe reggeon field theory the time interval 
У = it. 
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density on the boundary (4)* To the left of the boundary (4) 
the most of the slow partons are concentrated. Their number 
rapidly grows NeoS 0 0 t l without the patron-patron inter­
action. This power-like Increase Is olosely related to the 
logarithmically large probability to emit a gluon In the 
parton casoadet 

In space the variable log Б corresponds to the logarith-
mloal integration over the time of the coherent emission of 
the gluon " 1 n: dw< • <*„ áV/V.* The total formation time 
Ij. is equal to B^/q^ (^ * Ej/ Qj.*)» ^ut *ne Pa**011 0SB Use 

this time í only if the parton-parton interaction is negli­
gible. Indeed, any collisions that require a small time inter­
val AT^r** l/qtl for example the one gluon exchange violates 
the condition of the coherent emission changing the colour 
and the momentum of the parent parton. Therefore, to the left 
of the boundary (4), where the number of oolllsion is very 
large the LLA, conditions are violated and, calculating 
the structure funotlon In this region (region С in fig. 2) 
we can restrict our ourselves by the lowest order diagrams 
in o( that is to calculate the simples two gluon exohange 
between the parton of interest (point 3 in fig. 2) and gluons 
on the solid ourve in fig. 2. 
4. How let us write the equation / 8 / that describes the be-
haviour of the total cross section from q and In n 
• у in Ы.А of QCD (In log x) . Introducing o£(q2, y) which is 
the oross section of the gluon interaction under oondition 
that the transverse momentum of the fast gluon q^ equals 
to q in the upper cell of the ladder, we can reproduce the 
equation of ref» /в/ In the form 

-j£- - Г K(q, q') <j>(q,' у) -Ь- 4 S (q*) dq^g 
*3 (6) 

+' On the boundary (see eq. (4)) the probability of the 
parton resoattering Is of the order of the unit. 
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ф Í42» У)^> »Cq2, x - е"У) . x/q2 (6) 

Se * 3 Is the number of ooloure, and the factor в that ie 
introduced for the deeoription of the effectiveness of the 
gluon radiation, is equal to 1 for LLA 

(q - q)^ (q - q)t <q • (q - q )£ 
(see ref. 8). 
For-the function ^*coq2'ř " l* 

f«q;q)<j>f ( q # ) * q ' 2 - Y ( ř ) + * ( q ) 

where the eigenvalue ^ f > - 2^(1 ) -4fW - f ( l - f ) and 
4>{f) - d In Г(гУ±Г, T(f) i s the gamma function. The integ­
ral over q'ls convergent of values of qV»q and in the case 
«пепфоо 1/ f q the dominant In q̂  differs from In q* by 
- 1 . Let us note that ф « 1/ |q gives the fastest possible 
increase of the total oross section / 8 / with energy 

Фь(у)о*а exp(41n2 H0 <X я у /Т ) . То include the parton-
parton interactions in eq. (5 ) , for the region to the right 
of the solid curve in f i g . 2 , i t i s enough to take into 
aooount the semienhanoed " fan n diagrams of f i g . 3a type. 
The equation that sums to these diagrams looks l ike eq. (5) 
with 

£ - 1 - «s<£(q2. у ) /ф 0 (7) 

instead of б - 1 as in LLA. Suoh a modified equation gives 
us the following answer. With the increase of energy the 
function c£(q , y) exponentially grows (фе-» в3"* Чг° ) 
цр to ф ( Ч

2 , у) . ф 0 . Const at q2 • q| (у) - Q| + Д 2 • 
ехр(3.5б Г~у)« For larger у the increase of ф slows down and 
Its value tends to the unltarlty limit that i s 4 >

m a x « 
ф < / Л в (q ) (^>-»<Ь) + ' • Kow l e t us generalize eq. (5) , 
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including b. and assuming (with a semiclaasical accuraoy) 
that for eaoh emission the probability for the parton to 
change i t s position la Ъ* should be describe by function 
ezp(- dBt 2 q / 4 ) . The new equation has a form 

Q<b(b., q,y) t , , 
a » J K(q.q ) 4>i\ , q ,y). Vy 

,2 '2 
Nc *2 ,,2. ' .2 ' 

— j - q t d b t d qt 
• 

. [ i - i C g ^ C b . q . ' y ) / ^ ] ( q > Q 0 ) (8) 

As seen from eq.(8) , ф> monotonously increases with у going 

In the disc centre (b t =* 0) the value of <ф i s <p(0,q t,y) в 
= ф 0 reaohed at q = qQ (y ) . The maximal value in the peri­
phery should be for ф я ф (b,Q ,y) since ab^. f a l l s down 
with the r ise of q t • ф(Ь.|.,(}0,у) « фо for b t « ay, where 

a « 2—S—^ a 0.40 GeV 1 

% 
at Q2 = 2 GeV2 . 

Therefore from the parton view point the fast hadron i s 
nothing more than the almost black disc with R = ay. The 
blaokness inside the disc grows as a result of the increase 
of the parton density for large q t , since <£(b,q,y) i s very 
close to ф т а х up to q t = qQ (y ,b t ) (see eq. (41) ) . The 
momentum q+ '"Чп elves the main contribution in the'pro­
cesses of the multiparticle production, since the inclusive 
cross section i s equal to the following expression (see f ig .4 ) 

+ ' The right hand side of eq. (5) i s positive and the func­
tion <j>(q y) grows with y, but at ф * Ф 0 6 changes i t s 
sign, Яф/'Эу beoomes negative and (£>(q ,y) f a l l s down. 
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The multiplicity N grows proportionally to the whols permit­
ted phase spaoe, namely N n q ^ exp(2.52 [In a) . We would 
like to emphasise that eq« (8) allows ue to calculate the 
etruoture funotions with a good aoourapythat If oontrolled 
by a emallneee of the QOD coupling oonetant tAfl only in the 
klneraatloal region», where the parton density has not been 
large yet and the value of ф does not escoeed ф0 • oonet. 
The above oondltion 1* satisfied either to the right of the 
boundary Qt><i0(y#bt) or at the dlso edge b t>ay. Vor 
qt < q0(y*b) we have to use some hypothesis, but the uncer­
tainty arising here Is not large, since ф beoomes already 
equal to <p0on the boundary qt • q0(y»b^) and Its further 
lnorease Is restrloted by the unitary oondltion, namely 
фг! pmax • Фо^^в* We oan ge* *п*в *лв<1ив11*У using 

Kanohell-Mueller rules /13/ • nevertheless, we would like 
to draw your attention that for the whole region to the left 
of the boundary we need some model for ф , Our assumption 
Is ф • ф0 for qt £ q0(y,bt)« The above ploture is In a 
good agreement with the avialable experimental data* As was' 
dlsoussed in ref. /14/ , the so called BEL-effect was obser­
ved experimentally for energies from fs » 50 OeV (ISR) to 
fs • 540 OeV (SppS-oollder). The proton beoomes Blaoker, 

its Border Edgier, and Its radius larger* In other words the 
proton turns into the tolaok disc with a sufficiently sharp 
border, as expected in our approach* Experimentally, dR/dy » 
• a • 0*42 OeV in our ploture for QQ - 2 QeV2, that was 
extracted from the Inclusive production at SppS energy/7/ , 
a • 0.40 QeV * The contribution of plons, that can be emit­
ted rarely from the border of the disc, is in 10 times small­
er* Of oourse, this contribution (a • 0*04 QeV) oan not be 
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calculated In the perturbatlve QOD but we can develop Its own 
perturbatlv* theory for euoh a small oorreotion taking Into 
aooount all rare peripheral plone. Thus, the energy behaviour 
of the total arose seotlon le In agreement with the experiment» 

As for multlpartlole production, we olaim that Its main 
eouroe le the fragmentation of gluon minijete with qt*- qQ. 
The q value for the oentral rapidity region */ • 0 is 
q0 « 2.5 QeV ( fs • 540 QeV, SppTs), qQ • 4.5 QeV ( (1 • 6 TeV, 
1ШК), and q0 • 7 OeV ( (в • 40 TeV, S8C). Experimentally, the 
cross eeotlon for the hadron Jet with Pt > 5 OeV le suffi­
ciently large* About 4Oft of the events at f? * 900 OeV oon-
taln at least one jet with q^ ̂  5 OeV for [4,\<$* 
(The observed value for 

d(T ч • 
IT-
l í -

5 OeV 

0 

. 540 OeV 
1&Ц 

m 0.4 - 0.15 mb/OeV that Is in a good agreement with the 
predicted magnitude dCvd^dq^. - 0.55 mb/ OeV* 

3. KULTIPARTICLE PRODUCTION 

Let us briefly die cuss the inclusive hadron orose sections. 
/7/ 

Using eq. (4) for q0(y) and the formulae of the review''', 
we have been able to describe the experimental data on 
d(T/dq? and d<T/d£ in the wide range of energies ( fa) from 
50 to 900 QeV and the transverse momentum (q+) from 300 MeV 
to 10 OeV, assuming that all secondary hadrons (even with 
q. #*»300 MeV) originate from fragmentation of the gluon 
áete /15flo/# Tjje oorreeponding curves are given in fig. 5 
A 6 / , pitting the observed data the two free parameters 
(which oannot be fixed in LLA) have been extracted directly 
from experiments. The value Q£ • 2 OeV determines the ini­
tial virtuallty of the parton, the scale of the cross sec­
tion €*«ol/Q| and, simultaneously, the increase of the total 
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oroee eeotlon with energy (the faotor " a " In R - ay, 
G*̂  • 2 T R ) and for the inclusive one, d (T(a)/df , pre­

sented in fig. 5. The eeoond parameter /\ , sete the scale 
on qt axle and the value of the coupling oonstant «Cs • 
- 4T/b In q2/A2* T h e obtained value Л - 52 MeV is in 
agreement with the value of otfl, observed in ref.'1", name­
ly, * „ - 0.16 Í 0.01 at q2 - 22.5 OeV2. 

It is interesting that the mean transverse momentum for 

the inelastlo event inoreases with the multiplicity N'1 '. 

Indeed, the inorease of N can be reached either i) as the 

result of a more frequent radiation of gluons, i.e. the in­

crease in the number of the diffusion step " m " in the rapi­

dity interval y. Sinoe ^ In qt>iuo m, this mechanism di­

rectly leads to the large transverse momentum, or 11) due 

to oreatlon of several branches of the cascades that can be 

desorlbed by diagrams responsible for the exchanges by many 

reggeons in the reggeon diagram teohnique (see fig. 6). 

However, in these diagrams the additional logarithmieal in­

tegration over the transverse reggeon (ladder) momenta Q, 

arise generating eaoh Its own diffusion in log Qlt Since 

momentum Q^ plays the role of the initial virtuality QQ for 

its own ladder, the mean qt becomes larger when the number 

" n и of the ladders increases ' 1 ' (see fig. 7). The multi­
plicity distribution also can be described in our approaoh 
in agreement with the experimental data' ' (see fig* 8), 
but we are to introduoe one more parameter g » 0*37, that 
characterizes the probability to create additional branches 
of the cascade PQe"?gn. It is important.to note that the 
values of all three parameters turn out to be very reason­
able, natural and coinciding to 20-3Oft accuracy with the esti­
mations from the calculations of the lowest order diagrams in 
perturbatlve QCJD. It turns out that our results are very 
close to the quark-gluon plasma (QC?) approaoh, although 
all our calculations were sufficiently apart from the thermo-
dynamical ones. The energy density in the unit volume 
rapidly inoreases. £*ъ<£/ сч *-э exp(3.8 f In s) reaches the 
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value 3 OeV/fm3 at SppS energy ( fis • 0,54 TeV) and 17 GeV/ 
/fin3 at the UNK-enerey ( (в « 6 TeV) /lé/. The effeotlve 
temperature or the mean kinetic energy.of the gluon tends 
to be the large value about 1.5-2 OeV for fs • 6 TeV. 
At that high temperature the production of heavy hadrone aa 
charmed, strange, beauty, and so on, rises, and beoause 
of the parton oolllslons with qt 4, q0 a kind of the equili­
brium distribution in the transverse space is organized. 
But the system ae a whole is quite far from the equilibrium. 
Firstly, the partloles with qt > qQ has a too small oroes 
aeotlon and can freely come out of the system, oreatlng the 
hadron sets with the power-like tails of the momentum contri­
butions dT/dq|»*q^ at q t » q0« Thus, suoh a jet emission 
is the permanent source of the evaporation processes In our 
syetem which Is opened» Seoondly, we have not reason for 
the equilibrium In the longitudinal momentum beoause of the 
laok of time in the hadron oolllelon. Our ploture leads to 
large fluctuations in the multiplicity or the number of the 
ladders " n *', and In the transverse momentum beoause of 
the diffusion in In q̂ .. Thus, the event that we are going 
to interprete as the plasma production can be only a large 
fluctuation in the typical hadroniс multlpartlole production. 
Even the lnorease in the mean < q t> versus the multiplici­
ty that was considered frequently as the indication for the 
production of the plasma In our approach gets very natural 
explanation (see fig. 8) '16'. 

4. CONCLUSION 

In conclusion we would like to emphasize that we are 
understanding now quite well prlnolpla properties of the dy­
namics at high energy hadron interaction. We have explained 
the main features of the multipartlole productions and elu­
cidated the reason for the energy Inorease of the total oross 
sections directly from QCD Lagranglan, using the perturba-
tive theory. We also have demonstrated in simple model with 
only three parameters, how all available experimental data 
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can be described In our approach. +' 
For email q ^ ^ q 0 (bt,y) the logarithmically large correct­

ions are absent and the value of the total cross seotlon 
for ЛГ - 20 OeV can be reproduced by the two gluon exchan­
ge ' 1 ° ' , and the observed inorease of the total cross seo­
tlon with energy is provided by the parameter QQ> that deter­
mines also the soale of the inclusive multipartlole produc­
tion. 

Kow let us discuss the value of the parameter Q . As dis­
cussed, «e have extracted Q. в 1,4 GeV from experiments. 

0 /20 21/ 
and this value seems unnatural for many our oolleagues "•v»b*' 
Indeed, formally speaking, Q Is the transverse momentum of 
the " reggeon " (ladder) in the semienhanced diagram in fig. 
3 «It looks natural that such momentum should be out off 
by the hadronio electromagnetic radius and equal to 400 MeV. 
3f course, it is correct for the diagram of fig. 9, where 
the two ladders are influenced by two different valcnoe 
quarks In a hadron. The contribution of a such diagram is 
proportional to la » (nq - hq) Q ^ e - » a2 / £ rj;> , where 
n is the number of quarks, and r is the proton radius. 
However if the both ladders Interact with the single valenoo 
quark, as shown in iig. 9b, the corresponding QQ is closely 
related to the size (r ) of the constituent quark, namely 

2 2° 
Jb * na^o b = n o ^ r q ^ * A 1 * n o u 8 n ^he number of the dia­
grams of fig. 9b type in (n - 1) times smaller than the 
number of fig. 9a graphs, the contribution of such diacrams 

о can be large because of the large value Q"! v. The most im-
o, о 

portant contribution comes from enchanced diagrams of fig. 
3b type (see fig. 9c), from which we have started the dis­
cussion oi the screening corrections ' . +' In any case up to now we have not faced the certain obser­
ved quantity, that is in contradiction with the discussed 
approach. Even the E t distributions for hadron nucleus 
collisions can be described without new parameters /IB/, 
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These graphs also have large Q*. One more argument for the 

large value of QQ (QQ « 1-2.GeV) cornea from the small radius 

of the triple pomeron vertex, r- *- 1/1 GeV, as observed 

experimentally. In our approach r3 • 2/Q andt as discussed 

above, Q • 1.4 GeV all ours us to describe the Inclusive 

cross section of the diffraction dissociation pp -*-p + Z 

in the triple reggeon region. Of course, strictly speaking, 

we cannot discuss the value of QQ in LLA. The only thing 

that we must do is to verify whether we could describe the 

large body of the experimental data with the same value of 

Q0. Up to now we have been lucky in this business. We would 

like to claim that we do not know any experiment, which 

would oontradiot our approaoh (with QQ • 1.4 GeV) and have 

no theoretioal or phenomenologlcal arguments against the 

large value of QQ • For this reason, we believe, that our 

approaoh can be a good guide for the understanding of high 

energy physios at new generation of the accelerators. It 

can be used for simulation of the multiparticle produotion 

at higher energies, including ESC energy ( fe «» 40 GeV) and 

for estimation of the background from typical inelastic 

produotion for rare event for produotion of heavy fermions, 

Higgs bosons, and other exotics. All these typical processes, 

that have been discussed as soft ones before, should be con­

sidered as semihard now, since the typical transverse momen­

tum of the gluon sets in the central rapidity region ("£ • 0), 

reaches a large value about q. a 7 GeV, at fš » 40 TeV. 

To our opinion during the last few years the situation 
In' high energy physics has been essentially elucidated and 

now we have sufficiently transparent and selfconsistent 

picture for the high energy interactions. This Is a good 

starting point for the full understanding of ';he problem. 
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Fig. 5a. The dependenoe of the inoluslve cross 
seotlons for the secondary hadron pro­
duction on 
a) the transverse momentum (̂  = 0) 

114 



№М& 
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CORRELATION ИШОНЗМА lil PARTICLE ťKOJTJCTIOK 
ОН HUCLEL 

D. U.Levchenko 
Nuclear Physics Institute,Moscow tote University 

Moscow, USSR 

The necessery condition for erection of the i„GP in 
the nuclear collisions is a high density of matter ex­
ceeding certain critical density- This density cen be 
evaluated one knows the dimensions of the particle produc­
tion region. These dimensions cun be inferred from measu­
rements of the identičtí pertiele correlations [il iir.me-
ly, one has to metsure the correction function 

where P(p*1,..., q,) is the proDt-bility of observing the 
particles pi through "pn til in the stroe event. The cal­
culations (i) showed that for uncorrected sources - of 
particles p*j ond p-

where q = Pj- p2» £i0
=€i~ €2» p = ^fe» p^» L is 14,neBr ai~ 

mention of the pcrticle production region, X is the life 
time of the source. 

On the other side, for meny yef-rs in particles physics 
on his studed the two pertiele correlation function 

^AJ = íl^Ů -i (3) 
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In Fig.: .ve present , for axsample', Hž(y*i£) for charge 

particles produced in nucinon-nucleon ( N N ) , nucleon-nuc-

j8Ua(;f2)| and nualéus-nucleu3 (A3)(expected foraJ int?rac-

•Л J ť < • 

Yi-ьхс. r;*f.ir.! tí-.ns (i) ar.d (3) it fallows thnt the two 
oc."."-?Í3t:lcr. ťuncti-ns are practically tha same function. 
Therefore, if cne could compute F for NN. NB, AB inte-
ractions in the framework of some mux<.*product!on model', 
then the function ^2) or its like would allow one t.o deter-
mir.s th» pertic'ie source size and its A-dependence. More­
over, in the Glauber type models one can relate to each 
other R2 **сг а 1^ t h e t n r e e types of collisions and rela­
te the particle source sizes K^Ojny / 

in NN, NB and AB collisions. 
Using the Glauber multi-

scattering model the following 
equation relates the correla-
ticn function ?.*2 a n d ^2 
for the production on nuclei 
and nucleons c.a./ be .obtained 1.2} : 

Fig. I 

Rz С Pi > ft.b < v > a +<v> Ka IPi» W ' (A) 

Here V stand for the number of inelastic collisions of 
the incident fast nucleon with the nucleons of the nucleus 
Cthe nutaber of wounded nucieons) . 

Now we calculate the function ?Л following the 
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method [2} and using the multiple-scattering formal loin ̂ 3] 
used for the oaloulatlon different kinds of the cross-see-
tlone in framework of the optioal approximation to the 
Glauber model. 

In Fig.2 we present multiscatering diagram an AS 
interaction. Let us can [<\ c ( n A , n B , ^ l ' {i * T,.,.,nA) 
the probability that пд (nfl) nuclaone of A(B) are wounded 
and the 14h nuoleon of A collides . 
with V * of these nuoleons of B. 
Then the single partiole inclusive 
spectrum (see Fig.2) is 

• i « 

• ' • • V4 

«Wj- it L^MiUi 

-ilL*,*w.r<* 

<V 

Fig. 2 A 

?Aft u»i ty»! •*» <n W (5) 

here 

and ^igCb) ie the nucleon-nucleue В profile function, 

given by 

< V b > • C1 - b - * * A B ^ ) Б> 
Using eq. ̂ 6) from oq.(5) can be obtened 

<n^V> - A-B'6 / ^ A B 

The two particle inclusive spectrum ев i t following from 
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Integrating the eq.15) and (7) over the iapact parameter 

b we obtain 

* ; B , < n ^ n r I)^Va> - <r^y>2 * <nA> i>2> . j j f C8) 

<nA-V>2 <nAV> 

The equation» U) end (8) enable one to ocnneot the func­

tion» B2B e n d R 2 B # : n or"-Jer' t 0 i 0 3 0 wt> U 8 e t h e * 8 c t 

that eq,{6) tor Q& nA*^ factorizes az a i'unction of 

variables n. and v> and therefore 

4A 

I t results in i 

<nj[.VÍ> °<n*AX\)l> 

2Ш 
RAB , <пДпА- i)VjV>2> - « V * » Ч ' ^ , _Fjj» ( 9 ) 

<nA 'V>' <nA> 

Equation» (2),(4) , \8) and \9) enable one to re­
late the linear dimentions of the particle aourse In the 
three type reaction*4 n „ 

2. 2 .„2.2 

where Л = I/(l * q 2 T 2) end Д Я is the first terms 
on the right side of eq. (je) - (9) correspond to the long 
range piece of the correlation function. 

Using the same method one cen obtain the relations bet-
twen the Wroblewski's ration D/< N> for the particle multi­
plicity in AB, NB and NN collisions. 
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So 

9 

In conclusion one must note that relations (5) and (7) 

correspond to an asymptotical energy and at present energy 

must take into account the energy-momentym corrections. Yet 

in the relationship (3̂ the major part of the finit energy 

corrections are cancelled. 

More consistent calculations of the correlation fuctions 

^4) should rely upon models wioh do explicitly incorporate 

energy-momentum conservation. The principal concluoione on 

the A-dependence of R~ are preserved, though the counter­

parts of simple and self-explanatory formulae (io) are 

fairly complicated ones. 
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PARTICLE PRODUCTION IN ULTRARELATIVXSTIC PROTON-PROTON 

AND PROTON-NUCLEUS COLLISIONS IN A PARTON-STRING MODEL 

M. Kutschera 

Institute of Nuclear Physics 

ul. Radzikowskiego 152 

31-342 Kraków, Poland 

Introduction 

A successful detection of a quark-gluon plasma phase in 

ultrarelativistic heavy ion collisions will require an answer 

to the question how different is the normal production of 

particles from the production resulting from a collective 

behaviour of the plasma phase. Our aim here is to present a 

model of normal production of particles in pp and pA 

collisions, which is a first step in this direction. Since in 

the area of soft processes QCD does not yet provide 

quantitative predictions, one has to rely on phenomenological 

models, which are compatible with QCD, and implement as many 

measured quantities as possible. 
i p 33 In my talk I shall discuss a model ' ' , which was 

developed by K. Werner, J. Hufпег, О. Nachtmann and myself in 
Heidelberg. The model is a specific realization of the parton 
model ideas, and is most closely related to the Dual Par ton 

4Э Model of Capella et al. Presently K. Werner at BNL is working 
on the Monte-Carlo version of the model with the aim to 
construct an event generator for ultrarelativistic heavy ion 
reactions, which would fully account for the normal production 
of particles. 

The physical picture of a pA collision is as follows: When 
the projectile proton traverses the nucleus, one or more 
collisions with target nucleons take place. These collisions 
are assumed to proceed by a colour exchange between quarks, 
antiquarks and gluons of the projectile and the appropriate 
partons of the target nucleon. Alternatively, one can view this 
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p r o c e s s a s s t r i p p i n g q u a r k s , a n t i q u a r k s and g l u o n s off* t h e 
p r o j e c t i l e As a r e s u l t , a number o f c o l o u r s t r i n g s a r e 
p r o d u c e d , which l a t e r on h a d r o n i z e i n t o o b s e r v e d p a r t i c l e s . The 
dynamics o f s o f t c o l l i s i o n s c a n n o t a t t h e moment b e c a l c u l a t e d 
from QCD. I n s t e a d , f o r d e s c r i p t i o n o f i n c l u s i v e hadron-hadron 
c o l l i s i o n s we s h a l l employ t h e p a r t o n d i s t r i b u t i o n f u n c t i o n s i n 
n u c l e o n s and t h e f r a g m e n t a t i o n f u n c t i o n s o f t h e c o l o u r s t r i n g s , 
a s measured i n е р , до, vp and e e r e a c t i o n s . An e s s e n t i a l 
a s s u m p t i o n i s t h a t t h e s e f u n c t i o n s a r e somehow u n i v e r s a l , i . e . 
c a n b e measured i n l e p t o n s c a t t e r i n g o f f n u c l e o n s . 

P r o t o n - p r o t o n s c a t t e r i n g 
When c o l o u r i s exchanged be tween p r o j e c t i l e and t a r g e t 

p r o t o n s , F i g . 1 , t h e s p a c e - t i m e s t r u c t u r e o f c o l o u r s i n g l e t s i s 
changed. Now t h e s i n g l e t i s formed by p a r t o n s moving i n 
o p p o s i t e d i r e c t i o n s . I n P i g . 1 t h e r e a r e two s u c h s t a t e s a f t e r 
t h e c o l l i s i o n t a k e s p l a c e . T h e s e a r e t h e c o l o u r s t r i n g s , w h i c h , 
a s v i r t u a l o b j e c t s , have t o d e c a y I n t o hadrons . Leading 
p a r t i c l e s i n t h i s c a s e a r e p r o d u c t s of h a d r o n i z a t i o n of a 
d i quark Cby diquark we a l w a y s mean a remnant , N-q, a f t e r 
removing a p a r t o n q from t h e n u c l e o n ) . We somet imes r e f e r t o 
t h i s p r o c e s s a s quark removal . The d iagram a of F l g . l i s 
supposed t o b e m a i n l y r e s p o n s i b l e f o r t h e i n e l a s t i c p r o d u c t i o n 
a t s m a l l x. The o t h e r b a s i c p r o c e s s , g i v i n g t h e d i f f r a c t i v e 
peak i n pp s c a t t e r i n g , i s t h e removal of a c o l o u r - n e u t r a l qq 
p a i r from t h e p r o j e c t i l e . I n p r i n c i p l e t h e quark can be a 
v a l e n c e quark or a s e a quark, and t h e r e m a i n i n g t h r e e quark 
s y s t e m СВ=1Э can b e e x c i t e d . I n F i g . 1 and F i g . 3 t h e arrows 
i n d i c a t e t h e c o l o u r e x c h a n g e . 

L o n g i t u d i n a l momentum d i s t r i b u t i o n s o f hadrons h produced 
pp c o l l i s i o n , fP Сх,р_Э, ai 

s e c t i o n s f o r g i v e n v a l u e of p_ : 
i n a pp c o l l i s i o n , f C x , p _ 3 , a r e measured a s i n c l u s i v e c r o s s 

f P h C x . p _ i = x d 3 « T h X _ 1 ^ С1Э 
^ d x d 2 p T oPP 
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where x is the momentum fraction of the observed hadron h 
relative to the projectile momentum p_, x = Pv/To' ^"e 

functions fp Сх,р_Э contain the dynamics of the process. 
To calculate longitudinal momentum distributions for 

various hadrons we evaluate the diagrams schematically shown in 
Fig.l. To do so for hadrons h originating from the proton 
remnant N-q, we have to specify both the momentum distribution 
of this remnant, p CxO, and the function D Cz3, describing 

qq qq 
the d i s t r i b u t i o n of momenta of hadrons h, which were produced 
by fragmentation of t h e remnant N-q С s qq3. The c o n t r i b u t i o n 
of diagram a of F i g . l i s then: 

f f C*.PT> = x/-i& pqqCy> D ^ c - p - . ^ . саэ 

As the di quark distribution function, p _Cz3, we take the 
measured quark distribution function. qCzD, calculated at the 
complementary momentum 1-2: p Cz3 = qCl-z3. In the actual 
computations we take care of flavours, which we suppress here 
for simplicity of notation. Similarly, to evaluate the diagram 
b of Fig.l, we need the momentum distribution of the remnant 
N-qq = qqq Ca triquarkD. for which we take a convolution of 
measured quark and antiquark structure functions at 1-z: 
^qqq^3 = Я«ЧС1-аЭ. 

We take fragmentation functions of the projectile remnants 
into observed hadrons, if only possible, from measurements in 
lepton-nucleon scattering. The diquark fragmentation functions, 
h "4"} D _, are well measured for various final hadrons , whereas no qq 

such measurements are a v a i l a b l e for the triquark fragmentation 
funct ion D .• We choose t h i s funct ion somewhat a r b i t r a r i l y t o 

h q q q i be D Cz3 - 6. <5Cl-z3. By t h i s cho ice we do not a l low for qqq hp 
e x c i t a t i o n of the p r o j e c t i l e proton by the qq pair removal. 
This a l s o means that t h e diagram b of F i g . i g i v e s a 
contr ibut ion t o fP Сх,р_Э on ly when t h e observed hadron i s the 
same as the p r o j e c t i l e , which reads 

fPhCx.P T3 = xJ-ЁУ qeqCi-y:>Dh
i(MC-p-.pT Э . СЗЭ 
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Fig.1 Two basic processes 
of the model: quark remo­
val CaD and quark-
antiquark pair removal 
CM. N p is the projectile 
nucleon. N_ is the target 
nucleon. 

Fig .2 The longitudinal 
momentum d i s t r ibut ion of 
protons i n a pp c o l l i s i o n 
for d i f ferent values of 
pt» data ref. S. For large 
p. the two contributions: 
q-removal, F i g . l a , and qq 
pair removal. F i g . l b , are 
c l e a r l y d is t inguishable . 

126 



In cases, when the detected hadr on h is not the same as the 
projectile, only the diagram a of Fig.l contributes, as we have 
neglected excitation of the triquark in Fig.lb. When the 
detected and incident hadrons are Identical, both 
contributions, eqs. CS) and СЗЭ, are present. 

We have Identified the qq-pair removal with the 
diffract!v» target excitation. This contribution gives a peak 
at x -» 1, as it Is proportional to qeqCl-xD, which in this 
limit varies as l/Cl-хЭ. To account quantitatively for the 
diffractive events we have to weight appropriately the two 
contributions, fph and f£h : a D 

f^Cx.p^ - Cl-w3fPh + wfPh . С4Э 

Parameter w can be identified with the ratio of the diffractive 
production cross section to the total inelastic pp cross 
section: w « Data from ref^' show, that w * 0.2 for 

a in 
pp and w - Ó. 15 for ft p. 

Fig.2 shows the inclusive cross section for the reaction 

pp-»pX. The data points are from ref at 100 GeV. In ref the 

detailed description of the structure and fragmentation 

functions used, is given. One can also find there the 

discussion of the transverse momentum dependence of the 

inclusive cross section. Our model agrees with the data 

reasonably well. 

Proton-nucleus collisions 

To generalize the above ideas to the case of pA 

scattering, we consider first the second collision. In the Dual 

Parton Model of Capella et al. , the leading diquark, which is 

formed in the first collision, does not change its nature in 

subsequent collisions. This corresponds, in the language of 

Fig. lb, to qq-pair stripping off the leading diquark in the 

second, third, etc...., collisions. We have developed an 

alternative view in ref , namely we have considered stripping 

of a quark also in the second collision. We thus allow for 
23 diquark breaking. It was shown that inclusive pi on spectra 
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75 fromimeasurement by Barton et al. of proton-nucleus collisions 

suggest that this really happens. We have used the 

characteristic difference between fragmentation functions of 

diquark and quark into pions to identify the leading parton 

after two collisions. 

Typical diagrams for two inelastic collisions are shown in 

Fig.3. We allow for stripping a quark off the projectile with 

probability 1-w, and a qq-pair with probability w. Fig. 3c shows 

the double stripping of quarks, what produces the single 

leading quark after two collisions. For higher number of 

collisions, v £ 3, we will limit ourselves to the two basic 
processes mentioned above, with the restriction, that the 

leading parton cannot be in a zero- or negative baryon number 

state. 

Longitudinal momentum distributions of hadrons h 

originating from the leading parton after exactly v collisions, 
ffj Сх.р_Э. is thus given by a formula: 

where A is the probability for the projectile remnant to 
^ CnO 

conta in m valence quarks, о - СхЭ i s the momentum d i s t r i b u t i o n 
funct ion of the leading p r o j e c t i l e remnant, and D CzO i s i t s 

qm 
fragmentation function into hadrons h. Formula С S3 says, that 
this leading object contains at least one valence quark. The 
fragmentation functions of a quark and diquark are taken from 
measurements of the lepton-lnduced reactions. For triquark 
fragmentation we use the function described above. The remnant 
momentum distributions, о , are calculated as suitable 
many-fold convolutions of quark and antiquark structure 
functions. 

The inclusive cross section to observe hadron h' as a 
product of the collision of hadron h with the nucleus A is 
expressed by functions f according to the formula: 
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F i g . 3 The in terac t ion of the p r o j e c t i l e nucleon Np with two 
target nucleons. CaD: the removal of two qq p a i r s . СЬЭ: the 
removal of one qq pair and one quark, СсЭ: double quark 
s tr ipping . 
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.3 hA-»h*A ь д .ь. 
dx d p_ ui.1 

hA where a are the geometrical cross sections for exactly v 
inelastic collisions of hadron h on nucleus A. These are 
calculated using the Glauber formula: 

hA JdSb Т**СЬЭ е-1"01'5 - l y - . С7Э 

The th ickness funct ion 

ТСЬЭ = ah N fdz пСЬ.23 С8Э 
i n •* 

Is calculated using the inelastic hadr on-nucl eon cross section 
o. and the nuclear matter density nCr-3 or the target nucleus 
CfnCr3d3r = A3. 

Results and discussion 
Fig.4 shows the results of our calculations of the 

absolute values of the Inclusive cross sections for the 
reaction pA •* hX, where h = p.n . The data are from Barton et 

73 al. at 100 GeV. For protons the data, stop at a too low x to 
see the peak near x=l, which is present in Fig. S. The n 
spectra exhibit a peculiar behaviour: for x •* 1 the cross 

+ IS + 
section for pp •• я X drops faster than that for p С -• я Х. 
This cannot be explained by the energy loss of the projectile 
proton, since the energy loss is larger in a collision on 
carbon nucleus, and from such an argument one would expect the 12 cross section to drop faster for p С than for pp. The 
qualitative agreement of our calculation with the data is due IS to quark fragmentation in the ease of p С collision. The quark 
fragmentation into n produces a harder spectrum than that of 
the diquark. For pp collision the fragmenting leading parton is 

12 a diquark. while in p С collision we also have a leading 
quark, producing harder pions. 

4 S3 As many other authors * we have treated quarks and gluons 
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very d i f f e r e n t l y . Colour exchange in our model occurs only 
between quarks, while the gluons are t rea ted a s spec ta tors . The 
gluon contr ibut ion i s accounted for p a r t i a l l y by employing the 
measured fragmentation funct ions . To est imate the inf luence of 
Including the dynamical gluons, we have ca lcu la ted a diagram 

33 corresponding t o the F i g . l a . i . e . the gluon removal In case 
of gluon removal the leading parton i s a triquark i n a 
coloui—octet s t a t e . Making the same assumption for i t s 
fragmentation function as for the col our-neutral triquark, and 

93 using the gluon s tructure function of ref. , we f ind the 
i n c l u s i v e pp s c a t t e r i n g with s i n g l e quark and gluon removal t o 
be q u a l i t a t i v e l y s imilar t o . the case of q and qq-pair 

33 removal Discrepancies between t h e pred ic t ions and the data 
in t h i s case are probably due t o our overs impl i f i ed assumptions 
about fragmentation of triquark. 

The author i s grateful t o K. Werner, J. HUfner and O. 
Nachtmann for creat ing an enjoyable and s t imulat ing atmosphere 
during our work in Heidelberg. He would a l s o l i k e t o thank the 
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h o s p i t a l i t y and Wojciech Broniowski for reading the manuscript. 
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HUCLBAR 3TRUCTUH3 FUHCTICHS AND CTJWJUTIVE 
PROCESSES 

Sfrer.ov A.V. - JIIIR, Dubna 

A b s t r a c t 

The author's pofrt of view on nuclear quark structure s presen­
ted. Different models frr explaining the ЕГ..З effect are reviewed. It 
is also shown that cur.ulat'.ve production data car be used to improve 
our understanding of the EMJ effect ar.d to give evidence for ita mul-
tiquark nature. 

Discovery of the 3VJ-effect' ' has drawn attention of the world­
wide community of physiciste to the ргоЫеш of quark structure of 
nuclei, and to its irreJ .cibility to the quark structure of consti-

/2/ 
tuent nucleons only' '. Stream of theoretical papers followed the dis­
covery of EMC suggesting a whole spectrum of possibilities for under­
standing the phenomena '. However, many of the suggestions tr.et with 
difficulties after a change of experimental data on FA /Fq, in the 
region of small X. '4'5', Nowadays, when all suggestions seem to te 
made, one can try to aralyne them on a general basis and to estimate 
to what extent the nuclear quark structure is understood and what is 
still unclear. -
1. CONGESTION OP NUC12US АИЭ NUCLEAR ÍUARK STRUCTURE 

Probably G.tfest first noticed that Q.OD evolution equations re­

sults ir. a simple convolution relation of nonsinglet quark distribu­

tion functions (the valence quarks) of nucleus and nucleon 

xbA*XMl)-№<>V»&'°z)d* , (1a) 
* T» Л/А where the function T . i<>0 s a t i s f i e s the baryo:. number sum 

A 
rule 
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(e l l nuclear function are her» divided ty A), Dut to thla, ona oar, 
oorelder TNi ae an effective valor.ee r.ucl*9n'i dlitrlbutlon 
function over a fraction of ror.erta e£ irapite of the impossibility 
of exprecelntf It through the ona-nuoleon wave fur.ctl-,r>. The problem 
ie aa followat čote it describe a procese that -Jeflr*'1» the dl»Tlku­
tí on T" (e«r. the stripping of a nucleut )? 

A « i d l e r r 'latlor. cer fce written /я - the oír.plťi bhbňř.t-1 ob 
woll^7'8^ which mixea the aingiet quark,£M i>*£Mfu l | , , > 'ty'' '"^' : ^ ' 
ard gluon diatributior.a funotlona 

* * A < * • ) 

T y "*T Afá ft* a» 

^ I and T satisfies 
the enerey-xocertum вит rule 

J \ Т л lat) Úd = W i / A M V ^ i . <8e) 
9 

Really, diagonaliílng the ayatae. of two linear evolution equa­
tions for the monenta ZL ( n.tQ*) and &(n.,Q*) < one car. ottaln 
the relation for two eigenfunctiona ^" (it,<?'.)'£'.".uV tíHní'»*» CsQ1) 
( Ск are aotne diaponalizing coafficienta depending on anor.aloua-
-dinversion tr.atrix)i 

£ ~ д ^ О л ) = Т А
£ < М -jr* ( n , < ? 4 ) . (3) 

!<ow, lot us take into account the fact that both nucleor.a and 
nucleus are bound states of quarts and glui.'.a, Due to this quark 
(ar.d pluon) propagator < P | ČflC) qv?) |P > suet aatlafy a 
no:ořineoun Bethe-Salpeter equation (Pijr.1) whose eigenvalues deter-
Г!ГР the effective леве (the binding er.erpy) sf the quarks. The quark 
distribution function la expressed tftгоurn the l i n t of trie propagator 
wher 5~* 0 . reiitulariied with the help of an ultraviolet cutoff pa­
rameter Cr . lr. the approximation of leading twist, i . e . disregar­
ding -L/Q correotiona( the equation of Plg,1 become alpebralci 
there is no 0 dependence and, conaequently, the пава- independent 
coefficients are tine same for the nucleus and nucleon 

is i 

http://valor.ee


?зг th in ГРВПОП, 

tut,*')] J ?-!*,* Л s[1 ^у^(«), 

a - J I л -- I A 3 Тд' » which r i v e , t oge the r with (3 ) r e l a -
. . . . ( ? , ( 

Лг. ;n; ,eo,att! -joi.flequf псе of r e l a t i o n e I t ) in thfi r q u a i i t y of 
qvcrnc 1 r.O'-.T.tB f r a c t l o n a of fluor.e and quarks nr.d an t iquarkn lr. thfi 
nucleus ind ruc leon 

Thia n l u t l o n lo In řODd aprecrr.er.t with B.'DI/J'*' data which nr<> the 
r.oat p ivc iee r.owDdayei ( « J O ^ / < * > 0 i ~ *• ) * ( 0 . 7 - 1 . 7 - 1 . 0 ) % , 
(The old K!..:-data / 1 ^ plve fo r the quan t i t y ( 7 . 1 - 1 . 0 - 3 . 0 ) , ' , ) . 

71.1- r e l a t i o n (4) c l o a r l y e o n t r a d l c t e the r e e c a l i r v hypothes i s 
' ' ir. e x p l a i a t i o n of the i X J - e f f e e t . I r f a c t , the pasou,-* fron. 
rue i f on to r.ueleus in theae modele lo equ iva len t to the prowth of 

Qt for which, according to . " , - i*< ;> i rc renoca t.r.; 4.X^>ri(,;re-
явга . 

In conc lus ion of t h i e sec t ion l e t us a t r e e e once tr.ore that SCO 
o v s l u t i o r cqua t i -na Juet as r e l a t i o n ( 3 ) ore roau l to of the lead ing 
t « i s t a p p r o x i r a t i o n . So, the r e l a t i o n e (1) and (2) do not inc lude t h e 
r.uclear sc reor . l rp which io formal ly a h iph - twia t e f f e c t ' • ' ' . 

Let ua aee now whet the E&w-effect tsear.e in the fratr.c of our 
approach. ;.c-t ua aoau:e tha t the funct ions ~Т"д, deter'! ir.c a.- e f f e c ­
t ive d i s t r i b u t i o n of nucleone in nuc l eus , a t l e a s t approx imate ly , 
and t h e r e f o r e they ere r.oetly cor.cer t r a t e d ir. the region of oť rr 1 
( i . e . in the repion of zero i n t e r n a l rr.on.entun of the nucleor . ) . Expan­
ding • //(») ir. (1) ard (2) around a « 1 , i t ia easy to ob ta in 
for r o t very l a r ^ e X 

I S ' 



where < > means Integration over interval [о , A ] , If one 
aooept that F / y ~ ( \ - X ) * and vc те 3 , then X - depen-
denoee of the aeoond and the third term are the factors 
-KX/(i-X) and KXU-*) [(K-l)X/Ó->) -2 ] respectively. 
In the region of X * 0.5 the second term is close to zero and to 
obtain the depletion in the region one should have 

<TÍ>-Í»AA>O •* \^;<.«УТ*М*«ЯАА>О (6) 

for the ratio RL of the struoture functions F^ - 2L and 

(7) 

for the ratio 14 3 of the structure functions of X F j , 
In addition, in the region X otf 0.5 the sea quarks are 

praotically absent> therefore one can expect that and 

^ A ~ A A (more exactly 2/3 Д д ) (8) 

The relations (8) and (7), mean that the number of "effective 
nucleone" in a nucleus have to be more than A , and valence nucleons 
have to оатгу only a part of the total nucleus momentum. In other 
words, there is a repumping over of part of momentum from valence quarks 
to sea quarks, in the nucleus In comparison with free nucleons. 

Notice that the shock produced by the discovery EMC was due to 
the prejudice that a nucleus is nade of A nucleone and so the condi­
tion 4 д * О baa to be imposed on the distribution "T , which 
unavoidably reaulta in £ ( x * 0 - O a i » independent of the 
form of T. In thia sense, the difference between " T s end "J"^-5 

(necessary to explain the EMC-effect) leads to the irreducibility of 
nuolear quark structure,to the quark structure of free nucleone. 

For a more accurate proof of this result see' '. 
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In spite of its generality, this approach allows to draw a num­
ber of interesting oonolusionsi 
I) It immediately follows.from (6) that the ratio 

Ki(*»o)» iTjfuieW - l+AA>d ( 9 ) 
II) The most accurate measurement of BOOKS'4' shows a small ( — 5%) 
but definite excess of the ratio over 1 In the region of small, 
i.e. the sane value as the loss of momenta of the valence nucleona 
*Ьд . This means a email number of particles of the nonnucleon com­

ponent. However, they have to be heavy enough to supply the 5% pumping 
over of the momentum ( f -nesone, NN-palrs or pione far off the maaa 
shell). So, in addition to the internuoleon sea there le a email 
( - A.A ), but hard enough "collective sea" of quark-antiquark pairs 
in nuclei. 

Using (1) and (2) it is easy to obtain for the sea 
A A 

0A(*)*ZA'\ . ÍTftx^At « (ftVlft-fct*)* (10) 
where the first term comes from the internucleon sea, which rapidly 
decreases with increasing X » ard the second term comes from the 
bard collective вев Од i Ьесаиэе its center of gravity is 

For plone on tbe maes shell this number Is f ^ x . That 
/12/ 

is the reason why tbe pumping over into tbe pione' ' gives no satis­
factory description of new data in.the region of small X (too many 
pions are needed to supply the 5% pumping over). 
ill) The place of intersection R(Xo)= 1 does not depend on the 
sort of nucleus and is at Xo - °«3. Really, if there are no scree­
ning and light particles In nuclei, ~Тд («**) has to be smooth enough 
in 'the region of small Ы. . Using then the first two terme of (5) 
it is easy to find . 

