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The present study introduces and investigates a new type of equation which is
calledGrassmann integral equatian analogy to integral equations studied in real
analysis. A Grassmann integral equation is an equation which involves Grassmann
(Berezin integrations and which is to be obeyed by an unknown function over a
(finite-dimensional Grassmann algebrg,,, (i.e., a sought after element of the
Grassmann algebrg,,). A particular type of Grassmann integral equations is
explicitly studied for certain low-dimensional Grassmann algebras. The choice of
the equation under investigation is motivated by the effective action formalism of
(lattice) quantum field theory. In a very general setting, for the Grassmann algebras
Gony N=2,3,4, the finite-dimensional analogues of the generating functionals of
the Green functions are worked out explicitly by solving a coupled system of
nonlinear matrix equations. Finally, by imposing the conditiGp{¥},{V¥}]
=Go[{\V},{\¥}]+const, <\ eR (¥, ¥, k=1,...n, are the generators of

the Grassmann algeb€a,,), between the finite-dimensional analog@sandG of

the (“classical”) action and effective action functionals, respectively, a special
Grassmann integral equation is being established and solved which also is equiva-
lent to a coupled system of nonlinear matrix equations\ #f1, solutions to this
Grassmann integral equation exist for2 (and consequently, also for any even
value ofn, specifically, forn=4) but not forn=3. If A=1, the considered Grass-
mann integral equatiofof course has always a solution which corresponds to a
Gaussian integral, but remarkably in the case4 a further solution is found
which corresponds to a non-Gaussian integral. The investigation sheds light on the
structures to be met for Grassmann algelgkaswith arbitrarily chosem. © 2003
American Institute of Physics[DOI: 10.1063/1.1612896

[. INTRODUCTION

The problem to be studied in the present paper is a purely mathematical one and one might
arrive at it within various research programmes in mathematics and its applications. Our starting
point will be (lattice) quantum field theory* and for convenience we will mainly use its termi-
nology throughout the stud§ncidentally, for a finite-dimensional problgnmHowever, one could
equally well rely on the terminology of statistical mechanics or probability theory throughout. We
will be interested in certain aspects of differential calculus in Grassni@ra3manh algebra3
and in particular in Grassmann analogues to integral equations studied in real analysis which we
will call Grassmann integral equation® Grassmann integral equation is an equation which
involves GrassmaniBerezin integrations and which is to be obeyed by an unknown function
over a(finite-dimensiongl Grassmann algebi@,, (i.e., a sought after element of the Grassmann
algebraG,,). To the best of our knowledge this problem is considered for the first time in this
paper. Of course, the following comment is due. Bearing in mind that in a Grassmann algebra
taking a(Grassmannderivative and an integral are equivalent operations we could equally well
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denote any Grassmann integral equation as a Grassmann differential equation. There is an exten-
sive literature on supersymmetric extensions of differential equations. Corresponding research has
been performed in areas such as supersymmetric field tliseey e.g., Ref. 6, Vol.)3supercon-

formal field theory, the study of supersymmetric integrable mo¢sde, e.g., Refs. 7,)8and
superanalysigfor a review of the latter see the recent book by Khrennikiovparticular Chap. 2,

and references therginOnly few mathematical references exist which treat pure Grassmann
differential equationgunderstood in the narrow sense, i.e., in a nonsupersymmetric $&ffing

In the physics literature, specifically in the quantum field theoretic literature, such equ@tions
general, for infinite-dimensional Grassmann algebcas be found in studies of purely fermionic
models by means of the Schwinger—Dyson equatibii®or the Schrdinger representatiofRefs.

21, 22 and follow-up references citing thesé/ithin the framework of supersymmetric generali-
zations of conventional analysis, it is customary to consider all structures in strict analogy to real
(complex analysis. Consequently, as we will be lead to the problem of Grassmann integral
equations from the corresponding problem in real analysis the choice of this term should not lead
to any objection. Incidentally, it might be interesting to note that Khrenrfikoentiong at the end

of Chap. 2, p. 102p. 106 of the English translatiphintegral equationgitem 9 among the
subjects which have not yet been studied in superanalysis.

Having characterized in general the subject of the present study we will now explain in
somewhat greater detail the problem we are interested in and where it arises from. Our motivation
for the present investigation derives from quantum field theory. Quantum field theory is a rich
subject with many facets and is being studied on the basis of a number of approaches and methods.
For the present purpose, we rely on the functional integral approach to Lagrangian quantum field
theory (see, e.g., Ref. 14, Ref. 15, Chap. 9, p. 425, Ref. 16, Ref. 6, Vol. |, Chap. 9, p.TR76
begin with, consider the theory of a scalar figldih k-dimensional Minkowski space—time. By the
following equations one defines generating functionals for various types of Green functions of this
field (see, e.g., Ref. 14, Ref. 1bc. cit, Ref. 16, Ref. 17, Chap. 6, Ref. 6, Vol. Il, Chap. 16, p),63

z[J]=C J D ¢! Tol 41 +i/d% 309 6() (1)

W[J]=—iInZ[J], 2

I[¢]=W[JI]- f dx I(x) B (x), 3
—  SW[J]

0= 5300 - (4)

From Eg.(3) one finds the relation

—— =—J(X). 5

In Eqg. (), /D ¢ denotes théinfinite-dimensional functional integration over the scalar fietl
Z[J] is the generating functional of the Green functiéh&' W[ J] is the generating functional of
the connected Green functions while fffiest) Legendre transforn’[ ¢] of W[ J] is the generat-
ing functional of the one-particle-irreducib(@Pl) Green functionsI'([ ¢] is the so-called clas-
sical action of the theory an@ some fixed normalization constarf[ ¢] is also called the
effective action of the theory and, in principle, any information one might ever be interested in can
be derived from it.

Equation(1) defines a mapg;:I'g[ #]—2Z[J], from the class of functionals called classical
actions to the class of functionals Furthermore, we have mappings,:Z[ J]—W[J], [Eq. (2)],
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and g;:W[J]—T[¢] [Eq. (3)]. These three maps together define a ngapg,eg,="f:I'g[ @]
—1I'[ ¢] from the set of so-called classical actions to the set of effective adiemsvill call f the

“action map”). In general, the action map is mathematically not well-defined in quantum field
theory due to the occurrence of ultraviolet divergencies and one has to apply a regularization
procedure for making proper mathematical sense of the above equations. A widely applied ap-
proach which is very natural from a mathematical point of view consists in studying quantum field
theory not on a space—time continuum but on a space—time l&teg e.g., Refs. 13+4The map

f can be represented by the following single equation which can be derived from the Eq3):

eir[@ch D peilol ¢+ 61 +17d% 09 609 6)

J(x) is given here by Eq(5), consequently, Eq6) is only an implicit representation of the map
f. For any quantum field theory, the properties of the action mage of considerable interest but
are hard if not impossible to study in general. In the simplest dasés a quadratic functional of
the field ¢ (reasonably chosen to ensure that the functional integral is well dgfimbdn, the
functional integral is Gaussian and one immediately fifiice field theory; const is some constant
depending on the choice &)

I'[¢]=T"g[ ]+ const. (7)

There are very few other cases in which the formalism can explicitly be studied beyond pertur-
bation theory. A number of exact results exist in quantum mech@witieh can be understood as
qguantum field theory in & 1-dimensional space-time; see, e.g., Refs. 25, R6r some quantum

field theoretic results see, e.g., Ref. 27.

It is common and successful practice in mathematics and physics to approach difficult infinite-
dimensional problems from their finite-dimensional analogues. For example, in numerical studies
within the framework of lattice quantum field theory the infinite-dimensional functional integral as
present in Eq.(6) is replaced by a multidimensional multiple integral. The simplest finite-
dimensional analogue of E() is being obtained by replacing the infinite-dimensional functional
integral by an one-dimensional integral over the real ljivore precisely, we obtain it from the
Euclidean field theory version of E¢) where the imaginary unitin the exponent is replaced by
(—)1. g’ denotes here the first derivative of the functipr

+ oo
eg(y)ch dx et —=g" ()X, (8)

Still, even the study of Eq(8) represents a formidable task. The consideration of (tree-
dimensionadl analogues of the Eq$1)—(6) is often pursued under the name of zero-dimensional
field theory[Refs. 28—42, Ref. 15, Subsec. 9-4-1, p. 463, Refs. 43—46, Refs. 18, 47-58, Ref. 59,
Chap. 9, p. 211, Refs. 60—64; we have included into the list of reference also articles on the static
ultralocal single-component scalar model but left aside papers on the corresp@{tNygym-
metric model.

