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The present study introduces and investigates a new type of equation which is
calledGrassmann integral equationin analogy to integral equations studied in real
analysis. A Grassmann integral equation is an equation which involves Grassmann
~Berezin! integrations and which is to be obeyed by an unknown function over a
~finite-dimensional! Grassmann algebraGm ~i.e., a sought after element of the
Grassmann algebraGm). A particular type of Grassmann integral equations is
explicitly studied for certain low-dimensional Grassmann algebras. The choice of
the equation under investigation is motivated by the effective action formalism of
~lattice! quantum field theory. In a very general setting, for the Grassmann algebras
G2n , n52,3,4, the finite-dimensional analogues of the generating functionals of
the Green functions are worked out explicitly by solving a coupled system of

nonlinear matrix equations. Finally, by imposing the conditionG@$C̄%,$C%#

5G0@$lC̄%,$lC%#1const, 0,lPR (C̄k , Ck , k51,...,n, are the generators of
the Grassmann algebraG2n), between the finite-dimensional analoguesG0 andG of
the ~‘‘classical’’! action and effective action functionals, respectively, a special
Grassmann integral equation is being established and solved which also is equiva-
lent to a coupled system of nonlinear matrix equations. IflÞ1, solutions to this
Grassmann integral equation exist forn52 ~and consequently, also for any even
value ofn, specifically, forn54) but not forn53. If l51, the considered Grass-
mann integral equation~of course! has always a solution which corresponds to a
Gaussian integral, but remarkably in the casen54 a further solution is found
which corresponds to a non-Gaussian integral. The investigation sheds light on the
structures to be met for Grassmann algebrasG2n with arbitrarily chosenn. © 2003
American Institute of Physics.@DOI: 10.1063/1.1612896#

I. INTRODUCTION

The problem to be studied in the present paper is a purely mathematical one and one might
arrive at it within various research programmes in mathematics and its applications. Our starting
point will be ~lattice! quantum field theory1–4 and for convenience we will mainly use its termi-
nology throughout the study~incidentally, for a finite-dimensional problem!. However, one could
equally well rely on the terminology of statistical mechanics or probability theory throughout. We
will be interested in certain aspects of differential calculus in Grassmann~Graßmann! algebras5

and in particular in Grassmann analogues to integral equations studied in real analysis which we
will call Grassmann integral equations. A Grassmann integral equation is an equation which
involves Grassmann~Berezin! integrations and which is to be obeyed by an unknown function
over a~finite-dimensional! Grassmann algebraGm ~i.e., a sought after element of the Grassmann
algebraGm). To the best of our knowledge this problem is considered for the first time in this
paper. Of course, the following comment is due. Bearing in mind that in a Grassmann algebra
taking a~Grassmann! derivative and an integral are equivalent operations we could equally well
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denote any Grassmann integral equation as a Grassmann differential equation. There is an exten-
sive literature on supersymmetric extensions of differential equations. Corresponding research has
been performed in areas such as supersymmetric field theory~see, e.g., Ref. 6, Vol. 3!, supercon-
formal field theory, the study of supersymmetric integrable models~see, e.g., Refs. 7, 8!, and
superanalysis~for a review of the latter see the recent book by Khrennikov,9 in particular Chap. 2,
and references therein!. Only few mathematical references exist which treat pure Grassmann
differential equations~understood in the narrow sense, i.e., in a nonsupersymmetric setting!.10–12

In the physics literature, specifically in the quantum field theoretic literature, such equations~in
general, for infinite-dimensional Grassmann algebras! can be found in studies of purely fermionic
models by means of the Schwinger–Dyson equations13–20or the Schro¨dinger representation~Refs.
21, 22 and follow-up references citing these!. Within the framework of supersymmetric generali-
zations of conventional analysis, it is customary to consider all structures in strict analogy to real
~complex! analysis. Consequently, as we will be lead to the problem of Grassmann integral
equations from the corresponding problem in real analysis the choice of this term should not lead
to any objection. Incidentally, it might be interesting to note that Khrennikov9 mentions@at the end
of Chap. 2, p. 102~p. 106 of the English translation!# integral equations~item 9! among the
subjects which have not yet been studied in superanalysis.

Having characterized in general the subject of the present study we will now explain in
somewhat greater detail the problem we are interested in and where it arises from. Our motivation
for the present investigation derives from quantum field theory. Quantum field theory is a rich
subject with many facets and is being studied on the basis of a number of approaches and methods.
For the present purpose, we rely on the functional integral approach to Lagrangian quantum field
theory ~see, e.g., Ref. 14, Ref. 15, Chap. 9, p. 425, Ref. 16, Ref. 6, Vol. I, Chap. 9, p. 376!. To
begin with, consider the theory of a scalar fieldf in k-dimensional Minkowski space–time. By the
following equations one defines generating functionals for various types of Green functions of this
field ~see, e.g., Ref. 14, Ref. 15,loc. cit., Ref. 16, Ref. 17, Chap. 6, Ref. 6, Vol. II, Chap. 16, p. 63!,

Z@J#5CE DfeiG0[f] 1 i *dkx J(x)f(x), ~1!

W@J#52 i ln Z@J#, ~2!

G@f̄#5W@J#2E dkx J~x!f̄~x!, ~3!

f̄~x!5
dW@J#

dJ~x!
. ~4!

From Eq.~3! one finds the relation

dG@f̄#

df̄~x!
52J~x!. ~5!

In Eq. ~1!, *Df denotes the~infinite-dimensional! functional integration over the scalar fieldf.
Z@J# is the generating functional of the Green functions,23,24 W@J# is the generating functional of
the connected Green functions while the~first! Legendre transformG@f̄# of W@J# is the generat-
ing functional of the one-particle-irreducible~1PI! Green functions.G0@f# is the so-called clas-
sical action of the theory andC some fixed normalization constant.G@f̄# is also called the
effective action of the theory and, in principle, any information one might ever be interested in can
be derived from it.

Equation~1! defines a map,g1 :G0@f#→Z@J#, from the class of functionals called classical
actions to the class of functionalsZ. Furthermore, we have mappings,g2 :Z@J#→W@J#, @Eq. ~2!#,
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and g3 :W@J#→G@f̄# @Eq. ~3!#. These three maps together define a mapg3+g2+g15 f :G0@f#

→G@f̄# from the set of so-called classical actions to the set of effective actions~we will call f the
‘‘action map’’!. In general, the action map is mathematically not well-defined in quantum field
theory due to the occurrence of ultraviolet divergencies and one has to apply a regularization
procedure for making proper mathematical sense of the above equations. A widely applied ap-
proach which is very natural from a mathematical point of view consists in studying quantum field
theory not on a space–time continuum but on a space–time lattice~see, e.g., Refs. 1–4!. The map
f can be represented by the following single equation which can be derived from the Eqs.~1!–~3!:

eiG[ f̄]5CE DfeiG0[f1f̄] 1 i *dkx J(x)f(x). ~6!

J(x) is given here by Eq.~5!, consequently, Eq.~6! is only an implicit representation of the map
f . For any quantum field theory, the properties of the action mapf are of considerable interest but
are hard if not impossible to study in general. In the simplest case,G0 is a quadratic functional of
the field f ~reasonably chosen to ensure that the functional integral is well defined!. Then, the
functional integral is Gaussian and one immediately finds~free field theory; const is some constant
depending on the choice ofC)

G@f#5G0@f#1const. ~7!

There are very few other cases in which the formalism can explicitly be studied beyond pertur-
bation theory. A number of exact results exist in quantum mechanics~which can be understood as
quantum field theory in 011-dimensional space-time; see, e.g., Refs. 25, 26!. For some quantum
field theoretic results see, e.g., Ref. 27.

It is common and successful practice in mathematics and physics to approach difficult infinite-
dimensional problems from their finite-dimensional analogues. For example, in numerical studies
within the framework of lattice quantum field theory the infinite-dimensional functional integral as
present in Eq.~6! is replaced by a multidimensional multiple integral. The simplest finite-
dimensional analogue of Eq.~6! is being obtained by replacing the infinite-dimensional functional
integral by an one-dimensional integral over the real line.@More precisely, we obtain it from the
Euclidean field theory version of Eq.~6! where the imaginary uniti in the exponent is replaced by
(2)1. g8 denotes here the first derivative of the functiong.]

e g(y)5CE
2`

1`

dx eg0(x1y)2g8(y)x. ~8!

Still, even the study of Eq.~8! represents a formidable task. The consideration of the~one-
dimensional! analogues of the Eqs.~1!–~6! is often pursued under the name of zero-dimensional
field theory@Refs. 28–42, Ref. 15, Subsec. 9-4-1, p. 463, Refs. 43–46, Refs. 18, 47–58, Ref. 59,
Chap. 9, p. 211, Refs. 60–64; we have included into the list of reference also articles on the static
ultralocal single-component scalar model but left aside papers on the correspondingO(N) sym-
metric model#.

For simplicity, the above discussion has been based on the consideration of a bosonic quantum
field. However, fermionic~Grassmann valued! quantum fields are also of considerable physical
interest~for a general discussion of Grassmann variables see Ref. 5!. The analogue of Eq.~6! for
a purely fermionic field theory of the Grassmann fieldC, C̄ reads as follows:

eiG[ C̄,C]5CE D~x,x̄ ! e iG0[ x̄1C̄,x1C] 1 i *dkx (h̄(x)x(x)1x̄(x)h(x)), ~9!

h̄~x!5
dG@C̄,C#

dC~x!
, h~x!52

dG@C̄,C#

dC̄~x!
. ~10!
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Here,D(x,x̄) denotes the infinite-dimensional Grassmann integration and the functional deriva-
tives used in~10! are left Grassmann derivatives. The finite-dimensional~fermionic! analogues of
the Eqs.~1!–~5! and ~9!, ~10! consequently read65–69

Z@$h̄%,$h%#5CE )
l 51

n

~dx l dx̄ l !e
G0[ $x̄%,$x%] 1( l 51

n (h̄ lx l1x̄ lh l ), ~11!

W@$h̄%,$h%#5 ln Z@$h̄%,$h%#, ~12!

G@$C̄%,$C%#5W@$h̄%,$h%#2(
l 51

n

~ h̄ lC l1C̄ lh l !, ~13!

C̄ l52
]W@$h̄%,$h%#

]h l
, C l5

]W@$h̄%,$h%#

]h̄ l
, ~14!

and

e G[ $C̄%,$C%]5CE )
l 51

n

~dx l dx̄ l !e
G0[ $x̄1C̄%,$x1C%] 1( l 51

n (h̄ lx l1x̄ lh l ), ~15!

h̄ l5
]G@$C̄%,$C%#

]C l

, h l52
]G@$C̄%,$C%#

]C̄ l

, ~16!

respectively. $C̄%, $C% denote the sets of Grassmann variablesC̄ l , l 51,...,n and C l , l
51,...,n, respectively, which are the generators of the Grassmann algebraG2n @more precisely, we
are considering a Grassmann algebraG4n as thex l , x̄ l in Eq. ~15! are also Grassmann variables,
but we will ignore this mathematical subtlety in the following#. These generators obey the stan-
dard relations

C lCm1CmC l5C̄ lCm1CmC̄ l5C̄ lC̄m1C̄mC̄ l50. ~17!

