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434 Dirac ~gamma! matrices @irreducible matrix representations of the Clifford
algebras C(3,1), C(1,3), C(4,0)# are an essential part of many calculations in
quantum physics. Although the final physical results do not depend on the applied
representation of the Dirac matrices ~e.g., due to the invariance of traces of prod-
ucts of Dirac matrices!, the appropriate choice of the representation used may
facilitate the analysis. The present paper introduces a particularly symmetric real
representation of 434 Dirac matrices ~Majorana representation! which may prove
useful in the future. As a by-product, a compact formula for ~transformed! Pauli
matrices is found. The consideration is based on the role played by isoclinic
2-planes in the geometry of the real Clifford algebra C(3,0) which provide an
invariant geometric frame for it. It can be generalized to larger Clifford algebras.
© 1999 American Institute of Physics. @S0022-2488~99!04606-X#

I. INTRODUCTION

Dirac ~gamma! matrices used within many calculations in quantum physics can be understood
as representations of Clifford algebras. In four-dimensional Minkowski or Euclidean space they
are representations of the Clifford algebras C(3,1), C(1,3) or C(4,0), respectively. While there is
no problem to write down sets of complex 434 Dirac matrices which form irreducible represen-
tations of these Clifford algebras, a set of real 434 Dirac matrices ~Majorana representation!,
which we wil l be interested in, can only be obtained for the Clifford algebra C(3,1)1–4 ~further
material on real Clifford algebras can be found in Ref. 5, Chap. 13, Refs. 6–11!. These matrices
obey the standard relation

gmgn1gngm52hmn1, ~1!

wherehmn , m,n51,...,4 are the elements of the diagonal matrixh with diag(h)5(1,1,1,21) and
1 is the 434 unit matrix. An explicit representation of real gamma matrices is provided by the
following expressions ~adapted from Ref. 4!:

g15S 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D ,  ~2!

g25S 0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D ,  ~3!

a!Electronic mail: scharnh@physik.hu-berlin.de
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g35S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D ,  ~4!

g45S 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

D .  ~5!

But, Eq. ~1! is invariant under orthogonal transformations O of the gamma matrices

gm8 5OgmOT ~6!

and any other set of congruent @by virtue of ~6!# gamma matricesgm8 wil l also be equally appro-
priate as representation of C(3,1). ~The general situation is described by Pauli’s fundamental
theorem.12,13! Now, let us denote the real linear vector space R4 in which the elements of the
Clifford algebra C(3,1) act as operators by V ~spinor space!. Then, the matricesgm can be
understood as representations of the generators of C(3,1) with respect to a certain orthonormal
basis in V which defines in it a rectangular coordinate system. Any transformation ~6! of the
gamma matrices corresponds to an orthogonal transformation in V and consequently to a change
of the coordinate system in V. The concrete shape of the gamma matrices changes in performing
these transformations. In explicit calculations in which gamma matrices occur the required effort
may depend on the explicit shape of the gamma matrices. Therefore, in dependence on the
physical problem under consideration one may ask whether it is possible to find a coordinate
system in which the gamma matrices assume a particularly convenient shape for some calcula-
tional purpose. The detailed requirements certainly may depend on the purpose. From such a
problem, recently we have been led to ask ourselves whether it is possible to find an irreducible
representation of the real Clifford algebra C(3,1) which is particularly symmetric with respect to
the indexm of the gamma matricesgm8 . Indeed, it is possible to find an orthogonal transformation
which transforms the gamma matrices ~2!–~5! into the following expressions which are obviously
particularly symmetric with respect to the index of the gamma matrices k51,2,3 ~1 and 0 are the
232 unit and null matrices, respectively;w0 is some arbitrary real constant; cf. Sec. V!,

gk85
1

)
S 1 Fk

Fk 21D , Fk5S f ~2wk! f ~wk!

f ~wk! 2 f ~2wk!
D ,  ~7!

f ~w!5cosw1sinw5& cosS w2
p

4 D , ~8!

wk5w~k!5w01
2p

3
k, ~9!

g485S 0 21

1 0 D .  ~10!