- 1 3-rv - • (i - Í*~X<»**/ !TA
SW^-) 

I — X» v o o ^ 
The ratio of integrals in the rlgbt-band side is in the Interval 
L~0,X„] and thus 0.28 < X 0 < 1/3. This feature of the ratio 

seems confirmed experimentally. 
Now, what about the proposed models? Different models are in faot 

different suggestions of the pumping over mechanisms. Not all of them 
aeem satisfactory from-our viewpoint. We have mentioned the resoaling 
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models'"' where part of the pumping-over comes into gluon component. 
However, the main draw baok of these models is the softness of the 
gluon and the sea component in nuoleon. This leads to в too Dig 
value of Rt C* - О) after the 5% pumping over. (Although the aut­
hors deny the applicability of tber model to the region of email X ). 
As it was noticed, models with pumping-over of moments into the mass 
shell pions' ' have the same disadvantage. 

Other models can be divided into three big cathegorieai 
i) Models with pumping over of the momentum either into maselve 

meson component' 3' ( j> , ^ , off the maee-shell pions) or into 
nucleon-antinucleon pairs' '. A component like that is probably rela­
ted to the core of nuclear force at small distances. However,it is 
hard to believe that the nucleon can conserve at such small distances 
its individual quark structure without converting it into multiquark 
etstes; 

ii) Pumping inside each nucleon' ' , i.e. change of its quark 
structure due to the influence of the internuclear field. Transition 
of part of nueleona into A -isobars' ' also belongs to this class, 
iře do not see, however, how it is possible to obtain the hard sea here. 

iii) Pumping over inside a multiquark-fluctuation'16'. By this we 
mean not only a bound state of two or core nucleons with interaction 
of their quarks, aa proposed in '10', or en exchange quark interaction 
in the final state considered in' , That kind of interactions is 
inevitable in any theory with a composite nucleon. However, the cal­
culation of the quark structure of states like that seems aa diffi­
cult as the calculation of the quark structure of nucleus. 

It is necessary to stress the important difference between a 
multiquark state and few-nucleon correlation (PNC)' '. The losses of 
momenta of the valence quarks for the latter are the same aa averaged 
over the nucleus, Лрд/£ — Ад , due to a change of structure of each 
nuoleon. Por the multiquark, however, it has to be much larger 

A*7>^A (12) 
e.g. if there is no pumping-over inside the nucleone, then Ад£.?Дд« 
where f is a probability of multiquark states. In fsct, the rela­
tion (12) can be conaidered as a definition of the multiquark state. 
A statistical realization of the hard antiquark sea is known (aee 
Kondratyuk paper' ' ). 

It seems that structure-function measurements cannot distinguish 
between these models. So, new sources of information are necessary. 
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One of them is deep-inelaetio scattering with measurement of badrona 
in a final state. Production of 0 - and Д -resonances and alao 
K"-mesons and antiprotona which carry tbe information about the 

oolleotive sea is especially interesting for evident reasons. Tbe 
published data of the EMC-eollaboration give evidence in favour of 
the enlarged yield of ar.tiprotona from the deuterium in comparison 
with the hydrogen'19'. They also give an argument in favour of an 
enlarged content of HH-paira in nuclei' '. However, the excess of 
antiprotona ia so large that aeema improbable. In the region of 

^ ~ 0.025 it is about 100*. (It la a new discovery if it is not 
an error!) Except that, the data on cumulative production of anti-
protons, aa we see below, give no evidence in favour of this expla­
nation of tbe EMC-effect. 

3. CUMULATIVE PARTICLES PRODUCTION 

Another source of information is cumulative particle production. 
Especially, the production of K-ffleaon and antiprotona on nuclei in 
tbe region X ^ i , because of the peculiarity of the nuclear quark 
structure mentioned before . 

However, a question ariaesi to what extent la the cumulative 
production orosa aection determined by tbe nuclear structure functions 

F A (•*) ' Until now there have been no quite reliable data for nucle­
ar deep-inelastic scattering in the region X ^ d. though there are 
some indications of similarity of the cumulative mesons spectra and 
structure function Fit14) in this region'20'. 

There exist two points of view on the physics of cumulative pro­
duction'2' t (a) "Hot models", in which massive clusters in nuolei 
(which are necessary to produce a cumulative particle) are formed by 
an incoming hadron, either by a sort of compression of the nuclear 
matter and heavy fireball formation or multiple rescatteringj 
(b) "cold modele", in which formations of that sort already exist in 
nuclei because of Blokhintsev's fluctuations of density'21' either 
in a form of multiquark states or in a form of a few-nucleon correla­
tion, resulting in tbe high-momentum Fermi motion. This reflects in 
the structure functions of tbe nucleus. A common property of these 
modele is tbe independence of type of the nucleus of the nuclear par-
ton fragmentation. This allows us to write down the cross section of 

/22/ 
the process in the form'"' 

Formally, they can be preaented ae valence quarks in antinucleons.. 
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• ^ s f W W x b JWfc№*,I4)£ (1J) 
wu.̂ e /«-Wsi У* ~ ^ s a n d * n e 'unotion 7 b doea not depend 
on A , i . e . i t ia the same for a nucleus and for a free nucleon. 
Combining (13) with (1 ,2 ) , i t la eaay to obtain a natural expreaslon 
(il lustrated In f ig . 2a): 

W***)- Í** №W*«*H**%**»*) (14а) 
where we иве the notation 

»i-i'(V*-rf), i-ifc-T?) (14b) 

The firat expreaaion can be considered approximately, due to small-
neaa of the EMC-effect, as a distribution of nuoleona over fractions 
of the momentum. For cumulative and stripping protons it ia necessary 
to add to (14a) a term proportional to /Уд (x) which takea into 
account diaaociation of the nucleus (Fig. 2b). Moreover, just this 
term gives the main contribution when Рт — О ' '. Parametrising 
the form of the spectrum of stripped and cumulative protone with 
р т а. О ("i*h normalisation <Aft>s К4иД,<<1А^>з1-^1" пА 

uaing the experimental orosa section for ?Af-*7r • "e obtain the 
croaa section of cumulative-pion production without any new parame­
ter. (The second term in (14a) naturally gives a email correction). 
This programme for deuterium (to minimize possible secondary nuclear 
effects) baa recently been made in work' ' and ebowe a good agreement 
with experiment. Also, the ratio VC'/'TT'1' agrees with experiment. This 
agreement confirms the independence of fragmentation of the kind of a 
nucleus (at leaat, for light nuclei), which ie the base of (14) and 
means also that the valence mesons carry the same information on /24/ the nuclear quark structure aa the cumulative protone' . However, 
tbe peculiarity of the nuolear quark structure is bidden here. 

Interpretation of /Уд in (14) depends on the mechanism of 
pumping over and, due to the aecond term in (14a), dominatea for 
"aea particles" (K~, p ) in the region X^- 1 • ">•» are J**8* 
sensitive to the peculiarity of tbe nuclear quark atruoture. For 
the ratio of КГ"* I K ~ yields in tbe region, we have 
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where the approximation ?N-*K' ~ is used. 
It is well-known experimentally'2'' that the ratio Г for alumi­
nium ar.d lead is constant, to experimental accuracy, in the region 

d. <X < 2.3 (Pig«3). Therefore, the functions Л//\ and A/A 

in this region may only differ by a coefficient. Due to different 
normalization conditions for these functions <^/V>— <«</V̂ >"= ^ / 2 
one can expect that for the models of type i) and ii) 
C e 2 ( M / 0 M A . Using the parametrization/a/ of the SLCA-data/26/ 
for the EMC-effect one finds Гд(,с: 65 ( &ц ft 0,036) and 
Tpg <r 45 ( Ap|sO,058) which is significantly higher than the 

experimental ratio, especially for the aluminium ( Гд"р OL 10 )• 
For the pumping over inside multiquark states, which have to deter­
mine the cumulative cross sections in this region of X , the pum­
ping over Аь^ нАд/р has to be higher (due to a small рд ) and 
Г«2(|+ Atf/i)!k,- hes to be lower, The experimental ratio ГА£ 

corresponds to Лt(.010.22 and РАС- 16%. This can be conside­
red as an indication of the multiquark mechanism in the cumulative 
phenomena as well as in the EMC-effect. 

Let us turn now to the cumulative antiprotone. Naturally, they 
are sensitive to the NN-pair pumping-over mechanism' ', The ratio of 

p /p -yields for 90° in the nuclear rest frame is determined by 
an expression of type (15) and is of the order of &/АД 
The experimental bound for this ratio is' 5' "s 10 , which seems /24 / to reject the above meehanims' '. On the other hand, if there is no 
packing of the collective sea into NN-peris and cumulative P results 
in fragmentation of <J-* p (just as K~ ), then the ratio P / к -

has to be c: 0.3 (suppression by an order of magnitude due to 
fragmentation 0, -P P and a growth due to a smaller transverse 
momentum of p at the same X ), which ie not far from the 
experimental limit p/k < 1 . However, this conclusion contradicts 
the conclusion made from the EMC-data' ''. So, a more accurate inves­
tigation of the entiproton yield seems necessary. 

It Is necessary to stress also that secondary nuclear effects 
can be significant for the intermediate and heavy nuclei we have 
considered. Indications of these effects come, for example, from the 
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enlarged A-dependence of cumulative proton and K~ -productions and 
from a depletion of 4-5 times from unity of Рд.»,, / Рл-*-ц i n *he 

region X - 0.6 as compared to that for deep inelastio scattering. 
(One should mention also that the ratio of cumulative cross sections 
(U/o shows even an anti-EMC effect in this region). For these 

reaeone It would be desirable to obtain accurate data on the kaon. and 
antlproton production off deuterium. 

The conclusive headlines aret 

1) The cause of the EMC-effect le the pumping over of the valence-
-quark momentum to a collective eea of quark-antiquark pairs, 
ii) Small exoess of the A/D ratio in the X í O region 

points to hardness of the collective sea or to a big value of a 

nonnuoleon component in nuclei. 

iii) Many popular models are in trouble due to i) and ii). 

iv) The ratio of K ~ / K ~ cumulative cross sections supports 

the multiquark mechanism in the EMC-effect and in the cumulative 

procese, 

v) The production of antiprotons is very intriquing but the data seem 

controversial. 
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Abstract 

Prospects for testing QCD in non-leptonic weak decays are analyzed in 
the framework of the effective chiral Lagrangian of the Standard Model. 

1. MOTIVATION 
Quantitative tests of the Standard Model (SM) [1] in non-leptonic weak inter­

actions are rendered difficult by our limited understanding of QCD at low energies 
(long-distance effects). There are nevertheless several good reasons for detailed the­
oretical investigations of non-leptonic weak decays: 

i) A new round of high-precision experiments on rare К decays is already under 
way at BNL [2]. Compared to the present state, the sensitivity of these ex­
periments will allow for improvements of several orders of magnitude in the 
branching ratios, reaching down as low as 10""" in some cases. 

ii) In the purely electroweak sector, clarifying the structure of CP violation is 
of paramount importance. After the recent experimental indication of CP 
violation in the K° —> 2тг decay amplitudes [3], as distinguished from the well-
established CP non-invariance in the neutral kaon mass matrix, it becomes 
even more urgent to confront the SM with different manifestations of this still 
mysterious symmetry breaking [4]. Although non-leptonic weak decays are 
very promising in this repect [4,5] in view of the forthcoming high-statistics 
experiments, I shall in accordance with the main topic of this conference 

~~ concentrate in this talk on the QCD aspects of the problem. 

iii) Instead of regarding the strong interactions as an unavoidable evil blurring 
our view of the electroweak interactions, we may try to extract information 
on QCD itself from non-leptonic weak decays. 

The standard approach to non-leptonic weak interactions makes use of the oper­
ator product expansion [6]. The dominant terms in the effective weak Hamiltonian 
are four-fermion operators of light quark fields with Wilson coefficients which are 
calculable in QCD (short-distance structure). The problem arises in the calcula­
tion of hadronic matrix elements of these quark operators where the long-distance 
structure of QCD enters in an essential way. Most of the methods proposed for 
calculating such matrix elements can at best be called QCD-inspired. The problem 
is especially acute for radiative decays which will be my main concern later in th<« 

гТо be published in the Ptoe. of "Hadron Structure '87", Smolenice, ČSSR, Nov. 1987. 

145 



talk. To calculate hadronic matrix elements to all orders in the strong interactions 
and to the relevant order in am is simply beyond our present capabilities. 

A possible alternative to the standard approach is provided by chiral perturba­
tion theory (CHPT), an effective field theory at the hadronic level which incorpo­
rates the softly broken chiral symmetry of QCD. The effective chiral Lagrangian 
contains certain coupling constants which are not restricted by chiral symmetry 
alone. It is important to realize that the chiral Lagrangian is not just another 
QCD-inspired model, but it is really the SM itself at the hadronic level, with a few 
constants left undetermined a priori. Further theoretical progress in QCD cannot 
change the structure of this Lagrangian without completely upsetting our notions 
of how chiral eymmetry is realieed, but it can only give information on the coupling 
constants in the chiral Lagrangian. Based on recent work with Antonio Pich and 
Eduardo de Rafael [5,7,8] I shall try to convince you that the chiral approach is 
certainly complementary [9] and in some cases such as radiative К decays definitely 
superior to the standard approach. 

This talk is organized as follows. In Sect. 2 CHPT for the strong and electro­
magnetic interactions of pseudoscalar mesone is briefly reviewed. Sect. 3 is devoted 
to a discussion of how to incorporate the non-leptonic weak interactions in the chi­
ral Lagrangian. The main emphasis will be on Sect. 4 where radiative К decays 
are analyzed in the chiral approach. Specific ways to test QCD in different decay 
channels are investigated. Conclusions are summarized in Sect. 5. 

2. CHIRAL PERTURBATION THEORY 
QCD with massless quarks u, d, s exhibits a global chiral symmetry SU(3)t, X 

SU(Z)n- All experimental and theoretical evidence points to the spontaneous break­
ing of this chiral symmetry to the diagonal vectorial subgroup Sf/(3)y. This sponta­
neous symmetry breaking entails the existence of eight Goldstone bosons to be iden­
tified with the octet of pseudoscalar mesons. The Goldstone fields <p'(x) (t = 1, ...;8) 
parametrize the coset space 5f/(3)b x SU(3)R/SU(2)v and carry a non-linear re­
alization of the chiral group [10] 

UMsmL*svvKgbUMgl ( 2 Л ) 

U(<p) may be parametrized using the fundamental representation of 51/(3), i.e. 

U(v) = ехр(1\/2Ф/Л) 

*- - й + Л K° 
\ к- it* - $ 

The unique chiral invariant Lagrangian with the minimal number of derivatives is 
given by the non-linear <r model 

Co = s-f triAtwir*) = <S w M f l ^ a V (2-3) 

* V2 
(2.2) 
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with the invariant metric 
ffii(v) = tr(«i W ) . (2.4) 

For later use we record the V i A Noether currents 

£„ = iflUe^ ( V - A ) 

Л„ = iflQ%U (V + A) 

allowing in particular the identification of the coupling constant /„ with the pion 
decay constant (/, ~ 93 MeV) to lowest order in (2.3). 

Following Gasser and Leutwyler [11], we now couple the quarks q = (u,d,a) to 
5C(3)-valued hermitian external fields S, P, i>„, a,.: 

£ = CQCD + 97"(»„ + «Vfc)? ~ í(S - iPi,)q- (2.6) 

Actually, we shall only be interested in the external electromagnetic field Ац ap­
pearing in 

v„ = е<ЭЛ„ (2.7) 
with the 3 x 3 quark charge matrix Q and in the scalar field S which gives rise to 
non-zero quark masses upon spontaneous symmetry breaking: 

{S(z))vae = M= diag(mU) тл,т,). (2.8) 

Because of the additional chir&l invariant tr [(5 + iP)U) of lowest dimension, the 
Lagrangian (2.3) gets replaced by 

А л = ^^{D^UD^U^ + vt^MU + U^M) (2.9) 

with the covariant derivative 

DMU = d?U - ieA^Q, U] (2.10) 

and 
(2.11) 

to lowest order in CHPT. 
The chiral Lagrangian (2.9) is non-renormalizable. The loop expansion for (2.9) 

corresponds to a derivative expansion where some derivatives may be replaced by 
external fields. At the one-loop level, the Lagrangian (2.9) must be supplemented 
with the most general chiral invariant Lagrangian of fourth order in derivatives 
and/or external fields [11]. 

Instead of writing down the complete list, of which we shall only need two terms 
later on, I would like to dwell on the interpretation of the corresponding dimension-
less coupling constants. These constants originate in the process of integrating out 
quarks and gluons and they receive in general both long- and short-distance contri­
butions. The long-distance parts comprise in particular the effect of higher hadronic 
states (resonances) which do not appear as fundamental fields in the theory. Many, 
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but not alt of the coupling constant» in the fourth-order Lagranglan will be scale 
dependent corresponding to divergences in the one-loop functional. Therefore, they 
will sometimes generically be called cotmterterm coupling constants. In order to 
appreciate the generality of CHPT it is crucial to reatise that to the order we shall 
be working the complete dynamical structure of QCD, long- and short-distance, Is 
contained in /», v and the ten coupling constants of Qasser and Leutwyler. If these 
constants arc determined by comparison with experiment (11), we get the complete 
effective chiral Lagranglan to one-loop accuracy as 

£& + Ctmmfr + CWŽW (2.12) 

including the anomalous Wess-Zuiiilno-Witten term Lwzw [12). 

3. CHIRAL REALIZATION OF NON-LEPTONIC WEAK INTERACTIONS 
The effective Д 5 я 1 Lagrangian for light quarks 

/-» 
Смт\ - - ^ í|Cicaí7M(l - 7 | И У ( 1 ~ It)* + Л-с (3.1) 

is modified In the presence of strong interactions. From the operator product ex­
pansion one derives (6] the QCD-correctcd Lagrangian 

Ж - % *!*!«• Ž WWi + hx. (3.2) 
V* 1-1 

Neither (he explicit form of the 4-quark operators Q{ nor of the scale dependent 
Wilson coefficients С^ц1) will be needed. For the effective chiral realization of (3.2) 
the only important observation is that (3.2) transforms as 

(84,1я) + (27л,1я) (3.3) 
under the chiral group. The most prominent feature of AS = 1 non-leptonic weak 
interactions is the pronounced dominance of the octet part of (3.3) whenever it 
can contribute at all. The chiral approach cannot explain this octet dominance 
( Д / = 1 / 2 rule), but it can provide consistency checks for the assumption that 
QCD fully accounts for this enhancement, as we shnil soon see. 

Neglecting the 27-plet from now on, we are led to the unique effective chiral 
realization of (3.2) to lowest order in the derivative expansion (13] 

C'iU = £д «idea* ИЛв_|т1„1") + h.c. (3.4) 

in terms of the V - A current L„. The dimensionless octet coupling constant g» is 
determined from К -» 2ж decays as 

Ы =: 5.1. (3.6) 
Including the electromagnetic field is now straightforward and yields [7] 

C'/L = ^ «leieiís iT^t-nCrC) + h.c. (3.6) 
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with a "«variant" V - A current 

Сц т iflUDpUl (3.7) 

To evaluate decay amplitudes consistently to one-loop accuracy, we must add to 
(3.0) as in the purely strong and electromagnetic case all possible terms of fourth 
order in derivatives and/or external fields allowed by chiral symmetry. Taking into 
account a discrete symmetry of (3.1) and (3.2) called OPS [14], one finds [6,7,8] for 
the fourth-order AS = 1 effective Lagrangian 

tiLi,.m - - "yj ^ ' " K it{QXt.i7ChCv) + ш,lr(Q£„Ae-<rA,)}+ 

+ ''/'Овил Ftw?^ iT^t.irQUQU^) + h.e. (3.8) 

where I have only included terms which are relevant for radiative К decays with at 
most one plon in the final state to be discussed subsequently. u>i, wj and ш« are a 
priori undetermined dimensionless coupling constants. At this point, I also list the 
two relevant terms in the strong + electromagnetic counterterm Lagrangian £ишпыг 
in (2.12) as given in Ref. [11]: 

4 4 j « -itL9F»v it{QDtUDvV* + QD^DuU) + t1 LxaF»v F»» it(UQU^Q) (3.9) 

with two further constants £p, £>ю. Finally, we shall also need the anomalous WZW 
terms tn (2.12) linear in meson fields with the familiar form [15] 

Cwzw = g^r t^F^F^in» + »r/\/3). (3.10) 

The stage is now set for a complete calculation of radiative К decays (with at 
moat one pion in the final state) to one-loop accuracy. 

4. RADIATIVE К DECAYS 
Rare К decays are ideally suited for a treatment in CHPT for mainly two 

reasons: 

i) All hadrons in the initial and final state are pseudoscalar mesons. 

ii) The natural expansion parameter of CHPT is 9I/(4rr/v)1 for a generic mo­
mentum q which is at most 

M | H = 0-18 (4.1) 1втг1/; 

for К decays. 
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Starling to calculate amplitudes fur radiative К decays one soon makes an 
observation which can be phrased as a general theorem [6]t the amplitude for any 
radiative К decay with at most one plon in the final state vanishes to lowest order 
in ORPT. This theorem can be traced back to a mismatch between the minimum 
number of powers of external momenta required by gauge invariance and the powers 
of momenta that the lowest order chiral Lagrangian can provide (7,8]. 

We must therefore pass on to the next order of OHPT. A natural classification 
of decay channels is provided by the convergence properties of the corresponding 
loop amplitudes: 

a) The fourth-order coupling» in (3.8) and (3.9) do not contribute. Consequently, 
chiral symmetry forces the corresponding loop integrals to converge. 

b) The loop amplitude converges although there is a counterterm contribution. 
The counterterm amplitude must be scale independent in this case. 

c) The loop amplitude diverges so that chiral symmetry must allow for a scale 
dependent counterterm amplitude. 

4a. K° -»(ff°)7<y 
In the so-called diagonal basis of pseudoscalar fields [5,8] the relevant loop di­

agrams are given in Fig. 1 where the ir° is to be omitted in the final state for 
K° —»77. The complete loop amplitude must be finite because there are no con­
tributions from the counterterm Lagrangians (3.8) and (3.9). With CP conserved, 
the loop amplitudes only contribute to Ks ~* 77 and Kj, —»irVy. 

The final results for Г(Ка -» 2y) are [16] 

m.~i,). *"»%«;-frinfrr («) 
with tv = $J and for the differential decay rate dT(KL -• ir0*ry)/dz [8,17] 

ЩКг. -> Jrt) a c^fjgj xl/3{hzrl)l {z _ r , ) j p ( ^ + (1 _ r, z)m? 

' * ±* Jf-loop 
n—loop 

(4.3) 

* = т Я м 0 < * < ( 1 - т у ) а = 0.Б2, Д(а, b, с) = a2 + b2 + с2 -2(ab + be + ca), 
Mfc 

(4.4) 
where F is a certain loop function [8]. With 

|(7a| аг 9.1 • 10"e GeV"J (4.5) 

one obtains a branching ratio 

B{KS -* 2y) = 2.0 • КГ6 (4.6) 

to be compared with a recent measurement at GERN by the NA31 collaboration 
Ц8]: 

B(KS ~* 27) = (2.4 ± 1.2) • Ю-*. (4.7) 
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From (4.2) and (4.4) we get the parameter free prediction 

Г ( * , - 2 7 ) - 5 , 9 ' 1 0 ' ( 4 ' 8 ) 

Here, we are in the fortunate position that the rates are unambiguously given in 
terms of only the octet coupling да due to the absence of counterterm contributions. 
The prediction (4.8) will serve as a non-trivial test of the octet enhancement in 
QCD. 

The spectrum (4.4) is dominated by the pion-loop contribution and has a very 
characteristic shape shown in Fig. 2. The specific «-dependence in (4.4) is in prin­
ciple a direct test of the chiral structure of vertices implied by QCD. 

The two-photon amplitudes can, of course, also be calculated for off-shell pho­
tons. As an example, the normalized spectrum for Ks —» 7M+M~ >8 shown in Fig. 3. 
For all details, including a comparison with an earlier dispersion theoretic analysis 
of Sehgal [19], I refer to Ref. [5]. 

The decays Ki -* 27 and Ks -* тг°77 proceed via the diagram in Fig. 4 (for 
. Ks -* ir°77) involving the anomaly (3.10). Without the final it0, the JT° and r\ 
contributions exactly cancel to lowest order in CHPT for Ki —• 27. A complete 
calculation to the next order in CHPT (sixth order in the derivative expansion) does 
not yet exist. On the other hand, the amplitude for Ks -»ir°77 due t o t n e diagram 
in Fig. 4 is non-vanishing. Away from the pion pole in the 77-invariant mass, the 
chiral structure of the weak cubic vertex can again be tested in the spectrum [8]. 

4b. K+ -» ir+77 
To lowest non-trivial order, the amplitude for K+ -»ir+77 derives from three 

different sources: loop diagrams similar to Fig. 1, the counterterm Lagrangians (3.8) 
and (3.9) and the anomaly (3.10). Altogether, the differential decay rate comes out 
to be 

^ — 7 - ^ > = j g j j s А'/'(1,*,г1)*2{И*)1' + |C(.)|») (4.9) 

where the anomalous contribution C{z) can be found in Ref. [5] and with 

с = 32тга(4(Х9 + Lw) - l(wi + 2u>a + 2u»4)J 

А ( г ) - ^Ы-1~')П^) + {1-ш-^)Пш) + Ы ( 4 Л 0 ) 

It is quite remarkable that as in the case of KL —* 1Г°уу the loop amplitude is 
again convergent although there is now also a counterterm amplitude proportional 
to c. The total rate is shown in Fig. 5 as a function of c. The spectrum (4.9) has 
again a very characteristic shape [5]. 

What can we say about the magnitude of the scale independent constant č 
? From the analysis of Gaillard and Lee [20] one infers that there is no leading 
short-distance contribution to č . From what we know about the separate coupling 
constants appearing in с we estimate [5] с = 0(1) . 
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Prom Fig. S we obtain a lower bound for the rate 

Г(ЛГ+ - . JT+ТУ) > 2 • 10-аз GeV (4.11) 

corresponding to a branching ratio 

B(K+ — jr+ry) > 4 • 10~T. (4.12) 

With the estimate č = 0(1) we conclude from Pig. 5 that a branching ratio signifi­
cantly larger than 10~e could hardly be consistent with QCD [21]. 

4c. К -»irt+l-
It'is instructive to compare the decays K+ -* n+t+i~ with the semileptonlc 

decays K+ -»ir°t+vt. If the transition K+ -* n+y" would proceed in lowest order 
we would expect 

ЦК+-***Ы-)_ f e ' / W a д, 10-, Г 4 „ . 

where дщ, is a non-leptonic enhancement factor. However, experimentally this ratio 
is [22] 

for the electronic mode.In other words, the non-leptonic enhancement is more than 
compensated by some suppression mechanism. This suppression requires rather 
delicate cancellations in the standard approach [23]. In CHPT the transition K+ —» 
7r+7* vanishes in lowest order in view of the general theorem discussed earlier. A 
more realistic estimate is therefore 

Г(К+-иг+e+e-) e W , , 
Г(Я+ -»тг«е+1/е) " ( 16тг' ' ~ 3A9NL 1 0 (4.15) 

in accordance with the experimental value (4.14). 
The loop ampljtudes are divergent for both K+ —» w+7* and K$ —> >r07* 0 n 

the limit of CP invariance KL ~* jr°7* is exactly zero). Thus, the counterterm 
amplitudes depending on Wi, w2 and L9 must contribute in this case and they are 
necessarily scale dependent. With an additional assumption (absence of exotics) [7] 
wi can be related to LB which in turn is determined by the pion charge radius [11]. 
Fixing the remaining constant W\ with the measured rate [22] for K+ —»ir+e+e~, 
all other rates and spectra are uniquely predicted up to a twofold ambiguity [7]. 

5. CONCLUSIONS 
In summarizing the advantages of CHPT as applied to rare К decays the difficul­

ties of the standard approach in distinguishing between genuine predictions of the 
SM and additional more or less plausible assumptions concerning the long-distance 
dynamics should be kept in mind. 

152 



i) CHPT as the Lagrangian formulation of softly broken chiral symmetry is a 
direct consequence of QCD. 

ii) Chiral invariance and electromagnetic gauge invariance together imply strong 
restrictions for radiative decay amplitudes (e.g., vanishing amplitudes in low­
est order for a whole class of radiative К decays). 

iii) In spite of higher order counterterms, CHPT as a non-renormalisable field 
theory can give rise to precise predictions. 

iv) CHPT is a systematic expansion in momenta and meson masses especially 
well suited for К decays with a natural expansion parameter of usually much 
than М^/(4я-Д)а = 0.18. 

v) In favourable cases like Kg —* 77 and Kt -* f °77 the rates are unambiguously 
calculable at the one-loop level. Comparison with experiment can test the 
underlying assumption that QCD fully accommodates the Д / = 1/2 rule. 

vi) For 3-body decays the differential decay rates are either directly predicted 
or given in terms of the total rates. The shapes of the distributions test the 
chiral structure of vertices dictated by QCD. 

Despite the complicated interplay between strong and electroweak interactions 
in non-leptonic weak decays precision tests in this field will become possible in the 
near future. 
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Figure Captions 

Fig. I One-loop diagrams for K° —* it°yy in the diagonal basis of pseudoscalar fields 
18]. 

Fig. 2 Normalized z-distribution for KL -» w°77 (full curve) compared with phase 
space (dashed curve). 

Fig. 3 Normalized gf-distribution (q\ = mj+>l_) for Ks -» 7/i+/*~ (full curve) com­
pared with phase space (dashed curve). 

Fig. 4 Tree diagram for Ks —»7re77. 

Fig. 5 Total rate for K+ -»ir+77 (full curve) as a function of č defined in (4.10). 
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On the whole it is now an established fact at high tem­

peratures the quarks and gluons are practically liberated and 

chlral symmetry is restored but at low temperatures it is 

spontaneously broken and the constituents are confined £l3* 

The Monte-Carlo numerical experiments have made it possible 

to ascertain the temperature and order of appropriate phase 

transitions (though there are some contradictions between 

results of different groups) however, the physics underlyngt 

the closeness of both temperatures and at any rate the intui­

tively apparent interrelation existing between them is still 

rather unclear £2} . Experience teaches us ( if only through 

the example of Landau-Ginzburg effective theory in aupercon-

dactivlty) that at the present stage of theoretical develop­

ment any attempts are extremely important to construct an 

effective model theory allowing us to promote essentially the 

analytical methods of investigating phase transition problem 

in gauge theories. 

Specifically deeper analysis of deconfinement phase 

transition nature comes from the constructive idea about the 

dual-like correspondence between d+1 - dimension finite tem­

perature pure gauge theories and d-dlmension spin systems 

with local interaction £}3» However the Monte-Carlo analysis 

of the lattice QCD with dynamical quarks has shown that this 

transition may disappear in the real world of interacting 

quarks and gluons. Although in this case the calculations 
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are not so irreproachable, sinoe nobody has succeded In in-

Tenting the relevant order parameter, nevertheless these cir­

cumstances have given rise to the opinion in a number of pa­

pers that the confinement can be no more than a qualitative 

conception In such theories. 

In the present note we develop an approach to analyze 

the deconfinement phase transition which, as a matter of fact, 

demonstrates the origin of universality arguments j[33 , at any 

rate, in the strong coupling approximation. We find it. to be a 

valuable suggestion as a detailed investigation of the oritioal 

region can be fulfileu analytically. This approach is based on 

the so-called spherical model £4] arising as an approximation 

to solve the Ising model and so far remaining to be one of a few 

(if not a unique one) ferromagnetic models allowing an exact 

solution and discovering the phase transition for a three-di­

mension lattice-. Moreover, it is known \_5] that the singularities 
of the thermodynamical functions take the form of power laws 

with the oritical indicies oloso to those in the Î l'tlg model 

In order to make the essence of our suggestion more tran­

sparent we first consider SU(2)-lattice pure gluodynamios. ?/e 

employ the Hamiltonian formulation (in A0= 0 gauge) in the strong 

coupling regime and then include the quarks following the reci­

pes of Ref. Тб"|. The corresponding partition function takes the 

form 2* 13*^**%. ^ m ^ . i w ) >, r-u/ (i) 
where ТЛг л0 лО \ 7 Л*** * » M t ^ " V f r r 

and V=- |£ j V i Q . , cuis the lattice spacing, d is the space 

dimension, 1J is the number of lattice sites. Knowing the low-

temperature ( \ » 1) and high-temperature (*{£<* 1) asymptotic 

behaviours of Eq.(2), {j,B\ it is not difficult to realize 

that the function '. JCK^V^*»!*) could suitably be approximated 

by у о ^ « « {i4<4*V4^4^*fcw} (3) 
The functions I, I and К are some smooth fructions of V 
(howerer, there is the condition I> T) and these reproduce the 
corresponding asymptotic behaviours of the function P Ci,fr *f ) • 
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The computations have shown that the accuracy of this appro­
ach is about two percents in the whole region of ̂  V впй 
л^; variables. 

Now introducing two-dimensional unit vectors £* = 
•\ž*i éx^1 «fcoS \ i £iw u. \ in each eite of d - dimensional 
space and noticing that ^д?-^ eťf„=. XQ£+tt-\)t?dX do» 
we have for the partition function 

Thus the proposed approximation makes it possible to reduce 
the initial partition function Eq.(1) to the effective one 
Eq.(4), displaying the generalization of the well-known clas­
sical Heisenberg model to the asymmetric interaction 
The critical behaviour of this system can be studied by the 
powerful methods in spin system theory. The situation is quite 
relevant to the universality arguments [3] and furthermore, 
in a sense, it illuminates the nature of their origin. 

Investigating the phase transition character and an 
appearenoe of corresponding singularities of the thermodynamic 
quantities we utilize the spherical model \jf[. The crucial point 
is to prove a replacement of the condition o^ * £2* +ё в1Ъу 
weaker condition . , -t. ^\ 4 . 

-jk(4r**-*£*0-4- (5) 
is equivalent for Eq.(4) to replace 

The constant б is chosen here in such a way aS to ensure the 
legitimacy of interhanging the integration order after putting 
Eq.(6) into Eq.(4)« It means that Ó is a line to the right of 
all «(.-singularities of the integrand. It will be clear from 
what follows that it is enough <L > d. 

As to tVxe Inclusion of the matter fields, following 
Ref.19"], we have to add the factor which in the present no­
tation is equivalent to the following substitution 

In Ref «f Oj|, the model of the gluodynamics with a gas of the 
probe charges has been developed and we has shown that the 
partition function takes an additional factor of a more general 
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(than at Ref.^6]) form. For the present consideration this 
will he 

where X is the fugaoity regulating the contribution of oo-
lour-oharged particles and colourless ones. It la evident 
taking У «1 that we reproduoe the result of Ref.[6]. Then 
the partition function of this QCD model oan be written In 
the spherical model approximation as 

where t 

In order to obtain the integrals over £ and & in 
Eq.(8) in the Gaussian forms, it is convenient to perform 
those aa % 

l ^ ^ í M v ) fcWiWft^} Cl0) 
Ate 

Making use the fact that 

where the summation z. is running over all unequal 
Чуц,»..,^ from the whole set X l v . . , Y ^ we can reduoe 
Eq.(lO) to the calculation of the following integrals 
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where is the generalization of the Hermltlan 
polynomial to^n-dlmenolono.In order to determine Qn(0) In 
Eq.(11) we take into aooount following [.11 *j that 

where Hm(ty) has already been normal Hermitian polynomial 
for whioh we have , 

W (o\ I '̂ - m lflaVQn 
Пьх-и' \ 0 m ls odd 

(13) 
These give finally for the integral Eq.(14) ^ 

J * (_ when m is odd 

Integrating over & and & we have the partition funotlon 
Eq.(lO) in the form 

c-iV „ 
here the result of the integration over Л4 is given as 

and 2. means that the summation is taken over all fy 
unequal to eaoh other (over permutations). As to the Integ­
ration over eld its result is J ш •• rf ^ 

Calculating Per( 1/A) we have by defenitlon that 

Using the explioit form of ^ v we find approximately up to 
the P~v terms (p> d, N » 1) 
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Now admitting the numbers Vjv to be independept in the de­
finition of Per(1/A) for all matrioes VÚ\\'b i . e . igno­
ring res t riot ion (X v,.,w) i* C^')'"^) and extending the summa­
tion to all Xv (all K/?»C ) we obtain 

(20) 

Remind now that * T M > t ^ w e o o n o l u d e Per(1/A) is the 
regular function of «c. in the regionfcteO o(. • 

To oaloulate <Q we notice that / 

eto. We believe the suitable approximation for (0 is as 
follows J ' 

Q-Z_ W A U-WYHJ se " ( и , 
where 

VVf()-i-4^řC5?5Se-lJ} мы 
Indeed the precision of approximation is slightly getting 
worse with V> inoreaslng but if we are interested in not 
so large X the deviation for high orders does not tell 
praotioally on the general result. The correction oaloulated 
elsewhere whioh is not testifies to the infinite values of 
exaot function f^C^.^and its derivative at J. >d. Substi­
tuting the obtained expressions of %p A aa^L Q *п*° 
Eq.(15) we find for the partition funution 

Z ^ \ll *W {у №$} Í24) 
where 

Щ) *ilW }£>)- U - ^ , [tUA* Lul\ (25) 
We oan show that ,«, и _ J ,L 
A,í~4«íA »JU4) . <W*[f-LU*)] e u6) 
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DUt "Г 

, fa LUH* %{*$-*) 
and sinoe the behaviour of Q(z) la well studied (see, for 
inatanoe Ref.[12"p the integral Bq.(15) oan be oaloulated by 
the method of steepest descent. The saddle point o(.-*dLo is de­
fined by the condition ^ . J K ^ I * ) " ^ 

lW«n* £ 3 , 'C^-JbzL^bi^A) <27> 
It oan be solved graphically and depicted in the figure. 

The curves 0,1,2 correspond to the values of the func­
tion £42 f U V) at itsO, Ví,))* respectively moreover 
^ г > \ > © «The ourve 3 corresponds to the function 

Its singular point at ^ «d is denoted by aaterisk. The 
saddle points are expressed via the opened oiroleo and their 
positions are defined by the point of intersections between 
the curves 0,1,2 and ourve 3. 

It ia evident from the figure that the saddle point is 
present at all \У0 (the ourvee 1 and 2) and at any l(Y) 
(figs. A and B); then the free energy сф (у. dL0(V)) ia a 
smooth function of temperature Jb" (more exactly, the smooth 
function of I(\)) that signals the absenoe of the tempera­
ture phase transition. When the matter fields are absent 
( \ «0, and henoe j"«U,lM) the ourve 0 at the figure, the 
saddle point does exist at not all values of К О (fig.A) 
and the phase transition is restored. The value of I at which 
the phase transition takes plaoe is defined by the equation 

$СЫ)~ Г 00 
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ABSTRACT 

We discuss the dependence of the renormalization group flow on the choice 
of the renormalization group transformation (RGT). An optimal choice of the 
transformation's parameters should lead to a «normalized trajectory close to a 
few parameter action. We apply a recently developed method to determine an 
optimal RGT to SU(2) lattice gauge theory and discuss the achieved improve­
ment. 

The lattice provides a gauge invariant regular i zation for field theories and quanti­
zation amounts to the determination of expectation values over the ensemble of field 
configurations in equilibrium. The construction of a continuum quantum field theory re­
quires the investigation of such a system of statistical mechanics at criticality, where the 
correlation length diverges. In this region of coupling space the lattice system is scale 
invariant (the characteristic length being infinite); renormalization group transforma­
tions (RGT), which perform changes of the length scale of the system and corresponding 
changes of the action, are then symmetry transformations. The critical exponents that 
determine the continuum theory can be calculated from eigenvalues of the linearized 
transformation at a fixed point (FP) of the transformation, a scale invariant action S', 
and it is also possible to determine universality classes as domains of attraction of 5*.1 

Real Space RGTs for a lattice system with fields V and action S are introduced 
by defining a transition probability P{U',U) > 0, itv,(P[V1,U)) = 1 , where U' 
denotes the configurations on a smaller lattice and try/ () the integral over all of such 
configurations. The «normalized action is then 

S ' ( ^ ' ) = l ° 8 t m ( P ( y ' , t / ) e S W ) . (1) 

For most systems of interest this integral cannot be calculated in closed form and ap­
proximations have to be applied. Monte Carlo Renormalization Group (MCRG) has 
emerged as an efficient procedure to obtain informations about the critical structure.2 

Wilson1 has proposed a gauge invariant action; for the non-abelian SU(N) gauge 
theories in four space-time dimensions the critical value of the Wilson coupling Kp = Щ 
is infinite. MCRG studies of systems of that kind have concentrated on the nonper-
turbative /̂ -function of the theory by calculating the change of Kp under a change of 
scale. This can be done with a single RGT step under the assumption that S' is again 

t Contribution presented by M.Salmhofer at the conference "Hadron Structure 87", 
Smolenice, CSSR, Nov.16-20,1987 
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of the simple Wilson form.4 The effective renormalized coupling can be determined by 
comparison of the expectation values derived from the blocked lattice with expectation 
values determined in a simulation of the system with this simple action. More trust­
worthy are operator matching procedures s; they rely on the fact that for any starting 
action the sequence of renormalized actions will, after sufficiently many blocking steps, 
be attracted by the renormalized trajectory (RT), the line connecting the critical and 
the trivial FP. However, for an arbitrary chosen RGT the initial action may be quite 
far from the RT and thue "sufficiently many" often enough may require simulation on 
very large lattices even if obeervables are compared on the smallest ones possible. 

This problem can be overcome by "improvement" of the starting action by including 
more complicated interaction terms which place it in the vicinity of the RT of a given 
RGT '. On the other hand, there is a great variety of functions P ({/', U) satisfying the 
rather general conditions mentioned above; each of them should be equally well suited 
to determine scaling behaviour. Since the position of the RT may depend on the specific 
RGT one can as well try to move the RT into a few-parameter subspace by adjusting 
the weight factor P{U', U) T. 

The aim of the work reported here 8 was to find a transition probability P(U',U) 
for 517 (2)-lattice gauge theory such that S' has Wilson's form if S does, that is to make 
S' lie in the subspace where only Kp is nonzero. Whereas such an optimization clearly 
reduces the problems mentioned above and even does away with the ever-lurking menace 
of truncation errors' in the calculation of the critical exponents, its main problem is 
whether a restriction as strong as that is possible at all. This question arises because 
globally and exactly keeping the RT in a certain subspace would move the FP into this 
subspace as well, which is, of course, desirable, but need not be possible. Provided the 
RGTs applied are nonsingular, the FP can be moved only in redundant directions ' along 
which no non-analytic corrections to scaling appear. Some recent studies10 indicate that 
perfect optimization might be possible using a nonlocal P ((/', U) only and that there 
might arise problems in the sector of odd couplings e. Swendeen concluded11 that the 
RGT's ueed are singular since his optimization seems to move the FP successfully not 
only in redundant directions. A dependence of the RG flow on the specific form of the 
RGT has also been demonstrated in d=4 «ř4-theory.1J As concerns the work presented 
here we find definite improvement but we also find that complete optimization in the 
above mentioned sense is not possible in our case. The RT can be moved closer to 
the one parameter subspace but there are still further couplings contributing to the 
renormalized action. 

The transformation investigated has scale factor 2, the transition probability is 

P{p,V',U) = ]\6(y'x,<ll,Vt>(UJ), (2) 
• ' * 

where each block link V is constructed from a sum W over paths of length 2 and 4 on 
the larger lattice, 

W„»lM (ГГ) = pit/.,^yI+p# + рг Y^ Ut,vVx+VlltVs+,,+MtVl+2lliV 

"1д (3) 

normalized to unit determinant. The transformation is local, nonlinear and preserves 
gauge invariance; a RGT of this kind was first introduced by Swendsen.13 Due to the 
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normalisation one of the parameters may be put to a constant and we fix pi = 1 . Any 
reasonable choice of the parameters should, in principle, be sufficient for the determi­
nation of scaling behaviour and the transformations (pi.pj.pi) = (1,1.0) <uid (1,1,1) 
have already been used in other studies.4'14 

The optimization can be carried out without calculating the renormalized couplings 
or taking S' to be of any special form. If the actions of two ensembles of configurations 
agree (up to a constant that has no influence on the statistical behaviour of the system) 
so will the observables. The Wilson line in coupling space thus corresponds to a curve 
(denoted by WT) in observable space, and the optimization consists of finding values 
p\ such that the euclidean distance of S' (p\) to WT is minimal. Of course, we have to 
restrict ourselves to a tractable number of observables: we considered plaquette, planar, 
bent and twisted bent double plaquette in fundamental and adjoint representation only. 
These eight observables are sufficiently local to make sense on the lattice sizes we used. 

Due to the normalization one finds that the variation of one parameter, keeping 
the others fixed, leads to closed curves of the observables of the blocked system in the 
corresponding space, as demonstrated in Fig.l in Oi-Oj-projection. Similar figures may 
be produced for any combination of observables. The amount of variation of results of 
possible RGTs is surprising. 

At the optimal point p = (1,-0.70,-0.18) the average distance per observable is 
0.003 with a statistical error of the order of 0.0003 in the determination of the observable, 
which is about 4 times closer to the Wilson line (in operator space) than the naive value 
(1,1,1) and a factor of 4.2 better than the choice (1,1,0). The minimal valley is very 
flat with regard to рг, however, and even values like (1,-6.00, —0.18) are clearly better 
than the naive choice. Repeating the optimization for Kp = 2.4 leads to compatible 
values of RGT parameters. It was not possible to find zero distance for any value of 
the RGT parameters. This implies that the renormalized action necessarily will contain 
further couplings to interaction terms beyond the simple Wilson form. 

There are various possibilities to check on the possible improvement due to the 
optimized RGT. One is the determination of the renormalized couplings; this was sub­
sequently done within a SU(2) gauge-Higgs system study by Reusch15 and the results 
indicate that the projection of the RT into the plane of the fundamental and adjoint 
plaquette couplings, Kp and К A, lies below the Wilson line, roughly a factor of 4 closer 
to it than e.g. the Migdal-KadanofT RT16 or the RT with""18 p = (1,1,1). 

