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Abstract

QED is considered in the presence of delta shaped external gauge poten-
tials with support on one or two planes. Using the propagators determined
in these special field configurations the parameter dependence of the vacuum
energy (similar to the Casimir effect) is calculated. Thereby, it turns out
that also in the case of massive fields nonrelativistic field theory is unable
to approximate the results of relativistic field theory. Surprisingly, a parallel
calculation using the zeta function method leads to a wrong result if one does
not investigate the nonleading terms carefully. First loop calculations exhibit
an unexpected renormalization behaviour which may be typical for certain
singular background fields.

INTRODUCTION
0-functions are broadly used idealized elements of theoretical physics. With its help
it is possible to formulate models which in many cases can be solved explicitly.
In quantum mechanics quite a number of such investigations exists [1] whereas in
quantum field theory investigations of this kind are just at the beginning. Here,
we consider the case of d-functions with support on (parallel) planes so that they
effectively depend on one coordinate only:

eA=0 , eAy= Zaid(xg —-d;) . (1)
i=1

With such a procedure we in fact introduce a more general type of boundary condi-
tions in field theory which generalizes the mostly used Dirichlet boundary condition.
In physical terms, such a j-function may be seen as a model of a penetrable bound-
ary. From another point of view, it can be considered as a generalized potential pot
which contains at most one bound state for each degree of freedom.
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QUANTIZED FIELDS IN EXTERNAL DELTA POTENTIALS
The most simple case seems to be the charged scalar field, described by the Klein-
Gordon equation [(9,—ieA,)*+m?|¢(x) = 0. Inserting (1) for the potential A, there
a difficulty connected with the product of two d-functions appears. One possible
solution consists in the choice of

[D + m? — 2 szé(ﬂig — dz)]QS(IE) =0 (2)
i=1
as new field equation. The drawback of this equation is that due to the simple
coupling 2b'6(z3 — d;)¢(z) (resulting from the term (eAy)? ) the charge sensitivity
has been lost. Nevertheless, we will study this equation because it is much simpler
than the Dirac equation which will be considered later. The d-potential leads to the
additional boundary condition for the scalar field at the position of the d-function

a3¢‘$3:di—|—€ - a3¢|:c3:d,-76 - _Qbi¢|w3=di' (3)

The positive (negative) energy solutions of this field equation consist of one bound
state, symmetric, and antisymmetric scattering states. The quantum field can be
constructed with the help of a mode decomposition containing creation a*, b* and
destruction operators a—, b~.

For later calculations we need the Feynman propagator. It can be written as
follows:

*D(x,y) = D(x —y) + D(z,y) (4)
Dla—y)=  ° (;1;1;3% iD(E — §) + il |3 — ys| )
D(z,y) = by 1L (3 — )+ il (|zs] + [ys)) (6)

2J) 2n)3C—ibD

(the unusual notations are p = (po, p1,p2), T = (2o, x1,22) and I' = \/p? — m?2 + ie),
where D¢(x — y) is the standard propagator of free field theory and D(z,y) an addi-
tional term containing the correction due to the d-function potential. This unusual
representation is quite appropriate for all further calculations. The second part of
the propagator explicitly contains the bound state I' = b for b > 0 as pole in the
physical sheet Im I' > 0. For b — —oco the propagator satisfies the Dirichlet bound-
ary condition.

GENERALIZATIONS
If we want to discuss Casimir-like configurations with two planes represented by
o-functions then we have to repeat the same construction like above for the field
equation with ¢ = 1,2 and b; = b,. Here, the field modes are much more complicated.
Again, they contain bound states, symmetric, and antisymmetric scattering states.
Without going into detail [2],[3] we quote the result for the propagator only

d3p eZp — ) 1
2 / (T — 4b)2 + b2e2ild
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. {(F — Z‘b)eif(lws—dl\ﬂys—dl\) + ibeT (lws—dil+lys—d2|+d) (dy <> d2)} . (7)

Note that also here the discrete eigenstates (bound states) appear as zeros of the
denominator. In addition, there zeros of the denominator exist which do not lie on
the real axis in the pg-plane (so that they do not belong to the spectrum) and which
could be interpreted as resonance states.