For simplicity, the above discussion has been based on the consideration of a bosonic quantum
field. However, fermionidGrassmann valuedquantum fields are also of considerable physical
interest(for a general discussion of Grassmann variables see Refhd analogue of E(6) for

a purely fermionic field theory of the Grassmann fidld W reads as follows:

eir[iwch D(x,x) € Tol+¥ur+¥I+ird% (10x00+x09700) 9)

OT[W, W] __5r[«?,\1r]

: — (10)
oV (x) 7 5V (x)
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Here,D(x,x) denotes the infinite-dimensional Grassmann integration and the functional deriva-
tives used in(10) are left Grassmann derivatives. The finite-dimensidfemionic) analogues of
the Egs.(1)—(5) and(9), (10) consequently re&d®°

Z[{ﬂ,{n}]ch l[[l (dy, d%)eGo[{;}x{X}]*EPﬂ (;|X|+;|77|)' (12)
WI{m} {nt]=InZ[{n}.{n}], (12)
GLYL{WH=W{T (1= 2 o+ m), (13

— OW[{7}, IW[ {7},
V= [{(z?}l{n}], v = [{j}a{n}], 14

and
eGUVLIVIZ ¢ J ﬁ (dy; dip) e Col X+ Vhir+ Wi+ s (o xim), (15)
I=1
IG[{¥} {¥ IG[{W} (¥

7im [{&q},{ }]’ . [{ﬂ_},{ }]’ 16

I [

respectively.{W¥}, {¥} denote the sets of Grassmann variabigs, 1=1,...n and ¥, |
=1,...n, respectively, which are the generators of the Grassmann alggbfmore precisely, we
are considering a Grassmann algegja as they,, x; in Eq. (15) are also Grassmann variables,
but we will ignore this mathematical subtlety in the followin@hese generators obey the stan-
dard relations

‘P|\I’m+\[,m‘l'|:\I—’ﬂpm‘f"l’mq—”:\l—ﬁ@m"“?mq—ﬁzo. (17)

In this paper, we will concentrate on the explicit study of the E#S), (16) for small values oh
(n=2,3,4) (some of the calculations have been performed by means of a purpose designed
Mathematica prograff). The Eqs(15), (16) define(implicitly) a mapf between the elemen@,

andG of the Grassmann algebgs,, (in analogy to the infinite-dimensional case, we call the map

f the action map As we will see, the Eqs(15), (16) are equivalent to a coupled system of
nonlinear matrix equations which however can successively be solved comfetedy general
exposition of matrix equations see, e.g., Refs. 71 and Tt#is way, we will explicitly work out

the action magf for the following fairly general ansatz f@&,:

n 2 n
WV —A0) @3 - @) — —
GO[{\P}v{\P}]_A + I,;‘;l AI,m\PI\Pm + 21 Iyl my=1 Alllz,mlmzqflqulzqulqjmz
1)2 !
= (®) KT
* 3!) |l,|2,|3'n§m2‘m3:1 Al tg mympmg V1, W1, W1 Wi Wi Wi, +
1)2 !
+ | A2 2RI R (18)
n! [y Mo my=1 Tyl my-eomy =1y ¥ my my*

Here, A(®) is some constant and the coefficiemgk), k>1, are chosen to be completely anti-
symmetric in the first and in the second half of their indices, respectively.
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Although the explicit determination of the action mdpbetweenG, and G for low-
dimensional Grassmann algebras represents previously unknown information, it may seem that the
study of the mag for low-dimensional Grassmann algebras is a mathematical exercise of purely
academic nature as quantum field theory and statistical mechanics are concerned with infinitely
many degrees of freedom. To some extent this view may be justified for the time being but one
should also take note of the fact that results for the Grassmann algéhyasd G,(,- 1) are
closely related. To see this observe the following. Put in @#8) considered in the case of the
Grassmann algebrd,, the coefficientA??) equal to one but all other coefficients®, k>1,
equal to zero whose index sgt} contains at least one index with valoe

AB=1, 19

AP =0, Kk>1. (20)
Then, perform in Eq(15) the Grassmann integrations with respeciyta x,. Up to the factor
(expW,V¥,) present on both sidgso summation with respect to here Eq. (18) then coincides

with Eq. (18) considered in the case of the Grassmann algébya ;). Consequently, results
obtained for low-dimensional Grassmann algebras tightly constrain structures to be found for
Grassmann algebras,,, with arbitrarily chosem. In fact, we will use this observation in two
ways. On the one hand, we will rely on it in order to check the explicit results obtaineal for
=4 andn= 3 for compatibility with those obtained for=3 andn=2, respectively. On the other
hand, on the basis of the above observation we will extrapolate some results obtained for
=2,3,4 to arbitraryn which can be used later in the future as working hypothesis for further
studies.

Having explicitly worked out the action map betweenG, and G for low-dimensional
Grassmann algebras, we will not stop our investigation at this point but pursue our study still one
step further. In the Refs. 28, 73, and 74 it has been ar@gueal quantum field theoretic context
that it might be physically sensible and interesting to look for actibgs#] which are not
quadratic functionals of the fiele (i.e., which do not describe free fieldisut for which Eq.(7)
also applies. For the purpose of the present investigation we will slightly extend our search. We
will look for solutions to the equation (@\ e R)

G{W} [T} =G {AT}{NT}I+A(N). 1)

\ can be considered here as a finite-dimensional analogue of a wave function renormalization
constant in continuous space—time quantum field thelogfh ) is some constant which is allowed
to depend on\. Equation(21) turns the implicit representation of the mémiven by the Egs.

(15), (16) into a Grassmann integral equation [ {WV},{¥}] (more precisely, into a nonlinear
Grassmann integro-differential equatios we will see, this Grassmann integral equation is
equivalent to a coupled system of nonlinear matrix equations whose solution in turn is equivalent
to the solution of the considered Grassmann integral equation. In the present study, td26 Eq.
is just a mathematical problem to be studied. The possible relevance of any solution(p1)Eq.
physical problems will remain beyond the scope of the present paper. Some comments in this
respect can be found in Refs. 28 and 73.

The plan of the paper is as follows. In Sec. Il we work out explicitly the action friagtween
G, and G. Section Il A contains some mathematical preliminaries while the following three
sections are devoted to the cases2,3,4, respectively. Section Il E finally studies the extrapola-
tion of some of the results obtained to Grassmann algefyrawith arbitrarily chosem. Section
Il is concerned with the study of the Grassmann integral equ&8ihn On the basis of the results
obtained in Sec. Il, in Secs. llIA-IIIC it is solved far=2,3,4, respectively. Then, Sec. IlID
contains an analysis of certain aspects of the solutions of the Grassmann integral equation found
for n=4. In Sec. IV the discussion of the results and conclusions can be found. The paper is
supplemented by three Appendixes.
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II. THE ACTION MAP FOR LOW-DIMENSIONAL GRASSMANN ALGEBRAS

A. Some definitions

To simplify the further considerations we introduce a set Bix((}) matricesA?¥ (k
=1,...n) by writing (choosel ;<l,<---<l,, m<m,<---<my),

AGY =AY (22)

fy e leomymy

(we identify the indiced., M with the ordered stringk;---l,, m;---m,) or, more generallynot
requesting ; <l,<---<l,, m<m,<---<m,)

AGY = saiaa(ly, .. L lsghon(my,.. . mIIAPR, o (23

The indicesL,M label the equivalence classes of all permutations of the indices. |, and
my,...,my, respectively, andr,, o, are the permutations which bring the indicksm; (i
=1,...k) into order with respect to the relation[i.e., o4(l1)<o(l5)<---<o.(ly), op(m;)
<op(my) <---<op(my)]. The matrix elements of the matrik®®) are arranged according to the
lexicographical order of the row and column indicesM . [We identify the indices., M with the
ordered stringsr,(l1)---o.(ly), op(my)---op(my), respectively}

We also define a set d@ua) (J)x (f) matricesA®9* (k=1,...n) by writing

AR = g ARNT T, (24)
where the §) X (}) matrix £® is defined by
ERi=e 1 mymp (25)
consequently,
EWT=(—1)(n—kkgn—k), (26)

[Quite generally, for any) X (§) matrix B we defineB* by B*=£®BTe®T ] It holds (4, is the
r Xr unit matrix

K KT
gkek) _1(E)' (27
gTek) = 1(2). (28

The transition from a matriB to the matrixB* corresponds to applying the Hodge star operation
to the two subspaces of the Grassmann algéBragenerated by the two sets of Grassmann
variables{W¥} and{V¥} and interchanging thertcf., e.g., Ref. 75, Part I, Chap. 4, p. )50 his
operation on the matriB is an involution as B*)*=B.