The evidence that the optimized RGT has a RT much closer to the Wilson line than 
the conventional choice for RGTs is further supported by an operator matching study. 
We simulated the theory at various values of Kp between 2 and 3 for lattice sizes 16* 
and 84 and performed up to 3 (on 164) or 2 (on 84) RGTs of (A) the optimal values 
for p = (1.,-0.70,-0.18) and (B) the naive choice (1,1,1). Up to values of Kp % 2.6 
we observed consistently good matching of all the operators already after 1 RGT for 
(A), i.e. comparing expectation values on 84, whereas one needed at least 2 RGT's 
until good matching was obtained for (B). At larger values of Kp one noticed a clear 
deviation from the Wilson line. 

The only way to avoid spurious results in that domain is to perform sufficiently 
many RGTs to make sure that one has arrived at the RT. One way to confirm that 
is to check the saturation of the observed value of K'F after sufficiently many blocking 
steps. For the optimal parameter choice (A) this saturation was observed for Kp < 2.5 
in the second RGT step, for Kp < 2.6 in the third step and for larger value of Kp not 
at all (cf. fig. 1). For the parameter set (B) saturation required three steps even below 
Kp = 2.5. The /3-function we got* essentially agrees with other determinations1'. 

168 



_0. 0.5 Qi 
O, 
0.4 

0.2 

0. 

Figure 1: The full curve gives VVT in operator space /or observable* Oj and 
Ot (as determined on 4*), the full circle shows the point of simulation on an 
8* lattice at Kp = 2.5 and the dashed curve gives the results of BSTs with 
Pi = 1|/>з = -0.65 and pi varying continuously. In this projection two points 
appear to be close to the Wilson line, however, only one of them has minimal 

. distance in the complete space. 

In conclusion we may say that the operator oriented optimization allows a modifica­
tion of the RT such as to bring it closer to a few parameter action. Since the RT is often 
used only as a technical means to obtain information on the renormalization behaviour 
along e.g. the Wilson line, one may well use different' optimizations at different points 
in coupling space. However, it became clear that at least for the model and the parame­
terization studied it is not possible to obtain an overlap of the RT with the Wilson line. 
It may be possible to study this behaviour at weak coupling with perturbation theory. 
The net gain in comparison to a non-optimized RGT approach amounts to roughly one 
blocking Btep less in the operator matching approach, which in d=4 correspond to a 
factor of 16 in computer resources. 
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Monopole Excitations in the 3D Georgi-Glashow Model 
on the Lattice 

M.L. Laursen + \ Ы. Mttller-PreuBker ++^ 

+) Niels-Bohr-Institute, Copenhagen, Denmark 
++) Humboldt-UniversitaTt za Berlin, Sektion Physik, GDR 

1. In this talk we present results of a numerical investigation 
concerning the vacuum structure of the Georgi-Glashow model 
(GGM) defined on a three-dimensional lattice with periodic 
boundary conditions ' '. By an appropriate relaxation procedure 
quantum fluctuations of Monte Carlo (MC) generated equilibrium 
configurations are frozen out in order to study the typical un­
derlying background fields. This method already proved to be 
suited for studies of the vacuum structure of pure 4D Yang-
Mills theory, where at T£T C (multi-) instantons ' ' and at 

I&T monopoles " ' were found to be relevant ( T being the 

critical temperature of the deconfinement transition). A similar 

(multi-) vortex investigation has been carried out for the 2D 

Abelian Higgs model, too ' • The 3D GGM is studied here in. or­

der to establish the existence of 't Hooft-Folyakov monopole 

solutions in the quantized vacuum and to show that these back­

ground configurations play an important'role in the Higgs phase 

transition ( a first exploratory study has been done in Ref. 

/5/)» We take this as a preparation for an investigation of 

the more complicated 4D case. In the latter case recent measure­

ments of magnetic fluxes out of elementary 3D cubes for MC 

equilibrium configurations showed that loops of monopole-anti-

monopole pairs (mi) seem to condense in the confinement phase 

and to form a dilute gas in the Higgs and deconfinement phases 

( see Refs. /6/). 

2. We consider the SU(2) gauge Higgs model with the Higgs field 

<ba i a=1,2,3 in the adjoint representation 
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»,/*<v ",^ л (1) 

•fcZfí+Wktň-vf, 
where ф а « ± « а ф | [ , У - Ы ^ - О / ф ц . U denotes the 
standard plaquette variable. Due to superrenormalizability 
the continuum limit of this 3D model corresponds to (3„-^0D 
and |5ti/ /̂ H -*0. Mostly we have chosen the unitary gauge 
ф = HUB* for all sites n. Equilibrium fields were genera­
ted by a standard Metropolis algorithm» which allowed the 
radial Higgs mode R to fluctuate. The lattice size was 8 5. 
We concentrated on a region at fixed &,= 0.1, $G= 5.0 and 
varying (3H ( 0.4* (3H ̂ 0.8 ) . By measuring <tr4n%4n4juUnti> 
as an order parameter we have found there a narrow orossover 
related to the transition between the confinement and Higgs 
phases in the 4D case '°»''. in order to detect monopole ex­
citations we measured the magnetic flux through plaquettes 
perpendicular to the Ц -direction 

V * 4 Ьч №« ̂  + Í H* U»Í«í ̂ Í » S U»J (2) 
л 

( ф а ф /|<M) and the magnetic charge inside cubes at sites 
n 

mn» Z if»/. " h*fi,f). (3) 
/* 

In the continuum limit the manifestly gauge invariant expres­
sion (2) corresponds to the magnetic field invented by 
•t Hooft ^'. 
Starting from MG generated equilibrium configurations we have 
iteratively minimized the action for each of them by applying 
a Langevin type relaxation procedure (without noise term) sym­
bolically written as 

x w - V - * | l , - «-for-»-) w 

The time step was taken to ДХ= 0.15» 
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3 . The results are the following. Only for those configura­
tions produced within a rather narrow 'window' for the gauge-
Higge coupling 0.45£f3Hé0.55 we observe non-trivial pla­
teaus developing during the cooling process. We have found 
two types of plateaus: mostly unstable ones roughly at action 
values S,™ - i-40 , i=1,2 and absolutely stable ones at 

T \ C I *•' 

Sf = i-12.4 , i=1,2. Unstable plateaus finally decay either 

into the S D S ones or into the trivial configuration ( 3 = 0 ) . 

The configurations we arrived with on a plateau, where the clas­

sical field equations are satisfied approximately, have been 

thoroughly investigated by plotting out the spatial distribu­

tion of the action density aco. to Eg.. (1), the magnetio charge 

distribution ( Eqs. (2,3)) and the spatial behaviour of the 

Higgs field modulus ̂ n • _ 

It turns out that the S.""1 - plateaus correspond to i pairs 

of well-separated and localized (anti-) monopoles of the 

•t Hooft-Polyakov type with zeros of the Higgs field at their 

centres. These mm -pairs can stabilize their positions due the 

periodic boundary conditions. The magnetic charge of elementary 

cubes belonging to a single local excitation suma up to - 1 

with good acouracy. 

Furthermore, we see the stable plateaus at S^ = i•12.4 to 

correspond to Dirac string configurations. They occur, when a 

monopole and the corresponding anti-monopole leave the finite 

volume in opposite directions and thereby annihilating due to 

spatial periodicity. If this happens, the only leftover is the 

magnetic flux directed from m to 5 . This flux spreads until 

each plaquette perpendicular to the mm -axis is carrying the 

same amount fp ( ace. to definition (2)). The total flux is 

topologically quantized. The S. - plateaus contain pure 

Abelian gauge fields with all links along the flux direction 

equal to one. Thus, the observed S1 - value is easily under­

stood for our lattice of size 8^. Since fp = l/82 = sin ̂ р/гА" 
( <fp denoting the U(1) plaquette angle), each of these pla-
quettes contribute 1-cos «f p to the action yielding finally 
S.,DS = £G'8

3-( 1 - cos <j>p) г 12.4 . By writing out the up­
values for all plaquettes we convinced us that in each slice 
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perpendicular to the flux direction there is a distinct pla­
que ťte with <pp differing by 21Г from all the others. This 
is the manner the Dirac string singularity well-known from 
continuum considerations Is showing up on the lattice. 
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QUARK-POLARIZATION EFFECTS FROM DYNAMICAL QUARKS1 

M.Faber,W.Feilmair,H.Marlcum 

Institut fur Kernphysik, Techn.Universitat Wien 
WiednerHarnrtstrape 8-10, A-1040 Wien 

Austria 

The linear gluonic potential between a static quark-antiquark pair becomes screened in 
the presence of the dynamical quark sea. This is usually explained by polarization 
effects from virtual quark-antiquark pairs. We investigate the polarization cloud 
around a static quark charge. We find that the correlation <ЩЗ$Ф($¥(г)> between a 
static quark and the fermion condensate increases with increasing distance. 

INTRODUCTION 

Lattice QCD has proven to be an extreme powerful method to investigate non-perturbatíve 
phenomena in QCD. In the last years even the effects of virtual light quark loops have been 
taken into account in numerical investigations. The inherent fermionic determinant in the 

. partition function became manageable by new algorithms and new computer power in a 
satisfactory way/1,2,3/. 

In this frame the potential between a,static quark-antiquark source has been investigated for 
Kogut-Susskind fermions and Wilson-fermions /4,5/. The main result was that there is no 
longer a linearly rising confinement potential but the confinement potential becomes bounded. 
This is an effect due to the dynamical quarks. It can be explained as a screening of the static 
sources by virtual quark-antiquark pairs similar to the polarization of an electron by virtual 
electron-positron pairs in QED. But one has to be careful with such a comparison because 
QED is an abelian theory and QCD is not 

This has for example a dramatic effect on the running coupling constant. Results of 
renormalization group theory indicate that a single quark is surrounded by virtual gluons 
which carry the same color charge as the quark. Therefore, the coupling constant decreases 
when the distance to the quark source goes to zero and the momentum transfer to infinity. One 
reaches the region of asymptotic freedom /6/. In this picture it would be interesting to 
investigate polarization effects in QCD. This paper presents first results. 

Supported in part by "Fonds zur Forderung der wissenschaftlichen Forschung" under 
Contract No. P5501. 
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THEORY 

We investigate the behavior of a static quark within full lattice-QCD which in Wilson-
Potyokov theory can be described by a thermal loop 

where Nt is the temporal extension of the lattice with spacing a and UX)1 are the link variables 
of the gauge field. To measure the polarization cloud around the single static quark we decided 
to evaluate the correlation function between the Polyakov loop L(r-O) and the local fermion 
condensate Ч^ОЧ г̂). The last operator also can be interpreted as the occupation number of 
virtual fermions per spatial lattice site Pi. So we have to evaluate the path integral 

l i m n . / * » » J ЩЫУП UP) ¥(r) ¥(r) e -(So * SP) 
< ЦО) Ф(г) «ř(r) > - i — — (1) 

JDtU.tp.Hqe-^o + Sp) 

on an Euclidean lattice by means of Monte Carlo simulations. So Is the gluonic action in 
Wilson formulation and Sp is die fermionic action in Kogut-Susskind formulation 

- J ^ Í D W + m)^^. 

where nr is the number of flavors, m is the mass of the virtual quarks and 4*» and 4 \ are one-
component Kogut-Susskind spinets carrying also color Indices. The factor j takes the fermion 

doubling into account. Eq.(l) can be integrated analytically over 4?t andYx applying the 
formula of Matthews-Salam 

J D[U] Щ tr(D(U)4m),}e -(So ffir ln(D+m)) 
< UP) Ф(г)¥(г) > ~i (2) 

jD[U]e-(So+fTrin(D+m)) 

-; < Ц0) tr(D(U)-fm)n >u 

where tr stands for the trace in color space and Tr is the trace over the fennionic matrix and 
the subscript U denotes the remaining evaluation of the integral over the gauge fields. As a 
result of the above integration (2) ^OWr) has to be replaced by tr(D(U)+m)'J. This 
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represents a pointlike propagator. In hopping parameter expansion this propagator is a sum of 
closed virtual loops. This we define as our measurer for the polarization effects. 

For the evaluation of expression (2) we used а 83x4 lattice with periodic boundary 
conditions for the gauge fields and antlperlodic boundary conditions for the fermion fields. 
The number of flavors nf was set to 3 and the inverse coupling p - 5.2 was taken below the 
phase transition to deconfinement. The mass m of the dynamical quarks is 0.1. We performed 
300 Monte Carlo Iterations with the Metropolis algorithm for the gauge field and the fermionic 
determinant and fermion propagator tr(D(U)+m)',} were approximated by the pseudo*fermion 
method using a heat-bath algorithm with 50 fermionic steps per gauge field. 
The correlation function <L(0)4/(r)4/(r)> is displayed in fig. 1. We find the surprising result 
that the correlations increase with increasing distance r. This means that polarization effects in 
the near surrounding of the quark are supressed. This is the opposite effect to QED in regard 
to fermionic vacuum polarization. The horizontal line in fig.l is the cluster value <Lx4nV> 
for <l№¥> for r—«o. For distances greater than r-3 the correlations reach the cluster value. 
Beyond this distance the two operators do not feel each other. 

Quark Polarization 

.0090 

.0088 

(§.0086 

.0084, 

.0082 

1 2 3 U 
ittn,)) 

Fig.l: Correlation <L(0)4'(r)4'(r)> between the 
Polyakov loop of a static quark and the fermion 
condensate. The horizontal line gives the value 
expected from the cluster theorem. 
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DISCUSSION 

How can the behavior of the correlations be explained? The main question is why the bare 
vacuum fluctuation» seem to be supressed near the quark. Maybe this can be solved in analogy 
to a spin system, If we insert a fixed local spin In a magnetized spin system the presence of the 
fixed spin will influence the neighboring ones. When the fixed spin is not parallel to the other 
spins the local magnetization In its surrounding is lowered. The correlations between the fixed 
spin and the local magnetization will Increase with distance r /8/, In QCD ^*V> acts as an 
order parameter for the chiral symmetry. It has a phase transition at the same Peril as the gluon 
field. For P < Pcrit the chiral symmetry is broken spontaneously. The chiral condensate is 
unequal zero because there is an ordering in the system with regard of fermlonic vacuum 
fluctuations/This becomes plausible if one imagines that the virtual quark-antiquark pair 
creation leads to the formation of colored dipoles pointing in a certain direction. Now the 
external static quark disturbes this ordering because it Induces a repolarization of the virtual 
quark-antiquark pairs towards the charge. Thus the chiral condensate as an order parameter 
has a smaller value near the quark. 

This leads to another explanation interpreting <4IXV> as occupation number density. Near 
the quark source it is energetically disadvantageous to create polarized virtual fermionic pairs 
having a finite mass. Therefore, the system tries to become colorless by means of virtual 
gluons which are massless, This gluons carry the color charge away from the static quark and 
will end in virtual quark-antiquark pairs outside of the near surrounding of the quark. 

CONCLUSION 

To summarize we found the remarkable result that the vacuum polarization seems to 
decrease in the vicinity of an external quark source compared to vacuum fluctuations of the 
quark sea in empty space. At a first sight this might seem to be in disagreement with the idea 
of the running coupling constant but one should bear in mind that in a system with static 
quarks the momentum transfer is zero. 

Ш Ш Х Ж 

As next work one should try to study this feature by strong coupling expansion. From our 
data we have a hint that the chiral condensate can be written as a function of L /3/. It would be 
also very desirable to distinguish in the virtual quark-antiquark production the parts stemming 
from virtual quarks and antiquaries, respectively. To get further information we are going to 
extend our calculations for different dynamical quark masses and different P-values, 
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eventually also in the dcconfincmcnt region. In a recently started work we are trying to 
investigate a static quark-andquark with regard of polarization effects from dynamical quarks. 
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parameter Л Ду • 
S.Q.Goriahny 

Joint Institute for Nuolear Research, Dubna 
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Institute for Nuolear Research, Academy 
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Abstract» 
We have calculated next-next-to-leading 0(e<a ) QOD 

oorreotion to <3»tot(e+e"*-*. hadrons). Taking into aooount 
this correction in the fit of the combined PETRA and PEP 
data at N/s1 » 34 GeV decreases the value of Aft? 
in twioe. 

1« Introduction 
The process e+e~- annihilation into hadrone is one of 

the most informative processes in elementary particle phy • 
ales» Both theoretical and experimental analysis of the be­
haviour of its basic characteristic R(s)» C^ot (e+e~—v 
hadrons) /<5* (e+e"-*j/4+/ч") allows us to obtain important 
information about the properties of hadrons and their con­
stituents i»e. quarks and gluons* In particular, the compa­
rison of the QOD prediction for R(s) with the experimental 
data above the thresholde of Zf /Ý-system allowed to obser­

ve before the experimental discovery of the b-quarlc that it 

is highly desirable to introduce in the theory the fifth he­

avy quark with the charge Qb • - 1/3 £1^« 

The zeroth order perturbation theory (PT) QCD predicti­

on R(S)B3 2 £ Q * is in qualitative agneement with experiment* 

However, in order to perform quantitative examination of the 

QOD theoretical prediction it is necessary to take into ac­

count the effects of higher PT corrections* The QOD expres­

sion for R(s) up to next-to-leading order 0(eCa ) has been 
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calculated inC2]« In this work we present the results of 
calculations of the next-next-to-leading 0(oCe ) corrections 
to R(s) and obtain the new estimates of the parameter Ajjy 

based on the analysis of the combined PETRA and PEP results 
LX1-

2« The outline of calculations» 
Throughout this work we shall follow the calculational 

Program outlined in r e f s . £ 4 , 5 3 and use eSntroduced there 
notations* In cource of calculations i t i s convenient to use 
the quantity o -

Dfeh- - f-GřsfcIW)= Gt У-С5ЯГ& С2-1> 
where Q i s the ettcledian transfered momentum and J"lCeř) i s 
the hadroniс vacuum polarization function» It can be shown, 
that in order to calculate the next-next-to-leading 0( ai a ) 
corrections to the D-function i t i s necessary to use the 
two-loop approximation of the bare charge d e « (5j?)g > 
to calculate the three-loop approximation of the bare expres­
sion П в ( в в ) of the hadronic vacuum polarization function 
and find the four-loop approximation of the photon wave func­
tion renormalization constant Z-» At thie level over 100diag­
rams contribute to Zy All the calculations have been done 
within the dimensional regularization in D«4-2£ space-t i ­
me dimensions and the minimal subtractions (MS) scheme» The 
application of methods of infrared rearrangement С6.5Д and 
the infrared R* - operation £7Д allows us to reduce the ca l ­
culation of the four-loop approximation of Z, to the evalua­
t ion of the three-loop massless propogator-type integrals up 
to 0( £ ° ) -terms. These integrals as well as the three-loop 
approximation of Пв( 4g ) have been calculated with the help 
of the integration by parts algorithm £83 • Some basic sca­
lar integrals used in the calculations has been calculated 
with the help of the Gegenbauer polynomial x-space technique 
£5Л* The methods of calculations have been briefly discussed 

in the review £93 • All analytical calculations have been do­
ne with the help of the SCHOONSCHIP program £lOl« The whole 
running time at the CDC-6500 computer tota ls about 200 hours. 
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3» The byproduct of calculations: the four-
loop approximation for the p-function in QBD» 

All calculations have been done at two stages» At the 
f i r s t stage we have found the counteterma of 58 diagrams 
which contribute to Z-, in (JED* As the resa l t the four-loop 
approximations of the fi-function of QED In the MS and MOM 
(momentum subtractions) schemes have been calculated О Н * 
Рог QED with N»1 types of fermlons the resul t f o r ^ - f u n c t i ­
on i n the MS-scheme reads: 

4/&=/*«)=f&H <$?-§*<&?+ ro.,i 
After the transformation of (3«1) to the MOK-scheme, defi­
ned by performing subtractions in the photon propogator at 
the encledian point q »-Л , the last two coefficients of 
the ̂ -function change their values* The correspondent app­
roximation of the Gell-Mann-Low function of QED takes the 
form 

*(•<**)-/,«,&<*«,)« láSr^í-í«uO«- (3.2) 
- ШТ* 4É<Mř+ с i*?*- ***)fl» * 

where oi • оСце/i * U a i n 8 the numerical values of Riemann 
? -functions ^(3)»1«20205»•«. f(5)«1«03692»•• and pre­
senting the resul ts (3*1)f (3*2) in the numerical form we 
obtain . 

fihS («0 « O. OSU (éf+ 0.062S-Cf$- 0.02бз(ф) + 
• dL2*2S(éff (3»3) 

4* (pQ » О. 0 833 CÝ) •*• *-Об**0&+ O.OiM « Л * * 

Notice positivety and re la t ive ly large numerical values of 
both four-loop coefficients» Thus in the region of applica­
t ion of FT there are no indications on the existence of 
ul t raviolet fixed point in QiiD. Other discussions of the 
obtained resul ts can be found in £113» 
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4. The OOP resulta» 
At the second stage of the calculations the QCD result 

for the D-funotion has been obtained» However, to compare 
the theoretical results obtained in the euoledian region 
Q > О i t i s necessary to transform them into the physical 
region of energies by means of the following representation! 

-s-£t 
It can be shown that talcing into account of eq»(4«l) leads to 
the appearance of the additional scheme independent correc­
tions in the f'X order we are interested ini 

Rico» D(vO- aJ:«£JT* &«*+ ы«*) (4.2) 
where ая fp and So is the first coefficient of the 
QCD. ú-function which has been calculated in Е12Ц in the MS-
aoheme at the three-loop leveli 

Д- (its** €°р^Щ?)Ъ (4.3) 
The additional contribution to R(a) in eq« (4*2) appears af­
ter taking into account the effects of analytical continua­
tion in the terms &Pl6tyf-)-*m(£h(.*tyft+lttf • These effecto 
have been discussed earlier in the case of e+e~-«»annihilation 
D3»143 and 3^00 *"** £ ~* hadrona process £153 • Tbe analo­
gous correction also appeared in calculations of the next-next 
-to-leading order corrections to the total hadronic decay 
width of the heavy Higgs boson of the standard theory fl63. 
Aa well as in the case El6J taking into account of the Jf*q3 

terms decreaes the numerical value of the analysed PT coeffi­
cients. Thus we will not redefine the expansion parameter is 
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the space-lyke region in contrast to the proposals of refs* 
D3.143. 

Solving renormalization group equation we obtain the 
following analytical expression for R(s) in the ыЗ-scheme 
in QCOi 

- JT*(M-ffifí-n iV5 3 l - £%ft$p- *&1и))П* (4.4) 
In the numerical form eq. (4.4} readsí 

The last term, which does not appear in the previous orders 

of РФ appears from the QCD analogs of the QED light-by-ligt 
diagrams with 3U (A/ ) - group factors proportional to d c 

datic and is scheme independent* However, other coefficients 
do depend on the subtraction scheme used* We have obtained 
the results in the MS-scheme and the ($ -scheme C.4.53 
which is very convenient modification of the US-scheme* 
The results shows that as well as in the case of other 
physical quantities (see e«g.£l6,l73) in the S -scheme 

the values of the scheme-dependant coefficients are smal­

ler* The transformation to the ЫОЫ-scheme is not so stra-
ightformand* However, the corresponding result can be in 
principal obtained after using the information about the 
third coefficient of the J3-function in the ЫОЫ-scheme £18, 
19]. 

5» DisousaionB of the results and determination 

of the parameter A fig . 

We have obtained that the coefficients of the 0(a3) 
corrections to R(s) are large in the <S , MS and MS-sche-
mee* Thus the question arises: at which energies is it 
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necessary to involve Oft*) -terms to determine the correct 
value of the parameter A fg from the fit of experimental 
data for H(s)? Indeed, it is known that PT series of quantum 
field theory are asymptotic ones, see e.g. the reviews C20J • 
In QCD they have sign constant character in contrast with e.g. 
a if* -theory and QBD. Thya, they should be trancated in some 
way for correct comparison with experiment* However, it would 
be very strange if asymptotic character of PI series would 
begin to manifest itself at the level of the next-next-to-
leading' corrections* Indeed at the model o f theory the 
asymptotic nl growth has not been observed even at the five-
loop level £2ll* Therefore we will include the calculated 
corrections in the analysis of the experimental data* 

We shall use the data obtained at PETRA and PEP colli­
ders far above the thresholds of production of b-quarks» The 
recent analysis of these data by means of the method R/*? • 
* sF^s) with taking into account the 0(1" 2) corrections in 
the Ш-scheme gives £31 t £ (342Gev2) - 0.169 * 0.025. 
cfht - î » a o.054>- 0.008 when index jtl meanj* that 

the next-to-leading order corrections have been taken into 
account• 

Let us now take into account the calculated next-next-
to-leading corrections and find the corresponding value of 
the parameter A jq? • The analysis will be made by two diffe­
rent ways: (I) the direct analysis in the MS-scheme and (II) 
the analysis in the framework of the invariant charges appro­
ach £223 known in the aeatrature as the fastest appearent 
convergence (РАС) criterion (this approach has been also dis­
cussed in C23U ).Vfcwill call ifthe effective scheme approach". 
Substituting f«5 into eq. (4-5) and introducing the index 
nnl to indicate the next-next-to-leading PT order and index 
off for the effective scheme results we obtain: 

**Ю«3е$и+Ъче+ъКе + К.«ыл + --- 3 (5-1) 
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From the result for o^ we have that ^ . S ^ ^ e ^ + ^ ^ f c r i s 
• 0*058 i 0*009. Solving now numerically the equation 
^ « a PÍi2 we obtain the new corrected value of 
ďCs(342GeV2) in the MŠ-scheme: ^ , ^ 0 . 0 4 ^ ^ 
o^ iS'V'seV^a- o./SViS'eie • T h e corresponding numerical 
form of the FT series for R(s) In the ЙЗ-scheme reads: 

Thus at Vi" в 34 GeV the contributiona of the next-next-to-
leading order correction la 2»5 times as large as the pre­
vious 0(a 2 ) - corrections* 

There are several methods of extracting the estimates 

of Л #č from the numerical values of "i* • The f i r s t of 
them i s based on the exact solution of RG equation (4«3)« 
Let us introduce the following designations: 

№ h *-""» (5.3) 

where Д »4Cg-C^ • 
In the next-to-leading order the solutions of (4.3) in 

the MS - and effective schemes are: 

The parameter A)j| is connected with Af$ and A __ 
by the following ways 
Ah." Aw *?<"/&' ftff *rWf-Kc>/№c,//So 

Solving eqs« (5*4) we obtain the the corresponding estima­
tes: 
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In order to take into account the next-next-to-leading PT 
corrections both to R(s) and the ̂ -function one should sol­
ve the following equations: 

where ca. can be found from the property that the quanti­
ty р*.»Са.+ Га.-'С,Г|- Г,г is the scheme invariant П24-
2бЭ • In the effective scheme тлаТ2 * °» * h U a n e n a v e 

that c2 » P 2* Hence «re have from (5*6) in the MS-scheme 
directly ana the effective scheme approachesг 

(ABhemXét*»w (Ляйье"****1!**** ( 5 . 7 } 

. Let us now find the values of /l/jj in the framework of 
the second method which presupposes the expansions of the 
solution of RG equation (4»3) in powers of -</^(S//^) 
fhe corresponding representations for the running coupling 
constants can be expressed in terms of the following functi-

л с С Л ) в ^ * а « * А ř° - A I W A V C5.a) 

In the next-to-leading PT order we have ČfAře? ^ ř č/feViEiáW 
Č ? $ «- %z С Л«#) I &„34Get/ f r o n w n i c n "e o b t a " 

in the following estimates 

(Аш)к^£ос1^ ЛеК (/l/is\f£*°-t£w ( 5 . 9 ) 

After using the information about the next-next-to-leading 
order corrections we obtain Pfj^g» ^hht CAfil, ^г.) 
2Т*0И' * W C^qj^C^) f from „hich we obtain 
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(5*Ю) 
Thus the values of /\jjš do depend on both the method of 

representing the solutions of RG equations and the trays of 
extracting the numerical values of the пЩ -parameter* 
Nevertheless we arrive at the defini te conclusion that taking 
into account of the calculated 0(a" ) next-next-to-leading 
corrections decreases the values of Ащ i n twice* The nu­
merical r e su l t s (5*7), (5»10) are in bet ter agreement with 
the values of /Д$ extracted from other processes Т.21Ц 
then the resu l t s (5*5)» (5*9)* This be t te r agreement can in ­
dicate tha t in the presently available region of energies 
of PEP and TRISTAN the corrections calculated by us are ex­
perimentally sensible and tbUs they should be included in 
the procedures of analysing e e" data not only a t the pre­
sent machines, but at the future ones, say LEP* Eg should be 
noted that th i s in terpre ta t ion presumes that both the unknown 
OCa ) corrections to R(s) and the next-next-to-leading IT 
corrections to o t i e r observable physical quanti t ies are small ' 
Thus from the point of view of studying the region of appli­
cab i l i ty of the asymptotic PT predictions of as the whole 
i t i s highly desirable ( i ) to decrease the experimental e r -
rur of e+e"- data and (11) to analyse the effects of the next-
-next-to-leading order corrections to other physical quanti t i ­
es , say the Gross-Llewelyn-Smith sum rule for deep Ine las t i c 
lepton-hadron scat ter ing where the next-to-leading cor rec t i ­
ons have been calculated in ref . 1.283 • 

6» Conclusion» 
We have calculated the next-next-to-leading 0(ol s ) 

QCD corrections to R(s) « ^ t o t ( e + e ~ - ^ hadrons)/(F"(e+e~ 
*^/<+^/")« The obtained corrections are large e«g* in the 
MS-scheme a t Vs*»34 GeV they are over two times la rger . 
then the previous next-to-leading correct ion. Of course i t 
i s possible that the asymptotic nature of the PT ser ies ma­
ni fes ts i t s e l f at the level of the next-next-to-leading cor-
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reotiona* However, it oan not be ruled out that some cont­
ributions of the lower PT corrections are accidentally small» 
That ie why we include the 0(o<B

3) oorreotiona in the prooe-
dure of fitting PEP and PETRA data* Ao the result taking 
into account of these corrections drastically (in twice) 
decreases the value of nffl . For example» for the fit in 
the M3»soheme we obtain И^«326-^09 MeV which ie in bet­
ter agreement with the estimates of the same parameter obtai­
ned in other processes* 

We are gratoful to V.A.Matveev, D*V»Shirkov and A*H*Tav-
khelidze for interest in the work, constant support and use­
ful discussions* It is pleasure to thank K*Q*Ohetyrkin, D*I. 
Kazakov, II.V.Kraanikov, S.A.Kulagin, A*A*Pivovarov, O.V.Tara-
aov, F.V.Tkaohov, M.E.Shaposhnikov and other researchers of 
the theoretioal decisions of both INR and JINR for useful 
discussions at different stages of the work* 
One of us (A*L*K<) is grateful to the organizers of the Had-
rono Structure-87 conference for hospitality» 
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INFLUENCE OP STRONG INTERACTIONS ON ELECTROMAGNETIC MASS 
DIFFERENCES 

F. Schoberl 

Institut fůr Theoretische Physik der Universitát Wien 
Boltzmanngasse 5 A-1090 Wien 

Abstract 

Calculating the electromagnetic mas» difference» of meson» in the framework of a поп-
rclativittic potential model we find in contrail to experiment that B° — B+ < 0. The 
reason it that the influence of the тл — ти mat» difference to the ttrong interaction can 
be larger than the electromagnetic effect. In other word», the qq~ • bound state containing 
the lighter quark may be heavier than the qq bound state containing the heavier quark. 
A general condition for this problem i» given. 

The success of nonrclativislic potential models, being guided by QCD is remarkable, 
even in the case where a nonrelativistic treatment is questionable (for a discussion of 
potential models and various references see e.g. Rcf.[l,2,3]). However nonrelativhitic 
potential models have also been applied to light quark-bound-states and the predicted 
spectrum and decay properties of hadrons are in rather good agreement with experiment 
(3,4,5,6]. One of the latter potential models has also been used for the calculation of the 
quark core contribution to the electric polarizability of hadrons [7]. Other interesting 
quantities are the electromagnetic mass differences of hadrons which have been discussed 
from different point of views in the literature (for a list of references see [6]). I will use 
here an explicit nonrclalivistic potential model to calculate the electromagnetic mass 
differences of mesons. One finds in contrast to experiment, that B° — B+ < 0. Since the 
JB° contains the heavier quark (the d-quark) compared to the B + (which contains the u-
quark) this result looks rather peculiar, because the contribution of the electromagnetic 
interaction is smaller than the mj - mu mass difference. I will discuss this effect in some 
detail later. First let me review the potential model under consideration [6]. 

This model should, as usually, be guided by QCD. It should have a Coulomb like 
part for the short-range behaviour and a confinement part for the long-range behaviour. 
Concerning the light mesons a perturbative treatment of the spin-spin interaction is not 
allowed since the spin-spin interaction is of the same order of magnitude as the mass 
itself. On the other hand the spin-spin interaction arising from the Coulomb interaction 
is proportional to the ^-function which cannot be treated nonperturbalively. A nonper-
turbative treatment of the 8- function would lead to an unbounded Hamiltonian. One 
should note that the 6 -function appearing in the Breit-Permi Hamiltonian is simply 
an approximation, resulting from the nonrelativistic reduction. One cm overcome this 
problem by regularizing the Coulomb potential which physically is justified by the fact, 
that at very short distances various relativistic effects such as quark pair creation arise, 
and the original Coulomb like behaviour will be destorted. 

In addition, the physical justification of a nonrelativistic treatment of light quark-
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bound states, is questionable. These bound states should be highly relativistie. However 
Rosensteln (8] argues that the Schrodinger equation with a linear potential and the «его-
mass Klein-Gordon equation with a quadratic potential transform to each other by a 
duality transformation. The first equation describes the main features of the potential 
models, while the second describes the main features of the spectra of the MIT bag-
model. This is the reason that one obtains the same spectra even for light hadrons from 
the two very different models. FVom this point of view the nonrelativistic treatment of 
light hadrons in the framework of potential models seem to be justified. 

Having all this in mind we use a phenomenological potential with a Coulomb short-
range behaviour regularized in the simplest possible way plus a confinement part. 

Usually the Coulombic part is purly of vector type while the confinement part is purely 
of scalar type. We allow both parts to have vector as well as a scalar contributions. 

Thus we split the potential into two parts, a vector part 

^ = 1 Г ^ ' ( 1 - С ) + В'Г' , ( 1^ (2) 

and a scalar part 
Vs = -J^-C + a-rP-d <3> 

with r„ = fci(2íí)-«" and V = VY + Vs. 
All parameters are obtained by solving the Schrodinger equation numerically [9] and 

performing a x1 best fit. The obtained parameters and quark masses are: 

as = 0.740, n = 1.107, с = 0.421 
о = 0.222GeVlel, p = 0.910, d = 0.752 
Vo = 0.856GeV, fe, = 0.617, k, = 0.040 (4) 
m, = 0.340GeV, m, = 0.553GeV, mc = 1.825GeV 

rrn = 5.195GeV 

Using these parameters we have calculated the meson spectrum for L = 0 and L ф 0 
heavy and light quark-bound-states. AIBO the leptonic decay width of light and heavy 
vector mesons have been calculated and are in very good agreement with experiment. 
Since I restrict myself to electromagnetic mass differences I do not give the above pre­
dictions here (these predictions can be found in Ref. [6]) 

The electromagnetic interaction in which we are interested here is given by the Breit-
Fermi-Hamiltonian and reads 

V w ^ a ^ - o Q A ^ ^ i ' W (5) 
Г О TTtintj 

where Q\,Qi are the quark charges and a is Sommerfeld's feinstructure constant. 
In Eq. 5 we have omitted the Darwin term since its contribution is negligible, at 

least in our potential model. The expectation value of Eq. 5 is given by 

.< Ve(m >„-= a < QtQt > {< ; > + g ^ W0)!*} 
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< V„m >,-= a < QxQt >{<l> -fr^rt 1Л(°)1'} W 
< Q\Qi > i» e.g. for n+, 2/9 and for тг°, -5/18. 

In the naive nonrelativistic quark model the mass difference of e.g. K° and K+ would 

«•-^-nw-m.-f^^+^WO)!'} (7) 
Experimentally we know that K" — K* is positive, thus from Eq. 7 one sees that mj 
is larger than mu. However Eq. 7 is too naive since the contribution of the strong 
interaction to the mass difference is important. In fact, it turns out that the latter may 
be larger than the contribution of the electromagnetic mass difference Itself. 

Thus we split the mass difference into two parts, one part AMs originating from the 
strong (gluonic) interaction and one part AMe(m originating from the elctromagnetic 
interaction Eq. 5. The total mass difference is then given by 

AMlot = AMS + ДЛ/<1т (8) 

ЛMs is the analog to AMetm just replacing aQiQi/r in Eq.S by our potential Eq.l and 
replacing in the second contribution aQiQjS3(r) by the Laplacian of the potential Vv 
from Eq.2. Following our discussion that the S function is simply an approximation and 
that, in fact, taking into account relativistic effects it would be a "smeared" function. 
We assume that relativistic effects are incorporated if one replaces R(0) in Eq. б and 
Eq. 7 by A(l/2/x) i. e. the wave function at the Compton wave length with fi the 
reduced quark mass. 

With the wave function obtained from our potential model and from Eq. 7 we find 
the quark mass difference 

Tnd - т ц = 6ЛГeV (9) 
We now choose the quark masses to be 

md = 0.343 GeV, mu = 0.337 GeV (10) 

and calculate the mass differences AMs and ДЛГ«/т which are displayed and compared 
with other predictions in Table 1. 

Particle 
1Г*-1Г° 
p±-p° 
K°-K+ 
K'° - Я*+ 
D+-D" 
D'+ ~ D'° 
B°-B+ 
B'° - B*+ 

ГДМ5 
0. 
0. 
6.0 
1.0 
0.7 
~0. 
-0.2 
-0.4 

ДЛ/е(т 
3.1 
1.1 
-1.8 
-0.8 
2.9 
2.0 
-1.3 
-1.1 

AMtBt 
3.1 
1.1 
4.2 
0.2 
3.6 
2.0 
-1.5 
-1.5 

AMttp 
4.6043±0.0037 
-0.3 ±2.2 
4.05 ±0.07 
6.7 ±1.2 
4.7 ±0.3 
2.9 ±1.3 
4.0 ±3.4 
-

Ref.[10] 
3.2 
1.6 
4.07 
0.27 
1.37 
0.57 
-
-

Ref.[ll] 
-
-0.6 
6.0 
2.7 
6.0 
4.6 
-
-

Ref.[12] 
1.61 
0.94 
1.62 
1.11 
-
-
-
-

Table 1. Comparison of the predicted electromagnetic moss differences with 
experiment and other predictions. The units are MeV. AMs is the contribution of the 

strong interaction and AM,im the contribution of the electromagnetic interaction. 
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As one can see most of the results obtained are similar to the results obtained by 
Oelmaster [10] and that in fact the contribution of the strong interaction is larger than' 
the contribution of the electromagnetic interaction itself, eccept for w and p where the 
itiong interaction contribution cancels because of the same content of u and d quarks 
n the charged and neutral particle. 

In the case of the В meson the strong interaction even overcompensatee the пц — m„ 
mass difference. This looks rather peculiar[10,13j but in fact this effect appears, and 
depends strongly on the detailed form of the potential and its parameters. This is easily 
demonstrated using a eimple example. 

Let us assume a potential of the form V(r) = ar. We know from the scaling behaviour 
if the Schrodinger equation that the bound state energy is given by 

fa'V'3 
E=(i,1) f + r a ' + ra' (") 

where e are the zeros of the Airy function. Introducing the ratio of the masses Л = 
'iti/mj, one obtains 

М^тГ е + т , ( А + 1 ) (t2) 
The equation for the critical Ac (where the derivative of the energy with respect to 

л it zero) is 

v<i+д.?-(!)'•• s i?-o <13> 
In order to treat this problem more generally, we shall deal with the derivative 

ЧЕ/дтпх and see if it is negative or not [16). First let us make clear about our notations 
aid footings. We are dealing with the following equation: 

( - ~ + У 4 - т , + т,)Ф = ДФ - (14) 
*/* 

where ц is the reduced mass, V is the spherical symmetric potential which does not 
depend on the mass, Б is the energy eigenvalue and Ф the normalized wave function 
respectively. We rewrite Eq.14 to 

( - ^ + V)* = ^ * (15) 

where Ё = E By definition one gets the following relation 

0E__dE m,' 
flm, ~ dfi ' (m, + m,)> "*" K ' 

following the way of deriving the Feynman-Hellmann theorem[14,15], we get 

vhere 

Ф(«)=Ф((2^Г ,/ ,
1/), db)sGUMrlt,y), C M s r J , n t » = (2rff 
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Now we are ready to state our result. Let the potential satisfy the following condition 
(C): rdV/dr has a global positive minimum C0, then 

and „„ л 

WL<_ £..!!!« L _ + 1 (19) 

Ав one can все from inequality 19, there are always masses which make the derivative 
дЕ/dmi negative. 

Examples of potentials which satiefyícondition (C) are shown below: 

V(r) = - - Y + brfc (20) 

о > 0, 6 > 0 
0 < / < 2, Jfe>0 

2) 
V(r) = ologr + 6, a > 0 (21) 

In thia case the right hand side of Eq.19 is equal to the left hand side. That is 

dE ami 1 
дтп\ 2 mi mi + mj + 1 

i.e. о = Co< 
At this point I would like to mention that a number of inequalities and equalities 

among the masses of ground-state hadrons in the framework of potential models have 
been derived by D.B. Lichtenberg [17]. 

Summarizing one finds that considering energy eigenvalues E(mi,m2) with respect 
to two particles whose masses are mi,mj, respectively, one would expect that if M > m 
then E(AI,mt) > E{mtm7), but actually the opposite can happen if one solves the 
Schrodinger equation. In other words the derivative dE/dmi can be negative. This 
means, the quark bound state containing the lighter quark can be heavier than the 
quarkbound state containing the heavier quark. Exactly this happens in our potential 
model, the strong interaction overcompensates the mj - mu mass difference and thus 
B°-B+ < 0. 
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CONDEBSATICK Ob' HiJDROl.IC MATTER* 

ludwik Turko 
Institute of Theoretical Physios 
University of Wroclaw, u. Cybulskiego 36 
50-205 Wroclaw, Poland 

ABSTRACT: A particle number conservation should be taken in­
to account even if other chemical potentials related to the 
internal symmetries were introduced. The condensation of 
pions is taken as an example* 

It is believed that in the case of relativistic particles 
with Internal symmetry one should not introduced a chemical 
potential related to a particle number conservation [1*2,3] • 
A simple example of noalnteracting plons will show that this 
is not the case» Let us consider an ideal gas of pions* We 
write the partition function as [1} 

The first term corresponds to л+, the second one to тг" and 
the last one ton"* In the case of pions the isospin conser­
vation is equivalent to the charge conservation* 
Densities of pions are given by 

/20/ A ,\, ! " j -

<7T? = Cílí: i Jfc*)* ЖрСДОд+ДН 
+ Work supported by the goverment research project СРВ? 

01.03 
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In the uncondensed phase |<«*1<»« and the condensation corre­
sponds to the values ̂и = *-m 
We have for the charge density 

/3/ «v> - \^П^Г\А ~ ^ ' ^ J 
We can notice from the Eqs. /2a,b,o/ the exceptional situa­
tion of 3te, The corresponding density is a function of a tem­
perature and we would have an almost diminishing density of 
Л" ezoept for the temperature of the order 10 K. This pa­

tology does not appear if we consider only a doublet of par­
ticles or we restrict ourselves to the charge density [2,3). 
In the theory of free particles there is no physical reason 
for such an exceptional behaviour of neutral pions. Let us 
introduce also a subsidiary chemical potential related to 
the conservation of the global number of pions. This will 
provide a consistent treatment of a condensation phenomena 
and it preserves the isotoplc symmetry because a common po­
tential is introduced for all kinds of pions. 
The improved partition function has с form 
/4/ ^?*-У1^[^(4. в-«-Л-^) 4 

where м , is a chemical potential related to the charge 
conservation 

(«г18 a chemical potential related to the particle 
number conservation 

The physical range of ohemlcal potentials is given by the 
inequalities 

/5/ /^ + /*-z < Aw, ЛгГ/Ч, ̂  /VA' 
There are two condensation lines 

/6/ / V V S . ^ ^ ' f-u-f-A^""-
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It is immediately seen that the state equations obtained 

from the partition functions /1/ and /4/ are different. 

(The densities of pions have a form 

/7a/ . < « • > - Sj*^ 

The charge density i s 

/8/ <q > = < tff> - < ;TV 

Expanding the Eqs. /7,8/ we get from the density of plons 

and for the charge density + £ ' * J 

where Kg Is a modified Beesel function. 

In the low temperature limit $/»*»* we have 

/u/ —>-f£FJ > t / ^ L ^ * 

/12/ 
+ ^"^г-Г-л-^п 

"ч 
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Let ue consider a behaviour of the eyetem on the oondensa-
tion llne^U|4<Ma i m i 
We obtain a eet of two equatione for the oritloal tempera­
ture 

We can directly obtain the oritloal temperature only in the 
oase of zeroth net background charge what oorreeponde to 
the value fti&m • (Chen 

'*' X s 7Z L T T H S ) J 
We have in general a n on trivial dependence on/*iti*e. the 
oritioal temperature will depend on the charge density and 
on the plone denelty /or on the pressure/* 
Using the asymptotlo formula for z • 0 + 

we can approximately solve the bqs./13,14/ for/t^*»* 
Suoh a oholce of parameters gives <*i> t> <q> * O*. 
We have after simple algebraic manipulations the results 

/17/ ^ - " ^ r t N ^ c - L j^ftj J 
Concluding, «re oan say that the subsidiary ohemioal potential 
a/ Is needed to unify partiolee belonging to the ваше multi­

ple t 
b/ modifies the equation of state 
0/ modifies properties of the condensate 
More details wil l be given in the subsequent publication* 
BEFEREKCESt [Ц L. Turko Ffays.Lett. 104B. 153» /1981/ 

[23 J . I , Kapusta P.R. 221. 426, /1981/ 
f3] H.E. Haber and H.A. Weldon Phys.Kev.lett. £6. 