As a by-product, from the above expressions one obtains the following compact formula for
transformed Pauli matrices @irreducible matrix representations of the complex Clifford algebra
C(3,0); cf. Appendix B#.
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sk85
1

)
S 1 &e2 iwk

&eiwk 21 D . ~11!

It is the purpose of the present article to systematically derive the above expressions relying on
certain information not applied previously within the present context. The discussion is accompa-
nied by references to the relevant but scattered literature.

Our considerations wil l be guided by the following idea. Related to the Clifford algebra
C(3,0), it should be possible to find an expression for the set of the gamma matricesgk8 , k
51,2,3 which is particularly symmetric with respect to the index k. We approach the problem by
noting that each gamma matrix gk has 2 two-dimensional eigenspaces related to the eigenvalues
r51 andr521 ~which are orthogonal to each other!. Any coordinate system inV stands in a
certain geometric relation to all the eigenspaces of the gamma matrices whose mutual relation is
an invariant under any transformation ~6!. Now, the idea consists in finding such a coordinate
system in V with respect to which all the eigenspaces of the gamma matrices lie in a particularly
symmetric way. Then, one may expect that the explicit expressions for the gamma matricesgk8
reflect this symmetry. Therefore, in Sec. II we start with some observations concerning the eigen-
spaces of the generators of the Clifford algebra C(3,0) ~more precisely, in using this term we
always mean the generators of its irreducible representations!.

II. ISOCLINIC 2-PLANES IN R4

To begin with, let us discuss some aspects of the geometry of 2-planes in the affine space R4

which we also denote by V for simplicity. We restrict our consideration to 2-planes containing the
point x5(0,0,0,0) @i.e., to the Grassmann manifold G(2,4), for a related review see Ref. 14#. We
wil l rely here on the general multidimensional matrix formalism presented in Ref. 15, Chap. 3,
Sec. 3 ~also see Ref. 16, Chap. III , Sec. 3.3! which we specialize to R4 . In the following we will
start with some material which provides the necessary information on those aspect of the formal-
ism of Refs. 15 and 16 which is relevant for the present paper.

For our purposes, a point x of a given 2-plane A can be described in terms of the equation

x5At , ~12!

where A is a 432 matrix whose two columns are given by the coordinates of two linearly
independent vectors spanning the 2-plane A while t is the two-component vector of the coordi-
nates of the point xPA. Two 2-planes A and B can intersect in V in various ways. In order to
study their relation, to each pair of lines X,A, Y,B the angle they enclose can be calculated.
Once a line X,A is fixed, for any arbitrary line Y,B the angle enclosed assumes values between
somea0>0 andp/2. In general,a0 may lie between some minimal and some maximal value—
the so-called stationary angles (principal angles)amin , amax—which are characteristic for the
geometry of the pair of 2-planes A, B. Now, from an extremum principle a232 matrix

W5~ATA!21~ATB!~BTB!21~BTA! ~13!

can be constructed17 for whose eigenvalues w1 and w2 the equations

w15cos2 amax, ~14!

w25cos2 amin ~15!

apply. If the 2-planes A, B are given by means of Eq. ~12! in terms of two orthonormal vectors
each, Eq. ~13! simplifies to the form35

W5~ATB!~BTA!. ~16!

If the matrix W is proportional to the unit matrix ~i.e., w15w25w)
Copyright ©2001. All Rights Reserved.
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W5w1, ~17!

the 2-planes A and B are said to be ~mutually! isoclinic.41 Then, to each vector xPA a unique line
in B exists ~determined by the orthogonal projection of x onto B) which encloses with x the
~stationary! angle a5arccosAw.48 Finally, we would like to mention that under some natural
bijection between R4 and C2 ((z1 ,z2)5(x11 ix2 ,x31 ix4)PC2 , (x1 ,x2 ,x3 ,x4)PR4) two iso-
clinic 2-planes in R4 correspond to two lines through the origin in C2 ~Ref. 23, Sec. 1-7, p. 51,
theorem 1-7.4!.