Furthermore, it turns out to be convenient to define arrays of partition functianstheir
finite-dimensional analogugsFirst, we choose

C=e Gol{0h{0}] = g=A® (29)

This choice in effect cancels any constant term in @8) (in this respect also see Ref. 73, p. 288
Now, we definé® (we apply the conventiotfidy; x;= &;; )

n
p:p(Zﬂ)*ch H (dy, dx1) e Golixd Xt (30)
=1
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We then define arrays of partition functioR&"~2K* [these are})) X (}) matriced for subsystems
of Grassmann variables wheke degrees of freedom have been omittgd slight misuse of
physics terminology we denote a pair of Grassmann variablesV ,, by the term degree of
freedom;l<l,<---<l}, m<m,<---<my in the following):

p(2n-2K)x _ o .9 p (31)
1M1 k" k
« J J Jd J
—(-1) Z[{m}.{m}] : (32)

an. Inm.  dm dn,
ty @%my he 7 my 7= 1=0

Recursively, Eq(31) can be written as followpl ,>1,_ 1, m>m,_; note the different meaning
of the indicesL, M on the left-hand sidélhs) and on the right-hand sidehs) of the equatiof

2n—2k+2)*
7 Py

p(2n— 2K« _ _
LM AT Alf,mk (33

Let us illustrate the above definitions by means of a simple example. Choose

Gol (D= 2 Alixm: (39
Then
Z[ {7} { m}]= detA@e~ A 1 (35
and
p2n-2K+*_ ¢ n—k(A(z)) (36)

[cf. the references cited in relation to E42) of Appendix A and Ref. 77, Sec. 2, Ref. 78, also see
Ref. 17, Chap. 1, Sec. 1.%Here,C" X(A?)) is the (h—k)th supplementary compound matrix of
the matrixA(®) (for a definition and some properties of compound matrices see AppendByA
virtue of Eq.(A6) (see Appendix Ait holds

P(Zr‘l— 2k)*P(2k) — P(2k) P(2n—2k)* — detA(Z)l(n) . (37)
k

B. Explicit calculation: n=2

The case of the Grassmann algelbta(n=2) to be treated in the present section is still
algebraically fairly simple but already exhibits many of the features which we will meet in
considering the larger Grassmann algelgfasGg. Therefore, to some extent this section serves a
didactical purpose in order to give the reader a precise idea of the calculations to be performed in
the following two sections. These calculations will proceed exactly by the same steps as in this
section but the algebraic complexity of the expressions will grow considerably. Also from a
practical, calculational point of view it is advisable to choose an approach which proceeds step-
wise from the most simple casa+£ 2) to the more involved onesi& 3,4) in order to accumulate
experience in dealing with this growing complexity. On the other hand, thencageis special in
some respect and deserves attention in its own right.

According to our general ansat8) we put

2
Gol{WH{WH=AO+ > AW W+ AL W9,y (39
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and G[{\f},{\lf}] can be written in the same way

2
GHWL{WH=AC"+ 3 AR Wt ALY W0,V (39

No other terms will occur for symmetry reasons. One quickly finds for the partition funjatfon
Eqg. (30)]

p=eA” = p)* = detA@— A", (40)

Of course, herei!*\(“)*=A(142)'12 applies—again ignoring the fact thatery formally) these constants
live in different spaces, cf. Eq24). The notationP*)* is introduced in order to indicate how in
larger Grassmann algebras this partition function transforms under (unaiary) transformations
of the two subset§ W}, {¥} of the generators of the Grassmann algebra. Cle&®)’ then
transforms exactly the same way A$)* does and this fact suggests the chosen notatibime
same will apply to any other partition functid®®"* for larger Grassmann algebrgs,.) The
result of the mam,°g, reads(adjB denotes here the adjoint matrix of the matx

(4% : (adiA®) A12 12—
W[{#n}.{n}]=InP _|m2:1WWWm W’hﬂz’h’?z (41)

The only assumption made to arrive at this result is ®f4t*#0. We can now proceed on the
basis of the general Eql3) specified ton=2,

2
GH{YL{WV=WH{T {7}] =2 ¥+ ¥, (42)

We insert Eq.(39) onto the Ihs of Eq(42) and the explicit expressions fay, » found from Eg.
(39) according to Eq(16) on its rhs. Comparing coefficients on both sides we find the following
two coupled equations:

]A(Z)
AR =2a2) _A(Z)' A(Z)' (43)
, , tr[A(z)’ adJA(Z)] , detA(®)7) 2
A(142)12 4A(142 12~ 2 —p@r (142),12+ O A(142),12- (44)
Equation(43) can immediately be simplified to read
adjA®
(2)r — pA(2)r ()
A=A _p(TA (45)

From Eq.(45) one recognizes that the matr?)’ is the generalized2}-inverse of the matrix
adjA@/P™)* (cf., e.g., Ref. 79, Chap. 1, p).7

We can now successively solve the EG#), (44). Choosing deA(?)’ #0 [By virtue of Eq.
(45) this entails deA®+0.], we immediately find from Eq45)

(2) P (2)

Inserting this expression fok(®)' into Eq. (44) yields the following solution:
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(4)x \2
A(142),'12:<W) AL 1o (47)
In analogy to Eq(40), we can now define a quantity
PA)*" = detA2) — AD* (48)

and from Eqgs(46), (47) we find [taking into account Eq(40)]

(4)%\3 (4)% \ 2
(4)yxr — (P ) ( P ) P(4)*

P = (deta@)2™ | deta®

(49

Taking the determinant on both sides of E46) provides us with the following useful relation:

( P(4)*)2

(2)r —
detA W

(50

Up to this point, very little is special to the case-2 and we will meet the analogous equations
in the next sections.
We turn now to some features which are closely related to the algebraic simplicity of the case
n=2 and which cannot easily be identified in larger Grassmann algebras. Th&lBgand (50)
can now be combined to yield the equation

p(4)*/ :W P (51)
which is converted R* detA®)’ 0 entail P()*’ #0) into

detA®’  detA®
p@r — Tp@r

(52

An equivalent form of Eq(52) is

4 4
A, _ AfY 1,
detA®®)’  detA®)

(53

From Egs.(52) and(53) we recognize that fon=2 the action mag has an invariant which can
be calculated from the left- or right-hand sides of these equations.
We are now going to invert the action m&g° From Eqgs.(49) and (52) we easily find

(detA?)")?

P(4)* = P(4)*/

detA®)) 2
) pA*r, (54)

P(4)*/

Equation(52) also allows us to find the following inversion formulas for the nfipm Eqgs.(46),

47):

detA®)’
AP = (—p<r) A", (55)
detA®)) 2
A(142),12: (—P(Z)T A(142),12- (56)

From the above equations we see thatrfer2 the action mag can easily be invertetbnce one
assume®@* £0, detA@ 0, P*’ £0, detA®’ #0).
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C. Explicit calculation: n=3

The casen=3 is already considerably more involved in comparison with the cas@
treated in the preceding section. In the present and the next sections, as far as possible and
appropriate we will apply the same wording as in Sec. 1IB in order to emphasize their close
relation.

We start by parametrizinG, and G according to our general ansdtz. Eq. (18) and Eqgs.
(38), (39)].

3 3

_ _ 1 _

Cl{V}(WH]=AV+ Z ARV Yty D AL w1, i,
+ AL 13V WLV W W, (57

3 1 3
S5 — A0)r (2)1yy _ (4) ST

G[{\If},{‘lf}] A +I,m2:1 Al,m ‘qu,m+4 Il,Iz,n%m2:1 AIllz,mlmz\I’I1 Izlpmqum2

+A(162)3',123}I_’ R SR (58
For the partition function we finficf. Eq. (30)]

P=eA”" = p6)* = detA@ — tr( AW*AR) — AO)* (59)
=—2 detA@ + tr(PM*A2)) — A, (60)

In analogy to Eq.40), here A®*=A%), .. applies. In the lower lindEq. (60)], we use the
notation[cf. Egs.(31) and (40)]

PW=C,(AP)— AR~ pH*=7djAl>)— A4)* (61)
[adjA®) = C,(AP)* 1.

After some calculation we obtain the following expression\Mf{ #},{ }] (to arrive at it we
only assumeP(®*0):

P(4)* A(Z)* 1 P(4)* 2
W7} { 1= InPO* — e = =& 7170, Ten, T — = | (8% 717
: B 7 7m ™ ey 7,7,y I, 5 | Bier 71 7m
1 tr(PW*AR)  2detP®*]
t e 1- SO (P2 | T1T27137M1 7275 (62

Here and in the following we use the notatiBmALﬁlﬁznmlnm2 for a multiple sum ovet, I,

m,, m, with the restrictiond ;<I,, m;<m, applied;L={l,l,}, M={m;,m,}. The analogous
convention is also applied to multiple sums over more indices. To arrive at the further results it is
useful to take note of the equation

(PR 7 7m)?= =2 Co(P) L 70,701, Dim, Tm, - (63)

We proceed now exactly the same way as in Sec. Il B. We insert@jjonto the Ihs of Eq(13)

and the explicit expressions fay, 7 found from Eq.(58) according to Eq(16) on its rhs. Again,
comparing coefficients on both sides we find the following three coupled nonlinear matrix equa-
tions:

p(4)*
AR =2oa2) _ A(2)r E(E)TA(Z)’ ' (64)
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AR) p(4)* _ tr(A(z)’ p(4)*) 1,

Ayxr _ A)xr A)xr
AB*r — g B 1 A(4) S

pE)*p(2) — adj p(4)*

pH*p2)r — tr( p(4)*p(2)/ )13
A (P(G)*)Z

P(G)* (4)xr _ ade(Z)/

adjA®)’,

(65)