Let us now turn to the more interesting case of the Dirac equation which looks
for the special potential as follows

[iv"0, — m + a6 (23 — d;)|¢(z) =0 . (8)

The substitution of the J-function by a boundary condition for the Dirac spinor
is also nontrivial. We have to take into account that the field itself cannot be

continuous at the position of the j-function. So, the following boundary condition
can be derived [2],[3]:

a

I

¢|$3=d¢+6 = R¢|$3=d¢—€ , R=exp (i7073®) , Sin@O =
Again, the energy eigenstates are found. In opposition to the approximated Klein-
Gordon equation the charge sensitivity is preserved. As it should be, there are either
bound states for the particle or for the antiparticle. For simplicity, we write down
the propagator *S¢(z,y) = S¢(x —y) + S(z,y) corresponding to one d-function only
where

35 ¢P(T — 7))+ il(|lzs| + [ys])
BY= g / d p T2 ! (7 + m — €(x3)y°T)
= /\_(21?/—2)12? ") 5+ m + ey 'T) (10)

The energy eigenfunctions as well as the propagators for one or two delta functions
can be found in [2],[3].

VACUUM ENERGY
As the simplest quantity of physical interest we calculate the vacuum energy per unit
area corresponding to two d-potentials separated by the distance d. This is a slight
generalization of the classical Casimir problem where the plates are now idealized
by d-functions. We illustrate the procedure for the scalar field. The vacuum energy
per unit area is given by

+oc
Evac = / dﬁEg < 0|7j00‘0 >a TOO = P(axa ay)qg(‘r)gb(y)‘x—)y (11)

where T}, is the energy momentum tensor for the scalar field written here in a sym-
bolic notation containing a point splitting procedure (useful for the regularization
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process) and the differentiation operator P. So, by formally taking the vacuum
expectation value we arrive at an expression containing the Feynman propagator as
an essential element.

+o00
Epoe = —1 / dxs Oy,0y, [Dc(x —y)+ D(x,y)] |5y (12)

The aim of our calculation is to determine the distance dependent part of the vac-
uum energy, therefore all other distance independent contributions will be omitted.
Obviously, this concerns the contribution from the free field propagator D¢ as well
as further parameter independent contributions. After some algebra we obtain an
expression which for large distances leads to

_p2 3/2
b (m) e—2md , m#0, b<m

E’uac = 8(m N b)2 E 2 q (13)
70
T 0 "
The spinor case which corresponds to the field equation
[iv"0, — m +’a(6(x3 — di) + 0(w3 — do))]¥0(z) = 0 (14)

can be treated in the same manner but the algebra is much more involved. The
result is

1 g2 3/2 2
_a_ ﬁ e_de , Aiz]_—a— s m#o
4)_ \7md 4
Epoe = - L (15)
6 m=0

The conclusions following from these calculations are: for large distances (which is
the physically interesting limit in any case) the contributions of massive fields to the
Casimir effect (electrons contained in metallic plates etc.) are exponentially sup-
pressed. For massless scalar fields, the well-known Casimir result is recovered. In
the spinor case, opposite to the scalar theory the resulting Casimir force is repulsive.
One further interesting point concerns a corresponding nonrelativistic calculation.
Usually one believes that the essential impact of metallic plates is to change the
low energy spectrum of the fluctuations of the electromagnetic field, therefore the
Casimir effect is considered as an infrared effect. If this would be true for the case
of massive fields in the presence of delta functions then a nonrelativistic calculation
should be possible. An explicit nonrelativistic calculation [3] shows that this is not
the case, the distance dependent part of the vacuum energy (at least for a < 0)
vanishes. This means that the deformation of the energy spectrum caused by a
nonrelativistic approximation is so serious that it leads to a wrong approximation
for the Casimir energy.
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ZETA FUNCTION METHOD
The (-function method is a very powerful method for calculating effective actions
and vacuum energies. The mathematical background is as follows: Let K be a self-
adjoint operator with a discrete spectrum K¢, = \,¢, and nonzero eigenvalues A,
corresponding to the normalized eigenfunctions [ dz @, (2)¢m(z) = dpm- Then, we
define the (-function of the operator K as

