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4x 4 Dirac (gamma matrices [irreducibke matrix representationof the Clifford

algebra C(3,1), C(1,3), C(4,0] are an essentih patt of mary calculatiors in

guantum physics Although the final physicad resuls do not depenl on the applied
representatio of the Dirac matrices (e.g, due to the invariane of traces of prod-
ucts of Dirac matrices, the appropria¢ choie of the representatio usel may
facilitate the analysis The preseh pape introduces a particulary symmetrc real
representatio of 4X 4 Dirac matrices (Majorara representationwhich may prove
usefd in the future As aby-product a compat formula for (transformed Pauli
matrices is found The consideratia is base on the role played by isoclinic
2-planes in the geomety of the red Clifford algeba C(3,0) which provide an
invariart geometrt frame for it. It can be generalizd to large Clifford algebras.
© 199 American Institute of Physics [S0022-24889)04606-X

I. INTRODUCTION

Dirac (gamma matrices usel within mary calculatiors in quantum physics can be understood
as representationof Clifford algebrasin four-dimensionaMinkowski or Euclidean spae they
are representatiamof the Clifford algebra C(3,1), C(1,3 or C(4,0), respectivelyWhile theris
no problem to write down set of complex 4 X 4 Dirac matrices which form irreducibk represen-
tatiors of the® Clifford algebrasa se of red 44 Dirac matrices (Majorara representation
which we will be intereste in, can only be obtainel for the Clifford algeba C(3,1)*~* (further
materia on red Clifford algebra can be found in Ref. 5, Chap 13, Refs 6—11). The® matrices
obey the standad relation

YuYot Vo¥u=21,1 1)

wheren,,,, u,v=1,...,4 are the elements of the diagonal maiyiwith diag(7)=(1,1,1,-1) and
1 is the 4X 4 unit matrix. An explicit representatio of red gamma matrices is provided by the
following expressios (adaptel from Ref. 4):

0 0 0 1
0 010 )
Y= 0 1 0 0 ’ ( )
1 0 0 O
0 0 1 O
0O 0 0 -1 3
Y2= 1 0 0 0 ’ ( )
0O -1 0 O
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1 0 0
0
#7lo 0o -1 o @
00 0 -1
0 0 10
0 0 01 .
V4= -1 0 0 O )
0 -1 00
But, Eqg. (1) is invariart unde orthogoné transformatios O of the gamna matrices
y,=07,0" (6)

ard ary othe se of congruen [by virtue of (6)] gamma matricesy,, will also be equally appro-

priate as representatio of C(3,1). (The genera situatian is describé by Pauli’s fundamental
theoremt?19 Now, let us denoe the red linear vecta spa@ R, in which the elemens of the

Clifford algeba C(3,1) ad as operatos by V (spina spacg¢. Then the matricesy, can be

understod as representationof the generatss of C(3,1) with respet to a certan orthonormal
bass in V which defines in it a rectangula coordinaé system Any transformatia (6) of the

gamna matrices correspond to an orthogonatransformatio in V and consequenyl to a change
of the coordinag system in V. The concree shae of the gamma matrices changs in performing
these transformationsln explicit calculatiors in which gamma matrices occu the required effort

may depem on the explicit shag of the gamma matrices Therefore in dependene on the

physicad problen unde consideratio one may ask whethe it is possibé to find a coordinate
systen in which the gamma matrices assune aparticularly convenien shag for sone calcula-
tiond purpose The detailal requiremerd certainy may depem on the purpose From suc a

problem recenty we hawe bee led to ak ourselves whethe it is possibe to find an irreducible
representatio of the red Clifford algeba C(3,1) which is particulary symmetrc with respetto

the index u of the gamma matricegz/’b. Indeed it is possibe to find an orthogonétransformation
which transforns the gamna matrices (2)—(5) into the following expressioawhich are obviously
particularly symmetrc with respetto the index of the gamnma matrices k=1,23 (1 ard O are the

2X2 unit and null matrices respectively;p, is some arbitray red constantcf. Sec V),