2 H *
Ak 127 6A‘1%’3',123+w{ AL 1A (POT AR + (P adA® )

detA®)")2
+tr(A@adiA® ") tr (AR AD* ) — detA@) tr( AR AD* ) + %
2
2)r Ayxr H 4)* H 2)rp(4)* 2)r p(4)xr
-I—(PG*)Z(detA( ) tr(AB* adj PM*) —tr adj AR PM*) ] tr(AR) AM*7)

2
+ 5rery3 (detA®)")? detP @, (66)

1
—E(detA(z)’)ztr(P(“)*A(Z)) (P

Equation(64) is equivalent to the equation

p(4)*
A =p@) FOH AGQ) (67)

The matrixA®)’ is the generalizedR}-inverse of the matrib@**/P(®)* (cf., e.g., Ref. 79, Chap.
1,p. 7.
In analogy to the procedure applied in Sec. 1B, we can now successively solve the Egs.
(64)—(66). Choosing defA(®)’ 0 [by virtue of Eq.(67) this entails deP¥*+ 0], we immediately
find from Eq.(67) an explicit expression foA(?)’. This can be inserted into E¢65) to also find
an explicit expression foA*)*’ . Finally, both these explicit expressions %)’ andA(“*’ can
now be inserted into Eq66) to solve it forA(l‘iz)gf 123 The results obtained read as follows:

(6)*
AR =p@)*[pA)*]~1= Jetp@ adjP*)*, (69)
(P(G)*)Z P(G)*
Dxr _ 4)% 2 4)x A)%

FXCOL—— TP | Jep@" PA*A@PA)x _p(A)+| (69)

(P(G)*)5 3(P(6)* 4 4(P(6)*)3

6y — — (P@*ACHT 4+ (4)* A(2)y —
A123'123_(detP(4)*)2 1= Gep@~ trfadfP™*A') ] (detP@%)2 *)2tr(P A*) Jetp@~ -

(70

In deriving Eq.(70) we have made use of the ident{#2) given in Appendix B. In analogy to the
Egs.(61) and(59), we can now define

P(4)*/ — ade(Z)/ _ A(A)*/, (71)
P(6)*r — detA(Z)r _ tr(A(4)*rA(2)r ) _A(G)* r, (72)
and from the Eqs(68)—(70) we find

(P(G)t)(i

A)xr _ 4)x A (2)p(4)*x
p(4) _(detP4*)2P()A( pA (73
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(P(G)*)S 2 2(P(6)*)4 2(P(6)*)3

(6)xr — _ — E=ICOLYNCINN g (4)* A(2)
P (detP@)2 | 1~ Gegprar AP ATI ] = rarprareyz WPT AT + e
(74)

Taking the determinant on both sides of the E@®) and (73) provides us with the following
useful relations:

) (P(G)*)3
detA = Jetp@* (75

(P(6)*)8
detP(*)*" = (detP® *)4detA(2). (76)

Finally, also for the case=3 we derive equations which describe the inverse of the action
mapf (the comment made in Ref. 80 of Sec. II B also applies hé&m®m Eqs(68), (69), (73), we
find

6)x
P(4)*:P(6)*[A(2)/]—1: %ﬁm_’ade(Z)/' (77)
p(6)* p(6)*
AD* — oA | [GotA™)? adj A@'P@*' A1) _ adiA@)" || (78
(6)%
A(Z)ZWA(Z)’ P(4)*/A(2),, (79)

where nowP(®)* is being understood as a function of the primed quantities whose explicit shape
remains to be determined. Inserting EG&?), (78) into Eq.(74) allows us to derive the following
explicit representation of the partition functi®f®* in terms of the primed quantities:

2 -1
(6)x — (2)r\2 2)r _ (A)xr p(2)r v p@)x 1 A(2)1\1_ p(6)x7
P = (detA®")? 2 detA®’ —2 tr(PW* A®) + s trf adi( P A )| —P ]

(80)

In principle, on the basis of this result also an explicit representatioh(lgi{123in terms of the
primed quantities can be establisHeelying on Eq.(59)] but we refrain from also writing it down
here. As one recognizes from Eg0), in the casen= 3 the description of the inverse of the action
mapf already involves fairly complicated expressions and we will not attempt to generalize these
in the next section to the case=4.

The results obtained in the present section can be checked for consistency in two ways. First,
based on the procedure described in the Introduction in the context of Bj@nd(20) one can
convince oneself that the results—wherever appropriate—are consistent with the results obtained

in Sec. Il B for the case of the Grassmann algalyén=2). Second, choosing f@o[{a},{\lf}]
the form (34) one can also convince oneself that th&R)’ =A® and A®*’, AS) . vanish as
expected.

D. Explicit calculation: n=4

We are now prepared to study the algebraically most involved case to be treated in the present
paper—the case of the Grassmann algelyén=4). The calculational experience collected in
the last two sections allows us to manage the fairly involved expressions.

We start again by parametrizir@, andG according to our general ansatd. Eq. (18)],
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4 4
— — 1
Gal{Wh{WwH=AC+ X AQW Wty X AR b WY W,

I1.1p,my,my=1

1 4

36I1,I2,I3,m1,m2,m3=l

@ﬁ.ﬁ;l’ml‘lfm;l’mg

| 1I)2I 3,MyMymg
+ A(1%)34,123§ R OAORTR R S X (81)

For G the analogous representation can be used,

4 4
_ _ 1 _
— A0) (2)r _ (4)r
G[{\]f}’{\]f}] A +I,m2:1 Al,m ‘qu,m+4|l’|2‘n%m2:1 AI1I2,mlm2\I’I1 IZ\Pml‘l,m2
1 ‘ _
t3z 2 AI(fI)Z,I 3 ,mlmzmsq} | 1\1, | 2\1, | 31{/ mlq, mzqf ms

36I1,I2,I3,m1,m2,m3=1
+A(182)3'4,1233? R A 2 RO (82
The partition function readgcf. Eq. (30)]

p=eA”

=P®* =detA@ -t AD*C,(A@) ]+ Str(AW*AD) —tr( A A2)) 1 AB* (83)
=6 detA® —2 tf PW*Co(A@) 1+ tr(PW*PA) + tr(PO* A2)) +- AG)x, (84)

In analogy to Eq(40), hereA(B)*=A(1%)34'1234applies. In the lower lin¢Eq. (84)], we have made
use of the expressionsf. Egs.(61), (59)]

PH*=C,(A@)* — AD*, (85)
PE)*=adjA@) — F, (AR, AA) — AB)* (86)
(adjA® = C4(A®)*). The formF, is defined as follows:
Fa(A®, AD) 0= €17 emsnAPAGR (87
In making the transition from Eq83) to Eq. (84) we have used the relations
2 tf Co( AP AW =t F (A, A4 A, (88)
Co(AP)CH(AR)*=Co(AP)*Co(A®) = detAP)14 (89

[Eqg. (89 is a special case of EqA6), see Appendix A As next step, we can calculate
W[{7},{7}] which reads(to arrive at it we only assume®*+0)

P play ()

W[{7} {7} ]=InP®* — pE N~ B Ny Ny my Tmy ™ 5 | B@E 71 7m
1 . Fa(POXPAM* 2O
+ W{A(Z) - SOF T oD T T
1 tr(P®*AR)  g(PAW*P@) 2t PMIC,(P(®)*)]
* pEw pEF — ~ oplx T (PE*)2
6detP®*) _
- W N1127M37M4717727374 - (90)
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In the following, we need a number of forms which we list here for further reference. The
index convention applied here requires some explanation. For examte:'€)).., up to the
sign denotes elements of thex® matrix A®*’ ) |f |<t, u<r, it denotes the matrix element
(AD*7e@y ey If 1>t u<r, it denotes the matrix element-A*'£@) v, 1, and if |
<t, u>r, it denotes the matrix element—W“)*’5(2)){,’t}{r,u2. And finally, if I>t, u>r, it
denotes the matrix elemend(?*' @) . . Of course, AD* €@y, =0 if I=t or u
=r. In the following, summation is understood over repeated indices:

Fo(A@ PO =€ (AP PO e, (91
Fo(A®W*r PO A, = (AD* @) PO (EPAD ) g1, (92
Far (AW A®" PAC, (AP ) ") 0= (AD* @), AR TEDPICH(AD) Tigm, (93)
Faa( Co(A®)* PO AG A, = [Co(AL))*POE@], AL (EGAD* ) o, (94)
Fe(A(Z)' JAB) A4 ,A(Z)')LM = g(LZa)bAg)’(g(Z)A(4)f)rtbu(A(4)'g(2))dtSLA(C§)'ggj)M . (95)
Fr(AW* ALY PO A, = (AW £2)) 4 (AR PO (EDAD) e, (96)
Fg(cz( p(G)*)p(4),p(6)*,p(6)*,p(4)cz( p(G)*))LM

= £ EDCHPO)PW], PP TPUC(PO)E @ eoq - (97

To arrive at the further results it is useful to take note of the equation
(P70 7m) 2= = 2Co(PO*) Ly 771, 7, im- (99)

We now apply exactly the same procedure as in Secs. Il B, 1l C. We inse(8Bnto the |Ihs of