In this paper, we will concentrate on the explicit study of the Eqs.~15!, ~16! for small values ofn
(n52,3,4) ~some of the calculations have been performed by means of a purpose designed
Mathematica program70!. The Eqs.~15!, ~16! define~implicitly ! a mapf between the elementsG0

andG of the Grassmann algebraG2n ~in analogy to the infinite-dimensional case, we call the map
f the action map!. As we will see, the Eqs.~15!, ~16! are equivalent to a coupled system of
nonlinear matrix equations which however can successively be solved completely~for a general
exposition of matrix equations see, e.g., Refs. 71 and 72!. This way, we will explicitly work out
the action mapf for the following fairly general ansatz forG0 :

G0@$C̄%,$C%#5A(0) 1 (
l ,m51

n

Al ,m
(2)C̄ lCm 1 S 1

2! D
2

(
l 1 ,l 2 ,m1 ,m251

n

Al 1l 2 ,m1m2

(4) C̄ l 1
C̄ l 2

Cm1
Cm2

1 S 1

3! D
2

(
l 1 ,l 2 ,l 3 ,m1 ,m2 ,m351

n

Al 1l 2l 3 ,m1m2m3

(6) C̄ l 1
C̄ l 2

C̄ l 3
Cm1

Cm2
Cm3

1 ¯

1 S 1

n! D
2

(
l 1 ,...,l n ,m1 ,...,mn51

n

Al 1¯ l n ,m1¯mn

(2n) C̄ l 1
¯C̄ l n

Cm1
¯Cmn

. ~18!

Here,A(0) is some constant and the coefficientsA...
(2k) , k.1, are chosen to be completely anti-

symmetric in the first and in the second half of their indices, respectively.
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Although the explicit determination of the action mapf betweenG0 and G for low-
dimensional Grassmann algebras represents previously unknown information, it may seem that the
study of the mapf for low-dimensional Grassmann algebras is a mathematical exercise of purely
academic nature as quantum field theory and statistical mechanics are concerned with infinitely
many degrees of freedom. To some extent this view may be justified for the time being but one
should also take note of the fact that results for the Grassmann algebrasG2n and G2(n21) are
closely related. To see this observe the following. Put in Eq.~18! considered in the case of the
Grassmann algebraG2n the coefficientAn,n

(2) equal to one but all other coefficientsA...
(2k) , k.1,

equal to zero whose index set$...% contains at least one index with valuen.

An,n
(2)51, ~19!

A...n...
(2k) 50, k.1. ~20!

Then, perform in Eq.~15! the Grassmann integrations with respect toxn , x̄n . Up to the factor
(expC̄nCn) present on both sides~no summation with respect ton here! Eq. ~18! then coincides
with Eq. ~18! considered in the case of the Grassmann algebraG2(n21) . Consequently, results
obtained for low-dimensional Grassmann algebras tightly constrain structures to be found for
Grassmann algebrasG2n with arbitrarily chosenn. In fact, we will use this observation in two
ways. On the one hand, we will rely on it in order to check the explicit results obtained forn
54 andn53 for compatibility with those obtained forn53 andn52, respectively. On the other
hand, on the basis of the above observation we will extrapolate some results obtained forn
52,3,4 to arbitraryn which can be used later in the future as working hypothesis for further
studies.

Having explicitly worked out the action mapf betweenG0 and G for low-dimensional
Grassmann algebras, we will not stop our investigation at this point but pursue our study still one
step further. In the Refs. 28, 73, and 74 it has been argued~in a quantum field theoretic context!,
that it might be physically sensible and interesting to look for actionsG0@f# which are not
quadratic functionals of the fieldf ~i.e., which do not describe free fields! but for which Eq.~7!
also applies. For the purpose of the present investigation we will slightly extend our search. We
will look for solutions to the equation (0,lPR)

G@$C̄%,$C%#5G0@$lC̄%,$lC%#1D f~l!. ~21!

l can be considered here as a finite-dimensional analogue of a wave function renormalization
constant in continuous space–time quantum field theory.D f(l) is some constant which is allowed
to depend onl. Equation~21! turns the implicit representation of the mapf given by the Eqs.

~15!, ~16! into a Grassmann integral equation forG0@$C̄%,$C%# ~more precisely, into a nonlinear
Grassmann integro-differential equation!. As we will see, this Grassmann integral equation is
equivalent to a coupled system of nonlinear matrix equations whose solution in turn is equivalent
to the solution of the considered Grassmann integral equation. In the present study, to us Eq.~21!
is just a mathematical problem to be studied. The possible relevance of any solution of Eq.~21! to
physical problems will remain beyond the scope of the present paper. Some comments in this
respect can be found in Refs. 28 and 73.

The plan of the paper is as follows. In Sec. II we work out explicitly the action mapf between
G0 and G. Section II A contains some mathematical preliminaries while the following three
sections are devoted to the casesn52,3,4, respectively. Section II E finally studies the extrapola-
tion of some of the results obtained to Grassmann algebrasG2n with arbitrarily chosenn. Section
III is concerned with the study of the Grassmann integral equation~21!. On the basis of the results
obtained in Sec. II, in Secs. III A–III C it is solved forn52,3,4, respectively. Then, Sec. III D
contains an analysis of certain aspects of the solutions of the Grassmann integral equation found
for n54. In Sec. IV the discussion of the results and conclusions can be found. The paper is
supplemented by three Appendixes.
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II. THE ACTION MAP FOR LOW-DIMENSIONAL GRASSMANN ALGEBRAS

A. Some definitions

To simplify the further considerations we introduce a set of (k
n)3(k

n) matricesA(2k) (k
51,...,n) by writing ~choosel 1, l 2,¯, l k , m1,m2,¯,mk),

ALM
(2k)5Al 1¯ l k ,m1¯mk

(2k) ~22!

~we identify the indicesL, M with the ordered stringsl 1¯ l k , m1¯mk ) or, more generally~not
requestingl 1, l 2,¯, l k , m1,m2,¯,mk)

ALM
(2k) 5 sgn@sa~ l 1 ,...,l k!#sgn@sb~m1 ,...,mk!#Al 1¯ l k ,m1¯mk

(2k) . ~23!

The indicesL,M label the equivalence classes of all permutations of the indicesl 1 ,...,l k and
m1 ,...,mk , respectively, andsa , sb are the permutations which bring the indicesl i ,mi ( i
51,...,k) into order with respect to the, relation @i.e., sa( l 1),sa( l 2),¯,sa( l k), sb(m1)
,sb(m2),¯,sb(mk)]. The matrix elements of the matrixA(2k) are arranged according to the
lexicographical order of the row and column indicesL, M . @We identify the indicesL, M with the
ordered stringssa( l 1)¯sa( l k), sb(m1)¯sb(mk), respectively.#

We also define a set of~dual! (k
n)3(k

n) matricesA(2k)! (k51,...,n) by writing

A(2k)!5E (k)A(2k)TE (k)T, ~24!

where the (k
n)3(k

n) matrix E (k) is defined by

E LM
(k) 5e l 1¯ l n2km1¯mk

, ~25!

consequently,

E (k)T5~21!(n2k)kE (n2k). ~26!

@Quite generally, for any (k
n)3(k

n) matrix B we defineB! by B!5E (k)BTE (k)T.] It holds (1r is the
r 3r unit matrix!

E (k)E (k)T51(
k
n), ~27!

E (k)TE (k)51(
k
n). ~28!

The transition from a matrixB to the matrixB! corresponds to applying the Hodge star operation
to the two subspaces of the Grassmann algebraG2n generated by the two sets of Grassmann
variables$C̄% and $C% and interchanging them~cf., e.g., Ref. 75, Part II, Chap. 4, p. 50!. This
operation on the matrixB is an involution as (B!)!5B.

Furthermore, it turns out to be convenient to define arrays of partition functions~i.e., their
finite-dimensional analogues!. First, we choose

C5e2G0[ $0%,$0%] 5 e2A(0)
. ~29!

This choice in effect cancels any constant term in Eq.~18! ~in this respect also see Ref. 73, p. 288!.
Now, we define76 ~we apply the convention*dx i x j5d i j )

P5P(2n)!5CE )
l 51

n

~dx l dx̄ l ! e G0[ $x̄%,$x%] . ~30!
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We then define arrays of partition functionsP(2n22k)! @these are (k
n)3(k

n) matrices# for subsystems
of Grassmann variables wherek degrees of freedom have been omitted~in slight misuse of
physics terminology we denote a pair of Grassmann variablesC̄ l , Cm by the term degree of
freedom;l 1, l 2,¯, l k , m1,m2,¯,mk in the following!:

PLM
(2n22k)!5

]

]Al 1 ,m1

(2) ¯

]

]Al k ,mk

(2) P ~31!

5~21!k
]

]h l 1

]

]h̄m1

¯

]

]h l k

]

]h̄mk

Z@$h̄%,$h%#U
h̄5h50

. ~32!

Recursively, Eq.~31! can be written as follows@ l k. l k21 , mk.mk21 ; note the different meaning
of the indicesL, M on the left-hand side~lhs! and on the right-hand side~rhs! of the equation#:

PLM
(2n22k)!5

] PLM
(2n22k12)!

]Al k ,mk

(2) . ~33!

Let us illustrate the above definitions by means of a simple example. Choose

G0@$x̄%,$x%#5 (
l ,m51

n

Al ,m
(2)x̄ lxm. ~34!

Then

Z@$h̄%,$h%#5detA(2)e2h̄[A(2)] 21h ~35!

and

P(2n22k)!5C n2k~A(2)! ~36!

@cf. the references cited in relation to Eq.~A2! of Appendix A and Ref. 77, Sec. 2, Ref. 78, also see
Ref. 17, Chap. 1, Sec. 1.9#. Here,Cn2k(A(2)) is the (n2k)th supplementary compound matrix of
the matrixA(2) ~for a definition and some properties of compound matrices see Appendix A!. By
virtue of Eq.~A6! ~see Appendix A! it holds

P(2n22k)!P(2k)5P(2k)P(2n22k)!5detA(2)1(
k
n). ~37!

B. Explicit calculation: nÄ2

The case of the Grassmann algebraG4 (n52) to be treated in the present section is still
algebraically fairly simple but already exhibits many of the features which we will meet in
considering the larger Grassmann algebrasG6 , G8 . Therefore, to some extent this section serves a
didactical purpose in order to give the reader a precise idea of the calculations to be performed in
the following two sections. These calculations will proceed exactly by the same steps as in this
section but the algebraic complexity of the expressions will grow considerably. Also from a
practical, calculational point of view it is advisable to choose an approach which proceeds step-
wise from the most simple case (n52) to the more involved ones (n53,4) in order to accumulate
experience in dealing with this growing complexity. On the other hand, the casen52 is special in
some respect and deserves attention in its own right.

According to our general ansatz~18! we put

G0@$C̄%,$C%#5A(0)1 (
l ,m51

2

Al ,m
(2)C̄ lCm1A12,12

(4) C̄1C̄2C1C2 ~38!
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andG@$C̄%,$C%# can be written in the same way

G@$C̄%,$C%#5A(0)81 (
l ,m51

2

Al ,m
(2)8C̄ lCm1A12,12

(4)8 C̄1C̄2C1C2 . ~39!