,:i<1 Fk) E_ f(— ) f(ep) @)
TR -1 T fen —f(—e0)
o
f((,D)=COS<,D+Sin<p=\/§COS<QD—Z), (8)
2w
‘Pk:QD(k):‘Po'*'?ka 9
, (O —1)
Ya= 1 0/ (10

As a by-product from the abowe expressios one obtairs the following compat formula for
transforme Paul matrices [irreducibke matrix representatiomof the complex Clifford algebra
C(3,0); cf. Appendk B].
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1 ( 1 ﬁe““’k)
. (11)

T mlvaeec -1
It is the purpo® of the presem article to systematicall derive the abowe expressioa relying on
certan information not applied previousy within the presem context The discussio is accompa-
nied by references to the relevan but scatterd literature.

Our consideratioa will be guided by the following idea Relata to the Clifford algebra
C(3,0), it shoubl be possibé to find an expressia for the se of the gamna matricesy,, k
=1,23 which is particularly symmetrc with respetto the index k. We approab the problem by
noting tha eat gamna matrix v, has 2 two-dimensionheigenspacerelatal to the eigenvalues
p=1 andp=—1 (which are orthogonal to each otheAny coordinate system i stands in a
certan geometrt relation to all the eigenspaceof the gamma matrices whose mutud relation is
an invariart unde ary transformatia (6). Now, the idea consiss in finding suc a coordinate
systen in V with respetto which all the eigenspacgof the gamna matrices lie in a particularly
symmetre way. Then one may expet tha the explicit expressioa for the gamna matricesy,
refled this symmetry Therefore in Sec |1 we stat with sormre observatios concernig the eigen-
spacs of the generatos of the Clifford algeba C(3,0) (more precisely in using this tem we
always mean the generatas of its irreducible representations

II. ISOCLINIC 2-PLANES IN R,

To begh with, let us discus sone aspecs of the geomety of 2-planes in the affine spae R,
which we also denot by V for simplicity. We restrid our consideratia to 2-planes containirg the
point x=(0,0,0,0 [i.e. to the Grassman manifold G(2,4), for arelatel review see Ref 14]. We
will rely here on the generd multidimensionamatrix formalism presentd in Ref. 15, Chap 3,
Sec 3 (alwo see Ref. 16, Chap I, Sec 3.3) which we specializ to R,. In the following we will
stat with some materid which provides the necessarinformatian on thos aspet of the formal-
ism of Refs 15 and 16 which is relevar for the presem paper.

For our purposesa point x of a given 2-plare A can be describd in terms of the equation

x=At, (12

wher A is a4X2 matrx whos two columrs are given by the coordinats of two linearly
independenvectoss spanniig the 2-plare A while t is the two-componehvecta of the coordi-
nates of the point xe A. Two 2-planes A ard B can interset in V in various ways In orde to
study their relation to ead pair of lines XCA, YCB the angk they enclog can be calculated.
Once aline XCA isfixed, for ary arbitray line YCB the angk enclosé assums values between
someay=0 and 7/2. In generalag may lie betwea some minimd and some maximd value—
the so-calle stationaly angles (principa angles)amin, @max—Which are characteristi for the
geomety of the pair of 2-planes A, B. Now, from an extremum principle a2Xx 2 matrix

w=(ATA) Y ATB)(B™B) }(B'A) (13

can be constructetf for whose eigenvalus w; and w, the equations
W1=COS @mays (14)
W= COS amin (15)

apply. If the 2-planes A, B are given by mears of Eq. (12) in terms of two orthonorméa vectors
each Eq. (13) simplifies to the form®

W=(ATB)(BTA). (16)

If the matrix W is proportion to the unit matrix (i.e., w;=w,=w)
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W=wl, (17)

the 2-planes A ard B are sai to be (mutually) isoclinic.** Then to eat vecta xe A aunique line
in B exist (determiné by the orthogona projectian of x onto B) which enclose with x the
(stationary angle o= arccos/w.*® Finally, we would like to mentian that unde sone natural
bijection betwea R, ard C, ((z1,25) = (X1+iX5,X3+1X,4) € Cs, (X1,X2,X3,X4) € R,) twO isO-
clinic 2-planes in R, correspod to two lines throuch the origin in C, (Ref. 23, Sec 1-7, p. 51,
theoren 1-7.4).