1497, /1981/ 



INFRARED ASYMPT0TIC8 OF THE QUARK PROPAGATOR IN GAUGE THEORIES 

ZOLTAN FODOR 

INSTITUTE FOR THEORETICAL PHYSIOS 
ROLAND EOTVOS UNIVERSITY.BUDAPEST 

The veil known problem of quark confinement ie, why do not 
we eee free quarks in final etatee. The question is rather 
or.itioal, beoauee the quarke behave approximately like free 
partioles and their masses are pretty small. 

The absolute oonfinement of quarke oan manifest itself in 
the laok of singularities of the quark propagator in the 
infrared limit. 

As it is well-known in QBD the fermion propagator 

eýípjsoonst.-ř-ififr ( 1 + p V m V p +m —i« 
where 

•s(3-a)d/2n j p* near m* 
and 

»,..= sift - «»->л*ё&» 
Sff(v) has a branoh point in the infrared region. 

, (1) 

, (2) 

. (3) 
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In QCD the problem ie far more eomplieated. If w* use for 

the gluon propagator a k~* term,then it gives a non-

oonfininig quark propagator and a nonoonfining potential 

proportional to Ixl"4» while for a gluon propagator 

DýHT 4 не Mill get a confining etatlo potential in к epaoe, 
namely V(x,)~lxJ. That Is the famous linearly confining 
potential. The oaee of Dý"»k~* hae been etudlod solving the 
Dyeon-Sohwinger equations 

ls(P-m)S'(p)+ig§ J j£-4 Jd4kv„PiJ,v(k)Av(p-klp) , (4) 

where 

Л„(р-к,р)"8'(Р-к)Г\,(р-к,р)8'(р) . (6) 

Moet of the considerations use an approximation, namely on 
the one hand one oan determine rv using S'(k) and the Ward 
identity, but on the other hand they negleot the transverse 
part of r„. In various gauges and approximations there have 
been shown that the quark propagator is vanishes on the mass 
shell [e.g.1-6] while in other approaches the quark propagator 
is the free one in the infrared region 16,7]. All these 
considerations have not said anything about the case when 
Dfr*k-L , but \MA. 

A similar treatement is a resummatlon of quark lines with 
many dressed gluon propagators, both ends of which are 
attaohed to the quark line. This calculation has been done 
for \MA in this paper, and shown that for L13 the mase shell 
singularities of the quark propagator are cancelled. These 
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values of L oorreepond to oonfining static potentials. 

We are working In axial gauges п2И) where ghost loops are 
absent. In the infrared limit effeote of quark loops are 
negleoted. The quark propagator oan be expressed by 
funotlonal derivatives In the following form 

Sfr(x-y)=N(G(x,yl| íj-)Z(J)]ja0 , (в) 

where 

ZÍJ^expOjVxL^lj)] 

and 
N _ 1 = Z ( J ) | j = o » . ( 8 ) 

The Lagrangian I»j oontains the self-couplings of gluons, 
Jg(a) is an external colour ourrent, GoaVx"y) ie tlie ť r e e 

gloun propagator in axial gauge, and G(x,ylA) means the 
Green's funotion of the quark moving in the external gluon 
field A. The dressed gluon Green's functions are given by 
the funotional derivatives of Z(J) at J=0 multiplied by N. 
The Green's funotion G(x.ylA) satisfies the equation 

[iVj,{eJ{-ig^AaJl{x)>-m]G(x,ylA) = S*{x-y) , (8) 

m means the mass parameter of the quark, *a is the colour 
matrix. Let us introduoe the functional H(x,ylA) by the 
definition 
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[iyJI{^-ie§-AaJi(x)}+m]H(x,ylA)=Q(x,ylA) . (10) 

The Fourier transform of H(x,ylA), H(p,qlA) determines the 
quark propagator in momentum apace as follows 

(2n)4Sp(p)S4(p-q)=81+811 

SI = (v>p>,+m)[H(p,qlA)NZ(J)]j=0 , (11) 

в11ао7^ТИ'**а Lfd VA a"(q' )H(p-q' ,q IA)NZ(J)] , 

here Aa>*(q') is the Fourier transform of Аа,и(х). 

Following the fifth parameter method of Fook we represent 
H(p,qlA) as the integral 

H(p,qlA)=-i(fdvO(p,q;v|A)eiv(P*-BlZ+ie) , (12) 

where the new functional obeys the normalisation 

O(p,q;0IA)=(2n)*S*(P-q) . (13) 

Substituting (12) into the definition equation of H, using 
(13), leads to the definition equation of U(p,q;vlA). For 
the infrared limit one could get 

1^0(Р.<1;ИА>+в*аР>А3(2Р*)0Р.<1;у|А)=° • (14) 

(14) has the usual time-ordered solution wich, making use of 
(11), (12) and (13) yields 



SI=-(2n)*iS*(p-q)(VJip
J,+m) 

fdueiWp*-B*+i€) [1+ * ( i e )n ft a*ip*l (16) J L n=l 1=1 

V " * - • • Jon 5*»< T A*! ( 2 p v i ) • • •Aí;(2pvn>>o] 

jW w<P*- B* + i«> [<Aj(x) >0+Jt< i g ^ J ^ P * 1 (16) 

V " 1 ' ' ' J>on5vn<TA5(x)A;;(2pv1). . ,A*JJ(2pvn) >Q] . 

How we calculate (15) and (16) in such an approximation 
where gloune starting from the quark line are absorbed by 
the same line corresponding to keeping the gluon propagator 
in the dressed gluon Green's functions in (15),(16). /This 
is the only possibility in QED/ The summation of the 
remaining colour factor is extremely complicated even for 
SU(2) gauge group in oase of arbitrary Ь, therefore ,we 
confine ourselves to an Abelian gauge group. Henoe 

TZJT4j,d*qSI=-i(vJlpJ1+m)X"dv exp[iv(p*-m*+l«) 

v v. , (17) 
-**%*vt!0 dvlf(Vl-vt)] 

\ 
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T 7 iT4jd 4qS I I=lJ J 0 dvJ 0 ^p% v (2pv o )dv o exp[lv(p*-m*+10 

where f(»'1-v i)rP e epp0gř[2p(i/1-v t)]. 

A similar type of exponential v dependence has been shown 
with a dipóle gluon fiel too [9]. 

In covarlan and axial gauges one has for G"p(k) in d 
dlnensionne 

6oe gck>= . ^ [ e - f - k 2 | S + JC|£ ] (i9) 

G«P= _ St£ te*'- b""'-***"" + babini 
G°a -prie ( k n ) + ( k n ) . 

+ d+S)(4-d)(g~'- n 2 | í ) ] 

(20) 

where iGgp(x-y) = <TA<>e(x)Ap(y) >0; «=0 (1) corresponds to the 

Landau (Feynmann) gauge. Q le.a constant and 5 is a 

parameter. The choice s=0 1л used in [7], s=-i reproduces 
the usual axial gauge. Fourier transforming (19) and (20) 
one can calculate f(v,-v2) in general covariant /fc/ and 
axial /fa/ gauges. Substituting fc and fa into (16) and (16) 
не get S1 and S11. 

In the above approximation S* and S** become entire 
functions of p* in the infrared region if 2IL-d+2>0 In 
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oovariant and 3>L-d+2>0in axial gauges (d=4+t). The upper 
bounds come frome the existence of (17) and (18). For 
instance in oovariant gauges the violation of 0<L-d can 
induce both regular ( vanishing or nonvaniehing) and 
singular Sg depending on the value of L. 

In covariant gauges at d->4 Sp=0 for L=3,4; otherwise for 
4>L>2 Sp is nonvaniehing and regular. 

For these values of d and L the infrared singularities of 
the quark propagator are cancelled, thus no quark can appear 
asymptotioally. 

A static potential can be defined from the gluon propagator 
- B~k Ъу * n e equation 

V(X)=(f%xJd<1ke-i^ [- ^ 2 ] (21) 

One r«m carry out the integrations and gets for d-L-l?*0 

r(L/2)r(d/2-L/2) |xja-u-i l ' 

and V(xJ is proportional to ln(x.) if d-L-l=0. Hence L-d+l 
leads to confining static potential. 

In four dimensions and in axial (covariant) gauges 5>L13 
(4>LI3) Sp is regular in the infrared region so it 
corresponds to confining static potentials. In both gauges 
foi. 3>L>2 (nonconfining static potentials) the singularities 
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of Sjr are verified to depend on the regularieation ohosen. 
For L=2 one obtains the veil-known results of QBD, 
independently of the regularization. For L<2 Sjj is singular 
and these L's lead to nonconfining potentials. 
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CONFUEUXBI AND QUARK STRUCTURE 0? HADRONS 

EfimovQJ. and Ivanov M.A. 

Joint Ins t i tu te for Nuclear Researobi Dubna 

I . Introduction 

At present considerable efforts are Bade to describe 

physical prooesses ooourring in the quark-confinement region 

on the basis of the fundamental representations of QCD [!3* 

However, QCD is not directly applicable to low-energy physics 

due to the matnematioal problems associated with a nonpertur-

bative theory* Therefore, various models and approaches 

originated from QCD are developed to obtain quantitative 

results for definite low-energy prooesses by means of 

different assumptions and hypotheses. An approaoh may be 

considered quite reasonable if it oontains a few free para­

meters and the hypotheses have a clear physical meaning. 

We have developed £2,3 \ the quark confinement model 
(ОСЫ) based on a definite representation about the hadroni-
zation and quark confinement. First, hadrons are treated as 
collective oolourless exoitations of quark-gluon interactions. 
Second, the quark confinement Is realized as averaging over 
the vacuum gluon fields for the quark diagrams. Strong, weak 
and electromagnetic hadron interactions can be described 
in the QCIt from a unique point of view. She preliminary cal­
culations \.2|3} of the meson and baryon prooesses have shown 
that the model reproduces the quark struoture of hadrons 
quite oorreotly. 
II. Radronization and Confinement Hypotheses 

A starting point of the QCK is the bagrangian of interac­
tion between the hadron field n with quantum numbers 
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and the quark ourrent 

For example» 

where Г;/X^ R, are Dirac and &ell-Mann matrices. 
The hadron interaction i s desorlbed by the S_matrix 

The quark propagator has the following form 

Here /7L Is the quark mass, ^ ^ t i s the vacuum gluon 
f ie ld, с̂ Ордл i a * л е i n d e f i n l t e integration measure over 
the flluon f ie ld. 

The measure J^VAC l s d e f i n e d s o a s "ko provide the 
quark confinement, that i s the singularities of the S-matrix 
elements ffhloh correspond to quarks in the observable hadron 
spectrum must be absent. 

The confinement ansatz i s that the Integration over 
cl б~1/дс can be changed by the integrál 
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where the parameter Л ? characterizes the confinement 
range. 

The confinement function is an entire analytical 
function on the £ -plane whioh deoreases faster than any 
degree of г • The analytical struoture of quark diagrams 
i s expressed in terms of a.C*?~)

,0jr\ and о(z , m//C} • 
We used the following functions for the numerical 

calculations of physical quantities 

aftO = 2./2 vxp [~UZ- 4.2 u\ 

efíť)= г-екр [-иг+ о.*/ и\. 
The coupling oonstants Фц are defined from the com-

positeness condition by which the renormalization constant 
of the hadron ware funotlon Is equal to zero 

Here ТТ(р) is the hadron mass operator. 

III. The Fundamental Meson Processes 

\ 
We define our single free dimensional parameter 

by f itt ing the main meson decays» 
1. 7T-»/Ui/ . î his decay i s defined by fa that 

i s the basio parameter of the chiral theory. 
2. p°-*e+e*". ÍThis decay Is defined Ъу <jfy , 

the basic parameter of the vector dominance model. 
3 . 1t°-T>V',t0-*irV' • ,j;hese decays are defined by the 

•Adler anomaly. 
4. Q~+%% . This i s the strong p -meson decay. 

In the QCM these decays are described by quark diagrams 
(see Table i ) . 'J-'he best agreement with experiment Is 
achieved for Л^ — 480 MeV that corresponds to 
го = Л« \о.(о)л 226 MeV. One can see that there i s a good 
agreement with experimental data \ 4 ] . 
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Table I 

Coupling constants \ i "-/i4i 0.0722 П. 
0675 f 
0671 **> 

*oc У/ 
X - 1 3 4 Ые-V 'it 

h 0.20 

Jf =• 132 UeV 

= 0.18 

It ftt -0.27 OeV1 Jty -0.276 0.Г* 

^z: 
$o>*fZ'?3 *** ^ -2.54 GeV-1 

Ф » 5.9 
dpi Jfirn 

6.1 

It I s essential that the ОСЫ allows us to calculate 
not only Integral characteristics! l ike decay width, hut 
also the momentum dependences of physical matrix elements. 

For example* l e t us oonslder the electromagnetic plon 
forffl factor. 

The corresponding diagrams are shown below: 

(1) 
2 г 

For the spaoellke momenta <j —~Q£0 the plon form 
faotor PL (Q ) can be represented In the form 
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FfQ> 
W -пгЛ,(-#)+«?^,^/л3) 

where 

j^fc) = [л*.h*)+ i Uu ííu-i)\f- JJT\ , 
v* 

•̂  co -

F„|Q2) 

<}г(ГэВ2) 

0 1 2 

Good agreement with experimental data£ 5^ is observed. 
17. The Kleotromagnetio and Strong Nuoleon Form Factors 

In paper \з\ we have calculated electromagnetic and 
strong nucleon form factors. Static electromagnetic characte­
ristics (magnetic moments, the ratio 6> /(г., etc) and the 
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strong meson-nueleon ooupling oonetante ware oaloulated too* 
Th# experimental data OB electromagnetio nuoleon form-

faotors are described quite aoourately by tbe empirioal di­
póle formula. Our result» are shown below* 

One oan see a qualitative agreement only with tbe dipóle 
formula for Q%* 2 S«V* 

The meeon-nuoleon form faotore play a fundamental role for 
for tbe description of NN-interaotion^. They are introduoed 
phenomenologioally and are ohoeen from the beet description 
of the experimental Hif-eoattering data. In the OCli these 
form faotore are oaloulated In a standard manner without any 
assumptions. Ohelr bebarlour le shown below* The obtained 
results are in agreement with phenomenologloal ourres [б]. 
In future we plan to oaloulate the *N-eoattertng phase 
shifts. 
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The QOD sum rules, their validity and applicability 

P. Kolář 
Institue of Physics CsAV, Prague 

ABSTRACT 
Modifications of the QCD sum rules are investigated. 

It is shown that, for practical applications with the 
present knowledge of condensates, the standard Borel sum 
rules are the most convenient ones out of the modifications 
considered* 

1* Introduction 
The method of the QOD sum rules is very successful in 

applications to the low energy resonance parameters. 
Nevertheless, there are some problems which prevent us from 
obtaining the needed accuracy. In the case of light quark 
systems the form of sum rules (SR) ia given by the relation 

fwCs) 1»+Пк)Ж * •- f wtoMt) ** (1) 

where if (s) is the polarization function, w(s) ie an 
weight function and C R is the oirole with the radius R • 
We choose w(s) to be an entire function in e. Retaining 
S finite we get the Finite Energy Sum Rules (FESR) while 
the limit R-+OD leads to the SR of Shifman, Vainstein 
and Zakharov [jj* The choioe "(в.)"^3 éT /7Í exactly 

coincides with the Borel sum rules* In the following we 

restrict ourselves to the case of f>-meson generated by 
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the current Jf-ÍWf1*"*^ We mostly parametrise Im/7/У 
by the ^funotion and the step function! 

where sQ is the starting point of the continuum. 
The practical use of the QCD sum rules oan be difficult 

due to the following facts: 
(i) the continuum contribution is known only at high ener­

gies; 
(11) the condensates corresponding to higher-dimensional 

operators are ,in general, unknownj 
(ill) the effective parameter s is not directly 

measurable quantity; the correst value of s is not 
known; 

(iv) the oorreot parametrizations of resonance and conti­
nuum is also unknown. 

In practical applications eQ is considered as a 
parameter and a consequence of (i) and (ii) is the 
necessity to introduce the fiducial interval^J in which 
our ignorance of higher condensates and of continuum doee 
not change the predictions of SR within reasonable limits. 
It was proposed in [2] that the fiducial interval should 
be estimated directly in the quantity to be extracted 
from the SR. Thus, the practical problems of QCD sum 
rules are: the correct determination of the fiducial in­
terval and the correot determination of S • Can any 
modification of SR improve the situation? 

The modification of the QCD sum rules can be under-
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stood as a choloe of the weight function. We shall consider 
three classes of the QCD sum rulее for light quark systems* 

2. Modifications of the QCD sum rules 

a) The Gaussian sum rules* 
It was proposed by Bertlmann at »1.[з] to choose 

This choice of the weight function can, in principle, 
serve as a formulation of the local duality ( P-»Q ). The 
detailed inspection of the corresponding sum rule shows 
that the suppression of higher condensates is weaker in 
comparison with the Borel sum rule* 

b) The weight functions f .̂ . 

were considered in£2j« The corresponding modification of 
SR provides another formulation of local duality ( k-»a>)• 

Note that the both approaches to local duality requires 

the knowledge of higher condensates. 

The Borel sum rules represents the special case of 

eq. (4) for k«1 and are the most suitable ones out of 

the class (4) in practical applications* The reason is 

the weak suppression of higher condensates for k>1 • 

o) Finite energy sum rules. 

We shall define the FESR with nonpositive weight func­

tion by generalizing the approach of Kremer et O1.[A] 

(this approach is called as analytic continuation by dual­

ity ). We denote the oondensate contributions as (% (see [2]), 

220 



The equation (1) can be rewritten into the form 
A 

c* 
She contribution 

ia, in general, unknown and should be minimalised* We define 

Bg aa the last point of the first resonance and the weight 

function w(s) can be chosen in the form 

*(*) - /to - 9 (*> (6) 
where ?//&) is a polynomial in s ; the function f(f) 

ia an entire function. The simple examples are f a 6 

and f • S . The coefficients of the polynomial 

are determined by the least square fit and are dependent on 

R . To Illustrate this kind of PBSR we choose two veight 

function ^ fs)m s*>*_ «,_*,,_..._ **„ S*" 

and v (7) 

Using the parametrization (2) we get from (5) 

Í 

Hence ** ~"\V9 , ^,*u*~f *'mftf 

/>*> 

j^2* érfwwM* 4-ъ у (6) 

where we have neglected higher perturbative corrections» 
To determine к we require 

£*(*)-%*>**• ° 
for any polynomial P^ of order <f .As a consequence к 
is the order of polynomial which approximates Im П№) 
sufficiently well. The formula (9) contains the con-
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densates up to the dimension 2(k+4). 
The resulting SR are very sensitive to the values of 

condensates and to sR • The practical applioatlone are 
restricted only to the values k«0 and k»1 where the experi­
mental mass can be reproduced sufficiently well. It should 
be stressed that the sum rules with a positively indefinite 
weight function have the problem in the estimate of fiducial 
interval. Nevertheless, the SR proposed above can be useful 
in the determination of the condensates from the experi­
mental data* 

3* Conclusion 

The modification of the QCD sum rules considered here 
can not significantly improve the results of the standard 
Borel sum rules* They could be used, in principle, for 
consistency tests of the QCD* 
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Masses of High Spin Hadrons 

M.Schepkin 
ITEP, Moscow 

This report is devoted to the problem of spin effects 
in spectrum of orbitally excited hadrons. We will consider 
rather high orbital angular momenta for which spin effects 
look as spin-orbit interaction its sign and strength being 
defined by character of forces between quarks at large 
distances* 

There exists widely accepted point of view according 
to which hadron with high spin looks as rotating string 
with quarks at the ends /1-3/. The string is understood 
as a flux-tube of chromo-electric field with the amplitude 
defined by color charges at the ends. In the simplest 
version, when quarks are massless, the model predicts 
linear Regge trajectories with the slope CL'=-(ZTL\?)~ , where 
0 is the string tension. In reality, however, quarks 

localized at the string ends, acquire effective masses, and 
velocities of the string ends become less than speed of 
light. 

For the application of the model to real hadrons it is 
necessary to take into consideration quark spins /4-6/. This 
gives rise to the problem of spin-orbit coupling /6/. It 
is clear, that the only source of ls-coupling is Thomas 
precession because in the co-moving frame the gluon field 
is pure electric. The frequency of Thomas precession of 
spin of particle moving along the given trajectory is equal 
to ^ 

where \/ - velocity of the particle, v = *v 
V = '/<//- V * ' • For circular motion [7«v?J - Co V 2 , 
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where w is rotation frequency. Hence, Thomas correction 
to hadron mass is equal to 

AET--£(t,+?x)(r-f). (2) 

For high orbital excitations when the system can be 
treated qupsiclaasically the relation between the mass and 
total angular momentum (spin) of the string is given by 
following equations : 

3 = S „ 0 + S Z u , + £ ( * n c S - . W ^ ) >
 (3) 

The last equation follows from the equilibrium condition 
i'or the quark at the string end. Effective quark mass m 
and string tension 0 are parameters of the model. 

The correction &ET is negative for spins parallel 
to the rotation axis. Thus for high orbital excitations 
the model predicts the inverse order of levels with different 
sign of Is* as compared to that in electrodynamics. This is 
due to the fact, that for the motion in vector field there 
exists nonzero magnetic field in co-moving frame; its 
contribution to the spin precession is larger than Thomas 
effect in magnitude and opposite in sign. In the flux-tube 
model magnetic field in co-moving frame is absent. Hence, 
inspite of the vector nature of gluon field, the spin at 
the end of the string behaves like spin of particle confined 
in scalar potential. This analogs' c an be used to reproduce 
quasiclassical result (2) from quantum mechanics in the 
limit of high orbital excitations /7/. Consider Dirac 
particle in scalar potential W«(Y-) : 

Let us calculate the matrix element of Hamiltonian squared 
<H2> - $((>+ НгФЛР • For Dirac particle »=?/?*• f»»i , 

therefore 
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The expression for c* * •£ Нг> can be presented as 

(5) 

(6) 

express 
series /7/ 

where h/"'» V w / j r * , *- • - (< f &?*) . Рог high 
orbital excitations ^ -function is different from zero 
in the vicinity of the point of classical motion fa 

In that case ls-splitting is approximately equal to 

** Ztlr0L J 4tx Л 
Рог relativistic rotation in the potential Ун**Г the 
main contribution to д £ е for 1 » n is given by the 
first term proportional to m' . ls-splitting is then 
equal to &£•*. * V'^ffe-i. i where fsC/ш , /iBfob. -
distance between neighbouring rotation levels (with 
coinciding signs of Is). As is known in quasiclassical 
limit A Ej-o-f is equal to rotation frequency w . So the 
result obtained coinoides in the relativistio limit v/ith 
the expression for Thomas correction in eq.(2). 

Por exponentially growing potentials the series in 
eq.(5) can be summed explicitly. 

Por the cases considered so far the standard definition 
of X -factor for circular motion is correct if the size 
of localization area A f is not small as compared to 
t/iviWi)» Otherwise fermion mass should be substituted by 

the effective mass №t^~</Žlv' and correspondingly 

}f -factor should be defined as ye£| -S./totu • Kiis 

situation takes place, for instance, for massless fermion 

confined in spherical cavity. Inside .the cavity Dirac 

equation has the form p Ф" = 0 . Confinig boundary 
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condition is /8,9/ 

1ИГ*ГФ=Ф. (7) 
This boundary condition breaks Yj- -invariance as it 
should be for scalar confinement. We are interested in the 
energy splitting of levels described by wave funotions /10/ 

K^ - spherical Bessel functions, JZj,£ - spherical 

spinors. <k and <K. correspond to the total angular 

momenta \± ~ 4. * */l aa^L energies £± , respectively. 
Boundory condition (7) leads to the equations for energies 

£ ± : 

K * i k « ) * * < & * ) • do) 

Solutions of these equations for large 1 are 

*• = kl* + Cbt^+tPtO], ^0.809 (11) 

Í- *l[l f f , i V , t 0tf)]f C. * 1-856 (12) 

Energy difference increases for large 1 according to 

the level with s parallel to 1 having lower energy. The 

distance between rotation levels as is seen from the same 

formula is equal to 

ABroi *4Cy- = 4 Í . Я» </%. 

Thus, for large 1 £ _ - 2 + » Л £f«>4 . The same inequality 

took place for Thomas correction in the string model, 

eq, (2), The analogy with the string can be traced further. 

To do that let's define effective X -factor for massless 
fermion confined within cavity. Using properties of Bessel 
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functions it is easy to see, that the wave function is 
localized within rather thin layer near the surface. The 
size of the layer ůť «• R ftl,i , hence the effective 
formion mass is Ы€и ^ С /R. • Fermion .energy £f ~ Vtf , 
and ao effective Y -feotor is equal to X-^f/mt^ <v-

It is seen now that spin-orbit splitting ia V times larger 

then distance between rotation levels. 

Thus, relativistic quantum mechanics reproduces 

quasiclassical result for ls-splitting caused by Thomas 

precession. 

let us stress one more time, that in relativistic 

limit ДЕт»1*) -Á^-t-oi . In that sense Thomas precession 

represents nonperturbative effect. 

Let us consider now orbitally excited mesons. Because 

of the Thomas precession of quarks spins particle on 

P -trajectory with quantum numbers 3 P , P = (-t) has 

lower mass than its partner on 71 -trajectory with the 

spin 3-| and the same parity. To estimate the effect we 

need to know }f -factor for the string end. For high 

orbital excitations Jf^u'Ar , therefore, let's say, for 

3 ъ 10 ls-splitting is of order of distance between two 
neighbouring points on one and the same trajectory. 

Numerical predictions of the model for masses of 
orbitally excited qq-mesons (q = u or d) are shown in Fig.1 
in comparison with experimental data. Parameters &*f and 
\) have been fixed by position of two points on trajectory 
1, Wj = 340 MeV, £27ГО)'/г = 1.07 GeV. As there are no 
dependences on isospin, particles with T = 0 and 1 have 
equal masses. Quantum numbers of resonances on trajeotory 
1 are J1*0 = 2++, 3"~, A-** ... Number of particles 
on the trajeotory 2 is twice as large, here 0 P = 1+,' 2", 
3+, ... and С = +1 or -1. In particular, J> -excitations 
must lie on trajectory 1, and excitations of ТГ -type -
on trajectory 2. According to experimental data the tendency 
for "inverse" order of levels is seen. There is a certain 
optimism in the last statement because the data available 
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need to be clarified. It is more interesting,of course, 
to have experimental data on 7Г -trajectory for Л > 3. 

Equations (3) can he obviously generalized for 
different quark masses. Introducing one more parameter Kis , 
strange quark mass, enables to calculate К and K* -
trajectories. The results are shovm in Pig, 2 in comparison 
with experimental data. It is seen that the model predictions 
are in agreement with experimental data for high spins. 
Of course, it is also desirable to have more precise data 
on К -trajectory. 

Desorepancy of model predictions with experiment 
for small J is explained by the fact, that besides 
Thomas precession there exist another essential spin effects 
due to the presence of vector (for example, Coulomb) inter­
action. To estimate contributions of different spin forces 
let us use potential approach. Let t(t-) be the sum of 
scalar and vector potentials. (In nonrelativistic limit 
string is equivalent to lineary rising scalar potential 
$*" /11/). Then to the first order in 1/wč the 

effective potential, depending on spins, can be presented 
as 

f si si \ ? . rz. sZ £.*-c \ ~? 

(13) 

where 
•A 

T -
Here fat and **»г - masses of quarks. In what follows 
spin-spin forces will not be taken into account because 
we consider nonzero orbital angular momenta. General 
formalism of calculation of functions a,b,c,d in QCD was 
developed in Ref./12,13/. afc) is determined by scalar 
potential; functions b,c,d - by vector potential. 
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Proceeding from general form of potential (13) we oan 
estimate oontributions of separate terms to the masses 
of P -wave analogs of light mesons and then to předlot, 
for Instance, spin effeots for mesons made of light and 
heavy quarks* 

Similar model-independent analyeis was made recently 
in Ref./14/. for that purpose we will use experimental data 
on P -wave strange mesons и, (1280) and K, (1400) 
representing mixture of 3P1 and 1P1 -levels with mixing 
angle 6 к 56° /15/, and к* (1430) with quantum numbers 
of -^-etate. Let ue rewrite eq.(13) in the form 

V«tf - £+ е«ГЙ-Й)?+)»Д + й ) ^ + у Т . <14) 
f, *t, ft and У are now understood as matrix elements of 
the corresponding operátora. Then 

Maes matrix of axial mesons has the form 

Eigenvalues f*< and f*i of this matrix are masses of 
physloal states. Ы. is straightforward expressed in 
terms of experimental data 

Omitting details we write down the answer for matrix 
elements 

oL к 45 MeV, A = 50*65 MeV, V » 0*50 MeV (16) 
Uncertainties in these estimates are due to experimente! 
errors. Estimates of matrix elemente of the original poten­
tial (13) depend on quark masses H», * *м, and УИг = His 

Por fMs • (1.3*1.5) **• spin-orbit contributions of 
scalar and vector potentials are comparable (see also 
Ref./16/). When J lnoreases the size of the system gets 
larger and spin forces due to veotor Interaction vanishes 
more rapidly than the contribution of scalar interactions. 
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(For lineary rising scalar potential and Ooulonlb-like 
veotor potential we have й v */f , k-v '/y-l ), This 
ehould lead to the "flip" of eign of «pin-orbit splitting. 
Experimental data do not oontradiot euoh Interpretation 
(see Pigs.1,2). However, it ia highly desirable to have 
information on 71 and К -trajectories for 3 > 3. 

Let us consider now p -wave mesons made of heavy 
and light quarks, for example. It 5 , For estimate we 
put ыг a. •» , Then matrix elements (whioh we write 
with index «• ) sutlsfy equations 

and mass matrix of axial mesons has the form 

*•.</! * ~ 
It is easy to see that mixing angle is flxedt 

•1*1 е*,*ill, в- *if? 
Masses of J?2 and *?0 -states in that oase are equal to 

Aa a result, relative position of four P -wave states 
looks approximately as shown in Pig.3. И м splitting of 
pairs of, degenerate particles is equal to 3 o l N • 

Thus, the inverse order of levels for mesons with 
VHt » Иц is expeoted already starting from P -wave. 
Analogous conclusion was made in Ref./17/. otao oan be 
estimated from eq»(l6) if the ratio of radii of Sf and 

. I>i -mesons is known. For (Tiff Л ц ) +<l spin-orbit 
splitting 3 oip.~ 50 • 100 MeV. 

For charmed mesons large corrections arise from taking 
into acoount finite С -quark mass /18/. However, for 
3 -like excitations inverse order of levels is also 
expected to take plaoe for lower J than in meeone made of 
quarks with equal masses. 

In conclusion let us stress one more time the impor­
tance for experimental investigation of the problem of 

(17) 
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high spin hadrons spectroscopy. It may provide us with 
the information on spin effeots, which are defined by the 
particular character of interaction between quarks at large 
distances, If we accept quasiclasslcal approaoh of QCD-string 
thon spin effoots occur to be large and rather unusual. 
Energetically preferable orientation of spins corresponds 
to positive С S . Magnitude of spin-orbit splitting is 
comparable to the mass difference of two neighbouring 
particles on one and the same trajectory. From the model 
independent analysis based on QCD it can be concluded that 
in mesons made of light quarkB the "flip" of sign of spin-
-orbit term happens for 3 > 3. For mesons constructed 
of light and heavy quarks theHe effects should take place 
for lower spins. 

Besides investigations of meson spectroscopy it would 
be highly desirable to have more accurate data on bnryon 
trajectories /19/. 
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DECAYS OF GLUONIUM IN THE GENERALIZED 
QUARK MODEL OF SUPERCONDUCTIVITY TYPE 

M. Nagy 
Institute of Physics of the Electro-Physical Research Centre, 
Slovak Academy of Sciences, 842 28 Bratislava, Czechoslovakia 

M.K. Volkov 
Laboratory of Theoretical Physics, 

Joint Institute for Nuclear Research, Dubna, USSR 

Abstract 
In the generalized quark model of superconductivity type 
(GQMST), obtained by the introduction of gluonium into a 
quark model with four quark interactions , the calcula­
tions of G(e') decays into 2jr , 2K and 2T\ are performed. 

One of the motivations for construction of GQMST was the 
problem of the description of scalar mesons in the framework 
of quark model, namely the interpretation of C'975) and e(1300) 
states (in the new notation f (975) and fo(1300j, respectively). 
It is difficult to answer, in the framework of pure quark mo­
dels, why the E(1300) state, consisting mainly of light quarks, 
is heavier than S*(975) state, consisting mainly of the stran­
ge quarks. The next question is connected with the problem of 
existence of the third isoscalar meson which should be lighter 
than 1 GeV. The existence of this meson (well known as o-meson) 
has been predicted many years ago in the framework of phenome-
nological chiral sigma models. 

2 
It was shown , that in the GQMST the three scalar states 

( E(550), S*(1070) and ť(1200)) appeared in natural way. The­
se three isoscalar states arising in the scalar sector were 
identified with mes.ons in following way. 
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The first resonance consisting mainly of light u and d 
quacks and possessing the large width of the decay into 2Tt 
equal to its mass, i.e. it is difficult to observe. This 
resonance is a good candidate for the role of the well known 
O-pacticle. 

The second resonance is close to the scalar meson S*(975) 
and it consists almost completely of the s-quarks; however, 
owing to the small admixture of the gluonium, this resonance 
decays into 2Л with the decay width corresponding to the 
experimental value. 

Finally, the last resonance is almost completely defined 
by the gluonium. This state possesses the properties close to 
the £(1300) meson. It decays mainly into 2Л with the decay width 
not contradicting the last experimental data ' , with smaller 
probability also into 2K and its decay into 2T| is suppressed. 
A qualitatively reasonable picture expressing the existence of 
three such states is in the agreement with experimental data. 

The inclusion of the gluonia into the quark model of super­
conductivity type have been carried out in the scheme proposed 
in papers • . We have obtained the following expression for the 
Lagrangian describing the interaction of the gluonium field G 
with quarkonium fields (of scalar and pseudoscalar mesons) 

A * - - H/G/fg <lnju + f-) • (1) 

• (e2G/fg - !){(.; - 4 ) №+ 4U>Z • (Ou - Z " V J 

• <«J - mé № + < v z l / 2 f * ) 2 ] + b^r1*" ^H 
where H„ = £ G„, b = -Ц- N - т N, ( N = 3 is the number of 

0 8 0 3 с 3 f с a. aiiv 
colours, Nf = 3 is. the flavour number), Бо=<0|-^ GnVGg |0> is 
the gluon condensate for which we use following value G =0.012 
GeV according to , t^ = 93 MeV, fg= 1.28 f^ are meson decay 
constants, Z = 1.4 is the constant occuring from the inclusion 
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Tl-A, transitions1, ( mn « 700 MeV, m»200 MeV, m » 455 MeV ). 
In the Lagrangian (1) there are three new uncertain parameters 
C, f and mG (gluonium mass).'They have been fixed by choosing 
three conditions giving as a result f = 212 MeV = 2.28 f_ and 

У 2 " 
n?g» 1.16 GeV. In the corresponding Lagrangian there appear the 
nondiagonal terms containing G О and G O s 

*CGau, Gag)= - -ffc-fcftfr - m ^ V <2m2Z - m2 )fg0g] (2) 
1 rg s 

The direct decay of the gluonium G( e') into 2TT. , 2K and 2T| is 
allowed by 

#(Gn2, GK2, Gn2) = f f(2m2Z - т 2 ) * 2
+ (^C^- 2 - m 2 ) * 2 • 

f g l U It 2 К ( 3 ) 

+ [ ( гиф - т 2 Ы п 2 ( ф - Ф0) + <2m2Z - n.2 )соа
2(ф-ф0>] q2) 

where we have taken into account the mixing 

nu=n'c°s((p- tpQ) -Л 31п(ф-Ф 0) ( 4 ) 

Лд=л'з1п(ф- фо) +лсоз(ф- ф0) 

with mixing angle ф - ф = - 53°. 

Th? G(c') —r-2Tt decay goes in the direct way as well as 
via the intermediate O, state and for the total amplitude we 

2 obtained as a result 

Tři»- <№ - $[i • -p£] ď . «* о 
G °u 

and the corresponding decay width is 

Г6 -+ЪС JCBwmg)"1 a2(l - 4т2/т2.)1/2 = 150 MeV (6) 

in agreement with the experimental data ' . The amplitude of 
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the G(c') —*• 2K decay, following from the Lagrangian (3), leads 
to the width2 

r
G _* 2K = 30 MeV (7) 

which is in qualitative agreement with experiment . The process 
being taken into account via intermediate 0L(S ) state increa­
ses twice the value in question. 

For the amplitude of the direct G(E') —*• 2i\ decay we get 

TG — 2П = ̂  {<2"2Z - • Ф 3 1 " 2 ^ - ^ + 
(8) 

+ (2m2Z - m2 )cos2Cip- Ф 0)} GT|2 « uW 

which leads to the width 
ГС — 2Г) = ( 8 n n ,G r l 9 2 ( 1 " 4 mn/ mG > 1 / 2 = 7'5 MeV (9) 

So far, there are no reliable experimental values for the decay 
width of this process. However, there is some evidence that de­
cay was seen as claimed by PDG. 2 As a whole, the picture we have obtained is in agreement 
with the experiment. GQMST offers thus some other possibilities 
in investigation of gluonium properties. 
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YANG-MILLS PROPAGATORS IN BACKGROUND FIELDS 
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In a Euclidean Yang-Mills theory with a, for the moment, 

unspecified gauge group (structure constants f* c ) , gauge 

parameter oc, and background field B*(x) we calculate the 

gauge resp. ghost propagators G??(x,y,oí) resp. 0 (x,y) 

by inverting the kernels 

г1 , ©г1 (1) 

where ' ^ М - Г ^ - j f ^ V ^ ) 
making use of 
!#м<#fr,y,-)- - П * * Ы j: J6 wM- ' ? "^V (2) 

It is possible to express the gauge propagator for arbitrary 
ь( in terms of the special propagator for ̂ =1 

• t 

To verify (3) we use the identity (valid if 0*ЪрД = 0) 

and the functional equations with respect to у 

i ; f c б / í r*,v, - ) v= - •< 6 л л-v. - ) j>.b£. 
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Now we specify the YM theory to the gauge group SU(2) 

(i.e. f = I ) and a constant homogeneous magnetic 

background field in the colour 3 direction 

(4) 

We use the notation 

f;.-í\). £-(4.) 
/о 4 в «\ 

'Г ~ V-v "" £•»- в -А о о о Г* I о о о о/ 
\ О 0 О о ' ' 

We diagonalize the kernels 

in colour and space-time indices and arrive at the problem 
to invert the operators 

as well as h++2gB and h"+2gB. After separating the эс, . 

dependence by means of a Fourier transformation we obtain 
2-dimensional harmonic oscillator Hamiltonians and calculate 
from their eigenfunctions and (infinitely degenerate) eigen­
values the inverses 
TLÍ/ И-« - i- #t£?Ar.v) r£h. .itfr*^ Т Га О 
Lk-AíV)! % В е UMV**- •L(a,h' (5) 
and analogous expressions for (h+2gB) involving I(a+2,b) 
instead. In writing down (5) we have used the notation 
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The function I(a,b) bas the 
integral representations 
ТГ.,ъ)=~*£— t-r-bfa.fcf 

(Кв. <* >--») 

Ге 

JÍ£_- « 

Ы-1-Ь»*1чГ) 

,-»ť 
(7) 

.-irl 

1« -u 
a*4 

- 1 - * " * * • ' ] 

Г** «>-3). 

I(a,b) has a tower of poles 
as can be seen from its ex­
pression in terms of Laguerre 
polynomials 

<afi«r-f 4 (8) 

In x-space we have the dependences (>=gBx,,/2, *»=gBxt/2) 

w=áí; J 4 _cl»v 
Э-В Via)" 

EM) *TT 
e ~ t -p- cto*U Г" 

•Г* .rb< D^J.^f&e^r^ 1.1) 
(9) 

Р'. р*ч-1Г D1"» D+-D-

More details about the long-and short-distance behaviour of 
D°, D+, and D" are derived in ' 4 Л 
The propagators for </=в1 are finally 

(Ю) 
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Where the phase factors 

involve $(x,y) defined in (6). 
The large-distance behaviour of the gauge propagator is 

To recognize that the integral expression T]^v in (3) is 
well-defined we need besides (12) the relation 

p;k rA^+ř^íi] e-^^-^HfVlíeA^) -° (13) 
which holds due to the structure of the phase factors. 
To evaluate UJ?" we use partial integration to let p0,f 

ал . 
operate on G..M(JC,Z,1) , apply the relations 

ф ' Ч , * ^ ^ ) — 4"*4*)f uc>*) « 4"e/v-v,«.) 

aDd ^ 3>ř/kí + ť < уы) c é DVi) 

with the result 

alt Ал)« Р« / f сА-у,а) к. £v/f.*) VÍ"%-4«)2- %-(U)\ 

where 

it is easy to show that for real fg 
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(15) 

<16) 

Using these relatione we get 
u't^y) - f"4v) «t Q r A«y) 4 #"*ц^у)%« fl^-v) 

with Q (x-y) given in terms of Pj^if) from (14) 

^Ati-Prs'^Vh), »-¥•* ' VT 1^ (17) 

In the expressions (HM16),(17) "• have now a oonvenient 

form which provides a starting point to construct a compact 

integral representation for and to study the analytic prop» 

ertlea of the general gauge propagator ofi (x,y ,*) in a 

oonstant homogeneous background field. 

A short summary of calculations of the 2-loop contributions 

to the imaginary part of the effective potential in terms of 

the background field propagátora will be published in the 

Proceedings of the XXI International Symposium Ahrenshoop/ 

SellIn 1987. 
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CRITICAL EXACTLY 80LVAB1Í MODItS AND OONTOFUIAL FIEIO THEORY 

V.V.Bazhonov 
Institute for High Energy Physios, 

Serpukhov, Moscow Region, USSR 

Abstract. The eigenvalues of the transfor matrix of the generalized RSOB mo­
del are exaotly calculated. From the consideration of the thermodynamics of the 
quantum system on the one-dlmenslonal chain connected with the RSOS model, we 
calculate the central charges of the effective oonformal field theories descri­
bing the crit ical behaviour of the model In different regimes. 

The underlying algebraic structure of the 8-vertex model Is a deformation of 
the universal enveloping algebra of s<(2)' V , From this point of view, the ori­
ginal 8-vertex model'*'3' corresponds to the spin s»l /2 representation. The 
authors o f /4 / developed a method (called the fusion procedure) to construct the 
vertex models corresponding to the arbitrary spin representations. The generali­
zed 8-vertex models obtained in this way were considered In rot.'W, 

In refe.^8»7 / It has been shown that one can associate the ordinary 8-vertex 
model (of the spin a»l/2) with a series of lntegrable RSOB (Restricted Solid-on-
Solld) models which are of considerable Interest due to their "ňon-trlvfíl"crltl-

~e*I behaviour. 
Recently Date e t a l ' 8 ' , using the fusion procedure, have obtained lntegrable 

generalisations of the RSOS model of ret/7/, corresponding to the "higher spin" 
8-vertex models. The fluctuating variables In these models are Integer "he­
ights" I f . ] , assigned to s i tes of a square la t t ice . The Boltzman weights are 
non-vanishing only If 

{l l -ej-L)/2elo, l , . . . ,L} f (1) 

iil^r-1, (2) 

L<£±+ tj <2r-L, (3) 

where L-p for a horizontal pair of adjacent s i tes (1,J) , Uq for a vertical one; 
Р.Ч.г <r>nax(p,q)+2) are positive Integers characterizing the model. Moreover 
there are two more parameters q and v (ав usual, v enters Yang-Baxter equatlons,4 
i s related to the modulus of e l l ip t i c functions, parametrizing the weights). 

Note, that the generalized RSOS model i s closely related to i t s vertex coun­
terpart, the generalized 8-vortex model. Indeed, using the results iron/ 8 / , one 
can show that it con be considered as a "higher spin" 8-vertex model with some 
special boundary conditions. 

In this paper, we present several exact results for the generalized RSOS 
model. 

Using some specific properties of the Boltzman weights we obtain a system of 
functional equations which allows to calculate exactly the spectrum of the trans­
fer-matrices T P l 4 (v ) . As usual, the eigenvalues are determined through the solu­
tions of a system of transcedental equations, We show that up to an overall nor­
malization tand a shif t f of t the parameter v the spectra of the transfer-matrices 
TPi4, TP>°- , TP • *, тР Л , where p+p'w-2, q+q'»r-2 coincides. This means, that 
a l l physical characteristics of the model ( e . g . , such as cr i t ica l exponents) 
should not change under Independent transformations p-»r-2-p, q-»r-2-q, 

The model becomes cr i t i ca l when 5«Ю. In this case there are two physically 
dlstinot regimes at p-q 

i ) 0 < v 4 « / r i i i ) -X/i+r/r&v^O. (4) 
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In work'9' Belavin, Polyakov, Zamolodohlkov have developed a conformal boot­
strap programs to classify possible types of a universal critical behaviour and 
to oaloulate orltloal exponent». According to thla approaoh, the critical beha­
viour of a two-dlmenalonal statistical system at a second order transition po­
int la described by some unitary/*0/ conformal field theory, specified by a va­
lue of the central charge of the (Vlrassoro) algebra of the conformal transfor­
mations. The parameters of this oonformal theory can be extracted from the In­
formation about the spectrum of the transfer-matrix of the statistical sys-
tem"""»/. 