No other terms will occur for symmetry reasons. One quickly finds for the partition function@cf.
Eq. ~30!#

P5e A(0)85P(4)!5detA(2)2A(4)!. ~40!

Of course, hereA(4)!5A12,12
(4) applies—again ignoring the fact that~very formally! these constants

live in different spaces, cf. Eq.~24!. The notationP(4)! is introduced in order to indicate how in
larger Grassmann algebras this partition function transforms under linear~unitary! transformations

of the two subsets$C̄%, $C% of the generators of the Grassmann algebra. Clearly,P(4)! then
transforms exactly the same way asA(4)! does and this fact suggests the chosen notation.~The
same will apply to any other partition functionP(2n)! for larger Grassmann algebrasG2n .) The
result of the mapg2+g1 reads~adjB denotes here the adjoint matrix of the matrixB!

W@$h̄%,$h%#5 ln P(4)! 2 (
l ,m51

2
~adjA(2)! lm

P(4)! h̄ lhm 1
A12,12

(4)

~P(4)!!2 h̄1h̄2h1h2 . ~41!

The only assumption made to arrive at this result is thatP(4)!Þ0. We can now proceed on the
basis of the general Eq.~13! specified ton52,

G@$C̄%,$C%#5W@$h̄%,$h%# 2(
l 51

2

~ h̄ lC l1C̄ lh l !. ~42!

We insert Eq.~39! onto the lhs of Eq.~42! and the explicit expressions forh̄, h found from Eq.
~39! according to Eq.~16! on its rhs. Comparing coefficients on both sides we find the following
two coupled equations:

A(2)852A(2)82A(2)8
adjA(2)

P(4)! A(2)8, ~43!

A12,12
(4)8 54A12,12

(4)8 22
tr@A(2)8 adjA(2)#

P(4)! A12,12
(4)8 1S detA(2)8

P(4)! D 2

A12,12
(4) . ~44!

Equation~43! can immediately be simplified to read

A(2)85A(2)8
adjA(2)

P(4)! A(2)8. ~45!

From Eq.~45! one recognizes that the matrixA(2)8 is the generalized$2%-inverse of the matrix
adjA(2)/P(4)! ~cf., e.g., Ref. 79, Chap. 1, p. 7!.

We can now successively solve the Eqs.~43!, ~44!. Choosing detA(2)8Þ0 @By virtue of Eq.
~45! this entails detA(2)Þ0.], we immediately find from Eq.~45!

A(2)85S P(4)!

detA(2)D A(2). ~46!

Inserting this expression forA(2)8 into Eq. ~44! yields the following solution:
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A12,12
(4)8 5S P(4)!

detA(2)D 2

A12,12
(4) . ~47!

In analogy to Eq.~40!, we can now define a quantity

P(4)!85detA(2)82A(4)!8 ~48!

and from Eqs.~46!, ~47! we find @taking into account Eq.~40!#

P(4)!85
~P(4)!!3

~detA(2)!25S P(4)!

detA(2)D 2

P(4)!. ~49!

Taking the determinant on both sides of Eq.~46! provides us with the following useful relation:

detA(2)85
~P(4)!!2

detA(2) . ~50!

Up to this point, very little is special to the casen52 and we will meet the analogous equations
in the next sections.

We turn now to some features which are closely related to the algebraic simplicity of the case
n52 and which cannot easily be identified in larger Grassmann algebras. The Eqs.~49! and~50!
can now be combined to yield the equation

P(4)!85
detA(2)8

detA(2) P(4)!, ~51!

which is converted (P(4)!,detA(2)8Þ0 entailP(4)!8Þ0) into

detA(2)8

P(4)!8
5

detA(2)

P(4)! . ~52!

An equivalent form of Eq.~52! is

A12,12
(4)8

detA(2)8
5

A12,12
(4)

detA(2). ~53!

From Eqs.~52! and~53! we recognize that forn52 the action mapf has an invariant which can
be calculated from the left- or right-hand sides of these equations.

We are now going to invert the action mapf .80 From Eqs.~49! and ~52! we easily find

P(4)!5
~detA(2)8!2

P(4)!8
5S detA(2)8

P(4)!8 D 2

P(4)!8. ~54!

Equation~52! also allows us to find the following inversion formulas for the mapf from Eqs.~46!,
~47!:

A(2)5S detA(2)8

P(4)!8 DA(2)8, ~55!

A12,12
(4) 5S detA(2)8

P(4)!8 D 2

A12,12
(4)8 . ~56!

From the above equations we see that forn52 the action mapf can easily be inverted~once one
assumesP(4)!Þ0, detA(2)Þ0, P(4)!8Þ0, detA(2)8Þ0).
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C. Explicit calculation: nÄ3

The casen53 is already considerably more involved in comparison with the casen52
treated in the preceding section. In the present and the next sections, as far as possible and
appropriate we will apply the same wording as in Sec. II B in order to emphasize their close
relation.

We start by parametrizingG0 andG according to our general ansatz@cf. Eq. ~18! and Eqs.
~38!, ~39!#.

G0@$C̄%,$C%#5A(0)1 (
l ,m51

3

Al ,m
(2)C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

3

Al 1l 2 ,m1m2

(4) C̄ l 1
C̄ l 2

Cm1
Cm2

1A123,123
(6) C̄1C̄2C̄3C1C2C3 , ~57!

G@$C̄%,$C%#5A(0)81 (
l ,m51

3

Al ,m
(2)8C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

3

Al 1l 2 ,m1m2

(4)8 C̄ l 1
C̄ l 2

Cm1
Cm2

1A123,123
(6)8 C̄1C̄2C̄3C1C2C3 . ~58!

For the partition function we find@cf. Eq. ~30!#

P5e A(0)85P(6)!5detA(2)2tr~A(4)!A(2)!2A(6)! ~59!

522 detA(2)1tr~P(4)!A(2)!2A(6)!. ~60!

In analogy to Eq.~40!, here A(6)!5A123,123
(6) applies. In the lower line@Eq. ~60!#, we use the

notation@cf. Eqs.~31! and ~40!#

P(4)5C2~A(2)!2A(4), P(4)!5adjA(2)2A(4)! ~61!

@adjA(2) 5 C2(A(2))! #.
After some calculation we obtain the following expression forW@$h̄%,$h%# ~to arrive at it we

only assumeP(6)!Þ0):

W@$h̄%,$h%#5 ln P(6)! 2
Plm

(4)!

P(6)! h̄ lhm2
AML

(2)!

P(6)! h̄ l 1
h̄ l 2

hm1
hm2

2
1

2 S Plm
(4)!

P(6)! h̄ lhmD 2

1
1

P(6)! F1 2
tr~P(4)!A(2)!

P(6)! 1
2 detP(4)!

~P(6)!!2 G h̄1h̄2h̄3h1h2h3. ~62!

Here and in the following we use the notationBMLh̄ l 1
h̄ l 2

hm1
hm2

for a multiple sum overl 1 , l 2 ,
m1 , m2 with the restrictionsl 1, l 2 , m1,m2 applied;L5$ l 1 ,l 2%, M5$m1 ,m2%. The analogous
convention is also applied to multiple sums over more indices. To arrive at the further results it is
useful to take note of the equation

~Plm
(4)!h̄ lhm!2522 C2~P(4)!!LM h̄ l 1

h̄ l 2
hm1

hm2
. ~63!

We proceed now exactly the same way as in Sec. II B. We insert Eq.~58! onto the lhs of Eq.~13!
and the explicit expressions forh̄, h found from Eq.~58! according to Eq.~16! on its rhs. Again,
comparing coefficients on both sides we find the following three coupled nonlinear matrix equa-
tions:

A(2)852A(2)82A(2)8
P(4)!

P(6)! A(2)8, ~64!
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A(4)!854A(4)!81A(4)!8
A(2)8P(4)!2tr~A(2)8P(4)!!13

P(6)!

1
P(4)!A(2)82tr~P(4)!A(2)8!13

P(6)! A(4)!82adjA(2)8
P(6)!A(2)2adjP(4)!

~P(6)!!2 adjA(2)8,

~65!

A123,123
(6)8 56A123,123

(6)8 1
2

P(6)! H 2A123,123
(6)8 tr~P(4)!A(2)8!1tr~P(4)!adjA(4)!8!

1tr~A(2)adjA(2)8!tr~A(2)8A(4)!8!2detA(2)8tr~A(2)A(4)!8!1
~detA(2)8!2

2 J
1

2

~P(6)!!2 H detA(2)8tr~A(4)!8adj P(4)!!2tr@adj~A(2)8P(4)!!# tr~A(2)8A(4)!8!

2
1

2
~detA(2)8!2tr~P(4)!A(2)!J 1

2

~P(6)!!3 ~detA(2)8!2 detP(4)!. ~66!

Equation~64! is equivalent to the equation

A(2)85A(2)8
P(4)!

P(6)! A(2)8. ~67!

The matrixA(2)8 is the generalized$2%-inverse of the matrixP(4)!/P(6)! ~cf., e.g., Ref. 79, Chap.
1, p. 7!.

In analogy to the procedure applied in Sec. II B, we can now successively solve the Eqs.
~64!–~66!. Choosing detA(2)8Þ0 @by virtue of Eq.~67! this entails detP(4)!Þ0], we immediately
find from Eq.~67! an explicit expression forA(2)8. This can be inserted into Eq.~65! to also find
an explicit expression forA(4)!8. Finally, both these explicit expressions forA(2)8 andA(4)!8 can
now be inserted into Eq.~66! to solve it forA123,123

(6)8 . The results obtained read as follows:

A(2)85P(6)!@P(4)!#215
P(6)!

detP(4)! adjP(4)!, ~68!

A(4)!852
~P(6)!!2

detP(4)! F P(6)!

detP(4)! P(4)!A(2)P(4)!2P(4)!G , ~69!

A123,123
(6)8 5

~P(6)!!5

~detP(4)!!2 H 12
2

detP(4)! tr@adj~P(4)!A(2)!#J 1
3~P(6)!!4

~detP(4)!!2 tr~P(4)!A(2)!2
4~P(6)!!3

detP(4)! .

~70!

In deriving Eq.~70! we have made use of the identity~B2! given in Appendix B. In analogy to the
Eqs.~61! and ~59!, we can now define

P(4)!85adjA(2)82A(4)!8, ~71!

P(6)!85detA(2)82tr~A(4)!8A(2)8!2A(6)!8, ~72!

and from the Eqs.~68!–~70! we find

P(4)!85
~P(6)!!3

~detP(4)!!2 P(4)!A(2)P(4)!, ~73!
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P(6)!852
~P(6)!!5

~detP(4)!!2 H 12
2

detP(4)! tr@adj~P(4)!A(2)!#J 2
2~P(6)!!4

~detP(4)!!2 tr~P(4)!A(2)!1
2~P(6)!!3

detP(4)! .

~74!

Taking the determinant on both sides of the Eqs.~68! and ~73! provides us with the following
useful relations:

detA(2)85
~P(6)!!3

detP(4)! , ~75!

detP(4)!85
~P(6)!!9

~detP(4)!!4 detA(2). ~76!