Eq. (13) and the explicit expressions far, 7 found from Eq.(82) according to Eq(16) on its rhs.
Again, comparing coefficients on both sides we find the following four coupled nonlinear matrix
equations:

p(6)x
AR =2oa2) _ A(2)r 5@ A(Z)" (99
F, (AR p(6)*) F.(P(®)*A(2)
XLy YN _LP(WAM)H — A@)xr Lp(gr)
PE*p)—c,(pE)*)*
—Cy(AB)* Co(AD)*, (100

(P(S)*)Z

A(G)*r — 6A(6)*/ +E(]éF{A(6)*/[A(2)/ P(G)* _ tr(A(Z)/ P(G)*) 14]

+ [P(G)*A(Z)/ _ tr( P(G)*A(Z)/):LA]A(G)*I _ FC(A(4)* ’ ; P(G)*,A(4)* /)
+ Fdl(A(4)*/,A(2)l ’P(4)C2(A(2)/)*) + Fdz(CZ(A(z)I)*P(A),A(Z), ’A(A)*/)

H H ! 1 * ! ! ! * 0\ *
+adjA®")A@ adj A® )}—(—P(g)*—)z{Fdl(A“” AR C, (AR POy
+Fga( Co(PE*AR ) * AR AD*1) 4 adj AR )F,(PE)* P#)*)adi AP )}

2
* [Py (A POTARY), (10
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1
8)s 8)s 8)s * ' * * ! *
A% 120 8A(12)34,1231|'5(§F{—2A(12)34,123§r(P(6) AP 2t PO (AB* AD*7)]

=2t A AG AR E (AR Pt PUFL(AR) AL AL A7)
— St F(PUW*Cy(AP)) 1, AW AW | — St F (AW AN 1, ,Co (AP )P
+tr AW* Co (AP Fy((adjAP ) ACH ]+t Co( AR AM* FL (AP adjAR))]

1
+ (detA(Z)’)2}+(—P(§W{2 tr(A2) A7 AR)r p(E)* ) r( A(2)r p(E)*)

— 2 tr(A@) AB*1 AR P(E)* A) p(6)*) 4 ] AR) PO A) E _(AD* P(B)x A4)*1)]
—t[PO* AR (AW AR PO AW L[ F (Co(PO*AR)) 1, AD* AG)Y]
+ St F (AW A 1, Co (AR POI*))]

—tr[F,(PO* PO E, (1, AD* C,(AP)))adjAP) ]

—tr[Fa(1s,Co(AP A E (PO pH*)adjA)]

— (detA@") [ tr(PO*AR) + 2 tr(PW*PMA)) ]}

2 .
+(—P(W{IT[A(4)*/CZ(A(Z)/)Fb(ad] (P(G)*A(Z),))]

+tr[ Co(AG ) AD* F (adj (AR P6)*))]

6
+(detA®") 2t PAICy( P(G)*)]}—W (detA®")2 detP(®>. (102

Equation(99) is equivalent to the equation

p(6)*
AR = p(2)r S A (103

The matrixA®)’ is the generalize@}-inverse of the matriP(®*/P(®)* (cf., e.g., Ref. 79, Chap.
1, p. 9.

For solving the Eqs(99)—(102 we apply again the same method as in Secs. IIB and Il C.
Choosing deA®)’ 0 [by virtue of Eq.(103) this entails deP(®*= 0], we immediately find from
Eq. (103 an explicit expression foA()’. This can be inserted into EqL00) to also find an
explicit expression foA®*".

p(8)*
(2)r — p(8)* p(6)*x1—1 — ip(6)*
A P [P™*] Jetp®~ adjpP'™, (104
4 (P(B)*)z p®* 6 4 6 6
A= — Co(PO*)PAIC,(P©*) — C,o(PO*)] (105

det P®)* | detp(®)*

To arrive at Eg.(105 we have relied on the following calculatiqef. Appendix A, Eqs.(A6),
(A5)]:
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(2) (8)%)2 (6)x1-1 (P(S)*Z (6)x7-1y-1 (P(S)*Z (6)
Co( A7) = (P Co[PP7 ] = qogpm C2(lP7 175 = qopmw Ca(PT7).

(106

Having obtained explicit expressions faf?)’ andA**" we can now insert them into E¢L01)
to solve it. We find

(P®)*)5

1
6)xr _ 6)x 2 4 6)* 6)* 4
A6) _(detP6*)2P( > A )_ZdetPe*Fdl(P( ),p( ) ,Cz(P( ) )p( ))

1
4 6)x 6)x 4 6)%
_2detP 6)* FdZ(P( )CZ(P( ) ):P( ) !P( )) P( )

3P L ewp por pawyper_ PO

+ (detP 5 *)ZP F.(P PP _WP (207

(P(S)*)E
= (6)x A(2)p(B)*

(detP®*)2 PRTATP
(P)® (6)*yp(4) (6)*) p(6)x (6)*yp(4) (6)*

+(detP6*)4F°(CZ(P JPEICH(P), P, Co( P PEIC,(PT))
S(P(B)*)4 6)x 6)x 4)% 6)x 4(P(8)*)3 6)*

+ (detpe,)zp< PE (PO ) p6) _WP( >, (108

The equivalence of Eq$107) and (108 is based on the relation

(detP®*)PO*F,, (P® PO C, (P6)*)pA)p6)*
= (detP(G)*) p(6)* Faal P(4)Cz( p(6)*) ) p(6)* , p(4)) p(6)*
= —Fo(Co(PO)PUIC,(POY), P)* C,(POI)PMIC,(PO)Y)). (109

Finally, inserting Eqgs.(104), (105, (108 into (102 allows us to find the following explicit
solution forA%%, 1,34

: (PEM)T .-
AESs 1237 (detP® *)2{1—2tr[A(2)Fa((P(6) )~ HLPENT

(P(8)*)7 ) ) * *
T (detP® *)4{tr[P(4)Fg(Cz(P‘6’ )P P pO)+ p(A)C,(P©)*))]
— FUTF(Co(PO) PP CH(POI)* 1,,Co(PO*)P() ]
_ %tr[ Fo(Cy( P(6)*)*P(4)*P(4)C2(P(G)*) s, P(4)C2( P(e)*))]}

(PO)° : ,
* (detP)? 7tr(F>(4>F><4> )+5 tr(P(O*A)

5
= Gotp® M Fa( 14, Co(PO)PI)F, (1, PO Co(PO)")]

(p(B)*)5 @ © (p(8)*)4
+18Wtr[P C,(P )]_BOW (110

In analogy to the Eqg85), (86) and(83), we can now define
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P =C, (AR )* — AW+ (111
P(O)* = adjA) —F (AR Ay — A (112
PE* = detA®) —tri AW*" C,(AP)) ]+ Ltr(AW* AB ) —tr(AB* ARy + A" (113
and from Eqgs(104), (105, (108, (110, we find

o (PO ) .
PO = ez Cal PO PICL(PO), (114

(P(B)*)S

1
(6)xr = _ )+ A2)— (4) p(6)* (6)*)p(4)
P (detp®mz P | AT g gegpter Fen(P PR, ColPEOPTE)

_ 1 (4) (6)x) p(6)x p(4) (6)x
5 aampE)r Fd2( PYCo(PY) PR P P

2 detP
2 P(B)* 4 2 P(B)* 3
- (détP 6 2)2 POy (PE) PPN + d(etp(‘re )* p(®)* (115
(8)x)5
=— (d(;P 6)*)2 p(6)* A(2)p(6)*
(P(S)*)S
~ (detp®7) el Ca PP, (PIO) PO (PO PIIC,(PEI))
2(P@)*)4 o(p(8)%)3
_ (détP 6 3)2 P(S)*Fa( P(6)1~,P(4)v()|:)(6)»t_i_d(ewg)F P(6)*, (116)
(P(8)*)7

@)xr — — (2) (6)x)~1 p(4)
PO = gy (1~ 2t APF(PO) 1 P))

(P(s)*)7 * * * *
+(detp 6 *)4{tr[P(4)Fg(Cz(P(6) )P(4),P(6) ,P(S) ,P(4)C2(P(6) N1
— HIFo(Co(PO*) PP C,(PO*)*, 1, C,(PO*)P4))]

— M Fo(Co(PO*)*PO*PUIC,(PO)*), 1, POIC,(PO)) ]}
(p(S)* 6

(4)p(4)* (6)*xp(2)
+4(detP6*)2 tr(PY/PY™) +tr(PY™* Al

1
~ Sp® M Fa(14.Co(PO")PO)Fy(14, P Co(PO)")]

(P(®)*)5 (P(®))4
12 Py tr{ PUC,(PO)] - 16 =y (117

Taking the determinant on both sides of the E§94) and (114) provides us with the following
useful relations:

@) ( P(8)*)4
detA ZW, (118)
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(P(S)*)lB
detP(4)*’ =Wdetp(4)". (119)

In deriving Eq.(119 we have relied on the followin¢Sylvester—Frankeidentity [cf. Appendix
A, Eqg. (A8)].

detC,(P®)*) = (detP(®)*)3, (120

We can finally check the obtained results for consistency in the same way as done at the end
of the preceding section for= 3. First, based on the procedure described in the Introduction in the
context of Eqs(19), (20) one can convince oneself again that the results—wherever appropriate—
are consistent with the results obtained in Sec. Il C for the case of the Grassmann glgébra

=3). Second, choosing f(ﬁo[{@},{\lf}] the form (34) one can also convince oneself that then
AR =A@ and AW AGAB) o ,vanish as expected. Given the combinatorial factors
involved, this represents a fairly sensitive check of the present results.