Now, the above formalism can be used to analyze the geometry of the set of 6 two-
dimensional eigenspaces of the generators of the Clifford algebra C(3,0) ~i.e., more precisely, the
generators of its irreducible representation!. After some calculation using, e.g., the explicit repre-
sentations of the gamma matrices ~2!–~4! one finds that all their six eigenspaces are pairwise
isoclinic 2-planes ~somechoice for thematrices A describing theeigenspaces is given in Appendix
A!. Of course, the two eigenspaces of a given gamma matrix gk are orthogonal to each other. But,
any other two eigenspaces are pairwise isoclinic with an ~stationary! anglea5p/4. Consequently,
we can find, at maximum, a set of three eigenspaces of the gamma matricesgk , k51,2,3, whose
elements are pairwise isoclinic with the anglep/4.54 Such a set of 2-planes is called an equian-
gular frame ~Ref. 22, Pt. I, Sec. 5, p. 40!. With respect to the aim of the present paper, in the
following we wil l just be interested in such sets.

III. THE CLIFFORD ALGEBRA C„3,0… AND EQUIANGULAR FRAMES

We begin this section with some necessary information taken from Ref. 2258 and specialized
to the present needs ~in the following the term ‘‘adapted quote’’ always means that the original
text is quoted exactly except that any reference to the general multidimensional space R2n has
been specialized to R4). The following definition wil l be used: ‘‘ A set of mutually isoclinic
2-planes in R4 is characterized by the property that every two 2-planes of the set are isoclinic with
each other. A set of mutually isoclinic 2-planes in R4 is called a maximal set if it is not subset of
a larger set of mutually isoclinic 2-planes’’ ~this is an adapted quote from Ref. 22, Pt. I, Sec. 3, p.
19!.60

In order to make contact with the formalism used in Ref. 22 which we wil l rely on in the
further discussion we need to rewrite the defining equation ~12! for a 2-plane A in one of the
following two ~alternative! ways:

x(3,4)5Ãx(1,2) , Ã5A% ~Ā!21, ~18!

x(1,2)5AM x(3,4) , AM 5Ā~A% !21. ~19!

Here, the notation x(1,2)5(x1 ,x2)T, x(3,4)5(x3 ,x4)T is used and the 232 matrices Ā, A% are
related to the matrix A in the following way:

A5S Ā

A%
D . ~20!

Equation ~18! @~19!# is valid for any 2-plane which is isoclinic but not identical to the 2-plane
O(3,4) : x(1,2)50 @O(1,2) : x(3,4)50# ~this entails that the 2-plane A intersects the 2-plane O(3,4)

@O(1,2)# in the point x5(0,0,0,0) only and, therefore, ensures the invertibility of Ā @A% #).
According to Wong ~Ref. 22, Pt. I, Sec. 7, p. 54, theorem 7.2; also see Ref. 23, Sec. 1-7, p.

43!, every maximal set of mutually isoclinic 2-planes in R4 is of dimension 2 and is congruent
~i.e., related by an orthogonal transformation in R4) to the maximal set given by

x(3,4)5B̃~l0 ,l1!x(1,2)5@l0B̃01l1B̃1#x(1,2) , ~21!
Copyright ©2001. All Rights Reserved.
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B̃05S 21 0

0 1D , B̃15S 0 1

1 0D ,  ~22!

or

x(1,2)5BM ~l0 ,l1!x(3,4) , ~23!

BM ~l0 ,l1!5B̃~l0 ,l1!215
1

l0
21l1

2 B̃~l0 ,l1!5B̃~l08 ,l18!,

~24!

ln85
ln

l0
21l1

2 , n51,2,

where l0 , l1 are two real parameters.64

Both of the 2-planes O(1,2) : x(3,4)50 and O(3,4) : x(1,2)50 belong to this maximal set ~Ref. 22,
Pt. I, Sec. 2, p. 16, lemma 2.2!. Equations ~21! and ~23! entail that the matrix B to be inserted in
the corresponding Eq. ~12! reads, e.g. ~we have chosen particularly simple expressions!,

B~l0 ,l1!5
1

A11l0
21l1

2 S 1

B̃~l0 ,l1!
D , ~25!