Finally, also for the casen53 we derive equations which describe the inverse of the action
map f ~the comment made in Ref. 80 of Sec. II B also applies here!. From Eqs.~68!, ~69!, ~73!, we
find

P(4)!5P(6)!@A(2)8#215
P(6)!

detA(2)8
adjA(2)8, ~77!

A(4)!5
P(6)!

detA(2)8 H P(6)!

~detA(2)8!3 adj~A(2)8P(4)!8A(2)8!2adjA(2)8J , ~78!

A(2)5
P(6)!

~detA(2)8!2 A(2)8P(4)!8A(2)8, ~79!

where nowP(6)! is being understood as a function of the primed quantities whose explicit shape
remains to be determined. Inserting Eqs.~77!, ~78! into Eq.~74! allows us to derive the following
explicit representation of the partition functionP(6)! in terms of the primed quantities:

P(6)!5~detA(2)8!2H 2 detA(2)822 tr~P(4)!8A(2)8!1
2

detA(2)8
tr@adj~P(4)!8A(2)8!#2P(6)!8J 21

.

~80!

In principle, on the basis of this result also an explicit representation ofA123,123
(6) in terms of the

primed quantities can be established@relying on Eq.~59!# but we refrain from also writing it down
here. As one recognizes from Eq.~80!, in the casen53 the description of the inverse of the action
map f already involves fairly complicated expressions and we will not attempt to generalize these
in the next section to the casen54.

The results obtained in the present section can be checked for consistency in two ways. First,
based on the procedure described in the Introduction in the context of Eqs.~19! and~20! one can
convince oneself that the results—wherever appropriate—are consistent with the results obtained

in Sec. II B for the case of the Grassmann algebraG4 (n52). Second, choosing forG0@$C̄%,$C%#
the form ~34! one can also convince oneself that thenA(2)85A(2) andA(4)!8, A123,123

(6)8 vanish as
expected.

D. Explicit calculation: nÄ4

We are now prepared to study the algebraically most involved case to be treated in the present
paper—the case of the Grassmann algebraG8 (n54). The calculational experience collected in
the last two sections allows us to manage the fairly involved expressions.

We start again by parametrizingG0 andG according to our general ansatz@cf. Eq. ~18!#,
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G0@$C̄%,$C%#5A(0)1 (
l ,m51

4

Al ,m
(2)C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

4

Al 1l 2 ,m1m2

(4) C̄ l 1
C̄ l 2

Cm1
Cm2

1
1

36 (
l 1 ,l 2 ,l 3 ,m1 ,m2 ,m351

4

Al 1l 2l 3 ,m1m2m3

(6) C̄ l 1
C̄ l 2

C̄ l 3
Cm1

Cm2
Cm3

1A1234,1234
(8) C̄1C̄2C̄3C̄4C1C2C3C4 . ~81!

For G the analogous representation can be used,

G@$C̄%,$C%#5A(0)81 (
l ,m51

4

Al ,m
(2)8C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

4

Al 1l 2 ,m1m2

(4)8 C̄ l 1
C̄ l 2

Cm1
Cm2

1
1

36 (
l 1 ,l 2 ,l 3 ,m1 ,m2 ,m351

4

Al 1l 2l 3 ,m1m2m3

(6)8 C̄ l 1
C̄ l 2

C̄ l 3
Cm1

Cm2
Cm3

1A1234,1234
(8)8 C̄1C̄2C̄3C̄4C1C2C3C4 . ~82!

The partition function reads@cf. Eq. ~30!#

P5e A(0)85P(8)!5detA(2)2tr@A(4)!C2~A(2)!#1 1
2tr~A(4)!A(4)!2tr~A(6)!A(2)!1A(8)! ~83!

56 detA(2)22 tr@P(4)!C2~A(2)!#1 1
2tr~P(4)!P(4)!1tr~P(6)!A(2)!1A(8)!. ~84!

In analogy to Eq.~40!, hereA(8)!5A1234,1234
(8) applies. In the lower line@Eq. ~84!#, we have made

use of the expressions@cf. Eqs.~61!, ~59!#

P(4)!5C2~A(2)!!2A(4)!, ~85!

P(6)!5adjA(2)2Fa~A(2),A(4)!2A(6)! ~86!

(adjA(2) 5 C3(A(2))!). The formFa is defined as follows:

Fa~A(2),A(4)! lm5e lrK emsNAsr
(2)ANK

(4) . ~87!

In making the transition from Eq.~83! to Eq. ~84! we have used the relations

2 tr@C2~A(2)!A(4)!#5tr@Fa~A(2),A(4)!A(2)#, ~88!

C2~A(2)!C2~A(2)!!5C2~A(2)!!C2~A(2)!5detA(2)16 ~89!

@Eq. ~89! is a special case of Eq.~A6!, see Appendix A#. As next step, we can calculate
W@$h̄%,$h%# which reads~to arrive at it we only assumeP(8)!Þ0)

W@$h̄%,$h%#5 ln P(8)! 2
Plm

(6)!

P(8)! h̄ lhm2
PLM

(4)!

P(8)! h̄ l 1
h̄ l 2

hm1
hm2

2
1

2 S Plm
(6)!

P(8)! h̄ lhmD 2

1
1

P(8)! FA(2)! 2
Fa~P(6)!,P(4)!!!

P(8)! 1
2 C3~P(6)!!

~P(8)!!2 G
LM

h̄ l 1
h̄ l 2

h̄ l 3
hm1

hm2
hm3

1
1

P(8)! H 1 2
tr~P(6)!A(2)!

P(8)! 2
tr~P(4)!P(4)!

2 P(8)! 1
2 tr@P(4)C2~P(6)!!#

~P(8)!!2

2
6 detP(6)!

~P(8)!!3 J h̄1h̄2h̄3h̄4h1h2h3h4 . ~90!
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In the following, we need a number of forms which we list here for further reference. The
index convention applied here requires some explanation. For example, (A(4)!8E (2)) l tur up to the
sign denotes elements of the 636 matrixA(4)!8E (2). If l ,t, u,r , it denotes the matrix element
(A(4)!8E (2)) $ l ,t%$u,r % . If l .t, u,r , it denotes the matrix element (2A(4)!8E (2)) $t,l %$u,r % and if l
,t, u.r , it denotes the matrix element (2A(4)!8E (2)) $ l ,t%$r ,u% . And finally, if l .t, u.r , it
denotes the matrix element (A(4)!8E (2)) $t,l %$r ,u% . Of course, (A(4)!8E (2)) $ l ,t%$u,r %50 if l 5t or u
5r . In the following, summation is understood over repeated indices:

Fb~A(2)8P(6)!!LM5eLrk ~A(2)8P(6)!!sr eskM , ~91!

Fc~A(4)!8,P(6)!,A(4)!8! lm5~A(4)!8E (2)! l turPsr
(6)!~E (2)A(4)!8!stum, ~92!

Fd1~A(4)!8,A(2)8,P(4)C2~A(2)8!!! lm5~A(4)!8E (2)! lrtuAsr
(2)8@E (2)P(4)C2~A(2)8!!# tsum, ~93!

Fd2~C2~A(2)8!!P(4),A(2)8,A(4)!8! lm5@C2~A(2)8!!P(4)E (2)# lutrAsr
(2)8~E (2)A(4)!8! tusm, ~94!

Fe~A(2)8,A(4)8,A(4)8,A(2)8!LM5E Lab
(2) Ara

(2)8~E (2)A(4)8!rtbu~A(4)8E (2)!dtsuAcs
(2)8E cdM

(2) , ~95!

Ff~A(4)!8,A(2)8P(6)!,A(4)8! lm5~A(4)!8E (2)! lcda~A(2)8P(6)!!ba~E (2)A(4)8!bdcm, ~96!

Fg~C2~P(6)!!P(4),P(6)!,P(6)!,P(4)C2~P(6)!!!LM

5E Lab
(2) @E (2)C2~P(6)!!P(4)#arbtPrs

(6)!Ptu
(6)!@P(4)C2~P(6)!!E (2)#csduE cdM

(2) . ~97!

To arrive at the further results it is useful to take note of the equation

~Plm
(6)!h̄ lhm!2522C2~P(6)!!LMh̄ l 1

h̄ l 2
hm1

hm2
. ~98!

We now apply exactly the same procedure as in Secs. II B, II C. We insert Eq.~82! onto the lhs of
Eq. ~13! and the explicit expressions forh̄, h found from Eq.~82! according to Eq.~16! on its rhs.
Again, comparing coefficients on both sides we find the following four coupled nonlinear matrix
equations:

A(2)852A(2)82A(2)8
P(6)!

P(8)! A(2)8, ~99!

A(4)!854A(4)!82
Fb~A(2)8P(6)!!

P(8)! A(4)!82A(4)!8
Fb~P(6)!A(2)8!

P(8)!

2C2~A(2)8!!
P(8)!P(4)2C2~P(6)!!!

~P(8)!!2 C2~A(2)8!!, ~100!

A(6)!856A(6)!81
1

P(8)! $A(6)!8@A(2)8P(6)!2tr~A(2)8P(6)!!14#

1@P(6)!A(2)82tr~P(6)!A(2)8!14#A(6)!82Fc~A(4)!8,P(6)!,A(4)!8!

1Fd1~A(4)!8,A(2)8,P(4)C2~A(2)8!!!1Fd2~C2~A(2)8!!P(4),A(2)8,A(4)!8!

1adj~A(2)8!A(2) adj~A(2)8!%2
1

~P(8)!!2 $Fd1~A(4)!8,A(2)8,C2~A(2)8P(6)!!!!

1Fd2~C2~P(6)!A(2)8!!,A(2)8,A(4)!8!1adj~A(2)8!Fa~P(6)!,P(4)!!adj~A(2)8!%

1
2

~P(8)!!3 adj~A(2)8P(6)!A(2)8!, ~101!

5428 J. Math. Phys., Vol. 44, No. 11, November 2003 K. Scharnhorst



A1234,1234
(8)8 58A1234,1234

(8)8 1
1

P(8)! $22A1234,1234
(8)8 tr~P(6)!A(2)8!22 tr@P(6)!Fa~A(6)!8,A(4)!8!#

22 tr@A(2)8A(6)!8A(2)8Fa~A(2)8,P(4)!#2tr@P(4)Fe~A(2)8,A(4)8,A(4)8,A(2)8!#

2 1
2 tr@Fc~P(4)!C2~A(2)8!,14 ,A(4)!8A(4)8!#2 1

2 tr@Fc~A(4)8A(4)!8,14 ,C2~A(2)8!P(4)!!#

1tr@A(4)!8C2~A(2)8!Fb~~adjA(2)8!A(2)!#1tr@C2~A(2)8!A(4)!8Fb~A(2) adjA(2)8!#

1~detA(2)8!2%1
1

~P(8)!!2 $2 tr~A(2)8A(6)!8A(2)8P(6)!!tr~A(2)8P(6)!!