At present,a nunber of conformal field theories are been constructed,in which 
the spectrum of the conformal dimensions la known exactly (soo, cg/9'30!14"36''. 

Returning to the RSOS model under consideration, define a (local) hamlltonlan 

HP*d1vK'P<v>|v.0 <» 
of a one-dlmenslonal quantum RSOB model on a chain of N-sltes. In the critical 
case hamlltonlan (S) has a gaplesa spectrum with the linear dispersion law in 
the vicinity of the Fermi level £(p)>Vp|p-pp|. The value of the central charge c, 
of the corresponding conformal field theory may be calculated/1*"33/, on the one 
hand, from the leading finite-size correction to the ground state energy of ha­
mlltonlan (B) for the periodic boundary conditions 

*oyT i 
V*«o- -W0^ <6) 

and, on the other hand, from the low-temperature asymptotlcs of the specific 
free energy of the quantum system with hamlltonlan 'fl) at-V—»»» 

Tr <e-*H> --**</», 

ic -a -a ( 7 ) 

VF 
where £ r f * 3 la an inverse temperature. 

Vie take the second .way and inves t iga te the thermodynamics of the quantum 
RSOS model, In doing t h i s , we use some hypothesis on the types of allowed s tr ing 
aolut ions to the transcendental equations, determining the spectrum of hamllto­
nlan (S) within a ťhermodynamlcal l i m i t . He verify our hypothesis for the cases 
psl,' r=3 (completely ordered model) and pal , r»4 ( Is lng model), when the e igen­
values may be calculated exactly at f i n i t e N and suppose, that i t i s val id in a 
general case . In part icular , th i s hypothesis leads t o the true asymptotics of 
the dimension of the apace of s t a t e s of the quantum RSOS model, when N-*-«>. 

The r e s u l t s for the central charges for two c r i t i c a l regimes (4) are of the 
form 

p+2 r (r -p) r 

Both expressions are symmetric respect to the transformation p-»r-2-p, discus­
sed above. 

Note, that calculations with formula (6) should give the same values of the 
central charges. Using the method of refУ17/ one can show that it is indeed so 
for the case p=l, of regime i). Moreover, we numerically establish this corres­
pondence for several values of p and r in the regime i). Moreover, wo numerical­
ly establish this correspondence for several values of p and r in the regime i). 
These results confirm our hypothesis used for tho derivation of eq. (8). 

The basic results of the talk wore obtained in collaboration with N.Yu.Re-
shetikhin. Tho author is grateful to him. 



References 

1. B.K.Sklyanln,- Punk. anal, prllozh. 16 (4), 27 (1982); Г7 (4), 34, 1983. 
2. R.J.Baxter. - Ann, Phya, 70, 193 (1978). 
3. L.D.Faddeev, L.A.Takhtadjan, - Sov, Math. Uspekhi 34, 13 (1979). 
4. P.P.Kullah, N.Yu.Reahetlkhin, E.K.Sklyanin. - Lett. Math. Phya. в, 393 

(1981). 
5. X.V.Cherednik, - Punk, anal, prllozh, 19 (1), 89 (1985); 

Yad. Piz. 36, 549 (1982). ш 
6. R.J,Baxter. - Ann. Phys. 76, 25 (1973). 
7. O.E.Andrews, R.J.Baxter, P.J.Forreater, - J. Stat. Phys, 35, 193 (1984), 
8. E.Date, M.Jlmbo, T. Miwa, M.Okado. - Lett. Math. Phya. \2, 209 (1986). 
9. A.A.Belavin, A.M.Polyakov, A.B.Zamolodchikov. • J. Stat. Phys, M, 763 

(1984); Nucl. Phya. B241, 333 (1984). 
10. D.Prledan, Z.Qlu, S.Shenker. - Phys. Rev. Lett. 52, 1517 (1984). 
11. J.L.Cardy. - Nucl. Phya. B270, 186 (1986). 
12. H.W.Blo'tte, J.L.Cardy, H.P.Nightingale. - Phya, Rev. Lett, 56, 742 (1986). 
13. I.Affleck. - Phya. Rev. Lett. 56, 746 (1986). 
14. D.Prledan, Z.Qlu, S.Shenker, - Phya. Lett. B251, 37 (1989). 
15. V.A.Fateev, A.B.Zamolodchlkov.- ZhTF. 89, 380 (1985); Ibid. 90, 15B3 (1986). 
16. V.A.Fateev, A.B.Zamolodchlkov. - Teor. Mat. Fix. , 7£, 163 (1987). 
17. N.M.Bogollubov, A.O.Izargln, N.Yu.Reshetikhin. - Pis'ma v ZhETF ^4, 405 

(1986). ' 

246 



A NON-RELATIVISTIC MODEL OF TWO-PARTICLE DECAY: RESONANCE 
AND BOUND STATES 

J. Dittrioh1, P. Exner 1,Z 

1Nuclear Physios Institute of CSAS, Řež, Czechoslovakia 
2Lab. Theor. Phys., JINR, Dubna, USSR 

With the aim to verify some general properties o£ 
unstable particles on a simple solvable quantum mechanical 

model, a spinleee\ particle decaying into two lighter particles 

is considered. The model is similar to the Lee [1] and 

Friedriche [2] ones. The meroraorphio structure of reduced re­

solvent [4] i decay law [5J , mutual scattering of two light par­

ticles [6j and the existence of bound states f6j are studied. 

A sample of results is presented here. Further details, proofs 

and references are given in [3 - 6J. 

1, The Model 

After separating the center-of-pmaas motion, the relative 

-motion part of the model acquires the following form. The 

space of states 

# « С 9 L2 (R3) 

contains the subepaces 9tu
 e € of undecayed unstable 

particle and Нл = L (E3) of decay products; corresponding 
to the relative motion of two light particles. The Hamilto-
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nian in the momentum representation acts on the state fcX 

as 

8 "И» U\w " \****U*>\ 
where E>0 is the energy released in the decay, m the 
reduced mass of the decay products, and g the coupling 
constant. The function v determining the interaction is 
assumed to satisfy the following conditions: 

i) v (p*) = v1(|p*|) with vx é L2( R+, p*dp) 

(rotational symmetry) 

ii) defining v2(p)=|v1(p)j
2p and v3( } )= v2( V2 m* ) , 

the function v, can be holomorphically extended into 

a neighbourhood of real positive semi&xes in the 

complex plane; 

iii) V;L( /2 m E) * 0 ; 

iv) \ У г \ 2 4 \ . v 2 á m 0 1 , | v ^ | é C 1 , m Ivg'l^^ 

for some constant G1 . 

2. Reduced Resolvent. Decay Law and Scattering 

The reduced resolvent is defined as 

RU(Z) = Eyd^ - Z)'1 E u = ru(Z) Eu (Z « С ч fi+) 

where Ец is the projection onto the subspace #„ in £ . The 

function ru can be analytically continued from the upper 

half-plane into a complex neighbourhood Л of E . For a suf-
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ficiently small coupling constant g, the continued function 
r*has in XL just one singularity - a simple pole at 
Z = Zp(g) with Im Zp(g) < 0. 

The decay law P(t) « |u(t)| ie given by the function 
u(t) defined oy the relation 

-iH_t (1\ f u(t)\ 

For a sufficiently small g, the inequality 

u(t) - Ae p | <* SS- , (i) 
t 

A, [l-g20i(Zp>r1 
holds for t > 0 with a constant С > 0 independent of g. 
Function G A is the analytic continuation of 

Q{ijj = »Tt i A 
|VXCP)|2 P 2 dp 

z - b 
from upper complex half-plane into -Л. . Inequality (1) shows 
that the decay law is approximately exponential with the 
width given by Im Z = 0(g ) in the region of times compa­
rable with lim Z Г 1 . 

The mutual scattering of two light particles is well 
defined since the wave operators л ± can be shown to exist 
and be complete (i.e. Ran л.* в Ran PD„(H„)); if v, has 

»c g x 
piecewice continuous derivative, they are also asymptotically 
complete (i.e. • S i n K (Hp a ^* The Н-ша**3-* can be 
written as 
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RCP.P') - 2 * 1 ш g 2 | v 1 ( p ) | 2 p r * ( ^E— ) (2) 

where p* and p*' are the i n i t i a l and f ina l momenta. We see 

that the scattering i s isotropic and that the analyt ical ly 

continued S-matrix has the same pole as the-reduced resolvent . 

The presence of the pole Z leads to the resonance behaviour 

of the cross-sect ion and s-wave phase s h i f t . 

3 . Bound States 

The following statements about the existence of bound 

statee Ceigenstates of H ) can be shown assuming g 4 0 . 

i ) e > 0 i s an eigenvalue of H i f and only J.f 

Vj (V2 me ) » 0 

^ 2 i f e ( P ) ! 2 p 4 С =» К + 4írg . J — j -

«-A-
ii) £ m о is an eigenvalue of H if and only if 

О 
and 

IV<p)la
 A , _ 

-=-,. dp <. *° 
P 

Е в 8 «с g2 m J \\(р)\2 dp 
e. 

iii) There is at most one bound state with a negative energy; 
it exists if and only if 

g2 > g2
r SE|>rm J |v1(p)|2dp J 

« 
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THE TRIPLE PROBLEM OF CONVERGENCE IN THE PERTURBATION 

EXPANSIONS WITH KON-JIAGONAL PROPAGATORS: 

M. Znoji l 8{ M. F. Flynnb / and R. p. Bishopb / 

a / Nucl . Phys. Ins t i tute , fiež, Czechoslovakia 

'UMIST, Manchester, United Kingdom 

Let us conoider the standard perturba'. ion theory of the Rayleigh-

Sehrodinger type, with the Hamiltonian s p l i t 

H = H0 + g Hx /1/ 

and pair of anoatzs 

E = E0 + g Ъг + g2 E2 + 
/2/ 

Their insertion in the Schrodinger equation H|u /> = E |«p> 

leads to a RS hierarchy of re la t ions 

Ho ' f o > = Е о 1 Г о > / V 

and 

Ho'fk> + H l ' f к-1>=Ео1Гк>+ — +Ek I foV / 4 / 

with к = 1, 2 , . . . . 
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In a textbook spirit, we may interpret E,, Eg» *** a s 

abbreviations, 

с -- -±^~ <№("№* "Wy;>-*•'*>) /5/ 
and, inserting them in /4/, eliminate formally alco the wavefun-
ction corrections, 

\%> » — (HJK> - *<'*,>),... . /6/ 

In this way, perturbation theory may be interpreted &r. a reduc­
tion of the full problem to its simplified version /3/. 

The "simplicity" of H Q is usually specified at; a possibili­
ty of its- complete diagonalisetion. In the modified RS /MRS/ 
approach , the "simplicity"of H is weakened: in a given 
"unperturbed" basis /o>, |l> , ..., we admit all operators 
H = T + | 0 ) g { o ( with a free parameter g and "invertible" 
matrix T, i.e., with ouch a matrix that we may obtain eloo an 
explicit form of the operator R /with, say, R = 1 / ( E # - T ) where 
E is a function of g/. 

The main MRS idea is simple - we have noticed that an expli­
cit knowledge of R and V specif ien already all the correct!ом 
/5/ and /6/, while a presence of a free parameter g enables us 
also to get rid of the eigenvalue problem /3/ . Indeed, we may 
write, in an explicit manner, 
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In practice, it is useful to write g = g^2_/ and treat E 
as a free parameter itself. 
There is one important reason for using' non-diagonal T in the 

split /1/ - we may make H - H es small as necessary for 
a good convergence of the expansions /2/. There is a price 
to be paid of course - we must guarantee a quick practical con­
vergence also in a transition T -> R and in the corresponding 
MRS forms of prescriptions /5/ and /6/. 

3,. The T -» В convergence» 

The simplest way how to define R is a brute-force numerical 
inversion of the truncated matrices N x N. In Bef, , the 
related N -9» oo convergence hes been reduced to a continued-
fractional convergence, by means of a restriction of T's to 

2 tridiagonal matrices. In Ref. , this procedure has been 
extended to 2s+l - diagonal T's. An alternative, purely non-
numeEieal type of the T -» R transition^ represents one 
of the possible final solutions of this problem - we may re­
construct any trial T' into an "invertlble" one simply by ite 
fixed-point re-arrangement T* = T + corrections. Numerically, 
this has been illustrated elsewhere-* - we may only summarize 
here that there are no problems with the first, N -> oo 
type of convergence in practice, since its "residuum" may 
simply be incorporated in the perturbation itself. 
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2 . The intermedi»t-y-giimmption convergence. 

Each UBS contribution, sny, Б. , i s defined as a RS-type sum 

over intermediate s t a t e s . Each insert ion of R represents a 

s ing le summation in the RS formalism - here, the summation 

goes over the two / l e f t and r i g h t / ind ices . The related 

"additional" convergence problem may again be eliminated i n 

the same manner as above - we may modify the input unperturbed 

propagator R' /general matrix/ and use i t s 2t+l - diagonal part 

only, R'-* R'*', t < oo. Again, the re lated modification of 

= a general matrix now) i s , in e f f e c t , again a mere 

re -de f in i t i on of the perturbation. 

The numerical t e s t s of the above idea may again be found 

elsewhere and i l l u s t r a t e , for the cut-of fs t dedreasing from 

i n f i n i t y , an emergence of the RS-tjppe asymptotic-series diver­

gence, especia l ly for small t(= 0 or i t *9h an opposit se t t ing , 

the analysis of the t •*• oo l imit supports a hypothesis of the 

MRS convergence - see Table 1 here, which l i s t s the "optimal 

q^rders" /g iv ing the optimal asymptotic-series MRS resu l t s / for 

enharmonic o sc i l l a tors aa analysed in Ref. . 

Table 1 . An "optimal order" N aa a function of t . 

t 

No 

0 1 3 5 7 

2 2 4 6 10 
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3» Дпе numerical indications of the MRS convergence*, of energies. 

For any coupling of anharmonieity x , we iray choose H with 
another coupling X e as a matrix Т. Рог a broad range of As, 
we obtain results exemplified here in Figure 1. 

A similar pattern is obtained also 
for the very broad range of para­
meters E0. For the variable A« 
we obtain the dependence illu­
strated here in Figure 2 for X' 1« 

Fee 

<0 • 

i • 

С 

4 • 

L • 

«rl 
A 

1иаЫы 
1н4-б,А<г 

4** Ofifci-

40* to*- \ 

We may see that the Д < 1 

part of the l a t t er Figure 

i s a' cureve with an i n f l e c -

t ion point which i s almost 

order-independent. - We 

believe that the MRS con­

vergence i s very good for Д >jf n f l e e t i o n ' a n d conjecture that 

^( inf lect ion) ^ i i s a "natural" boundary of the convergence 

domain, or at least of a domain of a re l iab le use of the MRS 

asymptotic s e r i e s . 
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Яешагко on angular distributions of muon pairc 
In high energy hadronio collisions 

Mikuláš Blažek 
Inotltute of Fhyolofl, EPRC, Slovak Ace'emv of Sciences, 

842 28 Bratislava, Czechoslovakia 

Experimental investigation of the hadronio pro-'uotlon of 
muon pairs brought just recently very interesting results* 
In the present contribution the angular distributions of tho­
se muono are studied. It is shown that a simple approach in­
volving coherent state expanoiono allows to obtain a olooed 
expression for the angular distributions under consideration. 
It generalizes the well known expressions Uke the "naive" 
Drell-Yen and the lowest order QCD angular distribution of 
dimuono arising from decays of virtual photonn and Z°'o. The 
influence of the parity violating terms is mentioned too* 

1. Introduction. An early analyois of the angular distributi­
on of muono in the dimuon rest uystem le<* to the "naive" 
Drell-ían model [l] with 

<?6/deoe?df ~ i +Лсоо2#* (1) 
where Л И and 9" characterizes the polar angle, (in accor­
dance with other approaches also our analynis is performed 
In the Collino-Soper reference frame f2j where the effects of 
smearing and nuclear reinteractione ere minimal.) 

If the transversa momentum p« of dimu.inn is not negli­
gible, the cylindrical svmiretry of (l) io broken and depen­
dence on the azimuthal angle if appears, 

d67dcosv"d*f ~ 4+\coa?9 +Anin2$cos«f +(V/2)oin2í"c-»n2^ . (2) 
Especially, if it io assumed that in hadronic c o l U ď m n the 
dileptono arioe from decays of virtual photons and Z°'n at 
large mass and finite transverse momentum, the angular dis­
tribution of the form (2) is obtained in the lowest orler 
Contribution to the Hadron Structure'87 Conference, Smolenice, 
Czechoslovakia, November 16-20, 1987 
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QOD and the Vřeinberg-Salam mo'til with three fermion generati­
ons [*3]i The right hand olde of (2) io influenced only by the 
parity oonoerving terms* 

The NA 1Э Collaboration hec taken «lata at the OERN SppS 
Collider and it studied the production of muon peiro of high 
tnacn by high-intensity negative pi on beams of 140, 194 and 
266 OeV/c off deuterium end tungsten targets. The enelvoio 
of the angular distributions of the muona in thn dimuon rest 
frame already published for the 194 OeV/o data [4] has been 
refined and extended to the 140 and 286 OeV/o data [5]. In 
this respect the conclusions of ref. [6^j can be shortly for­
mulated as follows: (i) the parameter X in (1) is observed 
to be enoentally constant and close to unity, at all three 
energies, (ii) the parameter /0 is found to be compatible 
with zero, (iii) the parameter V is observed to increase 
markedly with pT , in clear disagreement with the perturDati­
ve QCD prediction Qť]f (iv) then the СаПвп-Groos relation 

A - X * 2v (3) 
established for the perturbative QCD is evidently not satis­
fied by the data of ref.Mand (v) the angular distributions 
of muon pairs produced off the deuterium target at 286 GeV/e 
are in excellent agreement with those produced off tungsten, 
indicateng that this discrepancy (mentioned in (iv)) is not 
due to a nuclear effect» 

Those conclusions call for generalization of rel.(2). 
In the next sections we show that such a generalization can 
be obtained in a oimple approach involving the coherent sta­
te expansions. 
2. Angular distributions in terms of coherent states. In the 
present approach we apply the coherent state expansions as 
they were treated oscentially by Glauber £в] and Leche [9]. 

First of all, the conclusion (v) of the preceding sec­
tion leads us to the assumption that in the phase space the 
number of emitting centers (or modes) depends (if at all) on­
ly very weakly on the kind of the nucleus. With respect 
to the results obtained on the deuterium we shall deal only 
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with one emitting cell (mode). We assume that the one-mode 
field (i) is a mixture of stochastic and coherent ctates Гв] 
with <nT> being the average number of stochastically produ­
ced oeconderieo end<nc>3|(S| correnponds to the coherently 
produced ones; the parameter/) Is the complex eigenvalue of 
the coherent field [в],[9]. The average value of the total 
(charged) multiplicity <n> = ̂ n„> + <пЛ; ani (if) it given 
rioe to secondary particles whose x-, y- and z-eiordinatec 
are correlated (in the phase space) . 

In the one-dimensional case ["9J the probabiUtv to ob-
rerve the coordinate q is given jy Plq) = {p(et)U« |q>| d(1&, 
where for the mixed field P(ot) = [4/(и.^п^>)]ехр[-1«(-/1|г/ 
<n^"\ and 

|<*ťfq>|1 = conDt.exp[-("(q-b.Re*)/(V7. S)f\ . (4) 
With respect to that one-dimenoional свое (4)» now the cor­
responding three-dimensional Qeucoien iistribution is invol­
ved containing the dispersions 6j, the parameters b. charac­
terizing the non-centrelitiec enrl the correlation mctrix p . ^ 
((lwoyo d,k^l,2,3) where P-jk=Pk.j and p ^ э 1 (-'я put Р12

=Я21в 

P31S ?}' 
Introducing the spherical coordinates, 

x = rninwcooi^ , у = rr.invoinif , z - rcor.v 
and performing the necessary integrations we obtain eventual­
ly the marginal probability in angular variebleo (con^f) in 
the following exact form, 
de/dcosfrdf = const.(2g1)'V2[exp(v2/4)].D_3(v5g2/(2g<)l/2). (5) 

In rel.(5)t D_-i(v) is tne function of the p&rebo^c cvlinder. 
It holds, 
[D_3(v)]exp(v2/4) = 2-3/2.[tfr.F(3/2, 4/2t v2/2) -

2f2.vP(2, 3/2, v2/2)] (6) 
where F(a,b,u) is the regenerate (confluent) hypageometrical 
function, 

F(e,b,u) = /| + | u + |||±^.^ + ... . 
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(8) 

(9) 

The functions ĝ  and g2 in (5) are given en ''oilowe, 

8) «< " а о о 0 + | | ^ п ) ' 2 (7) 
where 

V̂  a coow $ Vg s ninVconiV , V^ - ain2vcoo«i , 

V- = n in^o in2y , V_ = eln2&iinf 

and 
*< = (2аЗЗ"8-И " a 2 2 ) / a o o » £ 2 = Сe-#f " a 2 2 ) / e o o ' 

*im - 2 a - f3 / a oo 5 £4 " " 2 8 Í 2 / e o o » f 5 S ' 2 a 2 3 / e o o 

w i t h aoo = B44 + a22 ' I n (9)» 

aák s p / p ^ ^ - p í í 4 +2p)J + f áV A » w l t h á + k 

and 3 

[ 2 ( И - p) . ( / í* 2 ?)J . 

The angular functions Vn ( n s l , • • • t 5 ) i r o l . ( 8 ) , «nterinp 
(7) repre =?r.t the p t r i t y conserving; torírn, i.<3. thoy 'o 
not change the oign under the trannforcietion 

bj the function gg in (5j in given er: follows, 

g2 = -2(e4 lA + a 2 i 2 + e 3 ^ 3 ) ( l l ) 

where 

I\- oint/coocf , л>2 т sinvcin<f , /U, - cocv* (l2J 

and 

а а = f ^ R e / W n ^ A ) . (13) 

The angular functiono (l2) reprenent the parity violating 
terms (they change sign un'er the trencfonratiin (1 ~))) . If 

260 



they do not vanish, their even powers -appearing through the 
even powero of the variable v in r e l . ( 5 ) - contribute alno to 
the parity conserving part . The normalization factor "const" 
in re l . (5) can be e*preor:ei in terms of the parameters a . end 
a j k ; we don't give here i t s explici t form. 
3 . Application of re l . (5 ) to the date of the NA 1Э Collabora­
tion [43. Í5l. ГбЗ. [1Э] . Prom the analvsis £4 J we Vnow that tho 
parity violat ing termo are very email; we put all a. = 0 , i . 

e.» g 2
 = °* Tnen 

doVdcosi'd.f ~ (BA)"^/2 • (14) 

Nov/, l e t uo assume thet the summation in g, , r e l . ( 7 ) , na t i s -
fien the following condition, 

| « A | < 4 . ("J 
Then 

dd/dcos^dtf /v A + £ (-3/2)£_V„ . <16) 

All NA 1Э analyses conclude that not only the parameter ^tc(in 
the present approximation, tjLL= (-3/2) £ , ) ic compatible with 
zero but also the parameters £ , and É = do no. Therefore we 
can write, 

doVdcosS-df ~<t + (-3/2)ЭД + (-3/2)£2V2 (17) 

where V4t Vg and £4, to a r e g i v e n bv (8) end ( 9 ) , respectively. 
In our approach, r e l . ( l7 ) io obtained from (5) i f there 

ic no correlation in the phase space (p - 0) end a l l three 
Gaussian distributions ere central (al l b . = o). In thic ca­
ne the coefficients £^,со contain two parameters, rey 
(6 4 /6 j ) 2 a SA and (o*2/S-)2 e Sa . If they &re independent 
there fa no Callan-Qroos re la t ion . However, if they are related 
by the re la t ion S2 = (б + «.Зи)/Ч3 then the relat ion (3) 
io sa t i s f ied . 

Moreover, if 6A - 62 a ^0 then the cylindrical sym­
metry appears (in (2) also V = 0) ; now the Drell-Yan d i s t r i ­
bution (1) io obtained with 6Q

Z = 26^ . 

261 



If only the parity violating terms venirh (o.p. лие to 
Re/J~0), the engulor dirtribution i- given by (14) or О б ) . 
Those expressions contain five coefficients, £ n (n=l,. .,5). 

In this case, with the assumption like b,, - bg ~ b- «. b 

and 6"̂  = 6*2 s ff we meet five free parameters, патеЧу 
o , ̂ nT> , b0 , ff0 , б3 . 

Let us retain the parity violating terms in (5). If 
they are small and the condition (15) ir. satisfied then 
their presence in the angular dirtribution is manifested by 
the terms like cosO", einvcos«f, sinisinf, cos v etc (and 
moreover they will influence also the coefficients multi­
plying the parity conserving terms as it is seen in (5)). 
In thi^ way one can conclude about the preconce of the pari­
ty violation. 

Relotion (16) can be applied also to the «Inscription 
of the muon-proton data obtained bv the EMC Collaboration, 
rof.[ll]. 
4. Conclusion. We showed thet the applicetion of the cohe­
rent state expansions allows to derive the oxpresrion for 
the angular distribution of the muon pairs (5) which generE-
li7es the Drell-Yan distribution (l) an well ar. the one ob­
tained in the lowest order QCD (2). This generalized 'ir.tri-
bution can be applied also in the cases when the Callan-
Gross rel&tion (3) is not satisfied. 
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ENTROPY IN THE MULTI PARTICLE PRODUCTION 

V.Šlmák 

^ 

Inst.of Physios,Czech.Acad.Sot., 
Na Slovance 2,CS 180 4© Prague,Czechoslovakil 

H.Sumbera and I.Zborovsky 
Nucl.Phys. Inst..Czech.Acad.Scl., 
CS 250 68 Rez near Prague,CzechosIovakle 

Experimental results from the CERN SppS Collider have 
considerably changed our understanding of asymptotic behavior of 
multlpartlole production/1/.Mul tiplIclty distributions of 
particles in the full phase space and also in different rapidity 
windows are usually analysed using the statistical 
moments/1-4/, their energy dependence beelng interpreted in terns 
of KNO sealing /5/ and its possible vlolatlon/1,2,6,9/. 

In ťhe present contribution we would like to point out and 
exploit a different strategy/6/.We Introduce a new quantity 
characterizing charged particle multiplicity distributions -
entropy /7/J 

S « - £P(N)lnP(N) (1) 

Let us mention some properties of this quantity! 
(I) The entropy describes a general pattern of independent 
partilole emission.Total entropy produced from V statiotlcaly 
Independent phase space regions (e.g.Polsson distributed clans or 
superclusters /8/> is equal the sum of entropies of individual 
sources 

S « S, • St* ... + Ŝ ,. 
Hence,for correlated sources whlth known entropy*their total 
entropy can be used to evaluate correlation strenght among them. 
(II) Contrary to the statistical moments the entropy is invariant 
under arbitrary distortion of multiplicity scale (i.e. diferent 
shapes of multiplicity distribution can have the same value of 
entropy).For Instance the entropy calculated from charged and 
negative particles data in the full phase space give the same 
value of S. 
(ill) There is a simple relation between S «average multiplicity 
<N> and KNO function <4p(z)t 

S с ln<N> * H/2 (2) 
where 

H = - [Ý<s>«n(*f («>>dz • (3) 

i s the entropy of KNO f u n c t i o n 4* ( z ) , n o r m a l i z e d 

j*4Mz)ds = [ z \ f < z ) d z • 2 . (4) 

( i v ) T h e r e e x i s t s a natura l bound: 

S - ln(<N>/2> fi 1 <5> 
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which follows from the maximization of the entropy H within the 
c l a s s of KNO functions f u l f i l l i n g usual normalization condit ions 
(4) given above. 

Entropy in fulI phase space. 

Experimental s i t u a t i o n concerning evolution of the entropy 
with c.m.s. energy fS for PPťPp, JJ-»P. ц-р. K-tp.K-p» i n e l a s t i c 
i n t e r a c t i o n s / ! - 4 , 9 / i s presented in f1g .1 . Increase of entropy 
with energy seems to be approximately similar for a l l hp 
interact ions and reveals a universal asymptotic l i n e a r i t y with 
Ins i 

S • 0.4ln|/š * в.е (6) 

In addition to this,when expressed as a function of a maximum 
rapidity of produced hadrons Vm «= ln< |fš)/in,) г 

S = (0.417tO.eeS)Ym (7) 
This suggests, that in hh collisions the entropy per unit of 
rapidity S/Ym is universal and the energy independent quantity. 

The observed behaviour of entropy together with limiting 
property (S) puts severe restriction on the energy dependence of 
both <N> and*f<z> of charged particles.lie ilustrate this 
statement in f lg. 2,ExpeT*itntal data up to fi • 900 GeV are yet far 
from saturation of the bound 

- jÝ<2>/21n( *f <z)/2>dz * S -ln(<N>/2>£l (8) 

Approximate energy independence of S* CZ> (early KNO scaling) 
is violated by Collider data,but the behaviour of multiplicity at 
still hifher energies must be governed by the upper bound 
(B).Consequently the onset of ultimate multiplicity scaling is 
expected in a few TeV reglon(fig.2).Furthermore either the 
entropy S must slov down «violating (7), or the average charged 
multiplicity <N> must grow faster with the energy then the 
present parametrizatlon of the data indlcates/l/. In the later 
case extrapolation of (7) to the asymptotic region gives: 

<N>*.s '*•' * •**• 
Using the FNAL /10/ and ISR /11/ data on multiplicities of 

charged or negative particles from pd(p«C,«£»< inelastic 
interactions we try to extend the observed regularity to the esse 
of high energy collisions of lightest nueleitfig.Э).Agreement 
with the universal hp curve is surprisingly good and helps to 
fill the gap between pp ISR and pp Collider data ( for 
calculation of Yro ve have used the total c.m.s. nucleus-nucleus 
energy). 

Entropy in rapidity windows. 

Data on multiplicity distributions in central intervals of 
centre-oť-mass (pseudo) rapidity /y/<yc/3,4, 12/may be used to 
study the evolution of entropy with the central rapidity window 
width y< starting from a very small central windows up to 
Ym.Charge conservation, which restricts the multiplicities of 
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charged particles In the full phase space to their even values 
and nakes entropies,calculated from data on negative and charged 
particles equal to each other,is no more appllcaple when 
discussing the windowing data.At present only one set of 
experimental data exists on multiplicity distributions of both 
negative and charged parlcles in different rapidity lntervals(at 
(5*• 22 GeV /3,4/).We have studied the dependence of entropy on yt 
using these data.Contrary to the entropy of negative 
particles,the entropy of charged ones reveals a non monotonie 
behaviour with yc.This may be understood as a result of long 
range correlations between oppositelly charged particles which 
manifest themselves in full phase space.Supposing that particles 
are produces via neutral clusters consisting of two oppositely 
charged hadrons/13/, one can,with the help of information from 
the first three moments of the multiplicity distribution of 
charged particles/14/,extract the multiplicity distribution of 
negative ones for Collider data,too. 

The dependence of S on the central rapidity window width yt 
is not linear contrary to Its dependence on Vm.Extension of 
energy Independence of ratio S/Ym into a smaller rapidity 
Intervals Is nevertheless possible.The data,when ploted in the 
form S<yt)/Yin versus a reduced rapidity "̂  = yt/Ym, indeed reveal 
a satisfactory scaling behaviour<fig.A). 

From fig.4 it follows that the entropy reaches its full phase 
space value quite early,for f? 0.5ja remarkable fact,bearing In 
mind that first two moments of multiplicity distribution are 
still noticeably changing /3,12/wlthin this region.Thus the 
entropy production in fragmentation region seems to be 
negligible. 

For semi Inclusive rapidity distributions the scaling in 
reduced rapidity ̂  has been proposed a long ago /15/. Its 
connection with observed violations of «NO scaling hes been 
revived recently from the point of view of clusters/16/.Or 1ginaI 
arguments in favor of this sealing law were based on Feynman's 
analogy between statistical properties of (one dimensional) fluid 
contained inside finite volume and distribution of produced 
particles in rapidity space.The longitudinal geometric 
scallng/15/ states that this distribution of particles does not 
change with external volume Ym provided we use Instead of 
rapidity у its reduced value ^ to label particle's position 
inside the volume.Such type of selfslrollarlty need not be 
generály true for any fluid.On the other hand an extensive 
character of both the volume and the entropy of the fluid 
guarantees that entropy of the multiplicity distribution should 
be always a homogenous function of its volume yc: 

S(A yt) « /) S(yt). <9> 

Taking Л = 1/Ym we get the scaling law of fig.4. 
Particle density in the central region. 

To study consequences of the above regularity for particle 
production in the central region we present In fig.S dependence 
of S on <N> for windows withT£ < 0.25.For these small rapidity 
Intervals all energy dependence of S is within a reasonable 
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a c c u r a c y g i v e n e n t i r e l y by I t» dependence on < N > . A n a l y t i c a l 
epVess ton 

S * ln(<N>>< ( < N ) t l ) l n ( H l / < N ) ) (10) 

valid for the entropy ol geometrical distribution,represent also 
a good approximation ol the data.Given the values of y«, and Уш 
one can,using the entropy scaling (fig.4),predict S and hence 
(from lig.b) also the average charged multiplicity and particle 
density In the central region at Collider energies/17/ and 
beyond(flg.6). 

In conclusion,we would like to stress the general character 
of observed empirical regularities in entropy, which underlines 
onoe again the statistical character of mulptlpartlcle production 
In soft hadronlc collisions. 
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F i g u r e C a p t i o n s 

Flg.l Entropy of the charged particles multiplicity 
distributions (eq.l)for pp.pp <s) and JT-p. S-»p, K-p, K+p 
(b),Inelastic data/1-2,9/. Ful1 line corresponds to eq.7. 

Fig.2 Energy development of the entropy of KNO function •flz') 
(calculated from S - lr>( <N>). Shaded corridor corresponds to S and 
<N> parametrl2&tions given by eq.7 and of ref • 1,repect1 vely. 
Region with arrow Indicates our prediction of the onset of 
multiplicity scaling in the few TeV region. 
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Fig.3 Su«*>ary of the energy dependence of hadron Induced 
inelastic lnteractlons<from flg.l) together with date, on high 
energy nuclear interactions/11,12/. 

Fig. 4 Entropy as a function of the width of the 
(pseudo)rapldlty window yb for fs"* 22 GeV/3/ and S46 
Gev/12/rescaled by Ym(eq.S>. 

Fig.Б Entropy of the negative particles in the central 
rapidity window tf< 0.25).The curve corresponds to the entropy of 
the geometrical distribution (eq.lQ). 

Fig.6 Predicted density of charged particles for two value* 
of reduced rapidity f as a function of c.m.s. energy.The data 
points correspond to tSR and Collider experiments from ref.17. 
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Coherence» Chaos and Entropy Scaling in High Energy 
Collisions 
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High Energy Physics Group, University of Marburg 

Mainzer Gasse 33/ D-3550 Marburg/ Fed.Rep. of Germany 
On leave from Saha Institute of Nuclear Physios, 

Calcutta, India 

The remarkable recent finding1', that the experimental mul­
tiplicity distributions of charged secondaries produced in pp-
and pp-collisions exhibit "entropy-scaling" in a range of CM-
energies between /e - 19 GeV and /s - 900 GeV, has raised con­
siderable interest and attention. For symmetric rapidity in­
tervals |y|<y / the authors of ref. 1 have calculated the en­
tropies 

8(У0»в) " -S Р(п/Ус/в) In P(n,y0,s) (1) 
n 

from the respective data on multiplicity distributions 
p(n,yc,s), and when they plot S(yQ,s)/ymax against the scaled 
rapidity variable (, - у/Утах <Утах " ln(>/s-2MN/mir)), they find 
that for the above-mentioned range of /s all points lie on one 
curve. As will be shown below, a calculation of the entropy 
via eg. (1) relies on two implicit assumptionsi (i) the densi­
ty matrix о of the system does not have any off-diagonal ele­
mente in the particle number representation, and (ii) all par­
ticles are emitted by one source which is described by a nega­
tive binomial (n.b.) multiplicity distribution. Since these 
assumptions are not expected in general to hold it appears ne­
cessary to calculate the entropy under different assumptions. 
Among other things the fact that we are dealing with a quantum 
system suggests that non-diagonal terms of p are important. 
Furthermore there exist indications, that the negative binomi­
al fit does not work at large у and therefore more than one 
source exists. For these reasons we have computed the entropy 

2) 
in a two-component model , which does not rely upon assump­
tions (i) and (ii) and replaces the poorly understood s- and 
y-dependences of the n.b. parameter by a heuristically appea-
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ling interpretation of coherent and chaotic sources. We show 
that In the context of this model the entropy soallng reflects 
itself in a scaling behaviour of the mean multiplicities and 
rapidity distribution of the chaotically produced particles, 
and we write a master equation for the rapidity dependence of 
the chaotic multiplicity distribution. 

The entropy of a system characterized by a density matrix p 
is 

p - - Tr (p In p) (2) 
For instance, consider the case of к independent sources des­
cribed by density matrices p^, i.e. 

p - p1 <8 p2 О ... 9 pk (3) 
Then the multiplicity distribution and the entropy are given 
by 

к к 
P{n.,...,nv) • П P , ( n . ) • П < n J p 4 | n , > (4) 

1 1-1 * 1-1 х х х 

к i 
S • I S 1 , s i " " T r < " l l n Pi> <5) 

where ni is the multiplicity from the i-th source. Only if all 
the p^ are diagonal in the n^-representation, 8 can be calcu­
lated from the multiplicity distributiont 

<mi|pi|n1> - 6m n P1(n±) (i - 1,...,k) (6) 

S • - Г P(n1#...,nk) ln P(n.,,...,nk) in.) 
In general the <т^|р^!п^> will not necessarily vanish; e.g., 
in the case of one coherent source, p-|ci><a|, where |a> is an 
eigenetate of the annihilation operator, a|<x>«ct|a>, one has 

P(n) - -Lfj— e"'al , S - 0 < - I P(n) ln P(n) (7) 
n 

i.e. eq. (1) does not hold. 
However, even in the case described by eq. (6), where the 

off-diagonal elements do not play a role, when one has more 
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than one source eg. (1) may not be applied to the convolution 
?4n) • I P(n1f...,n.J 6_ r_ i since (п±) 1 k n'ini 

S • - Z Р(п.,,...,пк) 1пР(П|,,(.,пк)>-£ Jin) In &(n) (8) 
n i ] n 

We shall now proceed to apply that formalism to the above-men­

tioned two-component model. The multiplicity distributions of 

the chaotically and coherently produced particles, p o n(n „) 

and P_ (n„), are given by a Planck-Polya and a Polsson distri-
С О 

bution, respectively, and since the sources are assumed to be 
independent, Р< П

С П'П С) " p
ch'nch''Pc^nc*' T n u 8' t n e mo<iel n a e 

two parameters, the total mean multiplicity <n> and the chao­
tic ity p - < n

e h > / < n > ' ^ог a 9 i v e n ^B an<* a given rapidity in­
terval, they can be determined by fitting the first two mo­
ments of the measured multiplicity distribution. It has been 
shown that at fixed /s p decreases when one goes from the 
center to the wings of the rapidity range; at fixed rapidity, 
p increases with s. 

Since the entropy of a coherent state is zero (cf. eq. (7)), 
we find 

S(yc,e) « Sch ( Yc' s > ' ( < nch ( yc' 8 , > + 1 , ln ( < nch ( yc' s ) > + 1 ) 

(9) 
" < n c h ( V 8 , > ln < nch ( vc' s ) > 

In figure 1, for data obtained at /s = 21.5 GeV3), 200 GeV4), 
546 GeV5' and 900 GeV4' we have plotted 81УС 'Я)/Ут а х against 
£ = Y-/y„-,„. Clearly, we find the same type of scaling as in 

ref. (1), but with a different scaling function F(£) = S/y„„. 
max 

Eq. (9) then implies a scaling behaviour of < п
сь'У с' 8' >' t n a t 

is to say it depends on y_ and s through the variable 
u = у • P(C) only; in the limit of large <п

с^Ус'в)>' w e 

have _<fV l//8f 
4 

and for the rapidity distribution 
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— — a F'(£) ' l/^\ (11) 

lť is noteworthy that for ťhe entire rapidity range eq. (10) 
together with the observed F(1) « 0,46 implies that 
<n . > « B , which is not far off the s ' behaviour predic-
ted in the Landau model. 

Eg. (11) -showa that, if the entropy scaling will persist at 
higher /s, -- will (asymptotically) develop two distinct 
symmetric maxima that move away from the center. In figuře 2, 
where -,c as calculated from the data has been plotted, one dy may already see the onset of such behaviour, though at these 
energies the values of < n

c n(y c' s) > a r e n o t yet large enough 
for egs. (10), (11) to be good approximations. 

As a further conseguence of the scaling behaviour of 
<nch(yc,s)> expressed in egs. (10), (11), pcnfnch'vc'8' c a n b e 

shown to satisfy the master eguation 
3 P(n,y ) 

5_ o F . ( 0 {(n+1) P(n+1,y ) - n P(n,y )) (12) 
9y 

Changing variables from y_ to t - y_.„ - ŷ ,, one finds that 
(12) describes something like an absorption process; t plays" 
the role of time coordinate: as the systém evolves in time, 
the particles initially present (at t=0) are absorbed (or de-
oay), P'(C)dt gives the "time"-dependent probability for a 
particle to be absorbed in the interval (t,t+dt). 
It is a challenging task to ascribe sotne physical meaning to 
the master equation (12). 

In conclusion we see that the scaling behaviour found in 
ref. 1 is recovered in the present approach, with the diffe-
rence that the entropy refers now to the chaotic part of the 
systém which has more direct implications for the investiga-
tion of thermal eguilibrium. The fact that the entropy is con-
centrated in the centrál rapidity region confirms the observa-
tion of ref. 2 that the chaotic source dominates the samé ra­
pidity range. Furthermore new predictions for the rapidity 
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distribution of the chaotic component are made and a master 

equation for this component is derived. 
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1 Abstract 
An analysis of correlations in rapidity of charged particles produced in proton and antiproton 
interactions on hydrogen, argon and xenon at 200 GeV/c is presented. Positive, long-range cor­
relations were observed in interactions on heary targets. The dependence of rapidity correlations 
between forward and backward hemispheres on number of projectile collisions is discussed. 

2 Introduction 
The study of correlations among particles produced at various rapidity regions reveals the mech­
anisms of particle production. Many experiments show strong positive short-range correlations 
corresponding to clustering of particles over regions of about one unit in rapidity. In particular, 
correlations between particles emitted at the central rapidity region are dominated by these 
short-range correlations. On the contrary, correlations which extend over a louger range in ra­
pidity are observed in hadron-hadron reactions only above energies of the ISR (above ф =г 30 
GeV) [1]. 

It has been suggested that long-range correlations might be much stronger inhadrnn-nncleus 
interactions than in hadron-hadron scattering at the same energy per nueleon [2]. Interactions of 
hadrons with nuclei, as commonly described, are assumed to proceed via independent collisions 
of a projectile or its constituents with constituents of the target. These multiple collisions 
result in an abundant production of particles in the backward hemisphere while, in the forward 
hemisphere only a small excess of particles is observed in comparison to the corresponding 
hadron-hadron collisions. At. presently available energies this excess extends to about one unit 
in rapidity from a cms rapidity of zero [3]. To analyze mutual relations of multiplicities of 
different rapidity regions, which are characteristic for nuclear target interactions, an appropriate 
selection of rapidity intervals is necessary [2]. 

The correlation strength between the multiplicities in two rapidity intervals (увьУВг)< 
(VFitVFi) is often measured with the slope 6 of the following linear relation: 

<NB>=a + bNF (1) 

where 

• < NB > is the average value of multiplicity in the interval (увьУдг) 

1 
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• Ne is the multiplicity in the interval (yFuVFt)-

In the present analysis the estimation of the parameter b is given for full unbiased samples of 
events of p - Ar, p - Xe, p- Ar and p-Xe reactions. A sample of hadron-nucleus events 
corresponds to a distribution of the number of collisions v, average of which is usually estimated 

ff*A 

where 

• A is the atomic number 

• оду bud OhA are the cross sections for a hadron h interacting with a nucleon or nucleus, 
respectively. 

A't estimation of a shape or a width of the distribution of v is the matter of models. In our earlier 
publication [4] we have discussed certain model calculations [5] of the distribution of v in relation 
to a number of slow identified protons JVP, observed in an individual event. It was shown that a 
sample of events with fixed number of Np corresponds to a narrower distribution of the number 
of collisions v than the full unbiased sample. We refer to this model estimation also here to test 
the dependence of the correlation strength on the dispersion of the v distribution. It seems to 
be obvious to interpret the origin of the long-range correlations in h-nucleus interactions as a 
consequence of the fact that a sample of h-A events consists of a mixture of events of different 
number of collisions and, consequently, a different particle production in forward and backward 
directions. 

In the following section a brief description of the experimental data and analysis is given. 
The results are presented and discussed in Sect. 4, followed by concluding remarks. 

3 Data and analysis 
The data on proton and antiproton interactions with hydrogen, argon and xenon nuclei at 200 
GeV/c used for the present analysis were collected in the NAS experiment at CERN SPS. The 
details of the experimental set-up and the reconstruction procedure can be found in our earlier 
publications [3,6]. 

For the following analysis we have selected the test rapidity intervals: 

(VBi, Увг) = (0.75, 1.75) (yn, yFi) = (3.25, 4.25) 

as suggested in [2]. (The values are given in the laboratory system, in which the rapidity y=3.028 
corresponds to a cms rapidity of zero for p-p scattering at 200 GeV/c.) Introducing a gap of 1.5 
units in rapidity between the intervals one expects to eliminate considerably the contribution 
of short range correlations. On the other hand, selected intervals seem to be far enough from 
phase space limits and effects of the iutra-nuclear cascade are eliminated to a large extend [3]. 
As a matter of fact the proper choice of intervals is crucial: it was sh"wn [3] that for the interval 
(Vftt Vn) chosen further in the forward region, where the density of particles does not vary 
considerably with the number of collisions and is very small, the long-range correlations are 
immeasurable. 
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4 Results 
The values of the slope b - the result of a linear regression of scatter plots of events on the 
Np, NB plane - are shown in Table 1. for all analyzed reactions. (For completeness, the results 
for our own data on elementary p-p and p -p interactions are a' so given.) 