E. Some heuristics for arbitrary  n

Having gained a fairly broad calculational and structural experience in the preceding sections
in considering the present formalism for the case of the Grassmann algghras= 2,3,4, we are
going to generalize now some of the obtained results to arbitrary values ®his analytic
extrapolation is a heuristic procedure with heuristic purposes. No proof is being attempted here
which would need to be the subject of a separate study.

From Eqgs.(46), (68), (104) and(47), (69), (105 we infer the following generalfor arbitrary
values ofn) form of the matriceA(®’, A’ (of course, the result foA(®) is elementary,

p(2n)* _
A(Z)! — P(2n)*[P(2n72)*]7l: JetP T adj P(2n72)*’ (121)
’ (P(zn)*)z P(zn)* —2)%\ —4)x —2)%\ *
AW = — sy | GpEi=2w Cn-2( PR 2% PEN91C,_p(PEn=2))

—Cp_p(PEN=2%)* |, (122

Emphasizing the role of the effective propagaldf"~2)*/PV* [cf. Eq. (121)] we can rewrite
Eg. (122 in the following form:

P(2n72)* * P(2nf 2)x\ * P(an 2)x\ *
Cn—z(—P(ﬁr) p(2n-4)s Cn—z(_P(ﬁW Cn—Z(W)
J’_

AW = — (123

P(2n72)*
de( _P(-ﬁ)*_)

P(Zn*Z)* P(2n)* P(2n72)*
de(—pmr) de<—p<’fn>*—

Unfortunately, the results obtained in the preceding sections do not yet admit any reliable
analytical (heuristio extrapolation to arbitrary values af for further quantities beyond(®’,
A®)" . For example, to heuristically derive an analogous expressioAff one would have to
perform a calculation fon=5 first in order to approach this task. However, in analogy to the
preceding sections it is still possible to derive one further result for arbitraAgain, writing | cf.
Egs.(49), (71), (11D]

P(A)*/ — CZ(A(Z)/)*_AM)*/ (124)

we find from Eqs.(121), (122 [cf. Egs.(49), (73), (114)]
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(P(2n)*)3

4)r — (2n=2)x\*xp(2n—4)x (2n—2)x\*
P — a2z Cn- 2P D) PEN 4G, y(Pen-2)s, (129

In analogy to Eq(123), this can equivalently be written as

P(2n72)* * P(2n72)* *
Cn—z(w) p(2n-a)x Cn—z(w)

pn-2)* pn* pn-2)x
dew(—@—)—P P ) de(—w F )

P = (126)

To arrive at Eq.(125 we have relied on the following calculatidef. Appendix A, Egs.(A6),
(A5)]:

C,(AB) )= (PM*)2C,([Pn=2)x]~1)
= (PEVT)ZC,(PEN2%) 7
(P(Zn)*)Z
= _(_)_detp e Cn,z(P(Z”*Z)*)*_ (127)

Taking the determinant on both sides of the E421) and(126) yields the relationgcf. Egs.
(50), (75), (118 and(76), (119]

detA®)’ = il (128
(P(zn)*)s(g)

detP®*’ = p@n=4), (129

(detP@~2%)20-1) det
In deriving Eq.(129) we have relied on théSylvester—Frankadentity [cf. Appendix A, Eq.(A8)]
detC,_,(P2"~2*) = (detP(2n~2)%)(1-3), (130

Ill. THE GRASSMANN INTEGRAL EQUATION

Having obtained in the preceding section explicit formulas for the actionfnapthe case of
the Grassmann algebrgs,, n=2,3,4, we can now concentrate on the study of certain particular

relations betwee[{V},{V¥}] and G[{@},{\If}]. As explained in the Introduction we are in-
terested in the equation €O\ e R)

G{W}{¥}]=Go[{NT} AT +A((N). (131)

A¢(\) is some constant which is allowed to depend\xoand which we choose to obgin view
of Eq. (29), we have the freedom to do ko

A(1)=0. (132
ForA =1, Eq.(13)) is the fixed point equation for the action magcf. Ref. 73, p. 288 Equation
(131) applied to Eq.(15), the latter readsG=exgd —A®—A;(\)])

— n —
o Col ML) _ & f TT (s i) @ ol Pl Wi+ =y i), (133
I=1
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__ IG[ (A} (A

IG[ (NP}, INT}]
7 - :

— (134
ﬁqﬁ (9\I,|

Clearly, this a Grassmann integral equation(m{{\l_f},{\lf}] (more precisely, a nonlinear Grass-
mann integro-differential equati@nin view of Eq.(18), Eq. (131 is equivalent to

A=A+ A (N, (139
AR =\ ZkA(ZK) k>0, (136)

Equation(136) represents a coupled system of nonlinear matrix equations. We are now going to
solve Eq.(1393) [i.e., Eq.(131)] for n=2,3,4 by solving Eq(136).

A. The case n=2
Applying Eq.(136) for k=1 to Eq.(46), we find
PH*=)\2 detA®). (137
Equation(40) then immediately yields
ALY 1= (1—2?)detA®), (138

A®) remains an arbitrary matrix with d&t?)#0. To determineA® imagine that the action
Gol{W},{¥}] specified by Eq(138) would have been induced by some act®n,[{V¥} {V}]
=Go[{N "W} {N"1W}] [by means of Eq(15—replacingG by G, and G, by G_,, respec-
tively] with the partition functiorP(G_;)=\"2detA® [cf. Eq. (40)]. Then(cf. Ref. 80 of Sec.
11B)

A@=InP(G_;)=IndetA®—2Inx (139
and, consequently,

Af(N)=4In\. (140

From the above considerations we see thatfer2, Eq.(131) has always a solution for any value
of A (O<\AeR). For A\=1 the solution corresponds to a Gaussian integral whilexferl it
corresponds to some non-Gaussian integralEq. (133)]. Consequently, for any even value rof
Eqg. (131D has always a solution for any value ®f(0<\ € R). This follows from the fact that
these solutions can be constructed as a sum=02 solutions with a common value af

B. The case n=3
Applying Eq.(136) for k=1 to Eq.(68), we find
PE*1,=\2PpA* A= \2A)p()* (1412
=\[detAP)1;— AB* AR =\ detAP)1,— A AMD*], (142
Furthermore, combining Eq$75), (76), (71), (136) we obtain the relations
A8 detP(*)* detA(2)= (p6)*)3, (143

(detP(*)*)® .
lZWZ(P(G) )9. (144)
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From these two equations we can conclude that
detP*)* =+ \3(detA?)?, (145
PE)*= +)\3detA®, (146)

Taking into account the above equations, from &$) we find then

1
AW = — ( 11{) P, (147)
By virtue of Eq.(61) this entails
AW* = (15 \)adjA®, (148
P#*=+ ) adjA®, (149

One easily sees that EGL49) is in line with the resul{145). Finally, applying Eqs(136), (141),
(145, (146 to Eq.(70) we calculateA(d), ;.. It reads

AL) 1= (NF DX (=N —4)detA?®), (150
Applying the same procedure to EF4), we find the consistency equation
(A¥1)3=0, (151
which has only one solution, namely=1 (choose the upper signThis solution is just the

elementary one which corresponds to a Gaussian integfiaEq. (133)].

C. The case n=4
Applying Eq.(136) for k=1 to Eq.(104), we find
P@*1,=22PE* A=)\ 2A2)p(6)* (152
=\ [detA®1,—F,(1,,Co(AGHY*AM*) — ABI*A(2)]
=\[detA®1,—F (1, AD*C,(AP)*) — ARAEH], (153
Furthermore, combining Eq$118), (119, (111), (136) we obtain the relations
A8 detP®)* detA®) = (P®)*)4) (154
A2* (detP(®)*)6=(p(&)*)18 (155
From these two equations we can conclude that
detP(®)*=)\8(detA(?))3, (156)
P®)* =+ )\*detA®, (157

We can now apply Eq.136) to the Eqs(105 and(114). Taking into account Eq$85), (111), we
can derive from these two equations the following compound matrix equation:

C,(PO* AR = (N2 detA?)?1,. (158

Its solution read$cf. Ref. 81, Sec. 3, p. 149, E¢L1)]
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PE)*=+)\2adjA(?). (159

Equation(159) is in line with Eq.(156) [the signs on the rhs are fixed by making reference to Eqgs.
(152), (157]. We can now take into account E@.59 in considering Eq(114) further. Eq.(114)
then yields the following matrix equation:

PAC,(AP)* =+ C,(AR) P, (160
By virtue of Eq.(85), Eq. (160 can equivalently be written as
AMC,(AR)* =+ C,(AR)AM*, (161)

We will not study here the complete set of solutions of Ep1). This would need to be the
subject of a study in its own. Here, it suffices to mention that for the araatz some arbitrary
constantB some 4x4 matrix

A =qaC,(B)*. (162
Equation(161) reads
C,(APB)*= = C,(A®B). (163

For the upper sign, this is exactly the type of compound matrix equation studied in Ref. 81. Of
course, Eq(161) has solutions which correspond to twe- 2 solutions(with a common value of
\) discussed at the end of Sec. IIFAHere, we want to go beyond these solutions.