or

B~l08 ,l18!5
1

A11l08
21l18

2 S B̃~l08 ,l18!

1 D . ~26!

Furthermore, Wong finds that ~adapted quote! ‘‘i n R4 , any maximal set of mutually isoclinic
2-planes which contains the 2-plane O(1,2) corresponds to a linear subspace of the linear space of
all 232 matrices’’ ~Ref. 22, Pt. I, Sec. 3, p. 20, lemma 3.2!. Now, in this two-dimensional
subspace a matrix basis can be chosen in such a way that the 2-planes described by the elements
of the basis and the 2-plane O(1,2) ~or O(3,4)) form an equiangular frame ~Ref. 22, Pt. I, Sec. 3, p.
24, lemma 3.3 and p. 40!. As one may convince oneself easily by means of the explicit expres-
sions given in Appendix A, each equiangular frame built from the eigenspaces of the gamma
matrices contains abasis of one and the same maximal set of mutually isoclinic 2-planes.

For the purpose of the present paper it appears to be useful to consider two disjoint equian-
gular frames V connected with the gamma matrices ~2!–~4!—one (V1) related to the three
eigenspaces to the eigenvaluer51, and the other one (V21) related to the three eigenspaces to
the eigenvaluer521. The following theorem by Wong will be helpful then~F is any maximal
set of mutually isoclinic 2-planes in R4 ; the following is an adapted quote; the indices have also
been changed to conform to the notation used in the present article!: ‘‘I f the angles between any
2-plane of F and the three 2-planes of an equiangular frame areuk (1<k<3), then

cos2 2u11cos2 2u21cos2 2u351. ~27!

Conversely, given any set of three anglesuk (1<k<3) such that 0<uk<p and ( cos2 2uk51,
then there exists a unique 2-plane isoclinic to each of the three 2-planes of a given equiangular
frame, making anglesuk with them, and this 2-plane belongs to F’ ’ @Ref. 22, Pt. I, Sec. 5, p. 41,
theorem 5.3 ~b!#. From this insight we conclude that, obviously, to each equiangular frame V1

@V21# two uniquely determined 2-planes A16 @A216# exist which lie in a particularly symmetric
way ~isoclinic! relative to the elements of V1 @V21#. For A16 , A216 it holds
Copyright ©2001. All Rights Reserved.
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u15u25u35usym, cos2usym56
1

)
. ~28!

For the corresponding eigenvalue of the matrix W, Eq. ~17!, one obtains

w5cos2 usym5
1

2
~11cos2usym!5

1

2 S 16
1

)
D 5w6 . ~29!

The two different values of usym ~and w)) wil l not cause any major difference in the following
considerations as both cases are related by a simple permutation of the indices of the gamma
matrices.

IV. CHANGE OF THE COORDINATE SYSTEM

We may now set out to determine the position of the 2-planes A16 , A216 using the formulas
given in Secs. II and III . For the 2-planes A16 , A216 we can apply a general ansatz according to
Eqs. ~21!, ~23!, ~25!, ~26! and calculate the eigenvalue of the matrix W for each of the three pairs
given by one of the elements of the equiangular frame V1 @V21# and A16 @A216#. For each
eigenvaluer of the gamma matrices~2!–~4!, this leads to a set of three equations for the para
eters l0 , l1 which have to be solved simultaneously taking into account Eq. ~29!. These equations
read for r51 ~in sequence for the indicesk51, k52 andk53 of the gamma matrices, respe
tively!

w65
l08

21~11l18!2

2~11l08
21l18

2!
, ~30!

w65
~12l08!21l18

2

2~11l08
21l18

2!
, ~31!

w65
l08

21l18
2

11l08
21l18

2 , ~32!

and for r521,

w65
l0

21~12l1!2

2~11l0
21l1

2!
, ~33!

w65
~11l0!21l1

2

2~11l0
21l1

2!
, ~34!

w65
l0

21l1
2

11l0
21l1

2 . ~35!