P-p 
p-Ar 
p-Xe 

b 
.00 ± .01 
.35 ± .04 
.44 ± .04 

P-P 
p-Ar 
p-Xe 

b 
-.01 ± .01 
.28 ± .04 
.41 ± .04 

Table 1. Slope b for full samples of events. 

The observed correlation strengths are large for interactions on argon and xenon as suggested 
[2] and negligible for the elementary interactions. 

A similar analysis has been performed for sub-samples of events characterised by the multi­
plicity of slow identified protons Np. As mentioned above, sample of events with fixed Np may 
be associated with the distribution of v which is narrower than for the full unbiased sample 
[4]. To study the dependence of the strength of long-range correlations on the v distribution we 
have calculated the slope b for samples of events of a different contents of Np. The sample of 
events with N„ = 0 corresponds to the narrowest v distribution, a sample with Np = 0 and 1 
corresponds to the wider one and so on. The detailed model calculations can be found in [4]. 
E.g. the sample of p — Xe events with Np = 0 corresponds to the distribution of и with the 
average 1.5G and the dispersion .95 while the О = 3.32 and dispersiou equals 2.20 for the full 
sample . Fig. 1 shows the dependence of the slope b on the number Nf, by which we denote the 
highest Np contained in the sample. A strong dependence of b on N} is observed for all analyzed 
reactions. 

Finally, we apply the model calculations of ref. [4] to relate Л/£ scale to the dispersion of the 
combined v distribution for each sample. As illustrated in Fig. 2, slopes for p-Ar and p-Xe 
interactions, which can now be plotted together, show a similar and strong dependence on the 
dispersion squared of the distribution of the number of collisions. This confirms an intuitive 
interpretation of the origin of long-range correlations in hadron-nucleus collisions at energies at 
which no such correlations arc observed for elementary interactions. 

5 Conclusions 
Large positive long-range correlations among particles produced at various rapidity regions in 
proton and antiproton interactions with argon and xenon nuclei at 200 GeV/c were observed. 
This observation confirms the earlier theoretical predictions [2]. The strength of these correla­
tions, measured with the slope of the relation (1), depends on the distribution of the number of 
slow identified protons contained iu the analysed sample of events. With certain model assump­
tions such a distribution may be related to the distribution of the number of projectile collisions 
v inside the target nucleus. It was shown, in the framework of these assumptions, that the wider 
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ii the distribution of v the stronger are correlations. 
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and nnelene - nucleus collisions 
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Recently wo can obeerve railing interest In the March of quark - gluon plaima, 
The existence of plam» le predicted by QCD (for review aee |1]), but it la not known, 
whether high enough energy denaitiee can be reached in heavy ion colliaiona. Several 
dedicated experimente [2,3] have already publiihed fast renilte on traneveree energy 
distributions in colliaioni of Ou with various heavy target! at 60 and 200 GeV/nucleon. 
In attempt to dlitinguiih in ET distribution! ponible QOD plama formation signature 
from conventional physics we have developed a itmple non-plasma model for calculation 
of ET dlftributloni in hadron - nucleus and nucleus - nucleus collisions. 

Our simple model aims to describe the qualitative features of Et distributions in 
the absence of plasma formation. In this model we anume the total ET of the event to 
be built up by the independent contributions of nucleon - nucleon collisions. Each of 
these nucleon - nucleon collisions is supposed to be similar to proton - proton collisions 
at the same energy in what concerns rapidity distribution of produced hadroni and 
their transverse energy distribution. After fixing the parameters of the model using 
data In central rapidity region (where we don't expect the contribution from cascading) 
we underestimate ET distribution! in target fragmentation region. This we interpret as 
the evidence for the contribution of cascading which we have to include into our model. 

The calculation of ET distribution! in our model ii based on the determination of 
three probability distributions. At the beginning we have to determine the total number 
of nucleon - nucleoá collisions N at the given impact parameter b of the colliding nuclei 
P[N | b). This is mostly the question of geometry of the collision. We combine geomet­
rical considerations with ideas motivated by Glauber model. Knowing the number of 
nucleon - nucleon collisions we can estimate the probability for the production of the 
total number of hadrons n* (both charged and neutral) P(na | N). Here we use the 
similarity of nucleon - nucleon collisions with p-p collision! and the simple assumption 
about energy losses in consecutive colMoni of projectile nucleons. Finally knowing the 
total number of produced hadroni in the given rapidity interval we need only to deter 
mine the probability for the production of total transverse energy in the given event 
P(ET I n*). This probability le calculated from the probability distribution of ET for 
one produced hadron. Knowing ail three probabilities we only need to integrate their 
product over all possible impact parameter! and sum over all values of N and n* to 
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obtain tbe differential croéj lection 

J%-{&£HBT\ 4)P(H I WW I •) (1) 

We will now detsribe the actual calculation of the differential стой taction. 

Proton - nucleus eoflltJoni 

Calculation of the number of nucleon - nudeon collisions N at the given impact 
parameter of the proton b it motivated by Glauber model and It bated on simple geo­
metrical picture. We estimate N at the number of nucleons in the target nucleus being 
present in the tube "teen* by the incoming proton with the base area equal to the 
total inelastic cross section of nucleon - nucleon collision «im. The expression for the 
probability P[N | e) then reads 

where ЛГл(6) = <rnn / itt рл(ж, b) and for the density of nucleons we take standard Wood 
• Saxon parametritation 

with PA being the normalisation constant and parameters d - 0.И /m, Ял •» 
l.líi1/* - 1.61J4-1/8 fm. For nucleon - nucleon cross section we use the value 
<Гпщ * 25 mo. 

•P(nk\N) 
For the estimation of the production of hadrons we need to calculate the average 

number of produced hadrons fl*. For tbe number of produced hadrons we use negative 
binomial distribution 

*(«*!*) = ( " ^ " ^ ( i - * ) * (3) 

where x = fl*/(fl* + к). From the data on proton - nucleus scattering [4] we fix 
the value t • 0.3. For the calculation of fl* we have to estimate energy losses in 
consecutive соПШоав of proton with nncleons of target. We use simple geometrical 
filter Ещ = (1 - u)En-i where £* is the energy of the projectile after the n collisions 
with target nucleons. The probability distribution for u is P(u) = au"-1, a = 2. In 
each proton - nucleon collision we expect the rapidity distribution of produced hadrons 
to be equal to pp collisions at the same energy. For the rapidity distribution ifih/dy we 
use parametrisation [5] 

^:=ЗЛБ(1-*)«(1-*_)« 
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where ж - тт/(В+р) *яр{у), м- • mr/mw e*p(-y), тт - 0.4 QtV. The average 
number of produced hadrons In given rapidity region is obtained by integration of the 
sum of such distributions for all proton - nucleon collisions. 

• P ( « r | n f c ) 
For the calculation of transverse energy produced in proton - nucleus collision we 

use the phenomenologically successful expression for one particle Ет distribution 

with < Ет >~ 2T, T - 0.2 GeV. Fbr n* produced hadrons we are able to perform 
convolutions analytically with the resulting distribution 

Using Eq.(l) for the fit to the NA 35 data on £ r distribution in p-Au collisions at 
200 QtV we have fixed our most important parameters ann m 25 mb and a « 2. Data 
were taken in the rapidity interval 2.2 < у < 3.8 corresponding to central rapidity region. 
The result of the fit can be seen on Fig.l. Using the same set of parameters we have 
performed the calculation for target fragmentation region data of Helios collaboration on 
p-Pb collisions at the same energy for the rapidity interval -0.1 < у < 2.0. We interpret 
the discrepancy between the model and the data as the indication for the substantial 
contribution of cascading to the Br distribution. We intend to include cascading into 
our model in the near future. 

Nucleus - nucleus collisions 

• P[N\b) 
Рог nucleus - nucleus collisions the calculation of the total number of nucleon • 

nucleon collisions is much more complicated then for proton - nucleus collisions. We 
are using simple Gaussian probability distribution 

р("|6) = 7отЧ-^1 (б) 
around some mean value Jv* (we take also IP — R). ibr mean value Jv* at given 
impact parameter 6 we are again using "tube" approach. We approximate Jv* as the 
sum of products of the mean number of nucleons in all possible tubes in nucleus A and 
corresponding tubes in nucleus Blf = J <Pt/annlfÁ(f)NB(l> - i ] where I is the impact 
parameter of the tube within the nucleus A. JV/ and NB are again mean numbers of 
nucleoli» in corresponding tubes given by expressions JVU(S) = сгяп J Л*рл(ж,») and 
Ne(b - 3) = amJd$pB(*,b -1). The density of nucleons is again parametrised by 
Wood - Saxon parametrisation for nuclei with A > 15. 
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• P(nk\N) 
For the total number of produced hadrons we are using the approach described al­

ready for proton nucleus collisions. For Р{пн \ N) we use negative binomial distribution 
in the form of Eq.(3). The only difference is connected with the fact that nudeons from 
nucleus В are interacting with several nucleons from the projectile nucleus A. After 
interacting once nucleon from nucleus В starts to move in the direction of projectile. 
Therefore it has smaller relative velodty with respect to the next incoming nucleon 
from nudeus A. This causes shifts toward positive values of the beginning of the rapid­
ity plateau of produced hadrons in consecutive interactions of nucleon from nudeus B. 
Taking this detail Into account we can repeat all the reasoning presented for proton -
nucleus collisions. 

•Р(Ет\пк) 
For this distribution we can again derive the parametrisation in Eq.(4) using the 

same arguments. 
Using the same set of parameters used already for proton - nucleus case we are 

able to fit the data of NA 36 collaboration on Ет distribution in ltO - Pb collisions at 
200 GeV/nudeon in the central rapidity region (see Flg.3). On Fig.4 we compare our 
model with the data of Helios collaboration for ltO-W collisions with the same energy, 
but in the target fragmentation region. Both rapidity intervals correspond to quoted in 
proton - nudeus case. We again dearly see the need for some additional mechanism of 
Ет production in target fragmentation region • in our opinion it is cascading. 

We have shown that the recent data on Ет distributions in heavy ion collisions 
can be understood as the sum of the contributions of individual nucleon - nucleon 
collisions. This strongly indicates, that up to now we have not observed the creation 
of QCD plasma. However, we have found evidence for the substantial contribution of 
cascading in the target fragmentation region. 
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ABSTRACT 

Moments for corrected churned multiplicity dlstrihutions in limited rugion» of 
pliHHr; spun; nrt» к i vcn. An accidental scaling of the multiplicity distributions I» 
soon In the pseudnrapiriity interval Iони thiin 0.5 in almu lute vnltiii. Negative iilimml.i) ' 
distributions are shown to fit multiplicity distributions in nil pseudornpiditv 
intervals nt. 200 OoV ttnd In «mall Intervals at 001) (ieV. Tho vnlues of l.ho parameter 
k for the f itted negative binnmtnl distributions иге «iven. 

INTRODUCTION 

The KNO scaling Inw | 1 | which was derived using I'eynmnn scnling | 2 | s ta tes 
that the погинШеД charged particle multiplicity distribution should become, 
energy Independent at very high energies If plotted in the variable •/. - n/<n>. 
Although Fcynmnn seal ing was known not ť.o hnid at 1SH energies (20- 63 OoV) tho 
concept of KNO scaling was nevertheless very successful for energies up to «3 t!oV. 
Ilowriver, the UA5 collaboration showed that at 546 (ioV f 31 the grilling properties 
йоге broken. Futhernore the HAS collaboration showed that, the multiplicity 
distribution of charged particles at 546 GeV could be sucoesfully described with 
the negative binomial distribution [4]. This distribution 1я к i von by: 

It only has two free parameters n and k, where fi i s the mean of the distribution. 
It was shown that the negative binomial did not only fit. the multiplicity 
distribution in full phase space but also in different, pseudorapidity intervals 
and in pp col l i s ions at various energies | 5 | . The negative binomial distribution 
has after that been f i t ted to multiplicity distributions obtained with different 
beams and at various energies (6,71. In th i s contribution the resul ts on the 
multiplicity distribution obtained in proton-antlproton col l i s ions at. 200 GeV and 
900 GoV will be discussed. 
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THE ПВТПСТГЖ 

The UA5 detector was well suited for the study of chnrRed particle 
multiplicity distributions. The charged particles were detected In two large 
streamer chambers, one placed above, the other below the beam pipe. The 
geometrical acceptance nf the chambers watt about U5* In the pseudnrupidlty range 
lnj < 3 fall ing to zero at. IT\I = 6. The spat.lHl resolution of the tracks was 
very good. No magnetic f ield wns used, so the tracks were straight and easy to 
measure. The streamer chambers were triggered by scinti l lat ion counter hndnscnpeu 
at each end. For the sample analysed here, a minimum bias tr igger which excluded 
most «ingle dlffractlvu events hut recorded uhnut 95* of the nun single 
dlffmotive events was used. For a description of the detector see ref. |8,9|. 
The results presented here are based on about 3fi00 «vents at 200 fieV and about 
В5ПП events at 900 GeV. 

THK CHARGED PART1C1.K М11Г.Т1Р1ЛС1ТУ U1STN1M7TI0N 

The corrected charged particle multiplicity distributions were determined for 
full phase space and for a s e t of symmetric intervals defined by the pseudorapidit.y 
cut л с from 0.5 to 2.0 in s teps of 0.5. One «mall central interval for which ti i s 
0.25 i s also added. The results in full phase space at. cm. energies of 200 GeV and 
flOO GeV confirm the UA5 finding at 546 GeV that KNO scaling i s not observed in the 
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•? 

Fig. 1. The C2-«ioment for the charged particle multiplicity distributions found 
in full phase space {101 and in different n-intervals plotted F4.71 versus the 
centre of mass energies. The Cg-moments in full phase space are plotted as squares. 
The straight lines are fits to the Cg-moments in the various n-intcrvals. 
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noti slngte-dlffractivfi component. Tn fig. 1 the Cg-mnment In various Ti-intervals 
has been plotted vnrsim the centre of mass energy. Рог comparison NA22 data [71 
and earlier published UAS data [4] are given in the figure. The definition of 
С moments is С * <7.q>. where z « n/<n>. from which follows that KNO scaling 
implies energy-independent 0 moments. In full phase space this is approximately 
true bolnw B2 GeV but not above 200 OeV. As can be seen the C„- moment, increases 
with energy not only for multiplicity distributions in full phase space but also for 
multiplicity distributions in large pseudorapidity intervals. In very small intervals 
however, the Cg-momcnt decreases with energy. This shows, since Cg-1 - (l)/<n>)* where 
D Js dispersion, llmt the multiplicity distributions are getting relatively broader 
whin the onnrgy is increasing, in targe r\-intervale but in small fi-intervals the 
distributions are getting relatively more narrow with increasing energy. It is also 
seen that, the Cg-mnmont. increase with decreasing ri-intervals at. alJ energies. 
The lines shown in the figure are fitted straight lines to the С -nonents in 
each psfiudnrapidity region. The slope of the lines is plotted versus the size of 
the psendorapidity region in figure 2. In this figure the corresponding slopes for 
the Cg-moinents are also shown. As can he seen in the figure, the slope is zero 
in the pseudorapidity region In! < 0.5. This indicates an accidental scaling in 
that region, for cm. energies between 22 GeV and BOO GeV. 
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Pig. 2. The slope of the straight, lines given in figure 1 plotted versus the 
ti-interva] n,cut where W<^CHt. The corresponding slopes for C, are 
also given. 
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THE NEGATIVE BINOMIAL DISTRIBUTION 

The negative binomial distribution has been fitted to Multiplicity distributions 
in regions of pseudoraptdity centred around zero. In all pseudorapidity Intervals 
the fits are gnnd at 200 GeV. At 900 neV the f i ts are good in small TI Ititcrvnls but 
not in large intervals. In the large intervals the f i ts are st i l l good in the hitth 
multiplicity tail. However, for e.g. the region M < 5.0 at Multiplicities around 
20 the data exceed the curve while in the Multiplicity region of about 35 the curve 
exceeds the data. This unexpected bad fit in large i\-intervals Ht 900 GnV bad In 
futher investigations of possible systematic errors. A comparison between 
•ultiplicity distribiitlone measured at our different laboratories with different 
equipments showed that, all the measuring machines give consistently the same result. 
No asymmetry between the multiplicity distribution in the upper chamber and in the 
lower chamber or between the multiplicity distribution in the forward and backward 
region has been found. There is no contamination of events at the energy of 2(10 KeV 
in the event sample a t 900 GeV. The events occur on the sane film and are labeled 
200 resp. 900 GeV. If the labeling should have malfunctioned during the run a 
contamination of lower multiplicity events at. 200 GeV could have bnen mistaken as 
900 GeV data. However, an independent test, exists since the level nf the beam WHS 
slightly shifted between two the different energies. No contamination was found. 
The conclusion i s that, we have not found any systematic error that causes the 
deviation between the negative blnolmal distribution and data. In figure 3 the 
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Pig. 3. The value of the parameter к plotted versus i\ where |n|<ti 
for data at 22 GeV Г7], 200 GcV, 546 GeV [4] and 900 GeV. If the value Is 
given in parenthesis the f i t i s not good. 
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f i t t ed к values are given for ZOO OeV, 546 GeV and 900 GeV. If the value i s given 
in parenthesis the f i t i s not good. For comparison a l so NA22 [71 data are given. 
The paraneter к increaaes almost l inearly with increasing pseudorapidity Interval 
a t a l l energies and i t decreases with energy. 

SUMMARY 

At a l l energies invest igated the multiplicity distributions are get t ing 
re la t ive ly wider (the dispersion divided by the mean au l t ip l i c i ty i s increasing ) • 
when the r\ Interval i s made smaller. 

In most ti Intervals the multiplicity distributions are get t ing re la t ive ly 
broader with Increasing energy. However, in the smallest i\ interval (i) <.05) 
they are ge t t ing re lat ive ly more narrow with increasing energy. 

The negative binomial distribution f i t s data in al l pseudorapidity intervals 
a t 200 GeV and in small intervals at 900 GeV. 

REFERENCES 

f l l Z. Koba, H.B. Nielsen and P. Olesen, Nucl. Phys. B40 317 (1972). 
[21 R.P. Feynman. Phys. Rev. Lett. 23 1425 (1969). 
[3] G.J. Alner e t al..Phys. Lett. 138B 304 (1985). 
[4] G.J. Alner e t al.,Phys. Lett. 160B 193 (19Я5). 
[5] G.J. Alner e t aL.Phys. Lett. 160? 199 (1985). 
(61 M. Derrick e t aL.Phys. Lett. 168B 299 (1986). 

M. Derrick e t aL.Phys. Rev. D34 3304 (1986). 
M. Arnedo e t a).,Z. Phys. C35 335 (1987). 
M. Dengler e t al. ,z. Phys. C33 187 (1986). 

17] F. Heljers, Thesis, University of Nijmegen. 
M. Adamus e t aL.Phys. Lett. 177В 239 (1986). 
M. Adamus e t al.,Z. Phys. C32 475 (1986). 

(8] UA5 Cnllab G.J. Alner e t al., Phys. Rep. 154 5,6 (1987). 
(91 G.J. Alner e t al.,Z. Phys. C32 153 (19B6). 
[10] V.V. Ammosov e t ah.Phys. Lett. 42B 519 (1972). 

ll.B. e t al.,Nucl. Phys. B11Q 300 (1976). 
W.M. Horso e t al.,Phys. Rev. П15 66 (1977). 
S. BariBh e t al.,Phys. Rev. D9 2689 (1974). 
A. Firestone e t al.,Phys. Rev. D10 2080 (1974). 
С Bromberg et al.,Phys. Rev. Lett. 31. 1563 (1973). 
J. Whitmore e t aL.Phys. Rnp. IOC 273 (1974). 
A. Breakstone e t al.,Phys. Rev. рзр 528 (1984). 

2 93 



tJBti BSBUHI QD Ecatao iicuciuca Euosiloas ícea Вше 
£QSÍSB&ÍS Husa Sfisttittoa aittiab 9" 
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p resented by W. Lohmann 
I n s t i t u t f u e r Hochenergiephysi Is, Zeuthen, DDR 

/ i ď s t r a r f : New r e s u l t s on t h e p r o t o n s t r u c t u r e - funct ions 
Г>(>:,Иа» and R *> tfiV 0-, measured i n a h igh 
s t a t i s t i c s deep i n e l a s t i c muon- hydrogen s c a t t e r i n g 
c-. per intent arc» pr eeer i ted. The a n a l y s i s i s based on 
2K10** nvents recorded at beam e n e r g i e s of 100 , 120 , 
200 and 2Я0 GeV. The k i n e m a t i c range covered i s . 0 6 
< x < . 8 and 7 (5eVa < Qa < 260 0 е У я . The observed 
s c a l i n g v i o l a t i o n s are compared t o p r e d i c t i o n s of 
p - ' r t u b a t i v e QCD. They a l l o w t o de te rmine t h e QCD 
яачи s c a l e parameter -Л and t o e s t i m a t e t h e 
d i s t r i b u t i o n of g luons i n t h e p r o t o n . 

The one-- photon exchange deep i n e l a s t i c muon-proton cross 
uectir.iit can be w r i t t e n as 

* . « • £ ! , ! . jL • ***** а2 1 F , l x Q 2 , 

where К |Ч the energy of the i n c i d e n t beam, Qa t h e squared 
four momentum t r a n s f e r c a r r i e d hy t h e v i r t u a l photon and x and 
у иге? Hie B.jorken s c a l i n g v a r i a b l e s . F a < x , Q a ) i B t h e p r o t o n 
«structure f u n c t i o n and R =» <>U/<*T » S t h e r a t i o of a b s o r p t i o n 
c ross a u c t i o n s for v i r t u a l photons of l o n g i t u d i n a l and 
(гапьл/ег ве p o l a r i z a t i o n . Fa and R c o n t a i n a l l t h e i n f o r m a t i o n 
about the s t r u c t u r e of the nucleon o b t a i n a b l e from u n p o l a r i z e d 
Jepton-prr j ton s c a t t e r i n g . 

Hie da ta Has c o l l e c t e d a t the CERN SPS muon beam w i t h a 
h igh l u m i n o s i t y spect rometer which i s d e s c r i b e d e lsewhere / 1 / , 
I I c o n s i s t s of В segmented i r o n t o r p i d s of 5m l e n g t h 
magnetized c l o s e t o s a t u r a t i o n . E i g h t 5m long l i q u i d hydrogen 
t Mf-gete a r e l o c a t e d i n f r o n t of t h e appara tus and i n t h e 
c e n t r a l b o r e . Muona s c a t t e r e d i n t h e t a r g e t a r e d e f l e c t e d i n t o 
I he -spectrometer i r o n . Each magnet module i s ins t rumented w i t h 
r i n g - s t r u c t u r e d t r i g g e r counters and fl p lanes of MWPC f o r 
i n o r d i n a t e measurements. The r e s o l u t i o n of the s p e c t r o m e t e r , 
l i m i t e d mainly by m u l t i p l e s c a t t e r i n g and e f f e c t i v e chamber 
r e s o l u t i o n , i s O ^ /p = 10 V. and tf « в / в я *" H %» almost c o n s t a n t 
over the k inemat ic r e g i o n . 

Hit' momentum of t h e i n c i d e n t unions was measured w i t h a 
spectrometer c o n s i s t i n g of an a i r g a p magnet and f o u r 
v i in t i 1 li=(t or hadoncopes upstream of t h e appara tus . 

The a n a l y s i s i s based on 2x lO*- e v e n t s a f t e r a l l c u t s , 
recorded at. beam e n e r g i e s o f 100, 120 , 200 and 280 GeV. The 
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d a t a sample and k i n e m a t i c ranges a r e summarized i n t a b l e 1 . 

T a b l e 1 . The d a t a sample 

Beam e n e r g y x range Qa r a n g e Number of 
<GeV> (QevYea> e v e n t » 

100 . 0 6 - . B O 7 - SO S70O0O 
170 . 0 Ů - . 8 0 B-106 420000 
2O0 . 0 6 - . 0 0 1 6 - 1 5 0 0OOOOO 
>B0 . 0 6 - . 6 0 2 6 - 2 6 0 190000 

I n view of t h e h i g h s t a t i s t i c a l accuracy of t h e d a t a a bi<j 
F - H o r t was i n v e s t e d i n t o t h e c a l i b r a t i o n of t h e a p p a r a t u s i n 
o r d e r t o r e d u c e t h e s y s t e m a t i c e r r o r s t o a s i m i t a r l e v e l . As a 
nummary t h e accuracy reached -for t h e main sources of 
s y s t e m a t i c e r r o r s w i l l be g i v e n . More d e t a i l s can be found i n 
i e f . / 2 / . 

- c a l i b r a t i o n of t h e i n c i d e n t e n e r g y Д Е / Е < 1 . 5 x l 0 - 3 

- c a l i b r a t i o n of t h e s c a t t e r e d muon momentum 
magnet ic f i e l d ДВ /В < 2 * 1 0 - * 
energy l o s s Д E , a „ / E , 0 . . < 1 0 ~ а 

- n o r m a l i z a t i o n ! a b s o l u t e < 34 
r e l a t i v e < XV. 

- c o r r e c t i o n s f o r t h e f i n i t e r e s o l u t i o n 
of t h e s p e c t r o m e t e r A r f / ď < 5 x l O - a 

P a r t i c u l a r e f f o r t has been devoted t o t h e muon energy l o s s and 
i he s p e c t r o m e t e r r e s o l u t i o n . The energy I O B S was measured i n a 
d e d i c a t e d exper iment and s i m u l a t e d t a t t i n g i n t o account this 
t . t o c h a s t i e n a t u r e o f a l l c o n t r i b u t i o n s / 3 / . The momentum 
r e s o l u t i o n o f t h e s p e c t r o m e t e r was measured i n s p e c i a l r u n s 
w i t h beams d i r e c t e d i n t o t h e magnets. 

I n o r d e r t q i s o l a t e t h e one-photon exchange c r o s s s e c t i o n , 
c o r r e c t i o n s f o r h i g h e r o rder p rocesses have t o be a p p l i e d t o 
t h e measured c r o s s s e c t i o n . We-used t h e f o r m u l a e by Bar d i n e t 
i l l . / 4 / , wh ich c o n t a i n 

• vacuum p o l a r i z a t i o n by l e p t n n s and quarks „ 
—• l e p ton c u r r e n t p rocesses up t o o r d e r , ot* 
- hadron c u r r e n t p rocesses o f o r d e r oc3 

- c o n t r i b u t i o n s f rom %-l i n t e r f e r e n c e 

I h e e r r o r on the s t r u c t u r e f u n c t i o n s f rom u n c e r t a i n t i e s of t h e 
r a d i a t i v e c o r r e c t i o n s was e s t i m a t e d t o be l e s s than 1 '/.. 

The comparison of c r o s s s e c t i one a t d i f f e r e n t beam e n e r g i e s 
a l l o w s t o d e t e r m i n e Й by m i n i m i z i n g t h e x я of t h e f o u r dal.4 
s e t s w i t h r e s p e c t t o each o t h e r . T h i s i s done s e p a r a t e l y f o r 
each >i-bin assuming R t o be independent o f Q a . The r e s u l t i s 
shown in f i g . 1 . A lso shown i s an e a r l i e r measurement of t h e 
f.MC e x p e r i m e n t / 5 / . A t :<>0 .25 , ' the measured v a l u e s a r e sma l l 
and c o m p a t i b l e w i t h z e r o . At emai l x , t h e d a t a shows a r i s e 
w e l l d e s c r i b e d by t h e QCD p r e d i c t i on ( s o l i d c u r v e ) . R O C D was 
used to compute t h e F 3 a t t h e f o u r d i f f e r e n t beam e n e r g i e s . 
T h e i r e x c e l l e n t a g r e e m e n t , e s p e c i a l l y a t l a r g e >!, i s a power ­
f u l c r o s s - c h e c k o f t h e s y s t e m a t i c s / 2 / . The f i n a l Fa f rom t h e 
combined d a t a s e t s i s shown i n f i g . 2 t o g e t h e r w i t h t h e EMC 
d a t a and w i t h t h e St.AC-MIT r e s u l t s f r o m e l e c t r o n p r o t o n 
s c a t t e r i n g a t low 0 я / 5 / . The agreement w i t h t h e EMC d a t a 
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i « prior especial ly at 
«mall N where the fa 
measured tn th la 
i-и pari man t i a larger by 
up to 20X. The SLAC-MIT 
reai i l t» f i t wall to our 
data without any 
normalixation -factor. 

The data exhibi te * 
clour deviation from 
BJnrken «cal lno. In tha 
f t «fflvworк of partubative 
ОСИ /7/ aeallna 
v i o l a t i o n s лгяг d u e t o t h e 
Q" evolution of quark and 
glwon d i s t r i b u t i o n * which 
tan bo daacrlbad by tha 
Al t a r a l l l - P a r i « i 
equation*. Our ineaauremnt 
1» extended to larga 0" 
and и and therefore wall 
united for a praciaa taat 
of the «vojut1on 
equation*. To f i t tha 
•volut ion aquation* to 
tlia ax pari mental data wa 
employad two method» 
/ 0 , 9 / which have baan 
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FIG. 2 
developed within our collaboration. Thay allow to fit tha 
flavour ainglat and nonainglet evolution aquation* both in a 
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(«••ding order <L0> pertubationexpansion and in a nuxt-Uv-
laading order expansion in the ЯЗ renormalicatien achaná. 

Tha region ef м i .270 «nd 0> > 20 flev» wa* uaad in tha 
nun-ainglet approximation where tha gluon diatr ibut i on i» 
ignored. The raaulta of these f i t » are aummarlted in tabla 2. 

Tabla 2 i Raaulta of non-ainglat f i t a 

raf /в/ 
ra f / 9 / 

102*20 
184*20 

169/180 
170/1B0 

21U?2 
201*70 

169/180 
16B/1B0 

0.1 

0 

£-0.1 

ř 
5 аг 

0.3 

1 T 1 1 

• BCOMS Hi(Q,»200aV,| 

{ 
• V 

\ V 100MTV. 
\Nj10MiV 

< 400 MrV 

аг ол од ав 

FI0.3 

tlur beet aatimata for the 
000 maaa acala parameter at 
finxt-to-leading ordar i a 

.Лда - 210470 <stat.) MeV 

correaponding to a atrong 
coupling conatant of 

0<e - 0.1B7* 0.003 <at«t.) 
•t Q» - 100 QeV". The 
detailed evaluation of the 
ftyatematie error on Л haa 
not yet been completed, but 
i I i a expected to be 
aimilar to that of our 
t.irbon target meaeurement 
<&Л - 60 MeV <ayat.)/2/>. 
Conventionally, J\ haa 

been determined from global 
0CD fita to F»<x,<3»>, which 
dq not, however, conetltute 
a aenaltive teat of OCD. 
Tl>a x« of auch fite 
Ueacribe mainly the 
agreement with the x-

depenaence of the F* which i» not predicted by the theory. A 
inarm stringent teat i a obtained by comparing the x-dependence 
of the acaling violation» obaerved in the data to the one 
expected from the QCD evolution. Thia la the only prediction 
of pertubative dCD for deep inelaatic ar.attaring which cen be 
tested experimentally. The nonainglet case i« ahown in fig. 3 
where the logarithmic derivative» dlnFa<x ,0=4 /dlnd» are 
compared to the next-to-leading order prediction» for -Л й«* 
210 MeV. The measured и-dependence of the scaling violation* 
in fig. 3 ia in excellent agreement with the predicted one 
within atatiatical error*. 

For the OCD analysis over the full x range of the data, the 
proton atructure function ia decomposed into a singlet (8) and 
a' nonsinglet <N8> part aa /7/ 

F»<x,Q") - 5/18 F„"<x,a»> + 1/6 Fa""<x,Q*> 
where Few" and F»" follow different d» evolutions. All data 
point» at 0" > 10 BeV* are used in the f i t » . „The gluon 
•omentum ia parametrized aa xG<x,Qa> - A< П,+1 > <l-x)^ at do» -
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3 QaV* and i a allowed to evolve with Q". from energy-momentum 
sum rul«f A equals the fraction of the total proton momentum 
carried by gluori» and i a found to be A - .4B «t 0" » Я QeV". 

The results for Л and r| from two different method» 
/B,9/ лгш given in table 3. 

lable 3. Results of ainglet + nonsinglet QCD fite to 
Кя<н,П») at м> 0.07 and Q» > 10 QeV" 

rmf.lQI 
rm*. 141 

196*19 
183*2S 

I) t.o 
».2*i.o 
В.4*1.4 

X »/D0F 
2B1/2B2 
2A9/277 

J\ ми l)ňá K»/D0K 

214*17 10.3*1.В 2B2/2B2 
19B*^i 8.9*1.8 270/277 

The results for Jb mrm in good agreement with thoae of the 
ttonsinglet fit*. The measured ecaling viol at iona art compared 
in fig.4 to next- to -leading order fit» for different value* 
of Ц and «how again very good agreement with the theoretical 
prediction. The gluon distribution ha» been determined for 
the firet time from singlet fit» in next-to-leading order QCD. 
A» can be чмт from tig. 3, it i» significantly softer than 
in leading order, which also explain» the observed weak 
dependence of .Л on <\ . 

. 

BCDHS N10 earns LO еис Ю 

reference» 
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/7/ 
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SCALAR OLUEBALL INDICATION IN PION SCATTERING + 

D.Krupa 
Institute or Physics of the Electro-Physical Research Centre, 
Slovak Academy of Sciences, 842 28 Bratislava, Czechoslovakia 

V.A.Meshchcryakov, Yu.S.Surovtsev 
Laboratory of Theoretical Physics, 

Joined Institute of Nuclear Research, 141 980 Dubna, USSR 

Abstract 
The production JtX-»KK s-wave amplitude calculated from 

the я к , л л s-partlal wave scattering amplitude by means of 
the coupled channel formalism indicates the importance of 
coupling of channels above 1.2 GeV. The possible interpretat­
ion of partial wave singularities supposed to be due to the 
lightest glueball is given. 

There are several independent theoretical indications 
tnut tne lightest glueball should be the state with no spin 
and positive parity, and that it should have the mass between 
O.S and 2.0 GeV. The natural way to see such state is to look 

2 at the 1=0, s-wave x% scattering. The Particle Data Group 
lists two such states - f (975) and f (1300), previously called 
as S and 6 , respectively. Since there was a lot of contro­
versy concerning the nature of these states we have done a new 
attempt to establish these mesons from the data on s-wave jrsr 
scattering . 

Because the S mass is very close to the KK production 
threshold energy, above which there is a large coupling of-the 
.TS" and KK channels, we have used the 2x2 S-matrix coupling 
togrther rX and KK channels: 

j ( S11 S12 \ I - ( J T S ) 
\ S2. S22 J 2 - ( KK ) 

In order to describe the ЯЯ scat ter ing data the analy­
t i c a l continuation of the S-matrix to the unphysical sheets 

+Talk presented at the Hadron Structure'87 conference. 
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in the s variable was used where s is the total centre of mass 
energy squared. Each elastic resonance is parametrized by four 
zero-pole pairs as the result of this continuation. Their 
position is determined Just by two parameters corresponding 
to the mass and to the width of resonance. The first two zeros 
are placed on thr 'irst sheet complex plane symmetrically 
around the real - xls. The second pair is at the same position 
on the fourth sheet. The poles are also at same positions in 
s variable but they arc placed on the second and the third 
sheet. However, due to the absorptive effects the zero-pole 
pairs on the third and the fourth sheets are shifted relatively 
to those on the first and the second sheet . 

The 1ГЯ S-matrix element can then be easily parametrized 
by a suitable rational form. In order to take into account 
the Riemann sheet structure generated by unitarity we write 
this ational form in a new variable 

k^s) + k2(s) 
z J (2) 

к,(4тк) 

defined by the centre of mass momenta 

k((s) = 2-U-1n£)t/2 and k2(s) = i(s-1m
2)l/2 (3) 

in the угя and K& cannels, respectively. 
By this means a very good and effective description of 

all ÍTÍT-»nST s-wave data from ЯЛ' threshold energy up to 1.89 
OeV was achieved. Moreover, the two other coupled S-matrix 
elements for processes KK —• KK and JTJT—»КК were predicted 
from the я % data assuming the validity of 2x2 S-matrix unita­
rity. Our prediction of the Jt5t-*KK production process is 
shown in Fig.1 and Fig.2 where the absolute value of phase 5—7 of the S 2 matrix element is compared.with experimental data. 
This comparison shows the remarkable agreement with the data 
up to 1.2 GeV. For higher energies there is deviation of the 
predicted values and the experimental ones. This means that 
the 2x2 S-matrix unitarity is violated at these higher energies 
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and that in order to 

achieve more realistic 

results the \% coupled 

channel should be also 

taken into account at 

least. This would result 

in 3x3 S-matrix coupled 

channel calculation. 

Having these three copied 

channels the ftjt scatte­

ring amplitude analytici-

ty structure requires to 

consider more complicated 

Riemann sheet structure 

consisting of eight con­

nected Riemann sheets. 

The elastic resonance 

will now be described by 

eight instead of four 

zero-pole pairs at ;„he 

same complex-conjugate 

points in the s-variable 

on all eight Riemann 

sheets. 

In the January issue 

of this year CERN Cou-
О 

rier there appeared an 
article about interesting 

analysis of Au,Morgan and Pennington in which they analyse the 
scalar glueball sector including the new CERN ISR double pome-

+ — 9 
ron exchange data on pp —» pp J^JI and ppK К processes . Their 
conclusion is that a single narrow resonance is not enough to 
fit the data and they find as much as three different states 
in the IGeV energy region. 

Their analysis is based on the coupled channel K-matrix 
approach. The advantage of this approach is that the K-matrix 
does not have the right-hand cuts generated by unitarity and 

1.2 Ц 
-JŠC CeV) 

Fig.: 
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therefore one does not need to bother about the complicated 
Rlemann sheet structure. However, orter identifying the reso­
nances by means of the K-matrlx one is still interested in 
placing them into an appropriate Riemann sheet of the S-matrix 
in order to iterpret them properly. 

The S-matrix poles 
found by Au and col­
laborators 
In Fig.3. They are 

0.* 

0.2| 

0 

-0.2 

-0.4| 

®(»i<> e) КЭ) 
(.7) 

(9) 
A®B 

•(j*)(i) 
-0.6 -<U -0.2 

Fig.3 

t«2i) (7) 
кг Plane 

(98) 
(1.0) (1.1) (1,2) (1.0 (1.6) 
®< 

02 04 OX 

displayed in the к (s) 
complex plane. In dif-
rent solutions the 
poles were placed in 
the regions of the 
complex k, plane de­
noted as A through G, 
One can see how these 
poles reproduce the 

symmetry pattern that a pole on the 2nd sheet has a counter -
part image pole on the 3rd sheet. The average pole positions 
and the couplings of the corresponding resonancec to 7Г7Г and KK 
channels are in the following table: 

Position 

A = 1.001-0.0261 
С = 0.985-0.020i 

D = 0.87 - 0.381 
E = 0.94 - 0.351 
F = 1.42 - 0.23Í 
G = 1.42 - 0.22Í 

В = 0.988 

Name 

8,(991) 

£ (900) 

£ (1430) 

S,(988) 

Couplings Sheet 
g 

0.22 

0.52 

0.58 

0.02 

8K 

0.28 

0.27 

0.16 

0.35 

II 

III 

VII 

VI 

II 

III 

L-H. 

Table 1. 
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They have very interesting interpretation. S. J.s inter­

preted as the glueball, S2 is interpreted as the KK molecule 

and £ (900) is a broad state where,all three states together 

reproduce the old S phenomenon. 

What can we say to these interesting results in view of 

our approach? First, we have not found any need or other states 
41 

beside the narrow S in the ICeV energy region. But we have not 

analysed such rich ammount of data and namely, we have not ana­

lysed the CERN ISR data ns they did and which make essential 

contribution to their analysis. Second, we came to the conclu­

sion that in order to have a reliable results above 1.2 GeV 

one has to perform the 3x3 coupled channel analysis. In Ref.9 

the data up to 1.6 GeV were analysed. 

We can therefore ask the question what would happen if 

the poles in terms of the K-matrix would be projected onto 

the S-matrix with 8 Riemann sheets ( corresponding to 3x3 

coupled channels ) instead of the 4 sheets? Would not the 

poles denoted as D and E fall on the Vll-th and VT-th sheet 

as they are denoted in Table t and also in Flg.3 in brackets? 

But that would mean that all four poles A,C,D and E describe 

the same one fhysical resonance. 

The pole denoted as В with coupling to KK but not to ЦТС 
channels could simply simulate the KK background comminff for 

2 2 instance from the ieft-hand cut which starts at s = 4(m„-m ), 
i.e. just below the KK threshold where it was found. This pole 
does not appear in the JTJT channel S-matrix element since it is 
located almost on the я я channel physical region, i.e. on the 
s variable real axis, and so it is cancelled by the correspon­
ding zero approaching the same position from the I-st sheet. 
Therefore it is not seen in our analysis . 

Though our arguments concerning interpretation of these 
poles are rather tentative we hope that I' meresting results of 
Au et al. will stimulate further research both experimental as 
well as theoretical in order to clarify the scalar mesons 
physics. 
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IIÍVEtíTIGATIOIÍ OP í e , e » ) SCATTERING ON ELECTRON 
SYNCHROTRON AT YEREVAN PHYSICS HISTITUTE 

D.S . Bagdasa ryan , G.B. Kazaryan , 
H.G. Idkrtchyan, I . A . Trosfcenkova 

Yerevan P h y s i c s I n s t i t u t e , Llarkarian S t . 2 , 

375036, Yerevan, Armenia , USSR 

A b s t r a c t 

Experimental cross sections of the (e,e') scattering on 
ft Q 12 2Й 
Li, эВе. С and Si nuclei in the region of quasi-elastic 

л 2 2 2 
peak and Д -resonance at 0.1 í q S 0.5 GeV /c have been 

reported. Theoretical calculations in the nucleus shell model 

reproduce successfully experimental spectra. In the quasi-

elastic peak region the results for 'Be and С show a good 
Y-scaling behaviour. 

It is well known that at a given energy of the incident 
electron, E, and at sufficiently large transferred three-
dimensional momenta, q > 400 MeV/c, in electron scattering 
energy spectra at E' close to £ one may observe a character­
istic peak corresponding to elastic scattering of the elec­

tron on the nucleus nucleon, the so-called quasi-elastic peak. 

Y/ith increasing transferred energy (or virtual photon energy 

(JJ a E - E') the next peak appears which may be compared to 

the resonance pion production on the bound nucleon of nucleus. 

As shown by the recent (e,e') experiments, particularly by 

the experiments /1,2/ on the separation of contributions of 

the transversely and longitudinally polarized photons on nu­

clei, systematical measurements, especially in the region of 

quasi-elastic peak and Д -resonance, at higher energies and 
q, respectively, remain an urgent problem so far. Of great 
interest is as before the study of A and q dependence of the 
extent of the excess of experimental cross sections over the­
oretical calculations in the region between quasi-elastic and 
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Д-peaks. 
On the extracted electron beam of the Yerevan synchrotron 

there have been carried out measurements on (e,e') scattering 
on Li, 9Be, ' С and Si nuclei in the region of quasi-

'£ 

elastic peak and Д-resonance in the initial electron energy 
range (1.0 - 2.1) GeV and 0 = 15.5°- 20°. 

The layout of the magnetic elements of the spectrometer 
and detecting equipment is shown in Pig. 1. Slowly ejected 

electrons with ДЕ/Е A.+0,5% and 
intensity /\- 5 Х Ю e /c were fo­
cused to remote-controlled tar­
gets. The beam monitoring was 

"^realized with a secondary»emis-
sion monitor and a Gauss quantо-
meter with an accuracy no worse 
than «- 2%. The beam position and 
sizes were monitored by flag in­
dicators. 

Scattered electrons were Ге­

ев'» «*M -^""^"""l Л 

» j /Wc« 

Fig. 1 
gistered at © ^15«5° with a 

magnetic spectrometer consisting of two МЛ-16 type quadru-
pole lenses and an СП-137- type vertically deflecting magnet. 

•The detecting equipment of.the spectrometer may be function­
ally" divided into three parts: the aperture counters (C.-CO, 
the electron identification system (dE/dX) and the pulse ho-
dos.cope consisting of 11 (or 17) scintillation counters. The 
spectrometer pulse capture was up to 17%, angular acceptance 
M 1 . 9 ~ 0.75) msterad, depending on the value of angular 
collimation of scattered electrons (+2.5° or +1°); the spec­
trometer momentum resolution was л»+0.5%. 

The absolute calibration of the set-up was realized by 
comparison of measured spectra of elastic ер-scattering (by 
the method of subtraction of CHo and С spectra) with calcu­
lated ones. 

Коre detailed information on the experimental set-up and 
its calibration technique one can find in Ref./3/. 

The main source of the background are the electrons pro-
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duced from the process y_^£+£~ and nonsuppressed 9f -me­

sons. 

The level of random coincidences at «N» 5 * 10* e~/sec beam 

intensity and «-0.5 msec ejection time was less than ~ 2 % . 

The background from the bearaline residual gas was determined 

by measurements without target and did not exceed «*1%. Con­

tributions from the )f-»€*e.~ process and from nonsuppressed 

"JT-mesons were estimated by measurements at the spectrometer 

reverse polarity. The background made up «- (2-5)?ь in the 
quasi-elastic peak region and reached ~(5-10)56 in the Д -
resonance region. 

Some experimental data obtained at Yerevan Physics Insti-
tute for Li, 'Be, С and Si nuclei are presented in Pig.2. 