Now, the abowe formalism can be usal to analyz the geomety of the se of 6 two-
dimensionheigenspaceof the generatas of the Clifford algeba C(3,0) (i.e., more precisely the
generatas of its irreducible representation After sone calculation using e.g, the explicit repre-
sentatios of the gamma matrices (2)—(4) one finds that all their six eigenspacgare pairwise
isoclinic 2-planes (some choice for the matrices A describirg the eigenspaceis given in Appendix
A). Of course the two eigenspac®of a given gamma matrix vy, are orthogonto ead other. But,
ary othe two eigenspacgare pairwise isoclinic with an (stationary anglea = w/4. Consequently,
we can find, at maximum a sd of three eigenspaceof the gamma matricesy, , k=1,2,3 whose
elemens are pairwise isoclinic with the angle 7/4.>* Suc a se of 2-planes is called an equian-
gular frame (Ref. 22, Pt I, Sec 5, p. 40). With respet to the aim of the presem paper in the
following we will just be intereste in sud sets.

Ill. THE CLIFFORD ALGEBRA C(3,0) AND EQUIANGULAR FRAMES

We begh this sectim with sonme necessar information taken from Ref. 22°® ard specialized
to the presemn need (in the following the tem “adapted quote’ always mears tha the original
text is quotal exactly excep tha ary referene to the generd multidimensiona spae R,,, has
been specializel to R,). The following definition will be used “ A se& of mutually isoclinic
2-planesin R, is characterize by the propery tha evely two 2-planes of the s are isoclinic with
ead other A se of mutually isoclinic 2-planesin R, is called a maximd sd if it is nat subsé of
a Iarégoer set of mutually isoclinic 2-planes’ (this is an adaptel quok from Ref. 22, Pt |, Sec 3, p.
19).

In orde to make contad¢ with the formalism useal in Ref. 22 which we will rely on in the
further discussio we nedal to rewrite the defining equatian (12) for a 2-plare A in one of the
following two (alternative ways:

Xaa4=AX1z, A=

T
2l

(A (18

X(lyz):/E\X(3’4), /E\ZA(/&)il. (19)

Here the notatia X(3,2=(X1,%2) T, Xz4=(x3,%4)" is usal ard the 2X 2 matrices A, A are
relatal to the matrix A in the following way:
-2 20
il

Equation (18) [(19)] is valid for any 2-plare which is isoclinic but nat identicd to the 2-plane
O34 X1.2=0 [O(12): X3.4=0] (this entaik tha the 2-plare A intersecs the 2-plare O3 4
[O(1.2] in the point x=(0,0,0,0 only and therefore ensurs the invertibility of A [A]).

According to Wong (Ref. 22, Pt |, Sec 7, p. 54, theoren 7.2, also see Ref. 23, Sec 1-7, p.
43), evey maxima se of mutually isoclinic 2-plane in R, is of dimensim 2 ard is congruent
(i.e, relatal by an orthogond transformatio in R,) to the maximd se given by

X(3.4= B(Ao,N1)X@,2=[NoBo+ N 1B1]X1.2). (21
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_ (-1 0, _ (0 1
BO:(O 1)’ Bl:(l o)’ (22

or

X(1,2)= B(\o N1)X(3,4)5 (23

3 S — 1 B S ’ ’

B(Ag,A1)=B(Ng,\1) 1=WB(7\0,?\1)=B(>\0,?\1),
ot A1

(24

)\’——)\” =12

n_)\g_,’_)\ia - 4,4,

wher \q, \; are two red parameter§?