~Equations ~30!–~32! @~33!–~35!# have been derived using the expressions given in Appendix A
and Eq. ~26! @~25!#.! The solution of the above equations reads for r51,

l0852l1852l6 , ~36!

and for r521,

l052l15l6 . ~37!
Copyright ©2001. All Rights Reserved.
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Here,

l656)w6 , ~38!

which entails

2l6l7521. ~39!

Now, we may assume that the explicit representations for the gamma matrices ~2!–~5! are
related to the natural basis in V from which two pairs of basis vectors can be selected which define
the orthogonal 2-planes O(1,2) , O(3,4) . In order to obtain a particularly symmetric representation
for the gamma matrices it appears to be advantageous now to go over to an orthonormal basis
from which two pairs of basis vectors can be chosen which define the orthogonal 2-planes A16 ,
A216 . This change of the basis in V is associated with an orthogonal transformation O in V
which transforms the gamma matrices in accordance with Eq. ~6!. We start by choosing an
appropriate orthonormal basis in V from which the matrices A16 , A216 describing the 2-planes
A16 , A216 can be built @we simply insert the solutions ~36! and ~37! into Eqs. ~26! and ~25!,
respectively#,

A165
1

A112l6
2 S l6 l6

l6 2l6

1 0

0 1

D ,  ~40!

A2165
1

A112l6
2 S 1 0

0 1

2l6 2l6

2l6 l6

D .  ~41!

One immediately recognizes that the 2-planes A16 , A216 are orthogonal to each other. Further-
more, by virtue of Eq. ~39! it holds A165A217 . Of course, the above choice for the matrices
A16 , A216 is not unique and any orthonormal basis which is related to the basis used in the
above equations by a rotation within the 2-planes A16 , A216 is equally well suited. In fact,
further below we wil l use exactly this freedom to obtain our final result ~7!–~10!.

The transition from the natural basis in V which is related to the 2-planes O(1,2) , O(3,4) to the
basis which is given in terms of Eqs. ~40! and ~41! and which is related to the 2-planes A16 ,
A216 is described by the orthogonal transformation O6 ,

O65
1

A112l6
2 S l6 l6 1 0

l6 2l6 0 1

1 0 2l6 2l6

0 1 2l6 l6

D ,  ~42!

which leads via gm9 5O6gmO6
T to the correspondingly transformed expressions for the gamma

matricesgm @of course, for our choice ~42! it holds O65O6
T #. After some algebra @taking into

account Eq. ~39!# one finds

g169 52g279 56
1

) S 1 0 2l6 2l7

0 1 2l7 l6

2l6 2l7 21 0

2l7 l6 0 21

D ,  ~43!
Copyright ©2001. All Rights Reserved.
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g369 56
1

) S 1 0 1 1

0 1 1 21

1 1 21 0

1 21 0 21

D ,  ~44!

g495S 0 0 21 0

0 0 0 21

1 0 0 0

0 1 0 0

D .  ~45!

From Eq. ~43! one immediately recognizes that the two cases differing by the sign in Eq. ~28! are
related to each other by a permutation of the gamma matrices with the indices k51 and k52.

V. RESIDUAL ROTATIONS

Although in Sec. IV we have performed the transformation to acoordinate system which lies
in a particularly symmetric way with respect to the equiangular frames V1 , V21 built from the
eigenspaces of the gamma matrices, at first glance the transformed expressions ~43!, ~44! do not
seem to exhibit any particular symmetry with respect to the index k51,2,3 of the gamma matri-
ces. However, the expected symmetry is there and we are going to reveal it now. Let us remind
ourselves that the choice of the new basis ~coordinate system! was not unique and we have
disregarded for the moment the remaining freedom to perform rotations within the 2-planes A16 ,
A216 . Any such rotation can be described by the orthogonal transformation

O~b1 ,b21!5S cosb1 2sinb1 0 0

sinb1 cosb1 0 0

0 0 cosb21 2sinb21

0 0 sinb21 cosb21

D , ~46!

whereb1 and b21 are the independent rotation angles within the orthogonal 2-planes A16 and
A216 , respectively ~for the sake of completeness we mention that in addition to the above
rotations an inversion within one of the 2-planes A16 , A216 may be considered!. Again, we can
write down the further transformed gamma matricesgm8 5O(b1 ,b21)gm9 O(b1 ,b21)T. For brev-
ity, we give the relatively simple expressions for g368 andg48 only,

g368 ~w!56
1

) S 1 0 f ~2w! f ~w!

