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ABSTRACT

QED is considered in the presence of a delta function shaped external
gauge potential with support on a plane. The divergent part of the 1-loop fermion
self-energy taken in this background field configuration is calculated. On the basis
of this example specific renormalization problems arising in QED in a singular
background are commented.

QED in background fields has been studied widely for various reasons.
Among them are the following. From one hand side it is attractive for its potential
or real experimental relevance. On the other hand, from a quantum field theoretic
point of view it draws attention due to the broad opportunities to obtain nonper-
turbative (in the background field) results which admit to explore the implications
of the theory not easily be studied by other, mainly perturbative methods. Most
investigations are using constant or/and periodic background fields which can be
handled without serious technical difficulties. Interesting insights have been ob-
tained among which the mechanism of pair production out of the vacuum in an
external electric field discovered by Schwinger ! perhaps is the best known.

However, localized and asymptotically decaying background fields as they are
produced by a point charge or by a cosmic string are of major physical relevance
too, but technical difficulties in treating these as background fields in the framework
of QED are much more severe than in those cases mentioned above and have been
less extensively studied therefore.
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In the present paper we are dealing with QED in the presence of a delta
function shaped external gauge potential with support on a plane. This background
may be considered as a model for a strongly localized field configuration. As an
attractive feature on the quantum mechanical level the Dirac equation taken in the
presence of this external gauge potential exhibits bound states which also accounts
for rich properties of the field theory. Relations of the corresponding model with two
delta functions having its support on parallel planes to the Casimir effect problem
should be mentioned too. The present investigation is a continuation of Refs.

2., 3..
We are considering the following external gauge potential.

eA, = (eA,0,0,0); eAy = ad(x3) (1)

For the discussion following below here one should take notice that the parameter a
characterizing the external field is a dimensionless quantity. The Dirac propagator
in the presence of the gauge potential (1) obeys the equation

[iv*(8,, —ieA,) —m)] S(z,2") = — 6W(x —1') (2)

and can be given as the sum of the free Dirac propagator and an additional term
using the Ansatz

S(z,z') = S(x—1') + S(z,2") (3)
S¢(z) = — / (;ZWI)Z o~ IDT % (4)
S(o,a) = [ dy dy S5 —y) Cluny) S0 — ) - (5)

One finds for the form factor

Cly,y') = — a d(ys) 6(ys) / % —ip(G—7) DT j\ E??)Zifo_ m)] (6)

p = (Po,p1,p2,0), P> = pa—pi—ps, I' = (B +ie)"/?, A\x = 1+a%/4

which leads to the additional propagator term 2

5’(3; x/) = —a M e—Zﬁ(.CE — .i'l) + ik3£133 — iq3xg /ﬁ_ /€'3 +m .
T (2m)3 52— k2 — m? +ic
YT —(ia/2)(H—m)] P~ fz+m -
AT —iapo P2 —q3 —m? +ic ’
ok / 1 ¢~ (@ — &) +il(| w3 | + |25 |) .
4 | (2m)312

- (p+m—e(zs) I'3) o F;\E?/f)ingo_ m)](,ﬁ—l—m—l—e(a:g) Is),

Is = 7T - (8)
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For illustration, let us also display the x-space expression for the form factor (6) in
the m = 0 case.

Cly, ') = —ad(ys) 6(ys) {% 70 6B (V) —

1
1+

= 5 Qs D=2 D)

~ 2
MYZ+ ALY —ie

e(A_)aYp —e(A2)aYy
—+ 5 arcctg —3 ,
(A2YZ + )\iY — i€)1/2 (A2YZ + AiY — i€)1/2

Y =g-§ , YV = (0,Y3,Y,0) (9)

Note, that the Dirac propagator (3) in the strongly localized background (1) has
been obtained in a closed form well suited for loop calculations later on. Using the
propagator (3) one may proceed to study fully interacting QED in the background

(1).

Now, first thought has to be devoted to the renormalization of QED consid-
ered in the presence of this external gauge potential. Generally accepted folklore
is that after having renormalized ordinary QED without external fields the corre-
sponding theory in external fields automatically is finite inasmuch as these external
fields always show up in the renormalization group invariant combination of coup-
ling constant times external field only. But this is only true as long as the external
gauge potential does not have any singularities itself (cf. the argumentation in Ref.
4.). Definitely this is the case for constant and free wave external fields mentioned
above but certainly not applicable in the situation we are dealing with. Therefore,
special attention has to be paid to the renormalization problem of quantum field
theory in a singular background.