22 tr~A(2)8A(6)!8A(2)8P(6)!A(2)8P(6)!!1tr@A(2)8P(6)!A(2)8Fc~A(4)!8,P(6)!,A(4)!8!#

2tr@P(6)!A(2)8Ff~A(4)!8,A(2)8P(6)!,A(4)8!#1 1
2 tr@Fc~C2~P(6)!A(2)8!,14 ,A(4)!8A(4)8!#

1 1
2 tr@Fc~A(4)8A(4)!8,14 ,C2~A(2)8P(6)!!!#

2tr@Fa~P(6)!,P(4)!!Fa~14 ,A(4)!8C2~A(2)8!!adjA(2)8#

2tr@Fa~14 ,C2~A(2)8!A(4)!8!Fa~P(6)!,P(4)!!adjA(2)8#

2~detA(2)8!2@ tr~P(6)!A(2)!1 1
2 tr~P(4)!P(4)!#%

1
2

~P(8)!!3 $tr@A(4)!8C2~A(2)8!Fb~adj ~P(6)!A(2)8!!#

1tr@C2~A(2)8!A(4)!8Fb~adj ~A(2)8P(6)!!!#

1~detA(2)8!2tr@P(4)C2~P(6)!!#%2
6

~P(8)!!4 ~detA(2)8!2 detP(6)!. ~102!

Equation~99! is equivalent to the equation

A(2)85A(2)8
P(6)!

P(8)! A(2)8. ~103!

The matrixA(2)8 is the generalized$2%-inverse of the matrixP(6)!/P(8)! ~cf., e.g., Ref. 79, Chap.
1, p. 7!.

For solving the Eqs.~99!–~102! we apply again the same method as in Secs. II B and II C.
Choosing detA(2)8Þ0 @by virtue of Eq.~103! this entails detP(6)!Þ0], we immediately find from
Eq. ~103! an explicit expression forA(2)8. This can be inserted into Eq.~100! to also find an
explicit expression forA(4)!8.

A(2)85P(8)! @P(6)!#21 5
P(8)!

detP(6)! adjP(6)!, ~104!

A(4)!852
~P(8)!!2

det P(6)! F P(8)!

detP(6)! C2~P(6)!!P(4)C2~P(6)!!2C2~P(6)!!G . ~105!

To arrive at Eq.~105! we have relied on the following calculation@cf. Appendix A, Eqs.~A6!,
~A5!#:
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C2~A(2)8!!5~P(8)!!2C2~@P(6)!#21!!5
~P(8)!!2

detP(6)! C2~@P(6)!#21!215
~P(8)!!2

detP(6)! C2~P(6)!!.

~106!

Having obtained explicit expressions forA(2)8 andA(4)!8 we can now insert them into Eq.~101!
to solve it. We find

A(6)!85
~P(8)!!5

~detP(6)!!2 P(6)!H A(2)2
1

2 detP(6)! Fd1~P(4),P(6)!,C2~P(6)!!P(4)!

2
1

2 detP(6)! Fd2~P(4)C2~P(6)!!,P(6)!,P(4)!J P(6)!

1
3~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!2
4~P(8)!!3

detP(6)! P(6)! ~107!

5
~P(8)!!5

~detP(6)!!2 P(6)!A(2)P(6)!

1
~P(8)!!5

~detP(6)!!4 Fc~C2~P(6)!!P(4)C2~P(6)!!,P(6)!,C2~P(6)!!P(4)C2~P(6)!!!

1
3~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!2
4~P(8)!!3

detP(6)! P(6)!. ~108!

The equivalence of Eqs.~107! and ~108! is based on the relation

~detP(6)!!P(6)!Fd1~P(4),P(6)!,C2~P(6)!!P(4)!P(6)!

5~detP(6)!!P(6)!Fd2~P(4)C2~P(6)!!,P(6)!,P(4)!P(6)!

52Fc~C2~P(6)!!P(4)C2~P(6)!!,P(6)!,C2~P(6)!!P(4)C2~P(6)!!!. ~109!

Finally, inserting Eqs.~104!, ~105!, ~108! into ~102! allows us to find the following explicit
solution forA1234,1234

(8)8 :

A1234,1234
(8)8 5

~P(8)!!7

~detP(6)!!2 $122tr@A(2)Fa~~P(6)!!21,P(4)!#%

1
~P(8)!!7

~detP(6)!!4 $tr@P(4)Fg~C2~P(6)!!P(4),P(6)!,P(6)!,P(4)C2~P(6)!!!#

2 1
2 tr@Fc~C2~P(6)!!P(4)P(4)!C2~P(6)!!!,14 ,C2~P(6)!!P(4)!#

2 1
2 tr@Fc~C2~P(6)!!!P(4)!P(4)C2~P(6)!!,14 ,P(4)C2~P(6)!!!#%

1
~P(8)!!6

~detP(6)!!2 H 11

2
tr~P(4)P(4)!!15 tr~P(6)!A(2)!

2
5

detP(6)! tr@Fa~14 ,C2~P(6)!!P(4)!Fa~14 ,P(4)!C2~P(6)!!!!#J
118

~P(8)!!5

~detP(6)!!2 tr@P(4)C2~P(6)!!#230
~P(8)!!4

detP(6)! . ~110!

In analogy to the Eqs.~85!, ~86! and ~83!, we can now define
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P(4)!85C2~A(2)8!!2A(4)!8, ~111!

P(6)!85adjA(2)82Fa~A(2)8,A(4)8!2A(6)!8, ~112!

P(8)!85detA(2)82tr@A(4)!8C2~A(2)8!#1 1
2tr~A(4)!8A(4)8!2tr~A(6)!8A(2)8!1A(8)!8, ~113!

and from Eqs.~104!, ~105!, ~108!, ~110!, we find

P(4)!85
~P(8)!!3

~detP(6)!!2 C2~P(6)!!P(4)C2~P(6)!!, ~114!

P(6)!852
~P(8)!!5

~detP(6)!!2 P(6)!H A(2)2
1

2 detP(6)! Fd1~P(4),P(6)!,C2~P(6)!!P(4)!

2
1

2 detP(6)! Fd2~P(4)C2~P(6)!!,P(6)!,P(4)!J P(6)!

2
2~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!1
2~P(8)!!3

detP(6)! P(6)! ~115!

52
~P(8)!!5

~detP(6)!!2 P(6)!A(2)P(6)!

2
~P(8)!!5

~detP(6)!!4 Fc~C2~P(6)!!P(4)C2~P(6)!!,P(6)!,C2~P(6)!!P(4)C2~P(6)!!!

2
2~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!1
2~P(8)!!3

detP(6)! P(6)!, ~116!

P(8)!85
~P(8)!!7

~detP(6)!!2 $122tr@A(2)Fa~~P(6)!!21,P(4)!#%

1
~P(8)!!7

~detP(6)!!4 $tr@P(4)Fg~C2~P(6)!!P(4),P(6)!,P(6)!,P(4)C2~P(6)!!!#

2 1
2 tr@Fc~C2~P(6)!!P(4)P(4)!C2~P(6)!!!,14 ,C2~P(6)!!P(4)!#

2 1
2 tr@Fc~C2~P(6)!!!P(4)!P(4)C2~P(6)!!,14 ,P(4)C2~P(6)!!!#%

14
~P(8)!!6

~detP(6)!!2 H tr~P(4)P(4)!!1tr~P(6)!A(2)!

2
1

detP(6)! tr@Fa~14 ,C2~P(6)!!P(4)!Fa~14 ,P(4)!C2~P(6)!!!!#J
112

~P(8)!!5

~detP(6)!!2 tr@P(4)C2~P(6)!!#216
~P(8)!!4

detP(6)!. ~117!

Taking the determinant on both sides of the Eqs.~104! and ~114! provides us with the following
useful relations:

detA(2)85
~P(8)!!4

detP(6)! , ~118!
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detP(4)!85
~P(8)!!18

~detP(6)!!6 detP(4)!. ~119!

In deriving Eq.~119! we have relied on the following~Sylvester–Franke! identity @cf. Appendix
A, Eq. ~A8!#.

detC2~P(6)!!5~detP(6)!!3. ~120!

We can finally check the obtained results for consistency in the same way as done at the end
of the preceding section forn53. First, based on the procedure described in the Introduction in the
context of Eqs.~19!, ~20! one can convince oneself again that the results—wherever appropriate—
are consistent with the results obtained in Sec. II C for the case of the Grassmann algebraG6 (n

53). Second, choosing forG0@$C̄%,$C%# the form ~34! one can also convince oneself that then
A(2)85A(2) and A(4)!8, A(6)!8, A1234,1234

(8)8 vanish as expected. Given the combinatorial factors
involved, this represents a fairly sensitive check of the present results.

E. Some heuristics for arbitrary n

Having gained a fairly broad calculational and structural experience in the preceding sections
in considering the present formalism for the case of the Grassmann algebrasG2n , n52,3,4, we are
going to generalize now some of the obtained results to arbitrary values ofn. This analytic
extrapolation is a heuristic procedure with heuristic purposes. No proof is being attempted here
which would need to be the subject of a separate study.

From Eqs.~46!, ~68!, ~104! and~47!, ~69!, ~105! we infer the following general~for arbitrary
values ofn) form of the matricesA(2)8, A(4)8 ~of course, the result forA(2)8 is elementary!,

A(2)85P(2n)!@P(2n22)!#215
P(2n)!

detP(2n22)! adjP(2n22)!, ~121!

A(4)852
~P(2n)!!2

detP(2n22)! F P(2n)!

detP(2n22)! Cn22~P(2n22)!!!P(2n24)!Cn22~P(2n22)!!!

2Cn22~P(2n22)!!!G . ~122!

Emphasizing the role of the effective propagatorP(2n22)!/P(2n)! @cf. Eq. ~121!# we can rewrite
Eq. ~122! in the following form:

A(4)852

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D
P(2n24)!

P(2n)!

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D 1

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D . ~123!

Unfortunately, the results obtained in the preceding sections do not yet admit any reliable
analytical ~heuristic! extrapolation to arbitrary values ofn for further quantities beyondA(2)8,
A(4)8. For example, to heuristically derive an analogous expression forA(6)8 one would have to
perform a calculation forn55 first in order to approach this task. However, in analogy to the
preceding sections it is still possible to derive one further result for arbitraryn. Again, writing @cf.
Eqs.~48!, ~71!, ~111!#

P(4)!85C2~A(2)8!!2A(4)!8 ~124!

we find from Eqs.~121!, ~122! @cf. Eqs.~49!, ~73!, ~114!#
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P(4)85
~P(2n)!!3

~detP(2n22)!!2 Cn22~P(2n22)!!!P(2n24)!Cn22~P(2n22)!!!. ~125!

In analogy to Eq.~123!, this can equivalently be written as

P(4)85

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D
P(2n24)!

P(2n)!

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D . ~126!

To arrive at Eq.~125! we have relied on the following calculation@cf. Appendix A, Eqs.~A6!,
~A5!#:

C2~A(2)8!5~P(2n)!!2C2~@P(2n22)!#21!

5~P(2n)!!2C2~P(2n22)!!21

5
~P(2n)!!2

detP(2n22)! Cn22~P(2n22)!!!. ~127!