Culs) = TrIK]™ = [dady sz - ) A Gu(@)bu) (10
= i)\gs<oo for Res>s, . (17)

In physics, however, discrete eigenvalues of operators are not the rule. As an exam-
ple, we study a complex scalar field under the influence of two d-potentials. First
we have to turn to Euclidean field theory. The operator is K = —(97 + A) +
m? — 2b(6(x3 — d1) + 6(x3 — dy)) where with the help of the generalized boundary
conditions the J-functions determine a self-adjoint operator. If we choose b < 0
then this operator possesses a continuous spectrum with no discrete eigenvalue.
So, we cannot expect to obtain a physically meaningful result using the (-function
method. To have discrete eigenvalues we introduce one further boundary condition
in z3-direction namely we are considering a finite interval of lenght L with Dirichlet
boundary conditions at its ends. It turns out that this is sufficient for a successful
application of the (-function method in the present case. In [4] we obtained the
following result for the (-function:

VoTp T(3/2)(s —1/2) [ 1 T 2 2\(3/2—s b
9 o0 d _1 6—2dn
_{_% /dli(liQ . m2)(3/2—8) (K(, _—Z)z_j)bze_zdn} (18)

m

The vacuum energy can be extracted using the formula
d
%TE Evac = T’f‘ ng = —%CK(S)L;:(). (19)

where the infinite quantities V5 (volume of a two-dimensional Euclidean space) and
Tg (volume of a one-dimensional Euclidean space, imaginary time) reflecting the
symmetries of the problem will drop out for the vacuum energy per unit area by
definition. However, the first term in the curly bracket which contains one further
infinite contribution (2L — o0) is unexpected. This is an untypical contribution
for (-function calculations and it can be omitted by hand because it is parameter
independent. This first term would be the result of a naive calculation without
imposing additional boundary conditions. The second term describes the depen-
dence of the vacuum energy on the coupling constant and the third term leads to
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the distance dependent contribution to the vacuum energy already calculated earlier.

INTERACTING QED

Here we discuss quantum electrodynamics at the one loop level containing a J-
function as an external potential (a; = a) [5]. In perturbation theory the standard
Feynman rules are valid with the one exception that we have to use the more com-
plicated spinor propagator *S¢. Let us calculate the mass operator for this configu-
ration. Because °S° is a summed-up propagator we expect that besides the standard
divergences of free field theory the self-energy diagram also contains contributions
from the triangle diagram (with one external field insertion) which exhibit infinities.
According to conventional wisdom that the inclusion of electromagnetic background
fields does not change the divergences of QED we would expect no further diver-
gences. This however is not the case here. A direct calculation of the divergent part
of the mass operator (using Feynman gauge and a UV cut-off A) yields the result
that the self-energy part containing the second part S of the spinor propagator leads
to the expected structure of the divergency however with an unexpected complicated
coefficient function of the dimensionless coupling constant a

2
5@,y = —ig57"1(a) 6(3) 5 (a — y) InA* (20)
1 A a a® (A a a?
fla) = . [3 (i arctan)\—_ — 1> + (i a,rctan)\—_ + 1)] , Ax=1%+ R

Such a function can appear only if each insertion of the -function in this diagram
produces an additional divergent term. Loosely speaking, the reason is that the
d-function fixes external lines (corresponding to the external field) onto the same
point x3 = 0. However, the theory remains renormalizable but one has to use some
complicated nonlinear parameter renormalization.
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