Both of the 2-planes O(; 5): X(3.4=0 and O3 4): X(1,2= 0 belorg to this maximd set (Ref. 22,
Pt I, Sec 2, p. 16, lemma 2.2). Equatiors (21) and (23) ental tha the matrix B to be inserteal in
the correspondig Eq. (12) reads e.g (we hawe chose particulary simple expressions

1

VIHNG+ANS

B(No, A1) =

1
E(xo,m)’ @9

or

1

Furthermore Wong finds that (adaptée quote “in R,, any maximd se of mutually isoclinic
2-planes which contairs the 2-plare O, ,) corresponeto a linear subspae of the linear spae of
all 2x2 matrices’ (Ref. 22, Pt |, Sec 3, p. 20, lemma 3.2). Now, in this two-dimensional
subspae a matrix bass can be chosa in sud away tha the 2-planes describe by the elements
of the bass and the 2-plare O, ,) (or O3 4)) form an equiangulaframe (Ref. 22, Pt I, Sec 3, p.
24, lemma 3.3 ard p. 40). As one may convine onesdl easily by mears of the explicit expres-
siors given in Appendk A, ead equiangula frame built from the eigenspacgof the gamma
matrices contairs abass of one and the sanme maximd sd of mutually isoclinic 2-planes.

For the purpo of the presem pape it appeas to be usefud to conside two disjoint equian-
gular frames ) connectd with the gamma matrices (2)—(4)—one (;) related to the three
eigenspaceto the eigenvaluep=1, and the other one()_,) related to the three eigenspaceto
the eigenvaluegp= — 1. The following theorem by Wong will be helpful théd is any maximal
sd of mutually isoclinic 2-planes in R,4; the following is an adapte quote the indices hawe also
been change to confom to the notation usel in the presen article): “I f the angles betwea any
2-plare of ® ard the three 2-plane of an equiangulaframe are 6, (1<k=3), then

B(Ag. A= 1

E(M’)M))_ 26

cog 26,+cos 26,+ cog 260;=1. 27

Conversely given ary se of three anglesé, (1<k=3) sud tha 0<6¢,<m and> cos 26,=1,
then there exists a unique 2-plare isoclinic to eat of the three 2-planes of a given equiangular
frame making anglesé, with them and this 2-plare belong to @’ [Ref. 22, Pt I, Sec 5, p. 41,
theoren 5.3 (b)]. From this insight we concluce that obviously, to ead equiangula frame Q;
[Q_1] two uniquely determind 2-planes A,.. [A_4~] exig which lie in a particularly symmetric
way (isoclinic) relative to the elemens of Q, [Q2_4]. For A;., A_;. it holds
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01: 02: 03: 0Sym1 COSZ@SymZ +—. (28)
For the correspondig eigenvale of the matrix W, Eqg. (17), one obtains

=W. . (29

V3

1 1 1
w=cog Osym=5 (1+C08205m) = 5| 1+ —

The two differert values of 65, (and w)) will nat caue ary majar difference in the following
consideration as both cass are related by a simple permutatiom of the indices of the gamma
matrices.

IV. CHANGE OF THE COORDINATE SYSTEM

We may now se out to determire the position of the 2-planes A, , A_. usirg the formulas
givenin Secsll ard Ill. For the 2-planes A, A_;. we can apply agenerdansat accordirg to
Eqgs (21), (23), (25), (26) ard calculae the eigenvale of the matrix W for ead of the three pairs
given by one of the elemens of the equiangula frame Q; [Q_;] ard A;+ [A_;.]. For each
eigenvaluep of the gamma matrice®)—(4), this leads to a set of three equations for the param-
etess A g, A4 which hawe to be solved simultaneougl taking into accoun Eg. (29). Thes equations
read for p=1 (in sequence for the indicds=1, k=2 andk=3 of the gamma matrices, respec-
tively)

N2+ (1+N))2
:=0,—21,2, (30
2(1+ 0%+ 0%)
(1—Ng)2+H N2
= (31)
2(1+ N2 +N2)
No2HNG2 -
W, = ,
“TTIEp (32
ard for p=—1,
A3+(1—Np)?
S vraaw e N (33
2(1+M3+\9)
(14+Ng)2+\2
L= = 34
We 2(1+\5+\%) (34)
No+\2
Wi—m. (35)