Taking the determinant on both sides of the Eqs.~121! and~126! yields the relations@cf. Eqs.
~50!, ~75!, ~118! and ~76!, ~119!#

detA(2)85
~P(2n)!!n

detP(2n22)!, ~128!

detP(4)!85
~P(2n)!!3(2

n)

~detP(2n22)!!2(n21) detP(2n24). ~129!

In deriving Eq.~129! we have relied on the~Sylvester–Franke! identity @cf. Appendix A, Eq.~A8!#

detCn22~P(2n22)!!5~detP(2n22)!!(n23
n21). ~130!

III. THE GRASSMANN INTEGRAL EQUATION

Having obtained in the preceding section explicit formulas for the action mapf for the case of
the Grassmann algebrasG2n , n52,3,4, we can now concentrate on the study of certain particular

relations betweenG0@$C̄%,$C%# and G@$C̄%,$C%#. As explained in the Introduction we are in-
terested in the equation (0,lPR)

G@$C̄%,$C%#5G0@$lC̄%,$lC%#1D f~l!. ~131!

D f(l) is some constant which is allowed to depend onl and which we choose to obey@in view
of Eq. ~29!, we have the freedom to do so#

D f~1!50. ~132!

For l51, Eq.~131! is the fixed point equation for the action mapf ~cf. Ref. 73, p. 288!. Equation
~131! applied to Eq.~15!, the latter reads (C̃5exp@2A(0)2Df(l)#)

e G0[ $lC̄%,$lC%]5C̃E )
l 51

n

~dx l dx̄ l ! e G0[ $x̄1C̄%,$x1C%] 1( l 51
n (h̄ lx l1x̄ lh l ), ~133!
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h̄ l5
]G0@$lC̄%,$lC%#

]C l

, h l52
]G0@$lC̄%,$lC%#

]C̄ l

. ~134!

Clearly, this a Grassmann integral equation forG0@$C̄%,$C%# ~more precisely, a nonlinear Grass-
mann integro-differential equation!. In view of Eq. ~18!, Eq. ~131! is equivalent to

A(0)85A(0)1D f~l!, ~135!

A(2k)85l2kA(2k), k.0. ~136!

Equation~136! represents a coupled system of nonlinear matrix equations. We are now going to
solve Eq.~133! @i.e., Eq.~131!# for n52,3,4 by solving Eq.~136!.

A. The case nÄ2

Applying Eq. ~136! for k51 to Eq.~46!, we find

P(4)!5l2 detA(2). ~137!

Equation~40! then immediately yields

A12,12
(4) 5~12l2!detA(2). ~138!

A(2) remains an arbitrary matrix with detA(2)Þ0. To determineA(0) imagine that the action

G0@$C̄%,$C%# specified by Eq.~138! would have been induced by some actionG21@$C̄%,$C%#

5G0@$l21C̄%,$l21C%# @by means of Eq.~15!—replacingG by G0 and G0 by G21 , respec-
tively# with the partition functionP(G21)5l22 detA(2) @cf. Eq. ~40!#. Then~cf. Ref. 80 of Sec.
II B !

A(0)5 ln P~G21!5 ln detA(2)22 lnl ~139!

and, consequently,

D f~l!54 lnl. ~140!

From the above considerations we see that forn52, Eq.~131! has always a solution for any value
of l (0,lPR). For l51 the solution corresponds to a Gaussian integral while forlÞ1 it
corresponds to some non-Gaussian integral@cf. Eq. ~133!#. Consequently, for any even value ofn
Eq. ~131! has always a solution for any value ofl (0,lPR). This follows from the fact that
these solutions can be constructed as a sum ofn52 solutions with a common value ofl.

B. The case nÄ3

Applying Eq. ~136! for k51 to Eq.~68!, we find

P(6)!135l2P(4)!A(2)5l2A(2)P(4)! ~141!

5l2@detA(2)132A(4)!A(2)#5l2@detA(2)132A(2)A(4)!#. ~142!

Furthermore, combining Eqs.~75!, ~76!, ~71!, ~136! we obtain the relations

l6 detP(4)! detA(2)5~P(6)!!3, ~143!

l12
~detP(4)!!5

detA(2) 5~P(6)!!9. ~144!
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From these two equations we can conclude that

detP(4)!56l3~detA(2)!2, ~145!

P(6)!56l3 detA(2). ~146!

Taking into account the above equations, from Eq.~69! we find then

A(4)!52S 17
1

l DP(4)!. ~147!

By virtue of Eq.~61! this entails

A(4)!5~17l!adjA(2), ~148!

P(4)!56l adjA(2). ~149!

One easily sees that Eq.~149! is in line with the result~145!. Finally, applying Eqs.~136!, ~141!,
~145!, ~146! to Eq. ~70! we calculateA123,123

(6) . It reads

A123,123
(6) 5~l71!2~6l24!detA(2). ~150!

Applying the same procedure to Eq.~74!, we find the consistency equation

~l71!350, ~151!

which has only one solution, namelyl51 ~choose the upper sign!. This solution is just the
elementary one which corresponds to a Gaussian integral@cf. Eq. ~133!#.

C. The case nÄ4

Applying Eq. ~136! for k51 to Eq.~104!, we find

P(8)!145l2P(6)!A(2)5l2A(2)P(6)! ~152!

5l2@detA(2)142Fa~14 ,C2~A(2)!!A(4)!!2A(6)!A(2)#

5l2@detA(2)142Fa~14 ,A(4)!C2~A(2)!!!2A(2)A(6)!#. ~153!

Furthermore, combining Eqs.~118!, ~119!, ~111!, ~136! we obtain the relations

l8 detP(6)! detA(2)5~P(8)!!4, ~154!

l24 ~detP(6)!!65~P(8)!!18. ~155!

From these two equations we can conclude that

detP(6)!5l8~detA(2)!3, ~156!

P(8)!56l4 detA(2). ~157!

We can now apply Eq.~136! to the Eqs.~105! and~114!. Taking into account Eqs.~85!, ~111!, we
can derive from these two equations the following compound matrix equation:

C2~P(6)!A(2)!5~l2 detA(2)!216 . ~158!

Its solution reads@cf. Ref. 81, Sec. 3, p. 149, Eq.~11!#
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P(6)!56l2 adjA(2). ~159!

Equation~159! is in line with Eq.~156! @the signs on the rhs are fixed by making reference to Eqs.
~152!, ~157!#. We can now take into account Eq.~159! in considering Eq.~114! further. Eq.~114!
then yields the following matrix equation:

P(4)C2~A(2)!!56C2~A(2)!P(4)!. ~160!

By virtue of Eq.~85!, Eq. ~160! can equivalently be written as

A(4)C2~A(2)!!56C2~A(2)!A(4)!. ~161!

We will not study here the complete set of solutions of Eq.~161!. This would need to be the
subject of a study in its own. Here, it suffices to mention that for the ansatz~a is some arbitrary
constant,B some 434 matrix!

A(4)5aC2~B!!. ~162!

Equation~161! reads

C2~A(2)B!!56C2~A(2)B!. ~163!

For the upper sign, this is exactly the type of compound matrix equation studied in Ref. 81. Of
course, Eq.~161! has solutions which correspond to twon52 solutions~with a common value of
l! discussed at the end of Sec. III A.82 Here, we want to go beyond these solutions.

For the present purpose, we consider in Eq.~161! only the upper sign on the rhs and study the
ansatz (kPR)

P(4)5kC2~A(2)!, ~164!

A(4)5~12k!C2~A(2)!, ~165!

which is a special version of Eq.~162!. Inserting this ansatz into Eq.~107! and taking into account
Eqs.~136!, ~157!, ~159!, we find

A(6)!5~l226k219k24!adjA(2). ~166!

Applying the same procedure to Eq.~115!, we obtain the following consistency condition:

l223k213k215l223k~k21!2150. ~167!

Furthermore, applying the ansatz~164! to Eq. ~110! and taking into account Eqs.~136!, ~157!,
~159! yields

A1234,1234
(8) 5~l4120l2224l2k172k32147k21108k230!detA(2). ~168!

Again, subjecting Eq.~117! to the same procedure we obtain yet another consistency condition,

2l223l2k19k3215k219k225~223k!@l223k~k21!21#50. ~169!

Obviously, this equation is fulfilled ifl, k obey Eq.~167!. Consequently, we can restrict our
attention to solutions of Eq.~167!.

From Eq.~167! we conclude that the ansatz~164! provides us with solutions of Eq.~131! for
any value ofl>1/2 ~if k assumes real values only!. Of particular interest to us are solutions of Eq.
~167! for l51 ~see Refs. 28 and 73!. In this case, Eq.~167! reads

k~k21!50. ~170!
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Clearly, this equation has two solutions,

k I51, ~171!

k II50. ~172!

The corresponding expressions for the actionG05G then read as follows:

G0I@$C̄%,$C%#5G0I~Gq!5 ln detA(2)1Gq , ~173!

G0II@$C̄%,$C%#5G0II~Gq!5 ln detA(2)1Gq2 1
2Gq

21 1
2Gq

32 3
8Gq

4, ~174!

Gq5Gq@$C̄%,$C%#5 (
l ,m51

4

Al ,m
(2)C̄ lCm5C̄A(2)C. ~175!

As one can see from Eq.~133! G0I corresponds to a Gaussian integral whileG0II corresponds to
some non-Gaussian integral. While it is well known that for the actionG05G0I the equationG
5G0 applies it is indeed a remarkable fact that the same is true forG05G0II . However, this is not
yet the end of remarkable features of these actions. It is also instructive to work out fork I51 and
k II50 the corresponding expressions forW@$h̄%,$h%# on the basis of Eq.~90!.

WI@$h̄%,$h%#5WI~Wq!5G0I~Wq!5 ln detA(2)1Wq , ~176!

WII@$h̄%,$h%#5WII~Wq!5G0II~Wq!5 ln detA(2)1Wq2 1
2Wq

21 1
2Wq

32 3
8Wq

4, ~177!

Wq5Wq@$h̄%,$h%#52h̄@A(2)#21h. ~178!

Again, while the relationWI5G0I is well known in the present context the equalityWII5G0II

comes as a complete surprise and one can only wonder which general principle is manifesting here
itself. We will explore this issue in the next section.

D. Further analysis

We can characterize the solutionsG0I , G0II of the equation~131! found forn54, l51, in the
preceding section by two properties which may be of general significance. The first one is related
to the identityW5G0 @Eqs.~176! and ~177!#. One immediately recognizes that for

@A(2)#25214 , ~179!

expG05expG0I(5expG5Z) and expG05expG0II are self-reciprocalGrassmann functions~of
course, this is a well-known property of expG0I ):

E )
l 51

4

~dx l dx̄ l ! e G0[ $x̄%,$x%] 1 h̄x 1 x̄h5e G0[ $h̄%,$h%] ~180!

@detA(2)51, cf. Eq.~179!#,83 i.e., they are eigenfunctions to the Fourier–Laplace transformation84

to the eigenvalue 1. The term self-reciprocal function is taken from real~complex! analysis where
it also denotes eigenfunctions of some integral transformation, in particular, the Fourier
transformation.85–91

The second property of the solutionsG0I , G0II is related to the identityG5W @apply the fixed
point conditionG5G0 to the Eqs.~176!, ~177!#. Taking into account Eqs.~173!–~178!, Eqs.~13!,
~16! tell us that
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G~Gq!5G~Wq!2(
l 51

4

~ h̄ lC l1C̄ lh l !, ~181!

h̄ l5
]G~Gq!