The errora indicated in Pig.2 include only statistical 
(3-5)% ones and those connected with the determination of the 
set-up efficiency. The systematical errors, due to the beam 
.monitoring and normalizing factors, make up л-10%. 

The results have shown that for all the nuclei there is 
observed a characteristic peak of quasi-elastic scattering 
whose width increases with atomic number of nucleus. Also 
another peak was observed, corresponding to the Д -reso­
nance production. 

Theoretical curves represent a sum of contributions from 
the quasi-elastic peak and A-resonance and are calculated 
in the shell model under assumption that the cross section on 
the nucleus is a noncoherent sum of cross sections on indivi­
dual nucleons. The model parameters obtained in Hef./4/ were 
used. Calculations on the shell model, in general, reproduce 
successfully experimental spectra. To compare experimental 
results with calculations, radiative distortions correspond­

ing to experimental conditions were introduced into theoreti­
cal cross sections. 

The accounting.of radiative corrections was realized by 
the method worked out by Mo and Tsai /5/. 

The A-resonance maxima are strongly smoothened by 
Fermi-motion of nucleons. The overlap of the threshold region 
of ST-meson production with the "tail" of quasi-elastic peaks 
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imitates the shift of the & -resonance maximum towards the 
quasi-peak by 20-30 MeV. 

In the quasi-elastic peak maximum the cross section norma­
lized by the number of nucleons decreases with increasing 
atomic number of the nuclei • While in the region of A -
resonance maximum the cross section normalized by the number 
of nucleons within the experimental errors does not depend on 
the atomic number. -

l: 
1: 
'J\ 
7\ 
'-A 

Vl u u u u u 

Pig. 2 

For further analysis it is necessary to subtract from 
measured spectra the "tail" contributions of the process of 
elastic scattering of electrons on nuclei at Б cé-1.45 GeV as 

well as to remove radiative distortions. 

The extraction of nonradiative cross sections is connected 

with measurements at Q = conet and different initial ener-
o 

gies K, while the requirement q в const (the necessary con-
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dit ion for the separation of RLand RT ) i s provided by the 
change of the angle . To match these programs, the search for 
the optimal plan of measurements i s necessary for a given . 
set -up. 

In R e f . / 6 / , by means-of mathematical modelling of spectra 
of the (e,e") process i n the region of quas i -e last ic s c a t t e r ­
ing and A- i sobar production, there has been worked out a 
method to obtain from i n i t i a l experimental material data free 
from radiative d i s tor t ions . 

I t was shown that at the Yerevan set-up the measurement 
program aimed at separation of longitudinal and transverse. 
components of the с rose sect ion of (eA)- 'interaction i s quite 
r e a l . Ibidem the pract ical aspects of the . .a l izat ion of s>uch 
invest igat ions at energies of i n i t i a l e lectrons В > 1 GeV are 
considered. 

The given s er i e s of measurements v/as carried out with ac­
count of namely these programs. 

Pig. 3 . Experimental points re ­
fer to : Д ( 4 ) - 1.45 GeV, 
16°(18°); О ( щ ) - 1.67 GeV, 
16° (18°); О ( • ) - 1.93 GeV, 
16° (18°) ; 0 < • ) - 2.13 GeV, 
16° (18° ) . 

P ig . 3 shows resu l t s of our 
'** ' "»«. "** ' " «««measurements of ( e , e ' ) reactions 

i n the quas i -e las t ic peak region, 
processed i n accordance with the Y-scaling concept / 7 / . 
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HZOH IJffiROJT НАМЮН 8СЛТТВЯШ IN IOHWARD DIHSOTION 

V. Kundrét, M. LokaJiĎek 
Znatitute of Phyeioe, 08AV, Prague 

O* Křupa 
Znatitute of fhyeiee BAV, Bratislava 

In the high-energy elaatio differential егоее oection experi­
mente with unpolarised partiolee the quantity whioh ie meaaured 
ia the counting rate AN(t) (i.e. the number of oounte per 
aeoond per email Interval A t of four-momentum tranafer squared). 
Thie counting rate ie normaliaed to the differential oroaa 
aeotion -=£p in the following manner /1/ 

cN(t) • L 4 ? I <*> 

the normalisation factor L ia the luminoaity for oollidlng beame. 

Theoretically, the differential oroaa aaetion ia given by 
the abaolute aquare of tha total elaatio amplitude V(att) whioh 
ia the complex function of tha CMS energy "jfa" and t • It meana 
that one oan determine only the module of the total amplitude from 
the experimental data. 

Let ue confine ourselves to the oaao of the toadron>hadron 
or hadron-nuoloua elaatie acattering. The differential eroaa aeotion 
ie being determined for -t<(10~ 3 - 10"2, 1.- 19.) OeV2| i.e. the 
measured interval oovtrei tha region where pure nuclear aeattering 
with the amplituda ? N predominatee and aleо the region where the 
Coulomb amplitude playe a eignifioant role and whioh oan be exactly 
calculated within the framework of QBD. Therefore the total ampli­
tude ¥ can be decempoeed into two components 

Г • r° + I*. (2) 
Evidently, only the module of the nuclear oomponent Iм can be 
determined from experiment; ite phaee being introduced by expreaaion 

řN(e,t> - i |PN<a,t> la"1 * ( e » t } , (3) 
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remains completely unknown funotion of a and t . So wo nood 
to know it? 

Tht answer i t yea. Tht reason la that inataad of studying 
tho properties of alattlo aoatttring in the t-variable on* ean 
invootigate it in tht impact-parameter apaoa b uaing tho 
fourier-Bessel transform 

h(s,b)~ jlPTd lCt p" <s,t) J0(blCt)f (4) 

where J Q U ) is the Bessel function of zero order. The absolute 
aquara |h(s,b)| 2 of the image of the nuolear oomponent givee ua 
the distribution of elaetio soattering in the impaot parameter 
epaoo which tells us something about the range of nuolear forces 
aoting between colliding hadrons. 

Physically, two kinda of this diatribution are of great 
interest* The firat one called oentral has ita maximum at b«0 
and daoroaaoe with increasing b in auoh a way that <b > remains 
small* In this oase or» uses for the nuolear oomponent I the 
amplitude with dominant imaginary part in a rather great interval 
of t around t"0 and vanishing at the dip» The real part whioh 
smoothly increases with increasing It I is introduced in order to 
obtain the non-zero value of •*«•- at the dip* However, it meane 
that one uses the amplitude with slowly varying phase J(s,t) 
being taken practically aa constant. After performing the Fourier-
Be seel transform (4) to such an amplitude one unavoidably obtaina 
the oentral distribution of elaetio scattering whioh haa very im­
portant logical consequences. Firstly, the protone in "head-on" 
collisions must be rather transparent, whioh aoema to be a "puzzle" 
/2/. Secondly, there ia a discrepancy in the description of 
diffraction scattering, if elastic scattering is central, since 
the inelastic diffraction, being produced by a similar produotion 
mechanism, is being always described by the peripheral profiles /3/« 

The second kind of distribution called peripheral can be 
characterized by a rather large value of <b 2> and has its maximum 
at some positive value of b or at least a broad plateau. It can 
be obtained if one haa rather strong increase of f(s,t) with 
increasing |t I in such a way that Im 7N(e,t) » О at It I £0.1 OeV2 

/4/. 
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Comparing it with the previous oasa one usee again the amplitu­
de with dominant imaginary part but now only for very email valuta 
of It I * There is, of courae, a great difference in phyeioal con­
sequences and basic assumptions. It is evident tajht the mentioned 
troubles related to the firet kind of central-behaviour can be 
removed if one regards the elastic scattering as peripheral process. 
Moreover, the arguments leading to the "old-type" amplitude and 
giving the oentral distribution are based fully on asymptotic pro­
perties and can be hardly justified at present energies, which 
all lead to the conclusion that all elastic collisions should be 
peripheral /5/. Therefore, we prefer the peripheral picture of 
elastio scattering for which the strong t-dependence of the phase 
is crucial. 

One of the methods which could in principle decide between 
the mentioned two possibilities is the interference between the 
Coulomb and nuclear components of the total amplitude* Let us mention, 
first, the case of pp scattering. The currently used analysis 
/6-8/ usee for the total amplitude the following form 

f(.,t) - SU. f 2 ( t ) fl*f> + &btp yS-^+i, eBV2 § (5) 

The first term in (5) corresponds to the Coulomb component; here 
«t» 1/137 is the fine otructure constant, fp(t) • ( 0 ] 7 1 _ t ) 2 is 
the conventional proton dipóle form factor and 
*Сф= -ln{(-Bt/2) + fr ) is the total Weet-Yennie phase with Eulor 
constant £ « 0*577* The second term describee the nuclear compo­
nent where В is the diffraction slope, ^tot the total cr°ss 
section and $ is the ratio of the real to imaginary parte in the 
forward direction. Thus, applying this formula to the differential 
erose section data one can determine the values of free parameters 
^tot» B and § ' 

However, formula (5) is valid, provided three assumptions 
are fulfilled; 

(i) spin effects can be neglected, 
(ii) there is the characteristic exponential t-dependence of 

the nuclear component in the interference region, 
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(iíí) there is the ваше t-dependenoe of the real and imaginary 
parts of nuclear components. 

The first two assumptions seem to be fully justified /9-11/. 
The third assumption means that the t-dependence of the phase is 
neglected, but there are no reasonable arguments for it. If we want 
to obtain peripherality of elastic scattering the phase $ (s,t) 
must be strongly t-dependent. Therefore, conventional formula (5) 
eannot be used. Instead of it one has to use the modified Cahn'a 
approach /10/ (see /11/) 

F(e,t) * ̂ fl- f*(t) + FN(s,t) . 

(г- i^Vin^-i, f^u'.^jj <«> 
with the nuclear component 

PN(s,t) „ eBt'2 " 4 *<8'*> (7) 

and with the following parametrization of the phase 

S ( t ) = So + S, | + | V * + fit|+|* . te - 1 0ev2; (8) 

here J0, fi> •£ , V , f2' ^ a r e the f r e e parameters which can 
be in principle energy-dependent. The form of used parametrization 
(8) is based on our previous results /A/ and allows the peripheral 
as well as central distribution. 

We have applied it to the case of the pp elastic scattering 

for seven different values of р,аЬ = 100 - 2081 OeV/c (for details 
see /11/. We have performed two types of the fits: first one 
with the parameters fi я fo = >̂ which corresponds to the case 
of constant (Э = tan | 0 . The results are in Table 1. In the 
second type of the fits the parametere f, and ' f„ were allowed 
to change. Under some constraints leading to peripherality (for 
details see /11/) we obtained nearly the same values of X*" dis­
tributions as in the previous case (see Table 1) with slightly 
modified values of G"tot» В and £ (for the values of other free 

parametere see also /11/. The obtained peripherality is characterized 
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by the quantity if < b > « 1.6 - 1.9 fm which ie much greater 
than in the case of the constant phase (V<b 2 > » 0.66 - 0.69 fm). 
Due to the same level of ^'"values we regard the results of both 
the f i t s as indistinguishable experimentally. 

The second investigates type of e las t ic scattering i s the 
case of p- Ha process at P l a b = 200 GeV/c. Again the conventional 
analysis / 1 2 / uses a similar formula as (5) 

Fie.t) = 2 j fa f p ( t ) f H e ( t ) c ř ^ 2 i P УГ (j+i) e<Bt+ct2>4 (9) 

where 
f H e ( t ) - ( 1 - (2.56t)6) e

1 1 , 7 0 t (10) 

ie the He electromagnetic form factor. Formula (9) is valid under 
similar assumptions as in the case of pp scattering and leads 
to the central distribution. The peripherally can be again 
obtained i f one addmita the strong t-dependence of the phase. In 
this case instead of JSq. (9) one must use for the total amplitude 
analogically to Eq. (6) 

PN+C(s,t) = I fU fp(t) fHe(t) + PNu(s,t) . 

. f 1 - 2iod f dť In-^-fc. [fp(ť) fHe(ť) l b ^ i ] | ( i i , 

where the nuclear amplitude is 

FNu(s,t) ̂ e
(Bt+Ct2)/2 ~ i f (8'^ <12> 

and the phase is parametrized aa 

$ ( t ) = ío + fi i-^iVi"tr+ i*|-tr i***1™2 (i3) 

Again two types of fits (the first one with constant phase 
and the second one giving the peripheral!ty) have been performed. 
The preliminary results can be found in Table 1. The obtained 
peripherality is characterized by Y < b ^ = 2.9 fm, while in the 
case of constant phase Г <b2> = 1.22 fm. Both the fits exhibit 
the same value of JC and are experimentally indistinguishable 

314 

« 



again . The corresponding peripheral d i s t r ibu t ion (together with 
tha t one which belongs to pp sca t te r ing a t p l a b - 1487 GeV/c) 
i s shown in Fig. 1 . 

On the basis of our resu l t s we can conclude: the concept of 
per ipheral i ty i s in a fu l l agreement with the experimental i n t e r ­
ference data . But we must admit that the analysis of these data 
cannot decide between the two different pictures of high-energy 
e l a s t i c sca t t e r ing . The preference should be given to the periphe­
r a l in terpre ta t ion due to logical reasons. The doubts concerning 
the dominance of imaginary part are also supported by the l a s t 
experiments a t CEHN Collider giving an unexpectedly large value 
of <J for pp sca t te r ing / 1 3 / . 
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typ» 

pp 

p-*He 

ř i t 1 

Pl .b <*0t B , л *Г/ВГ 
(OeV/e) (ОвГ2) ^ 

, (mb) 

100 38.43 11.78 -0.096 81.15/69 
150 38.73 12.03 -0.038 74.61/64 
250 39.26 12.03 -0.043 43.70/60 
300 39.47 12.16 -0.035 63.18/56 

1063 41.88 13.10 40.056 59.70/53 
1487 42.38 13.11 0.075 45.51/37 
2081 43.49 13.14 0.086 30.58/30 

200 122.69 33.03 0.027 44.40/40 
C«-24.93 (OeV4) 

Fit XI 

38.49 11.74 -0.090 81.44 
38.73 11.86 -0.040 75.14 
39.29 11.94 -0.039 43.72 
39.53 12.08 -0.035 62.89 
41.93 13.10 0.061 51.84 
42.38 13.10 0.082 43.06 
43.82 13.20 0.089 28.70 

122.18 32.60 0.021 45.55 
C=>-36.34 (OeV-4) 

Table 1 . 

p *He 200 GeV/c 

pp 1487 GeV/e 

Fig. 1 

316 



UWThPh-1987-38 

A MODEL OF MASSIVE NEUTRINOS WITH 
A CONSERVED LEPTON NUMBER1 

W. Grimus 
Institut fur Theoretische Physik 

Universitat Wien 

ABSTRACT 

We consider a left-right symmetric model with the standard assign­
ments of fermion and scalar fields which possesses a strictly con­
served lepton number. 

'Supported in part by "Jubil&umsfondi der Ósterreichiichen Nationalbank", Project Nr. 
2765. 

317 



1. INTRODUCTION 

In many extensions of the standard model neutrinos are massive. We know 
from experiment that neutrino masses must be much smaller than those of 
their charged counterparts [1]. In models with only Dirac mass terras this fact 
is hard to understand. Since neutrinos are electrically neutral they can also 
have Majorána mass terms. If in such a theory there is a heavy scale small 
neutrino masses are obtainable via the seesaw mechanism. However, this mech­
anism usually creates a large hierarchy among the light neutrino masses and 
the cosmological bound 

£ m,, * 100 eV (1) 
vlilht 

is difficult to satisfy if mUc is of the order eV. Therefore one has to make the 
t/p and i/r sufficiently unstable to circumvent the bound (1). This requires in 
general the introduction of additional fields. 

Here we want to discuss a three generation left-right symmetric model [2]J 

which has a strictly conserved lepton number of the Zel'dovich-Konopinski-
Mahmoud (ZKM) type [3]. It contains a light Dirac and a light Majorána neu­
trino. Moreover, the seesaw mechanism is effective despite of the existence of 
Dirac neutrinos, the cosmological bound (1) can naturally be satisfied with 
the right-handed scale in the TeV range and there are no additional fields in 
the model other than the minimal set which is required by the gauge group 
SU(2)L x SU(2)n x U(1)B-L and its spontaneous breakdown to V(l)m [4]. 
Therefore we call it a minimal left-right symmetric model (MLRM). 

2. THE MODEL 

The Yukawa interaction of the leptons in the MLRM is given by 

(2) 
where the lepton doublets transform as 

^ ~ (1/2,0,-1) , ^ я ~ (0,1/2,-1) 

and the Higgs scalars as 

Ф~ (1/2,1/2,0), Д ь ~ (1,0,2), Д я ~ (0,1,2) 
2See Ref, [2] also for further references. 
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under the gauge group. These scalars comprise the set of Higgs scalars in the 
MLHM apart from fields3 which appear only in the potential and which are 
necessary to obtain spontaneous CP violation and a small vacuum expectation 
value of Дь at most in the eV range. If this were not the case the mass of the 
electron neutrino would be too large as can be seen from the mass matrix. 

After spontaneous symmetry breaking the neutrino mass term is obtained 
as 

Cvna.. = \wTC-*M*, + h.c. with ш^(^) (3) 

being the right-handed neutrino fields and 

the neutrino mass matrix. The vacuum expectation values are given by 

From a consideration of the K°R° system the mass of the predominantly right-
handed charged gauge boson W2 and therefore also the value of the \uR\ should 
be at least in the few TeV range [5]. Henceforth we shall assume that we can 
neglect иi. Furthermore, one has to impose the condition det GR ф 0 for the 
seesaw mechanism to be operative. Otherwise, there would be light neutrinos 
with masses of the order of those of their charged partners. 

The three generation model we want to discuss is given by the Yukawa 
coupling matrices 

G,,j diagonal, GL ~ GR = I g 0 0 I . (6) 
/ 0 9 0 \ 

= <?л= \ 9 0 0 
\ 0 0 h) 

This model can be obtained in two ways from symmetry requirements: 

i) Imposing the ususal left-right symmetry and a strictly conserved lepton 
number. 

The usual left-right or parity symmetry gives the condition 

Gi,j = Gi i t, Gi -GR. (7) 

' 3In the simplest case one can take a pseudoscalar gauge singlet. 
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Apart from a case with extensive fine tuning in the charge lepton sector there 
is a unique way to impose a lepton number under the condition det OR ф О, 
namely 

Фь,ы -* e'° V>it«i, i>i,R7 -» e"'a V>c,«a, Vb.i» -» Уь,ю • (8) 
This transformation gives rise to the model (6) with the conserved lepton num­
ber L = L| — Lj of the ZKM type. This symmetry remains intact after the 
spontaneous breakdown of the gauge group because the Higgs Aelds have eero 
lepton number. 

ii) Imposing a generalized left-right or parity symmetry. 
A generalized left-right or parity transformation is given by 

M * ) - t f p 7 > n ( * ) AL(x) - -Д„(я5) Ф(*)-»Ф'(*) ,„. 

with \aL\ = 1, i = (z°, —x) and the gauge bosons transforming in the usual 
way. The unitary matrices Up, Vp act in flavour space. Such a transformation 
leaves the gauge part of the Lagrangian invariant but induces restrictions on 
the Yukawa sector. For the simplest case Up = Vp = 1 and at, = —1 they are 
given by Eq. (7). One can show that there is a unique case giving restrictions 
on all three generations. This case coincides with the Yukawa couplings of Eq. 
(6). The simplest way to realize it is by choosing 

UP = 1,- V P = ( -i ) , ob = - l . (10) 

Thus one can regard the generalized parity transformation (10) as the reason 
for the appearance of the lepton number L = L\ — Zj. 

Considering the neutrino mass matrix of our model it is obvious that it 
decays into a Dirac part with non-trivial L = L\ — £2 

/ 0 0 о 0 \ 

Ml1» 0 0 0 b 
a 0 0 d 

\ 0 Ь d 0 J 

with m„D ~ |-T I, mNt> ~ \d\ (11) 

and a Majorána sector (L = 0) 

Mi»M)={°cl) Wilh m"«-l7l> **«»*№• (12) 
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f0 i "м denote the light Dirac and Majorána neutrinos, respectively, whereas 
ND, NM denote the heavy опев with masses of the order of the Wt mass. 

Using the cosmological bound (1) and taking a, b, с of the order of the corre­
sponding charged lepton masses one gets bounds on тц0 and mi¥„, respectively. 
For the three possibilities to choose L the lowest bounds are obtained by taking 
L = £„ — LT. Thus one gets, e.g., m„„ ~ т^/тн», ~ WkeV/mttM(TeV) which 
requires mjv„ ' 100 ТеV to satisfy (1). A right-handed scale of such an order, 
however, virtually excludes any left-right effects at low energies, e.g. in K°K°. 

Fortunately, one can find a further symmetry, namely a generalized CP 
transformation [6] which does not destroy the relations (6) but sets G, = 0. In 
this way one can easily see that 

.ID 2 mcmT < 10 eV 

(13) 
,11) „ rn„ K 100 eV 
v mjvM mNu(leV) 

because \w/v\2 is naturally of the order (mk/mi)3 S 10~J. Now the cosmological 
bound is easily satisfied with тлг0, m^M in the few TeV range. 

3. RESULTS AND PHENOMENOLOGY 

i) The model has a light Dirac neutrino vD associated with both the electron 
and the tau, and a light Majorána neutrino VM coupled to the muon. m„0 

and m„„ are both "naturally" in the eV range. "Natural" means that mVD 

and m„„ are related to the masses of the charged leptons and the gauge 
boson Wj by a symmetry. The mass of Wj is assumed to be in the few 
TeV range as suggested by consideration of the K0R0 system. There is 
also a heavy Dirac neutrino No and a heavy Majorána neutrino NM with 
masses of the order of the Wj mass. 

The most remarkable feature of this model is the fact that all light neu­
trinos can have masses of the same order in contrast to the usual seesaw 
mechanism. With the right-handed scale in the few TeV range the cosmo­
logical bound on the light neutrino masses is automatically satisfied. 

ii) The model possesses a conserved lepton number L = Lt — L, of the ZKM 
type. Thus, classifying the leptons according to L we have 

e",r+,i/r),iVjj with £ = 1 



and 
/AfA/ ,N A Í with 1 = 0 . 

For three generations this is essentially the unique possibility of assigning 
a lepton number in the MLRM. 

iii) As a consequence of the conserved lepton number the processes fi —* ef, 
ft — eee, e"/i+ —• p~e*, /xe-conversion, K* — ir"e+e+ , neutrinoleas 
double 0 decay (Z,A) -» (Z + 2, A) + e~ + e~, neutrino oscillations etc. 
are ail forbidden. 

iv) Among the allowed processes we have e" —• т* conversion which is. how­
ever, of siM-nnd firder in the we.-ik interactions with additional suppression 
factors. The probability of getting r + instead of e~ in ^D-scattering is of 
the order (mvi,/mr)3 < H)"9 for neutrinos coming from na, A"ej decays. 

At high energies the hcnvy neutrinos can be produced which decay like 
Np -. e ir /^r'M', ' 2 and N\t -» / i*!! '^. Thus one could have charac­
teristic signatures such as up — т* Л" and pp — e*r+.Y,/i+/i+A* with Л" 
being purely hndronic. 

At low energies the only obvious test of the present model seems to be 
the determination of the v\t mass. 
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1. GENERAL OP TRANSFORMATIONS 
In the standard model [1] with a single Higgs doublet OP violation [2] oc­

curs through the Kobayashi-Maskawa (KM) mechanism (3) for at least three 
quark generations (no 2 3). The hard OP breaking is achieved through com* 
plex Yukawa couplings and manifests itself only in the mixing matrix of the 
charged current Interaction. Higgs exchange conserves OP and flavour In a nat­
ural way, 

However, the standard model does not offer any explanation why some 
Yukawa couplings should be complex. An attractive alternative is provided by 
the concept of spontaneous OP violation (SCPV) suggesting a common origin 
of gauge and CP symmetry breaking. In this crtse one has to And the general 
conditions that a given Lagranglan Is OP Invariant (before spontaneous sym­
metry breaking). As an explicit example I will discuss a model based on the 
gauge group SU(2)i x i /( l) with an arbitrary number n// of Higgs doublets 

• . = l6<*$nH. (1.1) 

The weak elgenflelds of the quarks are denoted by 

ÍU • I JJ , Pitt, тця, 1 á • Š na. (1.2) 

The existence of generations is now an important point. Prior to spontaneous 
symmetry breaking these generations are completely undistingulshable. The 
ваше is, of course, true for the scalar fields where we have r»// identical copies 
of Higgs doublets. So, a general OP transformation (4,6,6] is given by' 

W(»°,4?) -» Vt,Cqi(x°t-S), 
Ptt(m0,*) - VtOp№>,-g), 
n-nV.*) - Vjf С ,*(••»,-*), 
Ф«(»°,аО - VB*0*hW,-8), 

with the Dirac charge conjugation matrix C. Vi, V£'n are no-dimensional uni­
tary matrices in generation space and VH is an пя-dimensional unitary matrix 
in the space of scalar doublets. There is a priori no reason to prefer certain Vj, 

'The gauge fields transform in the standard way. 
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V%'n, Уц, Of course, a lot of freedom in the choice of these OP matrices is really 
redundant because under a basis transformation we have 

VL -* A[Vt,Ai, 

Vfi -, A'JVRA',;, 
(1.4) 

Vg - AiVRAH, 

V„ - A*ttVHA'„, 

with unitary At, Aty", An- One may even have the atispicion that one can always 
choose a bitsii traniformation in such a way that Vt, Vfi,n, Vu are transformed 
into unit matrices recovering the usual OP transformations. We have recently 
shown [7] that this is in general not the case; although Vb) Vfi", V// may be 
brought to certain real standard forms, the resulting matrices are in general 
non-diagonal, 

Quarks and scalars are allowed to interact through Yukawa terms in the 
Lagranglan, 

-Cr - Ё(?ьГ„Фвпл + ?ьДаФ«Рл) + Л.с., (1.6) 
o . l 

with Ф„ = »>j*á' Nontrivial CP invariance will constrain the Yukawa couplings 
Г„, Д а In a possibly more severe way than simple CP transformations (Vt = 
Vfi'" = l„0, VH = lnH) which enforce real Yukawa couplings. In a certain sense, 
CP may act like a discrete horizontal symmetry, although generalized CP is in 
general not equivalent9 to the combined action of the simple CP transformations 
and a horizontal symmetry, 

To demonstrate the non-triviality of generalized CP, let me mention the 
following example for па = пн = 2: 

VL = VJp" = 0 1 
-1 0 Vtf = l j . (1.6) 

In this model neutral flavour conservation (NFC) In the Higge sector is enforced 
[6] in a nontrivial way without constraining the Cabibbo angle. This is known 
to be impossible [8] via a horizontal symmetry. 

3Applying general CP twice slwayi yleldi a horizontal tymmetry, which may, however, be 
trivial. 
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2. NEUTRAL FLAVOUR CONSERVATION (NFC) 
Spontaneous symmetry breaking leads to quark mass matrices 

"и »« 
мР ш £ дв„;, мп = £ reUa, (2.1) 

a"I ami 

with v„ = (̂ a)vae* The weak eigenfields p, n are related to the mass eigenflelds 
u, d by unitary transformations 

Р1.Я = Ul,n «ь,я, nt,fl = V2<n dt,n (2.2) 

leading to the mixing matrix 

KL = V$VI. (2.3) 

In the basis of the physical quark fields u, d the Yukawa couplings are given 
by 

Г„ = Up Г„ Vn
R, An = Uff A„ V>R. (2.4) 

In general, f„ and A„ will be non-diagonal inducing flavour changing neutral 
Higgs exchange, Instead of invoking large enough neutral Hlggs masses one can 
impose the condition that Г„, Aa are diagonal. The simultaneous diagonals-
ability of the Yukawa matrices through (2.4) is called NFC in the Higgs sector 
(91. 

We have studied [6] the consequences of the joint requirements of SCPV 
and NFC within the framework of the SV{2)t x 1/(1) multi Higgs model. For 
n 0 = 3, SCPV in its general form and NFC were shown to yield a CP conserving 
mixing matrix if phenomenological constraints are taken into account. 

For no > 4, SCPV and NFC admit complex mixing matrices [6,10,11]. We 
have completely analyzed the consequences of NFC together with real Yukawa 
couplings (simple CP invariance). Contrary to a widespread belief [12], the 
mixing matrix violates CP in general. If it does so, some of its matrix elements 
must be equal in absolute magnitude. Only if there are no such relations between 
matrix elements, the mixing matrix must conserve CP. For a specific ansatz we 
have also performed a detailed phenomenological investigation [10]. 
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On quark masses in (QQ) potential models 
K. Lewin, G. B. Motz 

1. Nonrelativistic (QQ) potentials 
The heavy quarkonia occuring as families of narrow resonances 
can be successfully described as bound states of heavy quark-
antiquark pairs. In nonrelativistic Schrodinger theory with a 
local* central potential the mass spectrum of a quarkoniun 
family is computed by 

М и (QQ) = Z w e f Е и (Lua.V/j , (>«) 

The correct (Q$) potential V(r) has so far not been determined 
from first principles. Therefore we are refered to a variety 
of more or less theoretically motivated flavourinvariant (Q§) 
potentials which describe the experimentally observed levels 
MJJCQQ) of the её and bS systems with surprising accuracy. There 
exist both successful pure phenomenological potentials'-''*2'J 
and QCD-motivated potentials taking into account the known 
asymptotic behaviour of the static (Q§) potential in QCD for 
large and short distances and choosing the behaviour in the 
intermediate region 0,1 ft < г í 1 fm ad hoc (see 

Table 1). 

The open parameters of the potentials are adjusted to describe 

the \ and Y spectroscopies remarkably well. According to the 

equations (1) and (2) the static quark masses m^ and mc appear 

in this approach as additional fit parameters. They differ for 

various potential models as shown in Table 2. 

2. The b and с quark masses 
Whereas the heavy quark masses obtained within a definite 
potential model depend obviously on the structure and the 
special parameters of the choosen potential, the mass differ­
ences m^ - m are much better constrained (сотр. Table 2). 
This remarkable model independence of the heavy quark mass 
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Table 1 
Examples of (Q5) potent ials 

Potent ial V^ Potential parameters 

b e 5li. * Л.0 (icf CO 

Ь » О, «И {«J'*: C«V t i j 

*•* 4+r C, .* o,5«M 4.o, i3 

c 3 = . о ( П С ± .o r 33 

4 

С « - 0 , 8 1 G«V 
^ ^ Г ) ] + л Л Г ? + с , ь- .« 

Л * 0,4 C*V 
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difference вц, - mfl hae Ъееп mentioned already Ъу other difference BL -
a u t h o r e ^ ' 9 ^ 

Jc (OeV) 

1.76 
1,80 

4,35 
1,36 ± 0 , 1 7 
1,50 
1,41 
1,5« 

Bib (QeV ) 

5,14 
5,20 

4,77 
4,'77 í 

4,91 

4,83 

4,99 

0,15 

в^ - mc (OeV) 

3.3B 
3,40 
3,42 
3,41 ± 0,02 

3,41 
3,42 

3,41 

ТаЪ1е 2 
The maeeee BL and me in different potential models 

Potential LRtfW 

Vn M 

V3 L»J 

V 4 [ir J 

Vc [ 3 ] 

V7 [*,«J 

To study the interdependence between a given potential V1(r) 
and the fitted mass eu^ belonging to it we start with a 
potential UQ£ in the following general form containing 
explicitely the mass terms» 

«t! W » i^Cl^í^) + VjC*. »?,-., *Г) . (з) 
Here the index i denotes again the type of the corresponding 
flavour independent potential TJ oharacterized by its general 
dependence on the infcerquarfc distance r. The n^ parameters 
a i oocuring in Vi_ are adjustable to fit the energy levels 
М^(ОЙ) of the ehármoniun and bottonium systems together with 
the mass parameters au.i 
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To compare potential models of this kind it seems to be 
necessary and reasonable in the Sohrttdinger theory that the 
quark masses have to be independent of the structure and 
parameters of the ohoosen potential V^i 

unit?,...,*?') - "a , ca-b,c). CO 
This leads to a correlation among the parameters, f. i. 

and the potentials \1&. would obtain the form 

llai - 2 < н * + V/tiC4-;sV}
f..., S;U,'M}> 0?) 

where 

Flavour-independence of the potentials W^ needs 

Equation (10) follows, however, from equ. (7) under the 
condition that 

^cí!..,sr );-«Ci .c.<rr . Is
,r , ,>- д * о.-) 

is model and parameter independent. For the potentials of 
Table 1 this is fulfilled. To ensure this mass condition, it 
is useful, to consider one of the parameters s ^ ' (e.g. $•"' ) 
as an additive constant term V in the potential V^*'*2^ 
which facilitates the variation of the quark masses ихл. in 
the fits 1*4 
We conclude that the constancy of the quark mass differences 
mbi "" mci appears as о condition to fit the charmonium and 
"bottonium spectra with flavour invariant potentials V* and 
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unique Ъ and с quark masses. 
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UNITARITY BOUNDS FOR HIGH-ENERGY SCATTERING IN MANY DIMENSIONS 

Masud Chaichian 

Department of High Energy Physics, University of Helsinki, 

Siltavuorenpenger 20C, SF-00170 Helsinki, Finland 

and 

Jan Fischer 

Institute of Physics, Czechoslovak Academy of Sciences, 

Na Slovance 2, CS-18040 Prague 8, Czechoslovakia 

There has been recently an increasing interest in the high-

energy behaviour of string scattering amplitudes. It is a rather 

complex problem which combines both short and long distance phy­

sics, and apparently combines them in a different way than it 

does in strong interactions. During the last year, remarkable 

progress has been made in correlating the string theory with 

the general properties of scattering amplitude. Soldáte /1/ in­

vestigated the high-energy unitarity of the partial-wave expan­

sion of a closed four-scalar tree amplitude In flat space-time 

of a general dimension D * 6, and gave a general argument that 

such partial-wave amplitudes would violate unitarity at suffici­

ently high energy. Gross and Mende /2/ and Amati, Ciafaloni and 

Veneziano /3/ studied the high-energy behaviour of the string 

and the superstring amplitudes respectively and found dominating 

contributions in different kinematic regions. Muzinich and Sol-

date /4/ looked into the behaviour of string amplitude by summing 

multiple Reggeized graviton exchange in the eikonal approximation. 

I will give a short report on our contribution to this de­

velopment, which we made in the same period /5/. We obtain an 

upper bound on the high-energy behaviour of the elastic scatter­

ing amplitude imposed by unitarity and analyticity in higher-di­

mensional space-time. We first show that the methods of Froisoart 

/6/ and Martin/7/ can be generalized to any space-time dimension. 

Assumptions are analogous; let us mention that analyticity of 

the elastic scattering amplitude in the complex cose plane in 

an ellipse with foci at еозв=+1 is essential. We calculate ex­
plicitly the high-energy bounds for forward and non-forward 
scattering in the flat apace-time of a general dimension D. 
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If N is the number of on-mass-shell particles involved, 
the number of independent kinematical variables is N(N-3)/2 
and (D-ÍJN - J)(D+1) /2 for N^J) and N*D respectively. In partic­
ular, this number equals 2 for N=4 (elastic scattering) and any 
D*3; we therefore define s, t and u in the usual way. 

The partial-wave expansion of the four-scalar elastic 
scattering amplitude in D dimensions has the form 

where 

A = (j>3)/2 , (2) 

rf(i) - 2Г(в/2-1)(1бл)1)/2-182-^2 f ( 3 ) 

and the Oegenbauer polynomials С (х) can be represented in 
the following form: 

r 
C*(x) = м ( Ш ( х + / ^ 1 cosy) (sinfj df , fc) 

„(AX)= Г(/^) r(Uf,) 
fiF 17&ф Г^) ГСХ) Cr) 

They are obtained in (l) by integrating over irrelevant angles 
from the generalized spherical functions which span the repre­
sentation space of the S0(D-1,Í) group corresponding to unit­
ary irreducible representations of its maximal compact subgroup. 
The normalization is such that 

l^»)H *' (8) 
Using the integral representation (б) we can derive, in 

analogy with Martin's result /7/ for D=4, the following lower 
bound on С (x) (see ref. /5/ for details): 
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• с 
for any «p# , Q*ft<v , where u =(x + / x - \ cosjO • 

We shall now assume that, for s fixed, the amplitude 
F(s,t) is analytic in cose in a region 0 containing the seg­
ment [-1, +y . Then, in analogy with the D=4 case, the expan­
sion (1) will converge inside the largest ellipse contained in 
О and having the foci at cose = ±1 (see /8/, theorem 9.1.3̂  • 
Let 1+2R/S be the semlmejor axis of the ellipse, where »/R is 
the smallest (true or effective) maso of the theory. Then we 
use the bound (9) to obtain the following inequality for the 
imaginary part A(s,t) of F(s,t) : 

A(s,t) > rfa/Sinjt^Jl c}(<) M(/A) UVN£* (JO? 

where L = 1>(B) makes the partial-wave expansion of A(S,O) 
maximal if eu=Im t. are chosen such that a.= 1 for all 0*/*L 

and ag =0 for all /* L+2. 

Further steps of the derivation include the determination 

of the high-energy behaviour of the inequality (10) for a gener­

al energy dependence of L, which is unknown. Details are discus­

sed in ref. /5/. The resulting high-energy bound on A(s,o) is 

A(s,0) £. Kj s ^ n s ) 0 - 2 0.1) 

where the constant in front of the energy dependence depends on 

the dimension D, on the quantities R and ул and on the power of 
the general polynomial bound which is assumed to hold for A(s,t) 
in the ellipse. If В is equal to 4, this formula gives the 
high-energy behaviour of the Iroissart-Martin bound for forward 
scattering in the Minkowski space. 

In a similar .way, methods of obtaining high-energy bounds 
on the non-forward scattering amplitude can be generalized to an 
arbitrary number of dimensions D - 3* The Gegenbauer polynomials 
obey, similarly as the Legendre polynomials, a bound which for t 
high enough and 6 fixed gives 
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c*(x) < Kg i / e x 

where x = cos9 and Kg i s again a constant. This estimate 
can be used in the imaginary part of ( l ) to give 

A(s,t) < K3 s ( 7 - # ( l n s j M / 2 вСЗ-Ч)/2 ^ 

for sufficiently high s . Choosing D=4 and replacing в by 
sine , we obtain the Froissert-Martin bound at fixed angle In 
the case of Minkowski space. 

It is interesting to observe that while the bound, (ll) 
becomes looser with increasing D , the factor s \>~W* on 
the right-hand side of (12} makes the fixed-angle bound partic­
ularly stringent with increasing D. On the other hand, if t ' 
is kept negative and fixed near forward scattering, (12) takes 
the form 

A(s,t) < K4 s(ln s ^ / ^ t j O - ^ . (13) 

Also this bound coincides for D = 4 with the well-known 
fixed-t high-energy bound. 

To discuss the results obtained, let us consider 
elastic scattering of two scalar particles in D-dimensional 
flat space-time in tree approximation. The physical interpre­
tation of this example is not straightforward; its relevance 
to string theory is shortly discussed below. 

It has been pointed out in ref. /1/ that this amplitude 
violates partial-wave unitarity at sufficiently high energies. 
Indeed, due to the graviton term, the scattering amplitude in 

о tree approximation will be dominated by s /t for t near О 
and s -+0D; thus, the l-th partial wave corresponding to this 
term will rise unboundedly with increaing energy. 

This term also violates our bounds (ll) and (13), and even 
if the graviton-exchange term is replaced by the massive spln-2 
boson term s /( t-m ) the violation takes place (note that this 
latter choice is more appropriate because our bounds were obtain­
ed under the assumption that the partial-wave expansion converges 
outside the physical interval of cose). 
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flinoe strings are dominated by Regge trajectories at tree 
level, it ie of interest to dlieuee the behaviour of typioei 
Regge terms* We oan easily oheok that a Reggeieed massive boson 
exchange term violates (ll) for any interoept greater than 1 , 
and also (13) at leaat in an interval t#(-£»0^t where £ is 
a positive number* 

The violation of the bounds (j.l), (JL2)and(13) by the olosed-
otring four-scalar amplitude in tree approximation is not sur­
prising for various reasons. While the exact amplituda eould 
well be unitary, one oan hardly expect its tree approximation 
separately to satisfy the unitarity condition. But tree approx­
imation ie widely used as guidanos for general considerations/ 
it is therefore of interest to know to what extent it lo oonois-
tent with gmwůl principles. Our result suggests that the 
otring perturbation expansion about flat spaoe-time lo strong­
ly ooupled at high energies (oee a similar conclusion /1/ In a 
different context^. Further, the dominance of Regge trajectories 
assumed in string theory represents another approximation whioh 
may lead to further unitarity violationa. Pinally, the assumed 
finite mass gap oan be relevant to string theories only in a 
rough approximation/ one oen argue, for inotence, that the am­
plitude is, for physical reasons, smooth in cose, especially in 
higher dimensions, due to phase space suppression; thlo Indloateo 
that the singularities of the exact amplitude cannot be too 
strong. Further analysis oan eluoidate these problems; aoe also 
a more detailed discussion in ref. /5/. 
/1/ M.Soldete, Partial-wave unltarity and olosed string amplitudea, FERMILAB-PUB-86/149-T 
/2/ D.J.Gross and P.F.Mende. The high energy behaviour of string scattering amplitudes, PUPT-1062, June 1987 
/3/ D.Amati, H.Ciafaloni and o.Venezlano, Superotring collisi­ons at Flanckian energies; CERN-TH»4782/87 
/4/ I.J.Muzinich and M.Soldáte, High-energy unitarity of gravit­ation and strings; FERMILAB-PuD-87/114-T /5/ M.Chaichian and J.Fischer, Higher-dimensional вpace-time and unitarity bound on the scattering amplitude; Helsinki, HU-TFT 87-29, July 1987 . 
/6/ M. Froissart, Phys.Rev, 122(1961)1053 /7/ A.Martin, Fnys.Rev. 122(1963)14321 Nuovo Cim. 42 0966)930 /8/ O.Szego, Orthogonal Polynomials; Colloquium Publications Vol. XXIII, American Math. Society, New York, 1959 
/9/ A.Martin. F.Cheung. Analyticity Properties and Bounds of the Scattering Amplitudes; Gordon and Breach, Inc., 1970 
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eupiMTRWo-mepnuro ШТ-RIOHT SYMOTRIC HODILA 

A.R.Kereselidee, A.O.I/lpartellani, O.O.Volkov 
Institut* for High Inergy Physios, 
Serpukhov, Moscow Region, USSR 

Of all known superstrlng theories, the heterotlo dalO theory with IgXlg ga­
uge group'1' appears to be the most phenomenologloally viable. The requirement 
of unbroken H"l aupersymmetry (BUSY) In four dlmenalona suggests'3', that in­
ternal six dimensions form the Ricci-mt, Kabler manifold X with 8U(3) group 
of holonomy (Calabi-Yau manifold), The embedding of the spin connection in the 
BU(3) subgroup of one Sg, breaks the latter down to ig. Matter fields left mass- • 
leas after compact if lent Ion are chlrsl !»„ generation* of 27 represent at lona of 
•в (see tsble 1) and b,i copies of (27 +37), bj jil being the Bettl-Hodge 
number of manifold K. If К admits a discrete symmetry 0 that acts freely'2»3' 
then instead of К we can consider the multiply connected manifold K/O with rea-
«onably small number of generational Wg-1/2)X<K)/H(0)|, i.<K> being the Kuler 
oharaaterlstlo of К and N(0) number of elemente of 0, Tor example, auperetring 
theory formulated on KQ/0, where Ко is Calabl-Yau manifold with % в-200 and 

5 
b, , • ! defined as the subapac* of CP4 with XJ a* «0,and admitting'3' a dis-

2,1 i -1 * 
orate symmetry group OeZjXZj, will hive 4 generations. For such multiply con­
nected manifolds the nontrlvlal Wilson-loop operators 

Ug-expiJE^Hj]. (1) 
J 

can give rise to "flux breaking" of tg down to some subgroup V satisfying 
ty> ug3"° (Hosotani mechanism/3/). In eq. (1) H. are the elements of the Car-
tan subalgebra of group l e. The requirement of unbroken SU(3)0xSU(2)ii group 
fixes Xj asiA- [-o,c,a,b,c,o]. _ 

In tne oase of b1(j»l light flolda from b. , (27+27) surviving after flux 
breaking are those component a of 37 for which'ив|27> "127 J and the correspon­
ding copies in 27'3Л Such fields we will denote by subaorlpt s. 

Reoently the great deal of Interest have arlaod the manifolds conatructed 
by Yau/6/, which glvea the modela with three generations. The almpleat of them 
with b] j"6 la determined as the cubic polynomiala In the apace СрЗхСР3 and 
admit» the dlacrete aymmetry group 0«Z3. The Hoaotani mechanism breaks Eg down 
to 8U(3)cx8U(3)ix8U(3)/l which la the group of unification in four dimensions, 
fields left light after flux breaking are в copies of SU(3)c-singlets and 4 
copies of collor fields, 

The further F and D flat breaking of gauge symmetry V at an intermediate 
scale of order O O O 1 4 * 1 5 OeV) la possible, provided after "flux breaking" thero 
are left light fielda from bj j (27+!?), which are singlets under standard 
model. ' 

E e is not the only existing symmetry group left unbroken after compactifica-
tion. The possibility'4' of constructing atable Irreducible, holomorphlc SU(5) 
or SU(4) vector bundles over some Calabl-Yau manifolds, result the SU(6) or 
80(10) gauge groupa respectively In four dimensions. So it is natural to consi­
der left-right symmetric models in such theories with 80(10) group of unifica­
tion. The flux breaking of 80(10) la analogous to Bg-breaking, with A"t-2e,0, 
c, -e,e] and the low energy spectra In four dimensions: Hg16+5(16+T3)+řlo, NB, 
• andS being the non-negative Integers defined by the topological properties 
of inertlal manifold. In Table 1 we give diagonal elemente of Wilson loop for 
Ж в and 80(10) case, together with fielda on which they act. 
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In the preient paper we oonalder aeveral left-right symmetric modele lnapi-
red by auperstrings and the possibility for existence of low-lying aoale of 
right-handed aymmetry breaking (HR*Mo3«io8 oeV). 