(Equatiors (30)—(32) [(33)—(35)] hawe been derivad usirg the expressioa given in Appendk A
and Eq. (26) [(25)].) The solution of the abow equatiors read for p=1,

No=—N{=—As, (36)
ard for p=—1,

No=—A1=M\-. (37
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Here,

)\+:i\/§Wi y (38)

which entails
2N Ao =—1. (39

Now, we may assune tha the explicit representatiomfor the gamma matrices (2)—(5) are
related to the naturd bassin V from which two pairs of bass vectors can be selecte which define
the orthogon& 2-plane O(; 5y, O(34). In orde to obtain a particulary symmetre representation
for the gamna matrices it appeas to be advantageaainow to go over to an orthonorma basis
from which two pairs of bass vectos can be chos@ which defire the orthogona 2-planes A .,
A_;+. This chang of the bask in V is associaté with an orthogona transformatio O in V
which transforns the gamnma matrices in accordane with Eq. (6). We stat by choosimg an
appropria¢ orthonormé&bass in V from which the matrices A;.. , A_;. describirg the 2-planes
A+, A_;+ can be built [we simply inset the solutiors (36) ard (37) into Eqs (26) and (25),
respectively,

D W

1 )\+ _)\+
Alr=———| 1, 40
o2zl 1 o0 “0

0 1

1 0

1 0 1
el S | “

_)\-«— )\4—

One immediatey recognizes tha the 2-planes A,.., A_;. are orthogonéto eadt other Further-
more by virtue of Eq. (39) it holds A;.=A_,+ . Of course the abowe choie for the matrices
A;+, A_;+ isnat unique and ary orthonorma bass which is relatal to the bass usel in the
abowe equatiors by a rotation within the 2-planes A;., A_;+ is equaly well suited In fact,
further belov we will use exactly this freedanm to obtain our final resut (7)—(10).

The transition from the naturd basg in V which is related to the 2-plane Oy 5, O3 4) to the
bask which is given in terms of Eqgs (40) and (41) and which is relatal to the 2-planes A; -,
A_,. isdescribé by the orthogonatransformatio O.. ,

A As 1 0
1 A: —A: O 1
N R s Y 42
0 1 —A+ N

which leads via y;gzoiyﬂol to the correspondingl transforme expressioa for the gamma
matricesy,, [of course for our choice (42) it holds Ot=01]. After sone algeba [taking into
accoun Eqg. (39)] ore finds

l 0 _)\i _)\1

" " 1 0 1 _)\I )\i
71i:_7212i_3 _ _A— _1 0 ’ (43)

— Nz )\+ 0 _1
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1 0 1 1
10 1 1 -1
7’3/’—:i% 1 1 -1 0] “4
1 -1 0 -1
00 -1 0
00 0 -1
%=1 0 o o (45)
01 0

From Eg. (43) one immediatey recognizes tha the two case differing by the sign in Eq. (28) are
related to eat othe by a permutatio of the gamma matrices with the indices k=1 and k=2.

V. RESIDUAL ROTATIONS

Although in Sec IV we hawe performel the transformatio to a coordinaé systen which lies
in a particulary symmetrc way with respet to the equiangula frames 1, Q _; built from the
eigenspaceof the gamna matrices at first glane the transforme expressios (43), (44) do not
sean to exhibit any particula symmety with respetto the index k=1,23 of the gamna matri-
ces However the expectd symmety is there and we are going to reved it now. Let us remind
ourselve tha the choice of the new bask (coordinaé system was nat unigue and we have
disregardd for the momert the remainirg freedon to perfom rotatiors within the 2-planes A, . ,
A_;. . Any sud rotation can be describé by the orthogona transformation

cosB; —singB; 0 0
sinB, cosB; 0 0
O(B1,8-1)= 0 0 cosB_; —sinB_,|’ (49
0 0 sinB_; cosB_;

where 8; and B8_; are the independenrotation angles within the orthogoné 2-planes A, and
A_;., respectivel (for the salke of completenes we mentim tha in addition to the above
rotatiors an inversia within one of the 2-planes A;. , A_;- may be consideregl Again, we can
write down the further transformel gamma matricesy,,=O(81,8-1) ¥,,0(81 ,B_1)". For brev-
ity, we give the relatively simple expression for y3. andy, only,