0 1 f ~w! 2 f ~2w!

f ~2w! f ~w! 21 0

f ~w! 2 f ~2w! 0 21

D ,  ~47!

g48~ w̄ !5S 0 0 2cosw̄ sinw̄

0 0 2sinw̄ 2cosw̄

cosw̄ sinw̄ 0 0

2sinw̄ cosw̄ 0 0

D .  ~48!

Here,w5b11b21 and w̄5b12b21 . The gamma matricesgk68 , k51,2,3, do not depend on w̄
while g48 does not depend on w. The functionf is given by
Copyright ©2001. All Rights Reserved.
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f ~w!5cosw1sinw5& cosS w2
p

4 D . ~49!

Symmetry considerations now suggest that any set of ~three! rotations O(b1 ,b21) among whose
elementsw5b11b21 changes by a multiple of 2p/3 (mod 2p) will lead to a set of three gamm
matrices with the indices k51,2,3. Consequently, in order to describe this set we can write

w~k!5w01
2p

3
k5wk , ~50!

wherew0 is some real constant. Any three gamma matrices given by Eqs. ~47!, ~49!, and ~50! can
be chosen to serve as an irreducible representation of the real Clifford algebra C(3,0). If we
choosew050, Eqs. ~47!, ~49!, and ~50! exactly reproduce the set of gamma matrices ~43!, ~44!,
i.e.,

g368 S 2p

3 D5g169 , g368 S 4p

3 D5g269 . ~51!

Furthermore, for the sake of simplicity it seems to be convenient to set w̄50 and to varyw
exclusively. @Such an orthogonal transformation is called a Clifford translation ~Ref. 23, Sec. 2-6,
p. 102! and has special properties. In this context, also note Ref. 66.# This way the final result
@Eqs. ~7!–~10!, also see Appendix B for some related consideration# quoted in Sec. I is obtained
@where we have omitted, for simplicity, the 6 sign on the right-hand side of Eq. ~47! which relates
to the two inequivalent irreducible representations of C(3,0) ~Ref. 2, p. 1657!#. The generators of
the real Clifford algebra C(3,0) are found from one of them by means of a discrete Z6;Z2

3Z3 subgroup of the orthogonal group O(4) ~in other words, the Z6 subgroup realizes a permu-
tation among the gamma matrices!. The Clifford translation in the spinor space V with b1

5b215p/3 corresponds to a rotation by 2p/3 around the axis~1,1,1! in the vector spaceR3,0

associated with the Clifford algebra C(3,0) ~it is an element of the group Spin~3!!.
We want to extend our discussion now to the real Clifford algebra C(3,2), which is the largest

Clifford algebra admitting an irreducible representation by means of 434 matrices. From Eqs.
~47!, ~51! we can calculate the product

g368 ~w1!g368 ~w2!g368 ~w3!5S 0 1 0 0

21 0 0 0

0 0 0 21

0 0 1 0

D ,  ~52!

which is found to be independent of the choice of w0 . Allowing an arbitrary value for w̄, g58 can
then be calculated and reads

g585g58~ w̄ !5g368 ~w1!g368 ~w2!g368 ~w3!g48~ w̄ !

5g48S w̄2
p

2 D

5S 0 0 2sinw̄ 2cosw̄

0 0 cosw̄ 2sinw̄

sinw̄ 2cosw̄ 0 0

cosw̄ sinw̄ 0 0

D ,

~53!
g58

2521.
Copyright ©2001. All Rights Reserved.
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Finally, the charge conjugation operator C (CT52C, Cgm8 C2152gm8
T) can be given by C

5g48(w̄). In difference to theC(3,0) subalgebra of the Clifford algebraC(3,2), which is gener-
ated by relying on Eq. ~50! @a variation of w by 2p leads to just one copy of the generators
C(3,0)#, the C(0,2) subalgebra can be represented by g485g48(w̄), g585g48(w̄6p/2) @a variation
of w̄ by 2p leads to two copies of the generators ofC(0,2)#.67 In this context, note

g48~ w̄ !52g48~ w̄1p!. ~54!