For the present purpose, we consider in @.1) only the upper sign on the rhs and study the
ansatz ke R)

P@W=kC,(A®), (164)
AW =(1-k)Cy(A?), (165

which is a special version of E¢L62). Inserting this ansatz into ELO7) and taking into account
Egs.(136), (157), (159, we find

AB*=(\2—6k%+9k—4)adjA?. (166
Applying the same procedure to Ed.15), we obtain the following consistency condition:
AN2—3k?+3k—1=\2—3k(k—1)—1=0. (167

Furthermore, applying the ansatk64) to Eq. (110 and taking into account Eq$136), (157),
(159 yields

AL 1237 (N4 2002 — 24Nk + 72«°— 147k + 108 — 30) detA). (168
Again, subjecting Eq(117) to the same procedure we obtain yet another consistency condition,
2N2—3\2%k+9k3—15k%+ 9k —2=(2—3k)[N?>—3k(k—1)—1]=0. (169

Obviously, this equation is fulfilled i\, x obey Eq.(167). Consequently, we can restrict our
attention to solutions of Eq167).

From Eq.(167) we conclude that the ansatk64) provides us with solutions of E¢131) for
any value ofA = 1/2 (if x assumes real values onlyDf particular interest to us are solutions of Eq.
(167 for =1 (see Refs. 28 and 73In this case, Eq(167) reads

k(k—1)=0. (170
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Clearly, this equation has two solutions,
K|= 1 y (171)
K= 0. (172)

The corresponding expressions for the acti@gy= G then read as follows:

Gol{¥},{¥}]=G(Gg) =IndetA®+G,, 173

Gonl {¥}.{¥}1=Goy(G,) =IndetA®+ G, — 3G2+ 1G3— 3G¢, (174
4

Gq=Gq[{\I_'},{‘If}]=| 21 AW W =WA@Y, (175

As one can see from E@l33 Gy, corresponds to a Gaussian integral wi@lg, corresponds to
some non-Gaussian integral. While it is well known that for the acBgr G, the equatiornG
=Gg applies it is indeed a remarkable fact that the same is tru€§erGy,, . However, this is not
yet the end of remarkable features of these actions. It is also instructive to work aytfirand
k=0 the corresponding expressions Wf{7},{#}] on the basis of Eq(90).

WiL{7}, {7} 1= Wi(Wq) = Goi(W,) = In detA® + W, (176)
Wil {77} {7} 1= Wi (Wo) = Goy (W) =In detA®) + Wy — 3W5+ 3W5— 3w, (177)
Wo=Wo[{7} {n}]=— 7 AP] 1. (179

Again, while the relationW,= Gy, is well known in the present context the equaltyy,= Gy,
comes as a complete surprise and one can only wonder which general principle is manifesting here
itself. We will explore this issue in the next section.

D. Further analysis

We can characterize the solutioBg,, G, of the equatior{131) found forn=4,\x=1, in the
preceding section by two properties which may be of general significance. The first one is related
to the identityW= G, [Eqgs.(176) and (177)]. One immediately recognizes that for

[A®]2=—1,, (179

expGy=expGy(=expG=2Z) and expGy=expGy, are self-reciprocal Grassmann functiongof
course, this is a well-known property of etgg,):

4
IT (dy, dxp) e Gol{x}. {1 + mx + xn— g Gol{7h{n}] (180
<1

[detA® =1, cf. Eq.(179],2%i.e., they are eigenfunctions to the Fourier—Laplace transfornfation
to the eigenvalue 1. The term self-reciprocal function is taken from(ceahple® analysis where
it also denotes eigenfunctions of some integral transformation, in particular, the Fourier
transformatiory> %1
The second property of the solutioBg,, Gy, is related to the identit =W [apply the fixed
point conditionG =G, to the Eqs(176), (177)]. Taking into account Eq$173—(178), Eqs.(13),
(16) tell us that
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4

G<Gq)=e<wq)—|§l (0, + W ), (181
_ 9G(Gy) —
n="y, =G (G)(VAD), (182
=0 (G A, (183
A
Here,

IG(G
G'(Gg)= a; & (184

q

whereGy is treated as a formal parameter for the moment. In view of Ei2), (183 it holds
Wy=—G[G'(Gy)]% (185

Taking into account the Eq$182), (183), (185, Eq. (181) can be written as
G(s)=G(—9[G'(s)]?) +2sG/(s), s= Gq (186

Equation(186) is of a very general nature. Its shape does not depend on the value It
derivation depends on the fact only ti@af W are functions oG, W, respectively, and that the
identity G=W holds. As we demonstrate in Appendix C, E486) can also be derived under
analogous conditions starting from(Buclidean space—timeversion of Eqs(1)—(5) for a scalar
field on a finite lattice. Consequently, until further notice we disregard the facstisaa bilinear
in the Grassmann algebra generators and simply understarnii@sgas an equation for a function
G=G(s). We will now analyze Eq(186) further.

Equation(186) appears to be somewhat involved but it can be simplified the following way.
We can differentiate both sides of E(L86) with respect tos. The resulting equation can be
transformed to read

{25 G'(5)+G'(s){1-G'(5)G'(—s[G'(9)])}=0. (187)

Equation(187) is being obeyed if either one of the two following equations of very different
mathematical nature is respected:

2sG'(s)+G'(s)=0, (188
G'(s)G'(—95[G'(s)]?)=1. (189
The solution of the linear differential equati¢h88) reads
G'(s)~e s (190
entailing
G(s)~(1+s)e s, (191)

As G(s) depends on/s this solution is of no relevance in the context of Grassmann algebras. To
see this note that the functid®(s) contains odd powers ofs in its (Taylor) expansion(in terms
of t=/s) arounds=0. If s is being interpreted as a bilinear form in the generators of the
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Grassmann algebra these terms have no interpretation within the Grassmann algebra frafmework.
Consequently, in the following we can concentrate our attention onto the nonlinear functional
equation(189).

To gain further insight it turns out to be convenient now to define the following functities
definition in Eq.(193) could equally well readi(t)=—i b(t)]:

d

o G(t?), (192

1
b(t)=t G'(t?) = >

d(t)=ib(t). (193
Then, having multiplied both sides by /s Eq. (189 can be written ast& \/s)
d?(t)=d(d(t))=—t. (194

This is an iterative functional equation: the functidft) is the(secondl iterative root of—1 (for

a review of iterative functional equations see Ref. 93, in particular Chap. 11, p. 421, Ref. 94, in
particular Chap. XV, p. 288, also see Ref. 95, Chap. 2, jp. Bée functional equatio194) has

been studied by Massera and Petrdtasho have pointed out its relation to the equivalent
functional equation

1
h(h(x))= < (195

[Define the involutiong(x)=(1—x)/(1+x). If h(x) is a solution of Eq.(195 the functionq
oheq is a solution of Eq.(194).] This functional equation characterizes functidngor which
h~1=1/h (note in this context Refs. 97—101, in particular Ref. 101, p.) 7Eguation(194) has
also been studied for real functions in Ref. 102, Chap. Il, Sec. 5, p. 54, and in Refs. 103-106. Of
course, in view of Eq(193 in general we are concerned with complex solutions of (E§4).

If the functionG’(s) has a definite symmetry under— —s Eq. (194 can be simplified to
some extenfgetting rid of the imaginary unit present in Eq(193)]. If G’(s) is an even function
[i.e., up to some constaf@(s) is odd Eq. (194) can be written as

b2(t)=b(b(t))=t. (196)

This iterative functional equation is a special case of the functional equifiagh=t which is

being called théBabbage equatiofit has been studied first by Charles Babb&e!°See Ref.