1 0 f(—¢)  f(e)
x )_+i 0 1 fle)  —f(—¢) @n
[ A R (E ) N (C N S I
fle) —f(—¢) 0 -1
0 0 —Ccosp  Sing
, 0 0 —sing —cosgp
va(9)= cosp sing O o |- (48)
—sing Ccose 0 0

Here,¢=B,+B_1 ando= 31— B_,. The gamma matricesy,. , k=1,2,3 do not depem on ¢
while vy, does nat depem on ¢. The functionf is given by
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f(<p)=c05go+sin<p=\/§cos(<p—g). (49

Symmety consideratios now suggesthat arny se of (three rotatiors O(81,5-41) amorg whose
elementsp= B, + B_, changs by a multiple of 27/3 (mod 2) will lead to a set of three gamma
matrices with the indices k=1,2,3 Consequentlyin orde to descrile this s we can write

2w
o(k)=¢pot ?k= ®k, (50)

whereg, is some red constantAny three gamma matrices given by Egs (47), (49), ard (50) can
be chos@ to sene as an irreducibk representatio of the red Clifford algeba C(3,0). If we
choosepy=0, Egs (47), (49), and (50) exacty reprodue the s& of gamna matrices (43), (44),
ie.,

! 277 " ! 47T "
Y3+ 3 =Y1xs V3= 3 =Yox - (51

Furthermore for the sale of simplicity it seens to be convenieh to set ¢=0 and to varye
exclusively [Such an orthogontransformatia is called a Clifford translation (Ref. 23, Sec 2-6,
p. 102 and has specia properties In this context also note Ref. 66.] This way the final result
[Egs (7)—(10), also see Appendk B for sone relatal consideratiohquoted in Sec | is obtained
[where we have omitted for simplicity, the = sign on the right-hard side of Eq. (47) which relates
to the two inequivalen irreducibke representatianof C(3,0) (Ref. 2, p. 1657]. The generatas of
the red Clifford algeba C(3,0) are found from one of them by mears of a discree Zg~Z,
X Z4 subgroy of the orthogonagroup O(4) (in othe words the Zg subgrop realizes a permu-
tation amorg the gamma matrice3. The Clifford translation in the spina spae V with 8,
=pB_,=ml3 corresponds to a rotation bys23 around the axi¢1,1,1) in the vector spac®;,
associatd with the Clifford algeba C(3,0) (it is an elemen of the groyp Spin(3)).

We wart to exterd our discussio now to the red Clifford algeba C(3,2), which isthe largest
Clifford algebe admitting an irreducibke representatio by mears of 4X4 matrices From Egs.
(47), (51) we can calculae the product

0 1
-1 00

Va=(@)va=(@2)vae(9a)=| o o o _ | (52
0 01 0

which is found to be independenof the choice of ¢4. Allowing an arbitray value for ¢, £ can
then be calculatel and reads

¥5=v5(@)=v3:(®1) Y3 (@2) v3: (@3) v4(@)

| — T
=Yl ¢~ 2
0 0 —sing —cosg!
0 0 CoS¢ —Sing
| sing —cosg O o |’
cosg sing 0 0
2y (53
Vs = .
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!

Finally, the charge conjugatia operato C (C'=—C, Cy,’LC*1= —yﬂT) can be given by C
=y,(¢). In difference to theC(3,0) subalgebra of the Clifford algeb€(3,2), which is gener-
atad by relying on Eg. (50) [a variation of ¢ by 27 leads to just one copy of the generators of
C(3,0], the C(0,2) subalgeba can be represente by y,=v,(¢), vs= v,(¢=* m/2) [a variation

of @ by 27 leads to two copies of the generators@(f0,2)].°” In this context note

ya(@)=—yy(e+m). (54)

For ¢=0, the second generator of the real Clifford algeB(®,2) is obtained from the first by
mears of a discree Zg~(Z,)* subgrop of the orthogona group O(4). A rotation (46) in the
spina spae V with 8;=—8_,=m/4 corresponds to a rotation by/2 in the vector spac®,,
associatd with the Clifford algeba C(0,2) [it is an elemen of the groyp Spin(2)].