As one piece of the problem here we are focusing on the study of the divergent
part of the 1-loop self-energy diagram where the external gauge potential (1) has
been taken into account exactly.

The 1-loop self-energy is given by the following expression

S(z,2") =2z —2") + X(z,2)
= —ie> gt Sz —a') D; i (x—2')
— i e A" S(z,z) YW D; (x— ') (10)
where the photon propagator

ik
k2 + ie

Dy () = - /(;iﬂ];zl e~k : guw — (1 — ) (11)

k2 + ie
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is taken in the covariant gauge with gauge parameter . The first term in Eq. (10)
is standard, therefore we have to calculate the second term only. Explicitly it reads

i(ﬂ? xl) = —1a 62 /—d4k e_ik(x _xl) /7d3ﬁ dq3 dp3 eip3$3 - iQ337§, .
’ (2m)* (2m)3
Bt bt m BT = a2 (5= )]
P2 —p2 —m? + ie A_T —dapg

b+ 43 +m u' 1 K, K,
. r— (1 —
-2 —m2tic| KZ+ie | ( a)K2—l—ie ’
K = (p—k,ks) . (12)

Inasmuch as the further calculation is not completely standard we are going to
describe its main steps. After successive shifts of the integration variables ps —
ps+qs, ks — ks—q3, qs — q3+ k3 we reach at

_ Ak (e o1y [ d®p dgs dps
by N = —4ae? / ik(z — z') /# 1P3T3
(z,z") iae 2n) e E e
u_ Bt st dst kstm [T = (ia/2)(H —m)]
P2 — (p3+ g3 + k3)2 — m? +ic A_T" — tapy

_ b+ fist+ ks +m v 1 Gpr — (1= ) KK
P2 — (g3 +k3)2—m2+ic’' K2+ie |7 K? +ie

K = (5—k,q3) - (13)

Here, by superficial power counting we already recognize that a potential logarithmic
divergency is present. This divergency is independent of the mass and in the further
calculation the mass may be set to zero. Now, the gz-integration can be performed
explicitly by introducing auxiliary integrations in order to merge the first, third
and fourth denominator in Eq. (13) into one. Then, using spherical coordinates for
the remaining 3-dimensional loop integration (after having applied a Wick rotation)
and for simplicity considering a UV cut-off A in the radial integral we obtain the
desired divergent part of Eq. (12). It reads as follows

_ e2

E(m’xl)|diy. — o ~° f(a) &(z3) (5(4)(3; —z') InA? | (14)
1 At a a? [y a
fla) = ; [ 3 (7 arctan T 1) + « "y (7 arctan o + 1)} . (1)

The same result has also been obtained by using dimensional regularization starting
from the propagator representation (8).
Now, what result we would have expected in the case of a non-singular back-
ground A,? Clearly,
S(z,z)|

gie. ~ G €A A () W (z — ') InA? (16)
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which comes from the primitively divergent triangle diagram. But, instead being
linear in the external field parameter a the divergent term (14) is a nontrivial
function f of a, which is possible because a has no dimension. All other features
are indeed well in accordance with the expectation (16). Of course, the first term
in the expansion of f in powers of a is in complete agreement with the known
coefficient of the triangle diagram divergency. But an infinite number of higher 1-
loop diagrams with external fields attached are contributing too. For a > 0, f(a)
is a monotonous function having no nontrivial zeros. However, this is not true if one
formally considers the domain o < 0. Then f(a) has a nontrivial zero depending

on a.
In addition, one may ask oneself whether the inclusion of the tadpole term

¢ 6@ (z — af) ¥ / d*y D2, (e —y) trl v 5(0,y) ] (17)

alters the behaviour of Eq. (14). Explicit calculation using dimensional regulariza-
tion shows, that on the qualitative level this is not the case.

Above results demonstrate that renormalization in the presence of a singular
external field can not be as simple as it is in well behaved constant or periodic
background fields. In the case under study one may simply define a new parameter
b = f(a) and then using a counter term linear in b. This might be interpreted as
a kind of nonlinear renormalization of our initial parameter a. But whether such
a procedure can consistently be defined at the 1-loop level for all diagrams (this is
under study by the present authors now) and eventually even beyond the 1-loop
approximation remains open so far.

We would like to thank M. Bordag and D. V. Shirkov for interesting discus-
sions and suggestions.
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