]C l
52G8~Gq!~C̄A(2)! l , ~182!

h l52
]G~Gq!

]C̄ l

52G8~Gq!~A(2)C! l . ~183!

Here,

G8~Gq!5
]G~Gq!

]Gq
, ~184!

whereGq is treated as a formal parameter for the moment. In view of Eqs.~182!, ~183! it holds

Wq52Gq@G8~Gq!#2. ~185!

Taking into account the Eqs.~182!, ~183!, ~185!, Eq. ~181! can be written as

G~s!5G~2s@G8~s!#2!12sG8~s!, s5Gq. ~186!

Equation ~186! is of a very general nature. Its shape does not depend on the value ofn. Its
derivation depends on the fact only thatG, W are functions ofGq , Wq , respectively, and that the
identity G5W holds. As we demonstrate in Appendix C, Eq.~186! can also be derived under
analogous conditions starting from a~Euclidean space–time! version of Eqs.~1!–~5! for a scalar
field on a finite lattice. Consequently, until further notice we disregard the fact thats is a bilinear
in the Grassmann algebra generators and simply understand Eq.~186! as an equation for a function
G5G(s). We will now analyze Eq.~186! further.

Equation~186! appears to be somewhat involved but it can be simplified the following way.
We can differentiate both sides of Eq.~186! with respect tos. The resulting equation can be
transformed to read

$2s G9~s!1G8~s!%$12G8~s!G8~2s@G8~s!#2!%50 . ~187!

Equation~187! is being obeyed if either one of the two following equations of very different
mathematical nature is respected:

2sG9~s!1G8~s!50, ~188!

G8~s!G8~2s@G8~s!#2!51. ~189!

The solution of the linear differential equation~188! reads

G8~s!;e2As ~190!

entailing

G~s!;~11As!e2As. ~191!

As G(s) depends onAs this solution is of no relevance in the context of Grassmann algebras. To
see this note that the functionG(s) contains odd powers ofAs in its ~Taylor! expansion~in terms
of t5As) around s50. If s is being interpreted as a bilinear form in the generators of the
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Grassmann algebra these terms have no interpretation within the Grassmann algebra framework.92

Consequently, in the following we can concentrate our attention onto the nonlinear functional
equation~189!.

To gain further insight it turns out to be convenient now to define the following functions@the
definition in Eq.~193! could equally well readd(t)52 i b(t)]:

b~ t !5t G8~ t2! 5
1

2

]

]t
G~ t2!, ~192!

d~ t !5 ib~ t !. ~193!

Then, having multiplied both sides by2As Eq. ~189! can be written as (t5As)

d2~ t !5d~d~ t !!52t. ~194!

This is an iterative functional equation: the functiond(t) is the~second! iterative root of21 ~for
a review of iterative functional equations see Ref. 93, in particular Chap. 11, p. 421, Ref. 94, in
particular Chap. XV, p. 288, also see Ref. 95, Chap. 2, p. 36!. The functional equation~194! has
been studied by Massera and Petracca96 who have pointed out its relation to the equivalent
functional equation

h~h~x!!5
1

x
. ~195!

@Define the involutionq(x)5(12x)/(11x). If h(x) is a solution of Eq.~195! the functionq
+h+q is a solution of Eq.~194!.# This functional equation characterizes functionsh for which
h2151/h ~note in this context Refs. 97–101, in particular Ref. 101, p. 712!. Equation~194! has
also been studied for real functions in Ref. 102, Chap. II, Sec. 5, p. 54, and in Refs. 103–106. Of
course, in view of Eq.~193! in general we are concerned with complex solutions of Eq.~194!.

If the function G8(s) has a definite symmetry unders→2s Eq. ~194! can be simplified to
some extent@getting rid of the imaginary uniti present in Eq.~193!#. If G8(s) is an even function
@i.e., up to some constantG(s) is odd# Eq. ~194! can be written as

b2~ t !5b~b~ t !!5t. ~196!

This iterative functional equation is a special case of the functional equationbk(t)5t which is
being called theBabbage equation~it has been studied first by Charles Babbage.107–110See Ref.
94, Chap. XV, Sec. 1, p. 288, Ref. 93, Sec. 11.6, p. 450, for more information and references,
recent references not referred to in Refs. 94, 93 are Refs. 111, 112!. Solutionsb(t) of Eq. ~196!
~i.e., solutions of the Babbage equation fork52) are calledinvolutory functions@(second) itera-
tive roots of unity/identity, periodic functions/maps#. If, for example, the functionG(s) stands in
correspondence to a Gaussian integral@cf. Eq. ~133!#, G(s)5s and, consequently,

b~ t !5t. ~197!

This is the most elementary involutory function one can think of. Note, that the set of solutions of
Eq. ~196! is very large as this set is equivalent to the set of even function~see, e.g., Refs. 113, 114,
Ref. 93, p. 451!. If G8(s) is an odd function@i.e., G(s) is even# Eq. ~194! can be written as

b2~ t !5b~b~ t !!52t. ~198!

However, this case is not very interesting as real functions solving Eq.~198! are necessarily
discontinuous~Ref. 94, Chap. XV, §4, p. 299, Refs. 103, 97–101, 104, Ref. 93, Subsec. 11.2B, p.
425!.
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The above consideration can be applied to the solutions of the Grassmann integral equation
found in Sec. III C. Equation~173! is of course being described by Eq.~197! @bI(t)5t#. From Eq.
~174! we recognize that the functionGII(s) does not have a definite symmetry unders→2s. We
find

bII~ t !5t ~12t21 3
2 t42 3

2 t6!. ~199!

and one can check that the corresponding functiondII(t)5 ib II(t) indeed fulfills Eq.~194! at order
t7. @Going through the above arguments one can convince oneself that this is the appropriate order
in t one has to take into account for the Grassmann algebraG8 . Ordert7 corresponds to orders3

in Eq. ~189!.#

IV. DISCUSSION AND CONCLUSIONS

While most of the explicit expressions obtained in the present paper for the Grassmann
algebrasG2n , n52,3,4, have been obtained here for the first time, some of them can be compared
to results derived earlier by other authors. The point is that partition functions for specific~finite-
dimensional! fermionic systems have been obtained by a number of authors and some of these
results can be used for direct comparison with the present results. For example, our expressions
~40!, ~60!, ~84!, can be seen to agree with Eq.~8!, p. 694, of Ref. 115. Furthermore, our Eq.~40!
is in line with Eq.~13!, p. 1298, of Ref. 116, the same applies to our Eq.~60! and its counterpart,
Eq. ~14!, p. 1298, Ref. 116. Also Eq.~16!, p. 1298, Ref. 116~for n53, l 53 and n54, l
52,3,4) gives the same results as our Eqs.~60!, ~84!. And finally, our Eq.~84! agrees with Eq.
~10!, p. 1083, of Ref. 117~for N54).

Our consideration of the action mapf in the present paper has been motivated by the formal-
ism of ~lattice! quantum field theory. However, the consideration of certain modifications of the
map f might also be of some interest from various points of view. Let us consider a special set of
modifications which can be described by replacing the Eqs.~16! by the equations

h̄ l5
]G̃@$C̄%,$C%#

]C l

, h l 5 2
]G̃@$C̄%,$C%#

]C̄ l

~200!

(G is replaced byG̃). For example, if one is just interested in the fixed point condition for the
action mapf @i.e., in the Eq.~131! for l51] it might make sense to consider instead of the action
map f a different mapf̃ @described by the Eqs.~16!, ~200!, respectively# having the same set of
fixed points but which is algebraically or numerically easier to study. One such modification
consists in choosingG̃5G0 @cf. Ref. 73, p. 291, Eq.~2.9!#. The implicit representation of the map
f given in Eqs.~15!, ~16! would then turn into an explicit representation of the mapf̃ which might
be easier to handle in some respect. As an aside in this context, we mention that for this mapf̃ the
equations~43!, ~64!, ~99! ~replaceA(2)8 on the rhs byA(2)) exhibit aformal similarity to the main
equation for the Schulz iteration scheme for the calculation of the inverse of a matrix@see Eq.~7!,
p. 58, in Ref. 118#.119–123 The similarity, however, is only formal as in general the matrix
P(2n22)!/P(2n)! is not invariant under the mapf̃ @for the simplest case,n52, for example, one can
convince oneself of this fact starting from Eqs.~43!, ~44! where one has to omit in this case the
primes on the rhs#.

As already mentioned the investigation performed in the present study within the framework
of Grassmann algebras has been inspired by a problem in quantum field theory which in its
simplest version~within zero-dimensional field theory! is a problem in real/complex analysis. The
standard analysis analogue of the Grassmann integral equation studied in Chap. 3~for l51) reads
@cf. Eq. ~8!#
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e g(y)5CE
2`

1`

dx eg(x1y)2g8(y)x. ~201!

This is a nonlinear integro-differential equation for the real functiong(x). Clearly, the elementary
function g(x)52ax2/2, 0,aPR @C5Aa/(2p)# solves this equation. However, the interesting
question is if this equation has any other~nonelementary! solution which stands in correspondence
to a non-Gaussian integral. No qualitative information seems to be available in the mathematical
literature in this respect. As pointed out in Ref. 28, Sec. 4, p. 859~p. 475 of the English transl.!,
Eq. ~201! is a very complicated equation. The main difficulty in explicitly finding any nonelemen-
tary solution to it~if it exists at all—we just assume this for the time being! consists in the fact that
it is very difficult if not impossible to calculate for an arbitrary function expg(x) its Fourier~or
Laplace! transform explicitly. The question now arises if the analysis in Sec. III D of the solutions
of the Grassmann integral equation found forn54, l51, might help in overcoming this problem.
We do not have any final answer on this but in our view it makes sense to say: perhaps. The
solutions of the Grassmann integral equation found forn54, l51, are characterized by two
properties which are not related to the anticommuting character of Grassmann variables. The
solutions were related, first, to eigenfunctions of the Fourier–Laplace transformation to the eigen-
value 1~i.e., to self-reciprocal functions! and, second, to some iterative functional equation. Now,
it seems to be reasonable to assume that also~some! solutions of Eq.~201! might be characterized
by these two properties. The two sets of functions obeying one of these two principles are very
large and one might think that the intersection of these two sets contains also other functions than
just the functions given byg(x)52ax2/2. The task of solving Eq.~201! then is equivalent to
studying eigenfunctions of the Fourier transformation to the eigenvalue 1, i.e., self-reciprocal
functions expg(x).124–126They obey the equation

e g(y)5E
2`

1` dx

A2p
eiyxe g(x). ~202!