VI. DISCUSSION

Accordirg to Pauli’'s fundamenththeorent**®ary se of (in general compley 4x 4 gamma
matricesy,, , which representhe Clifford algeba C(3,1), is related to our expressioa for yl’L
[Egs (7)—(10)] by mears of a nonsingula transformatio S (y,= Syl’LS‘ 1. Therefore ary such
s can in principle be written in aform analogos to Eqgs (7)—(10) (of coursein generhsuct a
representatio may look fairly cumbersomg It is clear, that this consideratia of the (complex
Clifford algebe C(3,1) immediatey carries over with littl e change to the Clifford algeba C(1,3)
ard does not require ary further specid investigation Furthermoreit seens naturd to exped that
the discussio of the red Clifford algeba C(3,1) performal in the preseh pape can appropriately
be generalizd als to othe Clifford algebrasOf course the simple and rathe trivial cas of the
red Clifford algeba C(2,1) which is presentd in Appendk C carries the traces of the structures
found for C(3,0). On the othe hand one shoul expet tha thes structure themselvs are also
traces of more generastructure of Clifford algebra which contan C(3,0) as asubalgebralet us
emphasie at this point tha the mathematichtools we hawe relied on in Secs |l and 111 are not
specift to the presem ca® (although we hawe specializél them to the presemncase for simplicity)
ard they can also be usel in more genera situations As interestiry as this may be, it goes far
beyord the purpo® of the presem study and therefore will nat be investigate here.
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APPENDIX A: DESCRIPTION OF THE EIGENSPACES OF vy,

In this Appendk we give some explicit expressioa for the matrices A, , which defire via Eq.
(12) the eigenspae (i.e., the 2-plare A, ) of the gamma matrix y,, k=1,2,3 to the eigenvalue
p=1,—1. We rely on orthonormé bass vectos for ead eigenspace.

1 0
1/0 1
A, =— Al
5=l o 1| (A1)
1 0
1 0
A 1 0 1 "
l,—l_E 0 -1 ’ ( )
-1 0
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1
110 1
A, =— A3
215511 o | (A3)
0 -1
1 0
A ! ! A4
2,*1__2 _1 O ’ ( )
0o 1
1 O
0 1
Az1= 0 O)’ (A5)
0 0
0 0
0 O
Az 1= 1 0 (A6)
0 1

From Eqs (12), (18)—(20) one easiy recognize tha for the 2-plane Az;, Az_; holds Az,
=0(1,2), A3-1=0(34) (O(1,2):%39=0, O(3,4):X(1,2=0).

APPENDIX B: TRANSFORMED PAULI MATRICES

As Paul matrices [irreducibk matrix representatianof the complex Clifford algeba C(3,0)]
play a significar role in theoreticé physics in this Appendk we wish to commen on the deri-
vation of a particulary symmetrc expressia for thes 2X 2 matrices by mears of the approach
discussd in the main patt of the paper The standad expressios for the Paul matrices read

0 1 0 —i

1711 o) 727l o

In orde to make contad with the main patt of the pape it turns out to be usefu to representhe
complex numbes which are entries of the matrices (B1) by mears of 2 X 2 matrices using the rule

1 0
) 0'3:(0 _1)- (B1)

z=a+ib—

a —b)
b oal (B2)

This leads to asé of three red 4X 4 matrices which are congruemh to the gamna matrices given
by Eqg. (7). In orde to obtan the desiral final resut we hawe to subjedt the latter gamna matrices
to a further orthogoné transformation—a inversian [mentionel belov Eq. (46)]. Then the rule
(B2) can be reversd yielding the following transforme Paul matrices (k=1,23):

o1 1 V2e ek

a'k—‘/_§ VIel ok 1 ] (B3)
2w

<Pk:(P(k):(PO+?k- (B4)
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Here, ¢, is sone arbitrary red constahwhich, however has bee shifted with respetto Eq. (9).