For w50, the second generator of the real Clifford algebraC(0,2) is obtained from the first by
means of a discrete Z8;(Z2)3 subgroup of the orthogonal group O(4). A rotation ~46! in the
spinor space V with b152b215p/4 corresponds to a rotation byp/2 in the vector spaceR0,2

associated with the Clifford algebra C(0,2) @it is an element of the group Spin~2!#.

VI. DISCUSSION

According to Pauli’s fundamental theorem12,13 any set of ~in general, complex! 434 gamma
matricesgm , which represent the Clifford algebra C(3,1), is related to our expressions for gm8
@Eqs. ~7!–~10!# by means of a nonsingular transformation S (gm5Sgm8 S21). Therefore, any such
set can, in principle, be written in a form analogous to Eqs. ~7!–~10! ~of course, in general such a
representation may look fairly cumbersome!. It is clear, that this consideration of the ~complex!
Clifford algebra C(3,1) immediately carries over with littl e change to the Clifford algebra C(1,3)
and does not require any further special investigation. Furthermore, it seems natural to expect that
the discussion of the real Clifford algebra C(3,1) performed in the present paper can appropriately
be generalized also to other Clifford algebras. Of course, the simpler and rather trivial case of the
real Clifford algebra C(2,1) which is presented in Appendix C carries the traces of the structures
found for C(3,0). On the other hand, one should expect that these structures themselves are also
traces of more general structures of Clifford algebras which contain C(3,0) as asubalgebra. Let us
emphasize at this point that the mathematical tools we have relied on in Secs. II and II I are not
specific to the present case ~although, we have specialized them to the present case, for simplicity!
and they can also be used in more general situations. As interesting as this may be, it goes far
beyond the purpose of the present study and, therefore, wil l not be investigated here.
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APPENDIX A: DESCRIPTION OF THE EIGENSPACES OF gk

In this Appendix we give some explicit expressions for the matrices Ak,r which define via Eq.
~12! the eigenspace ~i.e., the 2-plane Ak,r) of the gamma matrix gk , k51,2,3, to the eigenvalue
r51,21. We rely on orthonormal basis vectors for each eigenspace.

A1,15
1

& S 1 0

0 1

0 1

1 0

D ,  ~A1!

A1,215
1

& S 1 0

0 1

0 21

21 0

D ,  ~A2!
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A2,15
1

& S 1 0

0 1

1 0

0 21

D ,  ~A3!

A2,215
1

& S 1 0

0 1

21 0

0 1

D ,  ~A4!

A3,15S 1 0

0 1

0 0

0 0

D ,  ~A5!

A3,215S 0 0

0 0

1 0

0 1

D .  ~A6!

From Eqs. ~12!, ~18!–~20! one easily recognizes that for the 2-planes A3,1, A3,21 holds A3,1

5O(1,2) , A3,215O(3,4) (O(1,2) :x(3,4)50, O(3,4) :x(1,2)50).

APPENDIX B: TRANSFORMED PAULI MATRICES

As Pauli matrices @irreducible matrix representations of the complex Clifford algebra C(3,0)#
play a significant role in theoretical physics, in this Appendix we wish to comment on the deri-
vation of a particularly symmetric expression for these 232 matrices by means of the approach
discussed in the main part of the paper. The standard expressions for the Pauli matrices read

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .  ~B1!

In order to make contact with the main part of the paper it turns out to be useful to represent the
complex numbers which are entries of the matrices ~B1! by means of 232 matrices using the rule

z5a1 ib→S a 2b

b a D .  ~B2!

This leads to a set of three real 434 matrices which are congruent to the gamma matrices given
by Eq. ~7!. In order to obtain the desired final result we have to subject the latter gamma matrices
to a further orthogonal transformation—an inversion @mentioned below Eq. ~46!#. Then the rule
~B2! can be reversed yielding the following transformed Pauli matrices (k51,2,3):

sk85
1

)
S 1 &e2 iwk

&eiwk 21 D , ~B3!

wk5w~k!5w01
2p

3
k. ~B4!
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Here,w0 is some arbitrary real constant which, however, has been shifted with respect to Eq. ~9!.