The analyala of the parameters sln^^L and Mx, ualng one-loop renormallaatlon 
group equatlona for gauge ooupllnga of the standard eU(3)cxeU(2)I^V(l)y aym­
metry shows, that In the case of VCBU(2)LxflU(2)R symmetry (with bi ( 1^l) the 
aoale MR muat be very hlghi Н д ^ Ю 1 4 OeV, as In E e (see 'table 2) ao In 80(10)-
modela (see table 4). In the oaloulatlona we have assumed that group Kg *•• 
broken down to aubgroup ei/(3)cxSV(2)i/8V(2)Rxu(l)i^U(l)R via flux mechanism 
(conditions b»3c and a»2c In eq. (1)), One can see from table 1, that light 
fields from b i j (27457), In this case, are B a and B*, forming the repreaenta-
tlon H, (1,2,2) and the flU singlet field H, (1,1,1) together «1th their mirror 
oomponenta from 27. At the aoale <N.» »10le OeV the group U ( 1 ) L * V ( 1 ) R ^ H 
break down to W(l)g_L, and the "new fields D, Dc, В and t° ill] acquire masses 
O(10 , 50eV). After flux breaking of 80(10) down to 8U(3)cxSU(2)LxSU(2)Rx 
XU(1)R_L' 11*ht 'lelds from?(iet!3) (Sal) are Ьц and Цц-(!&)together with 
their 'mirror" partnera from IB*, and from (10 (£-2) fields В and i°, forming 
represent at ion H (1,2,2). Aa for the Ke model with bj a > l the VEV<Hf>«10lB0eV 
breaks [SU(3)13 down to g.V(3)(jx SU(2) IXSV(2) RXU(1)B-L' The further aymmetry 
breaking leads to the atandard model with three generations and is the same as 
in a0(10)-eymmotrle oaae, In Bg-models with bj j»l, with the existing Hlggs 
content it Is impossible to break 8U(2)R symmetry at such a high scale, at the 
same time leaving unbroken BU(2)(|and super symmetry. In addition the neutrino 
maas problem Is left unsolved in this model. The existenoe of right-handed do­
ublet Ьдя in SO(10)-modela with bj JMI, and Ee-modela with bj J > 1 opens the 
possibility for the solution of both these problems, but MR-soale remaina hlght 
М ц ^ Ю ^ OeV (see table 4). The situation will totally change if after flux 
breaking of Ke and 80(10) only the U(1)T 3„ part of 8U(2)R-eynnetry is left un­
broken. In this oase we con obtain permissible valuea of sln2fw and If, for a 
quite M«r range of MR, and even the right-handed soale close to 103 OeV Is pos­
sible («».' tables 3,8). 

Ф 

Table 1. Matter f ie lds and corresponding Wilson loop diagonal elements 

yields 

Ug for E„ 

0g for 80(10) 

i d " ) - * 
expl(-c) 

exp(le) 

u° 
expl(b-a) 

expl(-c-e) 

d° 

expl(a-o) 

expi(c-e) 

( e ) - b 

exp(lb) 

ехр(-Зв) 

*° 
expi(-a-c) 

expi(3e-c) 

e° 
expl(a-b-2c 

expi(c+3e) 

Fields 

Va for Be 

Hg for 80(10) 

*°4 („-)•* 

expl(2c-a) 

exp(le) 

("0>-*C 

expi(o+a-b) 

exp(-le) 

D 

expi(2c) 

exp(-12e) 

D c 

exp(c-b) 
exp(12e) 

N 

expl(b-3c) 

-

340 



Tabla a. Mg and aln% w value» In 
the oaae of SU(3)0xS0(2)Ix 
хВЩЦлхЩ1)^(1)я. AU 
aoalaaln tablaa are given 
In ОаУ. 

MR Ux »1пФ. 
10J 
10» 
108 
10» 
Ю14 

lo» 

10J 
103 
103 
103 
10" 
lO4 

9.4.1020 
1.0.102 0 

5.7»1018 

B.0.1017 

1.2.101е 

4 .4 .10» 

0.396 
0.288 
0.271 
0.261 
0.241 
о. азе 

Table 4. Sln^SL and К- valuea for 
BU(3)oX8«(8)LxSU<2)Rx 
xtKDg.^ gauge aymmetry 

aln $7 

Table 3. 1Ц and a l n ^ valuea for of 
V-S«(3)cxSU(a)1j«U(l>T3Rx 
xU(l)LxU(l)n (condition «fo-0 
in eq. (1)), 

MR «x ainfe. 
103 
103 

104 

10« 
10е 

10 12 

103 

103 

103 
103 

104 

104 

3.8*10» 
8 .3 .10» 
1.9'10» 
2 .3 .10» 
1.4O01 4 

0.216 
0.210 
0.218 
0.234 
0.292 

1.8*10» 0.272 

Table__BI_ein23w and 1^ for BV(3)fýi 
X S U ( 2 ) L X » ( 1 ) T 3 R X U ( 1 ^ I Í > 

• l n ^ 

103 

106 

10» 
1 0 » 
1 0 " 
1 0 » 

10» 
10 2 

104 

104 

104 

104 

1.8O01 7 

7 .в .10» 
2. в .10» 
1 .2 .10» 
В.4 .10» 
4 . 2 . 1 0 » 

0.313 
0.29В 
0.278 
0.280 
0.241 
0.236 

Referencea 

10 3 

10 3 

10 4 

10» 
1 0 » 
1 0 « 

102 
10 3 

103 

103 

»« 
103 

1.43.10» 
1.34.10» 
1.7 . 1 0 » 
2.3 . 1 0 » 
9.0 • 1 0 » 
2.7 • 1014 

0.234 
0.231 
0.230 
0,235 
0.248 
0.2B6 

1. D.J.Oroaa et a l . - Phye. Rev, Lett. , JJ4 (198B) 602. 
2. P.Candelaa et a l . - Kuol. Phye., B258 (1986) 46. 
3. K.Wltten. Huol. Phye., B2B8 (198B) 7B; 

y.Boaotanl, Phye. Lett., 126B (1983) 309. 
4. K.Wltten. Huol. Phya., B26ŠT1986) 79. 
5. T.-S.Yau. Ins Argon Sympoaium on Anomalies, Geometry and Topology. 

(World Scientific 1988). 
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NONLINEAR FIELD EQUATIONS AND INFINITE DIMENSIONAL LIE AL0EBRA3 

7. Mbbius 

Department of Physios, Technical University of Dresden, ODR 

1. Introduction 

In the preceding lectures enough motivations were given te 

study nonlinear field equations and to look especially for 

exact solutions. They are of great importance for further 

modelling, because they bear in general new notions being more 

adequate to describe the behaviour of the excitations in such 

systems. A typical example is the "soliton", a stable exci­

tation moving with constant velocity without deformation 

through the system. It is advantageous to look at first for a 

rough classification of special nonlinear field equations 

having some physical importance. A good starting point Is the 

nonlinear superposition principle and It Is useful to divide 

the equations into those, for which general rules for super­

position oan be formulated and In to the ones «here no state­

ments can be made /1/. In the case of soliton physics it 

means to split the corresponding equations into two types, 

the first one, where there is only elastic scattering of soli-

tons, being called "integrable field equations" and the seoond 

one with inelastic scattering where additional decaying wave 

tracks or solitons can ocour. In the last time new methods of 

solution have been developed for the case of integrable field 

equations in (1+1)-space-time dimensions, e. g. the "method 

of spectral transform" (MST) and the "direct iterative me­

thod" (DIM), involving considerable knowledge of the proce­

dures known for linear problems. Surprisingly a great variety 

of exactly soluble nonlinear field equations were discovered 

providing a new basis for starting already with a "neigh­

bouring" nonlinear problem as the "first approximation". 

These exact results gave us also a more extensive insight in­

to the foundation of physics, providing even a new point of 

view for the treatment of problems in classical physics even 

in classical mechanics. 
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2. Integrable systems of classical mechanics. 
In the oase of classical mechanics "integrable systems" 

play a preferred role, because there a number of reliable 
statements are possible about the time evolution of the system. 
In the case of Hamiltonian systems with f degrees of freedoms 
integrable systems are defined in the following way: 
Given a Hamiltonian H(p.j...pff q.....qf), where f is finite, 
there exist f globally conserved quantities 1Лр, q), i. e. 
Ц(р, q) B 0, obeying in the framework of Poisson brackets the 
following relations /2/ 

{Н, iji = 0 i ш í...f, {l ±, Ijj} « 0 1£i, j*f, (1) 

i. e. being in involution. Then action-angle variables can be 

introduced and the motion be described as осcuring on a 
f-dimensional torus. Now it can be shown, that all systems of 
Hamiltonian mechanics, describable by a (fxf)-matrix M(t), 
where the time evolution is given by a similarity transfor­
mation 

M(t) » B~1(t) M(0)B(t), (2) 
are integrable systems obeying the equations of motion 

M(t) = [ M, A ] with B"1(t)B(t) » A(t) (3) 
being essentially equivalent to the Hamiltonian equations. But 
now the quantities 

3pM(t)k n SpM(0)k 1c = 1...f, (4) 
are time-independent and can serve as constants of motion. 
They are in many cases homogeneous functions of the momenta p i 
of degree k, the coefficients depending on the coordinates q. 
An interesting example is the "Toda-system" /2/ of 3 particles 
with the Hamiltonian (1) 

H(p, q) = 1/2 (p* + p| + p2) 4 

+e 1 * + e •> •> + e •* ' - 3 ( 5 ) 
describing in the first approximation 3 one-dimensional har-
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monically coupled particles and having 3 conserved quantities 
J1 = P-|+P2+p3' X2 = H' I3 = 1/3(P1+P2-2p3)(p2+p3-2p1)(p3+p1 
-2p2)+(p1+p2-2p3)eq1~a-2+(p2+p3-2p1)eq2~q3+(p3+P1-2p2)eq3"q1 
which are in involution. 

The idea is now to extend this procedure to field equa­
tions in (1+1)-apace-time dimensions. 
3. Infinite dimensional integrable systems 

The question is if a straightforward extension of the no­
tion of an integrable system to the case of an infinite num­
ber of degrees of freedom is possible, i.e. if field equations 
exist, having an infinite set of conserved quantities. Sur­
prisingly there exists a number of nonlinear evolution and 
wave equations in (1+l)-space-time dimensions having this pro­
perty, admitting solitary solutions, sometimes even N-soliton 
solutions. At the first glimpse nonlinear integrable field 
equations should obey the following requirements /3/: 

i. Existence of solitary solutions, 
ii. Existence of N-soliton solutions ( Ы = 1 , 2...00 ). 
iii. Existence of nonlinear superposition functions. 
Now it can be shown, that the existence of N-soliton solu­

tions is equivalent to the existence of itf-1 conservation 
equations and this is connected with the fact of elastic 
scattering of solitary excitations. The third condition about 
nonlinear superposition functions is related to a construction 
of Backlund-transformations /4/. The standard example for the 
treatment of bell-solitons is the Korteweg-de Vries equation 

h+ c Q + bU ^ + a ъ? - °» (6) 

while the one for Icink-solitons i s the sine-Gordon equation 

i §i|.^!| + l £ 2 a i n U m0u 

For both equations /5/ it is possible to give closed 
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expressions for the N-soliton solution incorporating a nonlinear 

superposition rule for solitary excitations and to construct 

an infinite set of conservation equations 

'ÍD Op 
• ^ a + - 7 ~ = 0, (n=1, 2, 3 ...) (8) 

where the D n are densities and the P are flows, expressible as 

polynomials in the field and its derivatives /5/. The equations 

(6) and (7) can serve as representatives for "integrable nonlin­

ear field equations" in (1+1)-space-time dimensions. At least 

two different methods are known to solve the Cauchy-problem for 

them, one being the method of spectral transform (MST), the 

other is the direct iterative method (DIM). But already a non­

linear wave equation of the type 

^-^гЧ-^Ч+ y,(u> - ° <9> 
c2 Í t2 ^ x 2 

is only integrable if the field potential V(U) obeys the 

relation /5/ 

V"(U) = + k2V(u). 

The question naturally arises, what are the essential differen­

ces between integrable and non-integrable nonlinear field equa­

tions. Ahat is the reason that in the first case general methods 

can be formulated to solve them and general results are obtained 

in (1+1)-space-time dimensions, while in the second case there 

is at the moment no hope for general statements? A partial ans­

wer is related to the fact, that a connection can be establish­

ed between special nonlinear field equations and inifinite-di-

mensional Lie algebras, reflecting the existence of an infinite 

number of conservation equations. 

4. Infinite-dimensional Lie algebras 

In the following chapter the basic physical motivations to 

construct and apply infinite-dimensional Lie algebras are given. 

In the case of finite-dimensional semi-simple Lie algebras 

we introduce a set of generators of infinitesimal transforma­

tions obeying the commutation relations 
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£ь ±, LdJ = "iákLic 1^i. 3, kiP, (11) 

where p is the dimension of the algebra and fj.iv are the to­

tally antisymmetric structure constants. So we have a univer­

sal set of generators for the whole system. But sometimes it is 

desirable to have generators, depending on an abstract coordi­

nate or parameter, to combine the principles of symmetry and 

looallity. It is preferable to introduce instead of a conti­

nuous parameter £ via % -» £ n a depence of the generators only 
on the discrete values n in the following way 

Li->Li(f ) "*Li(£n)*^Li ' (12) 

Looking e, g. for SU(2) this means 

5n\ 
Li 

L2 

b 3-?L 3(|
n) - b» , 

providing the commutation relations 

[bm, Lj] = i f1;)kl£
+n , 1*i,J,k*p, n.m = 0,+1,+2,.., (13) 

written already in a general form. The relations (13) represent 

the so-called "loop algebra" (Schlaufenalgebra) having already 

an infinite set of generators L£. But as opposed to the finite 

dimensional semi-simple Lie algebra it is possible to add a 

central extension operator 1 to (13) in the form 

[* L" ] - "ИЛ" + 2mfm,-n Í i/l (1*) 
whose permitted values of 1, the "central charges" enrich the 

structure of the algebra. 

It is advantageous to add a derivation operator D leading to 

the so-called "affine untwisted Kac-Moody algebra" of the form 
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[ b j , b j ] = i f i 3 k l { + n + 2 m S m , . n í i 3 í . 1*l.J,tap;mfny (15.) 

[ Í , Ln ] =0, [ l , D*] = 0, [D, Lj] = mbj . (15b) 

The representations of (15) for 1+0 are infinite-dimen­

sional. But it is nevertheless possible to introduce an in­

variant scalar product or metric in the standard way. Assuming 

Lj are the generators of the ordinary underlying Lie algebra 

(11) obeying 

Sp (Lj, L°) = 2<Fi;) (16) 

we try to extend this relation by assuming that even for in­

finite-dimensional matrices the following trace relations for 

products of matrices are valid /6/ 

Sp(AB) - Sp(BA) - 0, Sp([A, B]C) + Sp(B[A, c]) = 0. (17) 

Applying (17) to combinations of the generators of (15) the 

following results can be obtained 

Sp(Lm L"n) -.iS^S^, Sp(DbJ) = 0, Sp(Dl) = 1, 

Sp(l, Lm) = 0, Sp(l2) = 0. (18) 

Л 
So the two-dimensional subspace of 1 and D is orthogonal to 
the infinite-dimensional space spanned by the generators Lm. 
Assuming at the moment that 

Sp D2 = x (19) 
is an unknown quantity the diagonalization of the two-di­
mensional subspace leads the secular equation 

-A 1 
* = О, А - Л а с - 1 - 0 , A í / 2 " -

1 » í20) 

1 х-Л 
providing that independent of the value of x one eigenvalue ̂  . 
is negative leading to an "indefinite metric". This justifies 
the name Lorentaian metric and cast the bridge to "vertex 
operator construction". It is possible to choose 

Sp D2 = 0. 
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To t h i s algebra we associate a Virasoro algebra constructed 
in analogy to (12) by 

fu l l f i l l ing the commutation relat ions 

[T* , Tn] = (m - n) Ta+n 

which again can be complemented by a central operator in the 

following way 

[ Tm, T n] = (m - n) P+n + •£ m(m2 - 1)f щ_п J, (21) 

where the quantity к can take on special values. For several 
physical applications it is worthwhile to take the semi-
direct product of the Kac-Moody and Virasoro algebra in the 
following way 

Гтт, bj] = -Lm+n. (22) 

An interesting problem is now to look for the permitted 
values of the C-numbers 1 and к and their interrelations, de­
pending surely on the considered physical systems. There are 
at least 3 distinct fields of applications: 
1. To integrable nonlinear evolution equations with solitary 

excitations,where 1 = 0 . The corresponding field equations 
can be derived with the help of Lax pairs constructed from 
elements of the Kac-Moody algebra. 

2. To two-dimensional spin-lattice systems, like e. g. the 
Ising model,where к = £, permitting to calculate the 
critical exponents, being connected with the eigenvalues of 

Т°Л0 for unitary representations. 
3. To conformal quantum field theory in (1+D-space-time di­

mensions, where many interesting problems can be treated. 
I hope, I could demonstrate with this short introduction 

the fascinating perspectives of combining common properties 
of special nonlinear field equations with infinite-dimensional 
Lie algebras. 
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Phase -transitions of W-oondensation in the hot Universe 
H. Регев-Rojas * 
Institute of Phyeioe, EPRC» Slovak Academy of Soiences 
R. Qonzálee 
Institute of Cybernetics, Mathematios and Physics, Cuban 

Academy of Sciences 

INTRODDCTIOir 

In its very well known paper £lj Liode proved that condensa­

tion of W-bosons may be induoed by termion density at zero 

temperature. In more recent papers [2] , one of us (H.P.R) 

with O.K. Kalashnlkov studied the problem of Induced W-

Bose-Einsteln condensation at finite temperature* It was 

found that the critical lepton density to start the phase 

transition of tf-oondensation decreases with temperature 

down to T , the symmetry restoration critical temperature, 

which Ъеоошев also a critical temperature for W-condensation. 
In ^2] only lepton number and total eleotric charge were 
considered to be conserved. Later [ЗЗ , Ferrer, de la Inoera 
and Shabad Investigated the same problem by using a differ­
ent method than the one used in [2 j.and introducing the addi­
tional condition of weak neutral charge conservation. Their 
phase diagram is not in agreement with that of £2] , and a 
later calculation made by Kalashnikov and H.P.R [4] by using 

the unitary gauge, gave phase diagrams different from that 

of £3] and in agreement with [2] • 

One of the consequences of the introduction of the neutral 

weak charge is the appearance of a divergent term, which 

express the charge of the vaouum acquired through the symmet­

ry breakdown mechanism. This charge depends on the weak neu­

tral ohemioal potential, and its simple deletion, as was 

made in £з] and £4J is .not a gauge invariant renormalization 

* On leave from Institute of Cybernetics, Mathematics an 
Physicst Cuban Academy of Sciences 
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procedure, and i t may be the souroe of the disagreement in 
results of the above mentioned papers. 

In the present paper we deal again with the W-oondensatlon 
induced by fermion density at f inite temperature. We shall 
start from the Weinberg-Salam Lagrangian in which the f i r s t 
generation of quarks is also inoluded. The dlstinot feature 
as compared with [ 3 ] t [ 4 ] i s that we propose a gauge inva­
riant substruction prooedure of the divergent weak neutral 
oharge of the scalar seotor. This leads to a high tempera­
ture phase diagram very close to that of £ 2 } • 

I . The Tagrangian and the partition functional 

The Lagrangian of the present model has the form» 

where GJ[Vand Xy are respectively the под-abelian SU (2) and 
the abellan f ie ld tensors built from WT, and B^ respectively. 
All abreviations in ( l ) are usual and many other details 
connected with this model may be found In £2] , £5]] , I t i s 
convenient to point out here that the spino doublets are 
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%*&Mi) <ые*ю со 
•ad the final*ti 

•We им In ( l ) Euclidean me trio and thi' meani that 

finally the eoalar field la defined a# 

where la the symmetry breakdown parameter* 
By following the method of Raff* [4][5],we may introduce 

the ohemlwl potentials/^/^t^j.Afae faotora of tht Hoether 
oonaervad ohargaa whloh aooount reapaotlvely for the eleotrio 
oharge, lepton number, weak neutral eharge and baryon number. 
Theее produote are uaed to write the denelty matrix 

From (5) we get the partition funotlonal 

whera № atanda for all Boao and t for all Perml fields. CL« • в 
are the gauge oondltlona and гЧ» the Taddeev-Popov oatrlxf 
whloh may be lneorporated to*W through adequate ghoat flelda• 
The introduction of /i/j/tj In (5/ loada to the faot that the 
gauge fields aoquira nonzero vacuum expectation values 
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<*;>--^с/ь%*$),%>-•*fa/bit^) со 
where Дand/fjappear as dleplaoements of the derivatives» I.e. 

W+(WtS*)t (8) 

where Г ^ И й А ^ Ч * * * / , * 
The ohemloal potentials of leptons, quarks and W s arej 

Ac -/$ +/Ь +//>, fief 4 */b */b*gj* 

where C4ř#fce5 

fit. ~-(Ъeosfe*Strxtyj factSM33 
and among others the ohemloal equilibrium equations are 
satisfied 

/V/fr-A- .Д-А*А- (10) 

We must point out here that the neutral oharge whloh should 
be obtained from where V «jítnZjln the one-loop 
approximation contains ayiC dependent vacuum term which Is 

divergent and oomes from the infinite weak neutral oharge 

of the vacuum* 

(This Is due to the contribution of the soalar term and may 

be understood even in the simple oase of theV(fJeelf-inter-
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aotlng oharged soalar field ̂ »^(?*- r +™) with eymmet-
ry breaking parameter when a chemloal potential /*• (the ana­
log ofyU«)le introduced* Ae the masses of <T and A. are 
different (even in the one-loop approximation), thie gives 
a jx -dependent vaouum contribution to the thermodynamic po­
tential whloh is divergent» 
Even more, when using other gauges than the unitary (n^ 2 ,ш0) 
the otherwise masslees Goldetone bosons aoqulre a /#-- depen­
dent mass and they are not properly oanoelled by the ghost 
terms. The latter,on the oontrary.suppress extra degrees of 
freedom of the gauge veotor field terms* 
A gauge invariant way of removing the Infinite vaouum 

term may be obtained by adding to the exponent^- tyitfiin 
(5) adequate oounterterms. If we take the 1/(1) scalar char­
ge oounterterm 
we get that for , the infinite weak neutral 
oharge term is removed, and In the one-loop approximation, 
the 0oldstone bosons are oanoelled by the ghost terms* 
We must emphasize here that although we refer to the one-
loop approximation, in order to ensure that the Goldetone bo­
son masses vanish we must lntroduoe two-loop corrections to 
the soalar masses) this is necessary also in order to have 
the thermodynamic potential and the charges defined in the 
eoalar mass shell at any T (see belowj» 

2. She Thermodynamic Potential and Equilibrium Equations 
We shall adopt the gauge conditions 

ЭР£»+ VťTptf аз s0 (11) 

where h"« (l^ii^) Эу = e^i/V^fl/ 
After substitution in (6) we get in the one-loop approxima­
tion (after the removal of the divergent term) the effeotlve 
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potential per unit volume £53 

y-fr-^mm). (12) 

Prom V we get the equation for the minimum of the effeotlve 
potential with respect to & 

Ж = ď. £+ за а0 
as «ell as the conservation of eleotrlo and weak neutral 
oharges r\ 

ЗУ. _ э Д -
and the conservation of leptons I and baryons b 

(14) 

а/ь ^ ~ г ^ Н р Г " * . (15) 
£$.. (13) may be underetood as a temperature-dependent renor-
íalizatic 
to write 

2 
malization of the mass parameter a , I.e. It is equivalent 

4 * (16) 

where a2(T) • Д,* — 
In what oonoerns to ess* (14) and (15),to have scalar on-

2 2 
shell masses we must also replaoe a^-*a (T), whioh is equi­
valent to correct such masses by the two-loop terms In «I/. • 
This ensures the complete fulfillment of the Goldstone theo­
rem and of the Hlggs mechanism. In this way equations (14) 
and (15) become exaotly expressed in terms of the spectra 
of the particles involved. We shall write only the asympto­
tic limit, i . e . for /UCJ /r i£« r^ f 

we have „г 
£Е*-СС+*£-О аз) 
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$1(4. го г* ISI^+M аХЩ- п tite^J-ieJertuv < 

and t 

£ ('V*-* f <"") " ̂  / íV-^^^Ле)- # 
«here píu'(3>t'+ б«г(1 + 2 oos2é>/ sin2 2d) ) (we have negleo-
ted the fermion maeeee for simplicity) and /4 -^ / Oos 2.0 
The resulting oritioal equation is 

I* **/** " ^ ' С '• Г / (17) 
where SC-fa. For T > T U It is estimated мЛ2^Т («D2 - if ). 
The oondeneate is present In the region bounded by both our-
ves in the/, T plane* 

We see that the high temperature W Bose-binstein condensa­
tion phenomenon Is produced and follows again the qualitative 
behaviour deosrlbed in С 2]. The validity of (17) is restricted 
to the region in between the ohiral and Hlggs symmetry resto­
ration temperatures where quarks are considered as free. 
(The inolueelon of the colour fields require a separate consi­
deration). Nevertheless, if in our universe £»bt then (17) 

may have a wider range of validity* as dlsoussed in (2). 
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ON ХНБ GEOMETRY OF GROUP SPACE OF THE GROUP OF MOTION 
OF THREE-DIMENSIONAL QUADRATIC FORM 

I. LukáS 
Institute of Physics of Electro-Physical Research Centre 

Slovak Academy of Sciences, Bratislava 

It is useless to stress once again the significance and 

exceptional role of the continuous groups in theoretical phy­

sics. The simplest groups of this type are the rotation group 

S0(3) in three-dimensional euclidean space and the group of si­

milar tranformations in three-dimensional pseudoeuclidean space 

- SO(2,l)-group. Properties, characteristic features and repre­

sentations of these groups were discussed in many articles, mo­

nographs and text-books (e. g. * ) , Both these groups pos­

sess three-parametrical group space and conserve some quadric 

- in the first case it is a sphere (Z1)2* (Z2)2+ (Z3)2 = 1, 

in the second one it is a hyperboloid (Z1)2- (Z2)2- (Z3)2 = 1. 

The quadratic forms mentioned above, of course, have been ob­

tained from some general quadric by means of transformations 

of an affine group using the classification under correspon­

ding invariants . Therefore it is natural to make an attempt 

to consider the group of transformations of some general quad­

ratic form in three-dimensional euclidean space 

cik z± z k = 1» *» * " 1» 2» 3 (1) 

with nine (arbitrary) real coefficients c^. We shall call such 

group of transformations, i. e. the group of matrices D• (x) 

depending on the set of three parameters x = (x , x , xJ) 

which fulfil the condition 

cij D k ^ 4 ( x ) = ckl' det|D*(x)|= 1, 
as the group of motion of three-dimensional quadric and we shall 

denote it as SQ(3). Such approach to the transformations of ge­

neral quadrics will allow us to demonstrate the utility of ap­

plication of tensor methods in the group theory. Note the cor­

rect and successive introduction of tensor indices e. g. for 

SO(3)-group is impossible . Certainly, we are able to make 
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the classification under an affine (or centred-affine) group 
and corresponding invariants in all the final formulae. 

The concrete form of transformation matrix Щ (x) depends 
on the choice of a set of parameters x , x , xJ. It is necessa­
ry to note that each choice of the paremetrization determines 
the certain coordinate system in the group space and, of cour­
se, the different parametrizations correspond to the different 
coordinate systems. Really, the different parametrizations are 
mathematically (group-theoretically) equivalent but from the 
physical point of view they lead to the different sets of ob­
servable s (i. e. to the different complete sets of quantum 
numbers) which correspond to the different (and non-equivalent) 
physical problems. We have no place to discuss it in detail 
here. 

For the present case we shall use the Cayley's parametri-
zation of the transformation matrix D. (x) which can be written 
in a symbolic form as D = (C - A) (C + A) . The symmetri­
cal matrix С has elements ĉ j. and A is an antisymmetrical ma­
trix with elements aik = - aki which can be expressed (espec- • 
ially for three-dimensional space) by means of a vector x in 
the form a ^ = e^^x (в±-\ь ia a covariant completely antisym-
metrical tensor). 

After some bulky but not very complicated calculations 
one can find the explicit form of transformation matrix щ(х) 1 2 3 / к " v as a function of three parameters x , x , xJ (-eo < x * eo ) • 

D*(x) = V ' ' [<*o ' V S á + V + 2 co c Í4 ám* m]-(2> 
The following notations were used here: 

cikl * °» uá = cjkxk». c i k ck5 = 5á' 
cik " aik| = co + y3 = co + cik*ijck • 

Now having the explicit form of JŮ(x) it is easy to convince 
that the relations written below take place: 

D$ft».o$f detD*(x) - 1, eijkD^(x)D3(x)rJ(x) = epqr, 
D?j(x) x3 = x1, D^(x) «i = uá, ci;jDj(x)DJ(x) = ckl, (3) 
DjCr) DJ(-x) = SJ, Dj(-x) DJ(x) = S£ . 

с = det 
R„ = det 
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Note should be taken that the matrix OS H O represents an in­
verse transformation to the transformation of tt[(x). 

It is well-known what crucial role plays the composition 
of parameters in the theory of continuous groups '• 10, and 
therefore we shall try here very briefly to show how one can 
get such relation for the matrices of type (г). If we make two 
successive transformations with the sets of parameters x and 
у we get some new transformation with the set of parameters г 
according to the formula: 

l£(*) » DJj<y) Uj(x). (4) 

In order to obtain the composition of parameters for SQ(3) 
it is necessary to solve the matrix equation (4) in regard to 
г в <У|Х> . It turned out that it can be done rather simply. 
For this purpose we use the relation (sea (3)) 

lA(z) г* * z1 .* 
which can be rewritten by means of (4) and (3) in the form 

Го£(у) -1>£(-х)1ак = 0. 
Multiplying this equation from the left side in turn by ^«Ci^x* 
and v^Cjjjjr* (we consider this operation as a scalar product 
of a covariant and a contravariant vectors) we obtain two equa­
tions determining 2 uj bib) ~ 4] *k ' °t vj [Ч - 4(-*,]»k s °* (5) 
The system of equations (5) means that the contravariant vec­
tor z is perpendicular to two covariant vectors A_ and BR 

A, - u á [ DŽ<y) - Ц] , B n = T j [jj - »j Ht>] . 
Now it is obvious that the vector z has to have the form: 

z k * const в**0 ^ B n . (6) 
The unknown constant in (6) can be determined from (4) by 
means of taking the trace what leads to the relation 

*z s ** *y <eo - C i k x V r 1 . 
Finally, one can get a very simple, nice and useful expli­

cit form for the composition of parameters of the group of mo­
tion of three dimensional quadric: 
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i i cft ( x1 + у1 ) - в*Эк c,nx° Clrnyn 

z 1 = <y,x>1 = - ^ - p q Д Ш * £ _ . (7) 
co ~ cpqx * 

From the composition formula (7) obviously follows: 

<x,y> i * <j%x£ , «>fx>* = x 1 , <y,(j>1 = y 1 , <x,-x> i = 0. 

The explicit form of the law for the composition of para­

meters allows now to get all the characteristics of the SQ(3) 

group and its group space like generators, structure constants, 

frames, metric tensor etc. Having only very limited volume of 

this contribution we shall restrict ourselves here by the 

enumeration of the corresponding formulae: 

a) Generators Ji of SQ(3) 

J± = - i / 2 ( iteVdy1 ) y s Q \ = 

= -i/2e0 [c0o\ • u ^ ) • в 0 в « ^ п Л а ] , \ = */oV 
b) Structure constants e ^ of SQ(3) 

C i j
n = -i ( dV/ó^óV ) x = y = 0 = -i . l í k e t a . 

Hence, the commutation relations of SQ(3) have the form: 

[jlt Jj - i V
t a J a . 

c) Casimir's operator Ĉ  ' for SQ(3) 

C ( 2 ) = 1/2 c 0 e i k ( J ^ + JkJ±) = 1/2 Сдв1^ J^JjJfc = 
= 1/4 ^ [ c 0 c i k 3 ^ + ( x 1 ^ ) ^ + 1)1 . 

d) Frames TĴ GOof the group space of SQ(3) 
Tjix) = 2 ( o>°/dzk ) z = x = 2c0 (SJ - e ^ e ^ r 1 ) / ^ . 

e) Metric tensor gik of the group space of SQ(3) 

«Ik " cmn Í W Í W = 4 ( V i k " V ^ / B x ' « i j g á * = *i » 
g i k = \(o0c

ik + x i x k )Ac Q , g0 = de t | g i k | = 64с|/11* . 
f) Christoffel's symbols of the group space of SQ(3) 
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g) Riemann's tensor of curvature of the group space of SQ(3) 

h) Ricci's tensor and the curvature of the group space of SQ(3) 

*1к = R3ijk = 1 / 2 *ik» R = « ^ R i k
 s 3/2 > 0 . 

One can continue this list of formulae, of course, but 
it doesn't add some new essence into the developed tensor 
methods. All the details of these calculations will be publi­
shed elswhere. It should be emphasized only that the more in­
teresting results can be obtain in some analogical considera­
tion of four-dimensional real, three-dimensional complex or 
some other (e. g. symplectic) quadratic forms. 
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P R O M P T G A M M A PHYSICS: 
RECENT EXPERIMENTAL RESULTS 

M. Bonesml * 

Sesione INFN, Milano • Italy 

1. Introduction 

The production of prompt gammas (or direct photon*) offers a good letting ground for hadron con-
•titnent dynamici in high рт collisions [1]. To fint order in as, the Born tern» responsible for the procese 
are: the annihilation diagram qq~ -* ig ( dominant in pp -* fX and important in ir~p -» tX reactiona 
at large Хт, where Xr •= ipr/i/i] end the QCD Compton diagram qg - » i g (dominant in w+p -» yX 
and pp -* iX reaction»). These graphs produce a clear event itrnctnre: an isolated high Рт direct pho­
ton recoiling against a quark or glaon jet together with two spectator jets ( beam/target fragments). This 
naive picture is complicated however by higher order correction! ( 0 (cm| ) ), the quark bremssthralnng that 
provides not isolated gammas, the intrinsic parton hr smearing and possible higher twist effects. 

Since the fint published result* from experiment R412 at ISR [2], there had been a growing interest 
in prompt gamma studies. Now we have an active second generation fixed target program with incident 
ir*,p,p both at Cera SPS (NA3,NA24,WA70 and UA6) and Fermilab Tevatron (E705,E706) and new results 
from Cent pp collider (UAl,UA2). Recent results from Cem ISR (AFS.R110) on pp,pp interaction* have 
already been published, bat some analysis most still be completed. The pp collider data, in the low Хт range 
.03-.13, complement the hintmatical domain of fixed target {Хт et .S-.O) and ISR data (Хт — Л-.ЗБ). The 
advantage of fixed target experiments is the possibility of probing direct gamma production with a variety of 
projectiles and targets, in a wide kinematical range, thns allowing the separation of QCD annihilation and 
Compton processes. For example, the difference а(я~р -» iX) — <r(*+p -» fX) isolates the annihilation 
diagrams. For more details see [l|. Here we stress only that: 

• a prompt gamma is directly detectable in the final state (without any jet reconstruction algorithm) and 
its kinematics (angle and energy) may be measured with good precision 

- a fragmentation model is not required to make a comparison with theory (now available as next-to-
leading log calculation (3|). Theoretical calculations of inclusive direct gamma cross sections are claimed 
to be at a 20 % level, so that we may hope in a quantitative test of perturbative QCD. 

• prompt gamma production is either accompanied by gluon emission or initiated by a gluon, thus pro­
viding a way to investigate gluon structure functions (S.F.) and fragmentation functions. 

However, the detection of a prompt gamma signal is a difficnli experimental task : 

• cross sections are low, compared for example to jet production (ffi/ityt к 3 X 10~4 for рт Ь 80 GeV/c, 
as determined from UA2). 

- there is a large background from neutral meson decays into gammas (s° —» 77, ij° -* 77,...). At low 
Рт, if one gamma escapes the apparatus or has a too low energy, the other gamma may fake a direct 
photon. At high pr • the two gamma* from a «* —»77 decay may not be resolved (* coalescing"), thus 
simulating a single "fake* direct gamma. 
Additional backgrounds are due to hadrona misidentified as e.m. showers (ЛГ£,п,...) and to the 
bremsstbralung of high energy muons, accompanying the beam particles in fixed target experimente. 
The it halo background is relevant at high рт, but may be rejected using veto counters or timing and 
angular cuts. 

• having very steep cross sections as a function of рт, a small uncertainty in the energy so le (~ 1%) may 
result in a large normalisation error (~ 10%). 
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3 . Experiment* and Data Analyst* 

Two different experimental techniques are need to detect a prompt gamma signal. In the former ("direct 
method*) event* are reconstructed on a event by event basis. Position and energy of incident gammas are 
measured in a fine grab, wide geometrical acceptance e.m. calorimeter. Trigger showers are paired with 
any other shower in the calorimeter, looking for «° or n°. Unpaired shower* are considered as single photon 
candidates. This method is well suited for the study of the structure of direct gamma events, as compared, 
for example, to high pr *° events, but is limited at high pr due to the coalescing of showers from a x° decay 
(NAS [5|,WA70 [e],NA24 |7|,UAe [8]). 

The latter ("statistical method") is used instead when the spatial resolution of the available e.m. 
calorimeters does not allow to separate high pr •", n° and single 7. An isolated e.m. shower is requested with 
some additional cuts to distinguish statistically between 7's and *° '•. One eriterium ("conversion method") 
exploit* the different conversion probability in a preshower detector for »° —> 77 and tingle 7 '* (UA2 [9]). 
Other* use the difference in ahower pattern for ifi 'a and 7 '*, «uch as cluater width (R110) or longitudinal 
sampling (UA1). While the "direct method* allows a better control over most of the backgrounds and is 
compulsory when the ratio 7 /я 0 is small, where the "statistical method* i* dominated by systematic errors, 
the 'statistical method* has no intrinsic upper limit to the pr values that may be studied. 

A list of recent experiments is shown in table 1. While the first convincing evidence for prompt gamma 
production came from ISR experiments, the bulk of new results now come from Cera fixed target experiments 
and pp collider (mainly UA2). As good summaries of new UA2 results are available [9], in the rest of this 
talk I will briefly review only results from fixed target experiments, in the Хт range 0.3-O.C. 
У Final results are available from experiments NA3[5], NA24|7] and WA70 [6j,while TJA6 hat presented 
only preliminary results on part of the final statistici for the pp~ sample [8]. The Fermilab experiments are 
still in data taking. While experiment NA3 uses an isoscalar Carbon target and experiments NA24,WA70 
use a liquid JTj target, UA6 uses a novel design molecular hydrogen jet target, put in a straight section of 
the SPS. 

A typical set-up, from experiment WA70 at Cern Sps, is shown in figure 1. A high intensity , unsep-
arated hadron beam at Cern SPS (pio* = 280 CeV/c) hit* a 1 meter long Hi target in the middle of a 
magnetic spectrometer (if at Cern), equipped with MWPC and Drift Chambers for charged tracks and ver­
tex reconstruction. The photon detector is a lead-liquid scintillator sandwich of 24 Xo thickness, segmented 
in depth to give informations on the longitudinal development of showers. The active elements, made of 2m 
long extruded teflon tubes, containing liquid scintillator, are arranged orthogonally in channels 1.07 and 2.14 
cm wide. A timing system (TOF) is used to resolve spatial ambiguities (Y/Z matching of shower profiles). 

To obtain sufficient spatial resolution, the NAS and NA24 experiments use in addition to their e.m. 
calorimeters (taken from old set-ups) a fine grain photon detector. NAS uses a shower chamber at about 
S Xo into the calorimeter, with strip and pad readout on the cathode planes, while NA24 uses a 9.6 XQ 
additional e.m. calorimeter made of a lead-proportional tubes sandwich. The UA6 photon detector is made 
interleaving lead plates with 1 cm proportional tubes (alternate x-y readout). All experiments trigger on 
the energy deposition in the photon detector. 

AU fixed target experiments (WA70, NAS, NA24, UA6) consider as direct gamma candidates photons 
outside the *° and n° mass peaks. The quoted resolutions for *° ( n°) mass are 13 (38) MeV for NAS, 
10 (29) MeV for WA70, 16 (30) MeV for NA24 and 20 (35) MeV for UA6. Due to the good calorimetric 
spatial resolutions ( O-JC ~ 1mm), the requirement that the trigger shower points back to the interaction 
vertex allows a good rejection of /1 halo events. Timing requirements may improve this rejection and avoid 
also pile-up events. The fine transverse granularity ( up to 1 cm in WA70 experiment) allows also cuts on 
the transverse shower width, rejecting coalescing showers from *° decays. 

The overall efficiency correction (geometrical acceptance, trigger efficiency, e.m. pattern recognition 
and analysis efficiences) and the background subtraction are performed using M.C. simulations.' 

Results on direct gamma production are usually limited by statistics (sensitivy of the order of 1 p i - 1 

are needed to extend the study of direct gammas to high pr and systematic errors, mainly due to : 

- uncertainty in luminosity monitoring (— 6%) 
- uncertainty in background subtraction (~ 20%), strongly рт dependent 
- uncertainty in the calorimeter energy scale (~ 20%) 
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S. Bcecnt »«j^»iin«Ht«l Remits 

All fixed target experiments (NAS, WA70, NA24, UA6) present remits on the cross section ratio 7/x 0 , 
that is less sensible to systematic errors and the invariant cross section E x ďejdp* as a function of pr 
(5],[6],|7],[8]. Results as a function of Xr or Vcm are presented from WA70 and NA24 experiments. While 
WA70 presents its results in a fine Xr - Рт grid, NA24 has only results versus y„, for w~p interactions 
where the sensitivity is higher. Having obtained the inclusive cross sections in a fine Xr — Рт grid, the 
WA70 collaboration has obtained also a phenomenological parametrisation of direct gamma and high pr *° 
production. • 

Comparison with theory is done usualbj in the framework of perturbathre next-to-leading-log QCD, 
where the scale ambiguity is removed using an optimisation method, such as the Principle of Minimal 
Sensitivity of Stevenson and Politser [4]. Dose-Owens S.F. are used, where Duke-Owens set 1 corresponds 
to a soft glue and a value Л j j y = 200 AfeV, while Duke-Owens set 2 has K-gj = 400 MeV and a hard glue 
|10|. 

The cross section ratios 7 / s 0 from experiments V7A70,NA24 and UA6, as a function of pr an shown 
in figure 2. A clear signal is evident. The solid line indicates a QCD theoretical prediction, using next-tc-
leading log calculations from [2] for direct gamma production and the Lund fragmentation model for high 
pr «° production, with optimised scales and set 1 of Duke-Owens S.F. 

The reactions pj» -* 7 X and s-~p —• X, in the studied Xr range, are dominated by annihilation 
diagrams and may be used to determine A, as the used S.F. are well known. The invariant cross section 
EdPa/dfř{ir~p -* yX) as a function of pt and Xr (from WA70 experiment at Cern Sps) is shown in figure 
3. Next-to-leading-log QCD predictions from [2] are shown, using Duke-Owens set 1 (solid line) or set 2 
(dashed line) and optimised scales. Similar results from experiment NA24 (w~p -» *iX) and UA6(pp -* 7X) 
are shown in figure 4. The resulting ratio Data/QCD predictions, for *~p interactions in WA70 and NA24 
experiments, using DO set 1, is shown in figure 5. The agreement between theory and experiments is quite 
good. The difference in direct gamma cross sections from incident tr~ and tc+, which arises mainly from 
annihilation diagrams, is shown in figure 6 (WA70). Here the two sets of predictions differ in the assumed 
value of A, where again the value А д у =200 Mev is preferred. 

The QCD Compton graph ц - * Л dominates the reactions t*p —» 7X and pp -» 7 X and may be used 
to extract informations on the shape of the gluon S.F. G(x). For pp -» 7X, figure 7 shows the invariant cross 
section EdPo/dp3 as a function of pr far the Cera SPS experiments NA3,NA24,WA70 and as a function 
of Xr for WA70. Over a fine Xr — рт grid, in the framework of next-to-leading-log QCD with optimised 
scales, WA70 data are compatible with theory using Duke-Owens set 1 (soft glue) : 

A = 200AřeV/c x-G(X) гг ( l + 9 x ) ( l - x ) « 
while Duke-Owens set 2 (hard glue) is excluded : 

A = 400AfeV/c z-G(X)~ ( l + 9 x ) ( l - x ) < 
These results are confirmed by x + p data, shown as ratio Data/prediction vusus pr,using Duke-Owens 

set 1 in figure 8 and by the ratio ff(*+p -»iX)/a{pp -» iX] , which is not affected by systematic errors in 
the absolute normalisation, see figure B. 

4 . Conclusions. 

A dear direct 7 signal is seen in a large X? range from different experiments. All the new results from 
fixed target experiments on inclusive direct gamma cross sections, as well the ones from pf! collider, are in 
agreement with theory over a wide energy range at a 20 % level, in the framework of next-to-leading-log 
QCD with optimised scales. A soft glue with Aj7j-= ÍOQiitV/e, corresponding to Duke-Owens set 1 S.F. 
[10] seems strongly favoured. 

New results may be expected from a detailed analysis of the event structure for direct gammas, that has 
been made for pp interactions at ISR and is in progress for pp, ir*j> interactions at fixed target (WA70) and 
also from the forthcoming Fermilab experimente (Е705,Е70б), that will cover an Xr region corresponding 
to ISR data. 
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