APPENDIX C: THE CASE OF THE REAL CLIFFORD ALGEBRA C(2,1)

In the preseh Appendk we wart to illustrate the formalism usel in the main patt of the paper
in the rathe trivial cas of the red Clifford algeba C(2,1). We display the equatiors (including
the notation in close analogy to the discussia performel in the main pat of the paper We start
with sone explicit expressioa for the gamma matrices [ o are the standad Paul matrices (B1)],

1 0
71:0-3:(0 _1)1 (Cl)
0 1
72201:(1 0)’ (C2
. 0 1
')/3:|0'2: -1 0) (C3)

The eigenspaceof the gamna matricesy,, y, are describé by the following matrices:

1/1
Al,lzﬁ( 1) , (C4
1/ 1
A1,1:5(_1). (Ch
1
Ay = ( O) , (Co)
0
A2,1:(1 - (C7)

It is clea that the angk betwee the eigenspac(lines, 1-planeg which relate to differert gamma
matricesy;, v, is w4 (cf. Fig. 1).%8 Ead line throuch the origin x=(0,0) is (trivially) isoclinic
to ead othe sudh line. Therefore the analog of Egs (21), (23) are

XZZ)\Xli (C8)
X1=N'Xp, N'=A"1 (C9)
Equatiors (25), (26) are mirrored by
1 1
B()\):ﬁ NE (C10
and
, 1N
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Of course to ead sd of the eigenspace{A; 1,Az 1}, {A1-1,A>_1} twolinesA;. , A_;. exist,
respectively which lie symmetrc with respet to the elemens of the se (cf. Fig. 1). The analog
of Eq. (27) reads (6, are the angles betwea the two eigenspaceto the eigenvaluep=1 [p
=—1]and Ay [A_1.])

cog 260, +cosg26,=1. (C12

For A;., A_,- therelatiors [in analogy to Eqs (28), (29)]

01=0,=Osym, COS20gym= i%, (C13
and
w=cog 05ym=%(l+C08205ym)=%<1ii) =W, (C14
V2
are valid.

In analogy to Egs (30)—(35), in orde to determire thelines A, , A_;. we haweto solvethe
following equatiors for p=1 (in sequence for the indicds=1, k=2 of the gamma matrices,
respectively

_(1+N)?
RRRFEENCY 19

)\/2
We=7"172 (C19

ard for p=—1,

_ (a2
W:—m, (C1y

A A_=A Ay Arg
\ T2

\ A=A
~

A2,1

- 1

. \

FIG. 1. Geomety of the eigenspaceof the gamma matricesy,, v, [(C1), (C2)].

Copyright ©2001. All Rights Reserved.



J. Math. Phys., Vol. 40, No. 7, July 1999 A special irreducible matrix representation of . . . 3629

)\2

[Equatiors (C15), (C16) [(C17), (C18] hawe bee derived using Eq. (C11) [(C10)].] The solution
of the aboe equatiors read for p=1,

N=hg, (C19
ard for p=—1,
A=—N\.. (C20
Here,
A.=*2V2W, , (C21)
which entails
Aho=—1. (C22

Insertirg Egs (C20 ard (C22) into Egs (C11) and (C10), respectively one finds

1 <x+)
Ap=—e| |, C23
1=+ m 1 ( )
1

A q=——
N

(cf. Fig. 1;itholdsA;, =A_;_, A;_=A_;,). The orthogonatransformatia leadirg to the new
coordinaé systen consequenyl reads

1
_M) (C24

I L ) (C25
VTN )
This way the following final resut is obtained:
1/1 1

P =4

Y1+ ol —a) (C26
1/1 -1
A
, (0 -1 )

It is clea tha in the preseh ca® ther is no residua continuows symmety which has been
exploited in Sec V of the main pait of the pape which is dealirg with the red Clifford algebra
C(3,1).
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