The consideration of eigenfunctions of the Fourier transformation solves the above mentioned
problem of finding their Fourier transforms at once.127 There is a vast mathematical literature on
self-reciprocal functions~in particular for the Fourier transformation! but in our context it makes
sense to concentrate on a certain subclass of self-reciprocal functions. Klauder~Ref. 128, p. 375,
Ref. 59, Subsec. 10.4, p. 246! has pointed out the relevance of infinitely divisible characteristic
functions in a quantum field theoretic context. This entails in our context that the self-reciprocal
functions expg(x) should be self-reciprocal probability densities~positive definite ones, in addi-
tion: without zeros—this follows from infinite divisibility!. The subject of self-reciprocal~positive
definite! probability densities has been studied for some time in probability theory~Refs. 129–
135, Ref. 136, Subsec. 7.5, p. 122, Refs. 137, 138, Ref. 139, Chap. 6, p. 148, Ref. 140; see Refs.
137, 139 for some further references!. Of most relevance to the present problem is the work by
Teugels130 who describes explicit methods to construct solutions of Eq.~202! ~also note Ref. 140
in this respect!. From the solutions expg(x) of ~202! ~which are even functions! we define the
function G5G(2x2/2)5g(x).141,142The functiond(t) @Eq. ~193!# associated with it then has to
obey the functional equation~194! in order to ensure that the functiong(x) solves Eq.~201!. In
the case under discussion, the equations~192!–~194! can be reformulated the following way.
Define the functions

b̃~x!52
]g~x!

]x
52

]

]x
GS 2

x2

2 D5xG8S 2
x2

2 D , ~203!

d̃~x!5 i b̃~x!. ~204!

Then, from Eq.~194! one can derive the following iterative functional equation which has to be
fulfilled:
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d̃2~x!5d̃~ d̃~x!!52x. ~205!

As in Sec. III D, one can now assume a certain behavior of the functiong(x). Assuming again that
the functionG8(s) is an even function@i.e., up to some constantG(s) is odd# Eq. ~205! can be
written as

b̃2~x!5b̃~ b̃~x!!5x. ~206!

However, this case is not very interesting as it does not lead to any non-Gaussian function expg(x)
@Ref. 143, Theorem 3, p. 117~Teor. Veroyatn. Prim.!, p. 119~Theor. Prob. Appl.!; note that Lukacs
uses the term self-reciprocal in this article in a different sense than we do in the present paper#.
Assuming thatG8(s) is an odd function@i.e., G(s) is even# Eq. ~205! can be written as

b̃2~x!5b̃~ b̃~x!!52x. ~207!

However, this case is also not very interesting as real functions solving Eq.~207! are necessarily
discontinuous~Ref. 94, Chap. XV, Sec. 4, p. 299, Refs. 103, 97–101, 104, Ref. 93, Subsec. 11.2B,
p. 425!. Consequently, Eq.~205! cannot sensibly be simplified by the above considerations. How-
ever, the sketched program still faces another challenge. At first glance, it is not obvious how to
combine the existent theory of self-reciprocal probability densities with the theory of iterative
functional equations in an operationally effective way in order to find nonelementary solutions of
Eq. ~201! ~or its multidimensional generalizations! which correspond to non-Gaussian integrals.
This will have to be the subject of further research.

This discussion has brought us to the end of the present study. What are its main results? From
a mathematical point of view, the paper introduces a new type of equation which has not been
studied before—a Grassmann integral equation. The concrete equation studied has been shown to
be equivalent to a coupled system of nonlinear matrix equations which can be solved~Sec. III!.
From the point of view of standard quantum field theory, the main results of the present article are
as follows. For low-dimensional Grassmann algebras the present paper derives explicit expres-
sions for the finite-dimensional analogue of the effective action functional in terms of the data
specifying a fairly general ansatz for the corresponding analogue of the so-called ‘‘classical’’
action functional~Sec. II!. This is a model study which in some way can be understood as the
fermionic ~Grassmann! analogue of zero-dimensional field theory and which may turn out to be
useful in several respect. Moreover, for an arbitrary Grassmann algebra~related to an arbitrary
purely fermionic ‘‘lattice quantum field theory’’—on a finite lattice! on the basis of the explicit
results obtained for low-dimensional Grassmann algebras an exact expression for the four-fermion
term of the finite lattice analogue of the effective action functional is derived in a heuristic manner
@Sec. II E, Eq.~123!#. From the point of view of the conceptual foundations of quantum field
theory, the present study demonstrates on the basis of a finite-dimensional example that the
~Grassmann! integral equation proposed in Refs. 28, 73 can have solutions which are equivalent to
non-Gaussian integrals~Sec. III!. This certainly will be of interest in various respect. To illustrate
this point let us repeat in compact form some of the results found for the Grassmann algebraG8 in
Sec. III C~these results are specific for this Grassmann algebra!. Define for an arbitrary invertible
434 matrix B (detBÞ0) the Grassmann bilinears

Gq5 (
l ,m51

4

Blmx̄ lxm5x̄Bx, ~208!

Wq52 (
l ,m51

4

@B21# lmh̄ lhm52h̄@B#21h. ~209!

Then, the following equation applies:
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E )
l 51

4

~dx l dx̄ l ! e (h̄x1x̄h) exp@Gq2 1
2 Gq

21 1
2 Gq

32 3
8 Gq

4#5detB exp@Wq2 1
2 Wq

21 1
2 Wq

32 3
8 Wq

4#.

~210!

This should be compared to the well-known, corresponding result for a Gaussian integral

E )
l 51

4

~dx l dx̄ l ! e (h̄x1x̄h) exp@Gq#5detB exp@Wq#. ~211!

Moreover, in Sec. III C it has been found that the~Grassmann! function Gq 2 1
2 Gq

21 1
2 Gq

3

2 3
8 Gq

4 is the ~first! Legendre transform of the functionWq 2 1
2 Wq

21 1
2 Wq

3 2 3
8 Wq

4 @cf. Eqs.
~181!–~183!#. This entails that these functions behave exactly the same way as the functionsGq

and Wq . It is clear that any Grassmann algebraG8k , 1<kPN, supports equations of the type
~210! @simply by multiplyingk copies of Eq.~210!#. Given the role that Gaussian integrals and
their properties play in quantum field theory, statistical physics and probability theory it will be
interesting to explore the implications and applications of the above results in the future.
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APPENDIX A

Here we collect some formulas for compound matrices.144 Let B, D be n3n matrices. The
compound matrix Ck(B), 0<k<n, is a (k

n)3(k
n) matrix of all orderk minors of the matrixB. The

indices of the compound matrix entries are given by ordered strings of lengthk. These strings are
composed from the row and column indices of the matrix elements of the matrixB the given
minor of the matrixB is composed of. Typically, the entries of a compound matrix are ordered
lexicographically with respect to the compound matrix indices.~We also apply this convention.!
The supplementary (or adjugate) compound matrix Cn2k(B) ~sometimes also referred to as the
matrix of the kth cofactors! of the matrixB is defined by the equation@cf. Eq. ~24!#

Cn2k~B!5Cn2k~B!!. ~A1!

The components of the supplementary compound matrixC n2k(B) can also be defined by means
of the following formula@here,l 1, l 2,¯, l k , m1,m2,¯,mk ; Ref. 145, Chap. IV, Sec. 89,
p. 75, Ref. 146, Chap. 3, p. 18; also see our Eqs.~31!–~36!#

Cn2k~B!LM5
]

]Bl 1m1

¯

]

]Bl kmk

detB. ~A2!

This comparatively little known definition of~matrices of! cofactors~supplementary compound
matrices! is essentially due to Jacobi~Ref. 147, Sec. 10, p. 301, p. 273 of the ‘Gesammelte Werke,’
p. 25 of the German transl.; also see the corresponding comment by Muir in Ref. 148, Part I, Chap.
IX, pp. 253–272, in particular pp. 262/263!.

For compound matrices holds (1r is the r 3r unit matrix,a some constant!

Ck~a1n!5ak1(
k
n). ~A3!

Important relations are given by theBinet–Cauchy formula

Ck~B!Ck~D!5Ck~BD! ~A4!
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from which immediately follows

Ck~B21!5Ck~B!21, ~A5!

the Laplace expansion

Ck~B!C n2k~B!5C n2k~B!Ck~B!5Ck~B!Cn2k~B!!5Cn2k~B!!Ck~B!5detB 1(
k
n),

~A6!

Jacobi’s theorem@a consequence of the Eqs.~A6! and ~A5!#

Ck~B21!5
1

detB
C n2k~B!5

1

detB
Cn2k~B!!, ~A7!

and theSylvester–Franke theorem

detCk~B!5~detB!(k21
n21). ~A8!

Compound matrices are treated in a number of references. A comprehensive discussion of
compound matrices can be found in Ref. 149, Chap. V, pp. 63–87, Ref. 150, Chap. V, pp. 90–110,
and, in a modern treatment, in Ref. 151, Chap. 6, pp. 142–155. More algebraically oriented
modern treatments can be found in Ref. 75, Part I, Chap. 2, Sec. 2.4, pp. 116–159, Part II, Chap.
4, pp. 1–164~very thorough!, Ref. 152, Chap. 7, Sec. 7.2, pp. 411–420, and Ref. 153, Vol. 3,
Chap. 2, Sec. 2.4, pp. 58–68. Concise reviews of the properties of compound matrices are given
in Refs. 154, 155. Also note Refs. 156 and 157.

APPENDIX B

Let B be a 333 matrix. Then, the following identities apply:

adjB5B22B trB1 1
2~ tr B!2132 1

2tr~B2!13 , ~B1!

tr~adjB!5 1
2~ tr B!22 1

2tr~B2!. ~B2!

Equation ~B1! can be derived by means of the Cayley–Hamilton theorem@cf. e.g., Ref. 158,
Subsec. 2.4, p. 264, Eq.~2.4.7!, Ref. 159, Sec. 7, p. 154, Eq.~29!#.

APPENDIX C

In this appendix we want to rederive Eq.~186! starting from a~Euclidean space–time! version
of the Eqs.~1!–~5! on a finite lattice withk sites. The equations~3!, ~5! then read

G@f#5W@J#2(
l 51

k

Jlf l , ~C1!

Jl52
]G

]f l
. ~C2!

In analogy to the Eqs.~175!, ~178! we define~B is a symmetrick3k matrix!

Gq5Gq@f#52
1

2 (
l ,m51

k

Blmf lfm52
1

2
fBf, ~C3!

Wq5Wq@J#5
1

2 (
l ,m51

k

~B21! lmJlJm5
1

2
JB21J. ~C4!

5444 J. Math. Phys., Vol. 44, No. 11, November 2003 K. Scharnhorst



Now we assume thatG, W depend onf, J only as functions ofGq@f#, Wq@J#, respectively, and,
in addition, that the identityG5W holds. Then, in analogy to the Eqs.~181!–~183! the Eqs.~C1!,
~C2! read

G~Gq!5G~Wq!2(
l 51

k

Jlf l , ~C5!

Jl52
]G~Gq!

]f l
52G8~Gq!~fB! l . ~C6!

Here, again

G8~Gq!5
]G~Gq!

]Gq
. ~C7!

In view of Eq. ~C6! it holds

Wq52Gq@G8~Gq!#2. ~C8!

Taking into account the Eqs.~C6!, ~C8!, Eq. ~C5! can be written as

G~s!5G~2s@G8~s!#2!12sG8~s!, s5Gq, ~C9!

and this equation completely agrees with Eq.~186!.
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