APPENDIX C: THE CASE OF THE REAL CLIFFORD ALGEBRA C„2,1…

In the present Appendix we want to illustrate the formalism used in the main part of the paper
in the rather trivial case of the real Clifford algebra C(2,1). We display the equations ~including
the notation! in close analogy to the discussion performed in the main part of the paper. We start
with some explicit expressions for the gamma matrices @sk are the standard Pauli matrices ~B1!#,

g15s35S 1 0

0 21D ,  ~C1!

g25s15S 0 1

1 0D ,  ~C2!

g35 is25S 0 1

21 0D .  ~C3!

The eigenspaces of the gamma matricesg1 , g2 are described by the following matrices:

A1,15
1

&
S 1
1D , ~C4!

A1,215
1

&
S 1

21D , ~C5!

A2,15S 1
0D , ~C6!

A2,215S 0
1D . ~C7!

It is clear that the angle between the eigenspaces ~lines, 1-planes! which relate to different gamma
matricesg1 , g2 is p/4 ~cf. Fig. 1!.68 Each line through the origin x5(0,0) is ~trivially ! isoclinic
to each other such line. Therefore, the analogs of Eqs. ~21!, ~23! are

x25lx1 , ~C8!

x15l8x2 , l85l21. ~C9!

Equations ~25!, ~26! are mirrored by

B~l!5
1

A11l2 S 1
l D , ~C10!

and

B~l8!5
1

A11l82 S l8
1 D . ~C11!
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Of course, to each set of the eigenspaces $A1,1,A2,1%, $A1,21 ,A2,21% two lines A16 , A216 exist,
respectively, which lie symmetric with respect to the elements of the set ~cf. Fig. 1!. The analog
of Eq. ~27! reads (uk are the angles between the two eigenspaces to the eigenvaluer51 @r
521# and A16 @A216#)

cos2 2u11cos2 2u251. ~C12!

For A16 , A216 the relations @in analogy to Eqs. ~28!, ~29!#

u15u25usym, cos2usym56
1

&
, ~C13!

and

w5cos2 usym5
1

2
~11cos2usym!5

1

2 S 16
1

&
D 5w6 ~C14!

are valid.
In analogy to Eqs. ~30!–~35!, in order to determine the lines A16 , A216 we have to solve the

following equations for r51 ~in sequence for the indicesk51, k52 of the gamma matrices
respectively!

w65
~11l8!2

2~11l82!
, ~C15!

w65
l82

11l82 , ~C16!

and for r521,

w65
~12l!2

2~11l2!
, ~C17!

FIG. 1. Geometry of the eigenspaces of the gamma matricesg1 , g2 @~C1!, ~C2!#.
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w65
l2

11l2 . ~C18!

@Equations ~C15!, ~C16! @~C17!, ~C18!# have been derived using Eq. ~C11! @~C10!#.# The solution
of the above equations reads for r51,

l85l6 , ~C19!

and for r521,

l52l6 . ~C20!

Here,

l6562&w6 , ~C21!

which entails

l6l7521. ~C22!

Inserting Eqs. ~C20! and ~C22! into Eqs. ~C11! and ~C10!, respectively, one finds

A165
1

A11l6
2 S l6

1 D , ~C23!

A2165
1

A11l6
2 S 1

2l6
D ~C24!

~cf. Fig. 1; it holds A115A212 , A125A211). The orthogonal transformation leading to the new
coordinate system consequently reads

O65
1

A11l6
2 S l6 1

1 2l6
D . ~C25!

This way the following final result is obtained:

g168 56
1

&
S 1 1

1 21D ,  ~C26!

g268 56
1

&
S 1 21

21 21D , ~C27!

g385S 0 21

1 0 D .  ~C28!

It is clear that in the present case there is no residual continuous symmetry which has been
exploited in Sec. V of the main part of the paper which is dealing with the real Clifford algebra
C(3,1).
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