94, Chap. XV, Sec. 1, p. 288, Ref. 93, Sec. 11.6, p. 450, for more information and references,
recent references not referred to in Refs. 94, 93 are Refs. 111, SdRitionsb(t) of Eq. (196

(i.e., solutions of the Babbage equation kot 2) are callednvolutory functiond (second) itera-

tive roots of unity/identity, periodic functions/mapH, for example, the functiors(s) stands in
correspondence to a Gaussian intefichl Eq. (133)], G(s)=s and, consequently,

b(t)=t. (197

This is the most elementary involutory function one can think of. Note, that the set of solutions of
Eq. (196 is very large as this set is equivalent to the set of even fun¢siee, e.g., Refs. 113, 114,
Ref. 93, p. 451 If G'(s) is an odd functiorji.e., G(s) is even] Eq. (194 can be written as

b2(t)=b(b(t))=—t. (198

However, this case is not very interesting as real functions solving(Eap are necessarily
discontinuougRef. 94, Chap. XV, 84, p. 299, Refs. 103, 97-101, 104, Ref. 93, Subsec. 11.2B, p.
425).
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The above consideration can be applied to the solutions of the Grassmann integral equation
found in Sec. Il C. Equatiofil73) is of course being described by E497) [b,(t) =t]. From Eq.
(174) we recognize that the functid®, (s) does not have a definite symmetry undes —s. We
find

by(t)=t (1—t2+ 3 t4— 3 15). (199

and one can check that the corresponding fundigi) =ib,(t) indeed fulfills Eq.(194) at order

t’. [Going through the above arguments one can convince oneself that this is the appropriate order
in t one has to take into account for the Grassmann algéprardert’ corresponds to ordes®

in Eq. (189.]

IV. DISCUSSION AND CONCLUSIONS

While most of the explicit expressions obtained in the present paper for the Grassmann
algebragy,,, n=2,3,4, have been obtained here for the first time, some of them can be compared
to results derived earlier by other authors. The point is that partition functions for spéoifie-
dimensional fermionic systems have been obtained by a number of authors and some of these
results can be used for direct comparison with the present results. For example, our expressions
(40), (60), (84), can be seen to agree with E§), p. 694, of Ref. 115. Furthermore, our E40)
is in line with Eq.(13), p. 1298, of Ref. 116, the same applies to our &) and its counterpart,

Eq. (14), p. 1298, Ref. 116. Also Eq(16), p. 1298, Ref. 116for n=3, |=3 andn=4, |
=2,3,4) gives the same results as our E§S), (84). And finally, our Eq.(84) agrees with Eq.
(10), p. 1083, of Ref. 117for N=4).

Our consideration of the action mdgn the present paper has been motivated by the formal-
ism of (lattice) quantum field theory. However, the consideration of certain modifications of the
mapf might also be of some interest from various points of view. Let us consider a special set of
modifications which can be described by replacing the Ef). by the equations

_ AGHWI{WH GGH{YI{W)]
n= o, ,oom = o, (200

(G is replaced byG). For example, if one is just interested in the fixed point condition for the
action mapf [i.e., in the Eq(131) for A =1] it might make sense to consider instead of the action
mapf a different mapf [described by the Eq$16), (200, respectively having the same set of
fixed points but which is algebraically or numerically easier to study. One such modification
consists in choosinG = G, [cf. Ref. 73, p. 291, Eq2.9)]. The implicit representation of the map
f given in Eqs(15), (16) would then turn into an explicit representation of the miaphich might
be easier to handle in some respect. As an aside in this context, we mention that for thishmap
equationg43), (64), (99) (replaceA®’ on the rhs byA®)) exhibit aformal similarity to the main
equation for the Schulz iteration scheme for the calculation of the inverse of a IrEseXq(7),
p. 58, in Ref. 118°12 The similarity, however, is only formal as in general the matrix
p(2n=2)*/p(2M* js not invariant under the map[for the simplest case= 2, for example, one can
convince oneself of this fact starting from E¢43), (44) where one has to omit in this case the
primes on the rhks

As already mentioned the investigation performed in the present study within the framework
of Grassmann algebras has been inspired by a problem in quantum field theory which in its
simplest versiorjwithin zero-dimensional field theoyys a problem in real/complex analysis. The
standard analysis analogue of the Grassmann integral equation studied in Coap.=31) reads
[cf. Eq.(8)]
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et = CJ'mdx edx+y)=g' ()X (209

%

This is a nonlinear integro-differential equation for the real functiéx). Clearly, the elementary
functiong(x)= —ax?/2, 0<aeR [C=\/a/(2)] solves this equation. However, the interesting
question is if this equation has any otlironelementarysolution which stands in correspondence

to a non-Gaussian integral. No qualitative information seems to be available in the mathematical
literature in this respect. As pointed out in Ref. 28, Sec. 4, p.(®5975 of the English trang).

Eqg. (201) is a very complicated equation. The main difficulty in explicitly finding any nonelemen-
tary solution to it(if it exists at all—we just assume this for the time beirgnsists in the fact that

it is very difficult if not impossible to calculate for an arbitrary function exy) its Fourier (or
Laplace transform explicitly. The question now arises if the analysis in Sec. Il D of the solutions
of the Grassmann integral equation foundiier 4, A =1, might help in overcoming this problem.

We do not have any final answer on this but in our view it makes sense to say: perhaps. The
solutions of the Grassmann integral equation foundrfer4, A=1, are characterized by two
properties which are not related to the anticommuting character of Grassmann variables. The
solutions were related, first, to eigenfunctions of the Fourier—Laplace transformation to the eigen-
value 1(i.e., to self-reciprocal functionsand, second, to some iterative functional equation. Now,

it seems to be reasonable to assume that(alsme solutions of Eq(201) might be characterized

by these two properties. The two sets of functions obeying one of these two principles are very
large and one might think that the intersection of these two sets contains also other functions than
just the functions given bg(x)=—ax?/2. The task of solving Eq(201) then is equivalent to
studying eigenfunctions of the Fourier transformation to the eigenvalue 1, i.e., self-reciprocal
functions exm(x).124-12°They obey the equation

+o dx
eg(y)=J — elyxg9(x) (202

w 21T

The consideration of eigenfunctions of the Fourier transformation solves the above mentioned
problem of finding their Fourier transforms at orfééThere is a vast mathematical literature on
self-reciprocal functiongin particular for the Fourier transformatipbut in our context it makes
sense to concentrate on a certain subclass of self-reciprocal functions. K(Redfet28, p. 375,

Ref. 59, Subsec. 10.4, p. 24Bas pointed out the relevance of infinitely divisible characteristic
functions in a quantum field theoretic context. This entails in our context that the self-reciprocal
functions exm(x) should be self-reciprocal probability densitigmsitive definite ones, in addi-

tion: without zeros—this follows from infinite divisibility The subject of self-reciprocgbositive
definite probability densities has been studied for some time in probability th@oeys. 129—

135, Ref. 136, Subsec. 7.5, p. 122, Refs. 137, 138, Ref. 139, Chap. 6, p. 148, Ref. 140; see Refs.
137, 139 for some further referenge®f most relevance to the present problem is the work by
Teugel$® who describes explicit methods to construct solutions of(£62) (also note Ref. 140

in this respegt From the solutions exg(x) of (202 (which are even functionsve define the
function G=G(—x?/2)=g(x).***1*2The functiond(t) [Eq. (193] associated with it then has to
obey the functional equatiofi94) in order to ensure that the functigi{x) solves Eq.(201). In

the case under discussion, the equati@®2)—(194) can be reformulated the following way.
Define the functions

~ ag(x) P NG x?
d(x)=ib(x). (204)

Then, from Eq.(194) one can derive the following iterative functional equation which has to be
fulfilled:
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d?(x)=d(d(x))=—x. (205

As in Sec. Il D, one can now assume a certain behavior of the fung(imn Assuming again that
the functionG’(s) is an even functiori.e., up to some consta&(s) is odd| Eg. (205 can be
written as

b2(x)=b(b(x))=x. (206)

However, this case is not very interesting as it does not lead to any non-Gaussian functi@x exp
[Ref. 143, Theorem 3, p. 11Teor. Veroyatn. Prim, p. 119(Theor. Prob. App); note that Lukacs
uses the term self-reciprocal in this article in a different sense than we do in the present paper
Assuming thaiG’(s) is an odd functiorji.e., G(s) is even Eq. (205 can be written as

b2(x)=b(b(x)) = —x. (207)

However, this case is also not very interesting as real functions solvin(REd. are necessarily
discontinuougRef. 94, Chap. XV, Sec. 4, p. 299, Refs. 103, 97-101, 104, Ref. 93, Subsec. 11.2B,
p. 425. Consequently, Eq205 cannot sensibly be simplified by the above considerations. How-
ever, the sketched program still faces another challenge. At first glance, it is not obvious how to
combine the existent theory of self-reciprocal probability densities with the theory of iterative
functional equations in an operationally effective way in order to find nonelementary solutions of
Eqg. (201 (or its multidimensional generalizationghich correspond to non-Gaussian integrals.
This will have to be the subject of further research.

This discussion has brought us to the end of the present study. What are its main results? From
a mathematical point of view, the paper introduces a new type of equation which has not been
studied before—a Grassmann integral equation. The concrete equation studied has been shown to
be equivalent to a coupled system of nonlinear matrix equations which can be $8bedll).
From the point of view of standard quantum field theory, the main results of the present article are
as follows. For low-dimensional Grassmann algebras the present paper derives explicit expres-
sions for the finite-dimensional analogue of the effective action functional in terms of the data
specifying a fairly general ansatz for the corresponding analogue of the so-called “classical”
action functional(Sec. I). This is a model study which in some way can be understood as the
fermionic (Grassmannanalogue of zero-dimensional field theory and which may turn out to be
useful in several respect. Moreover, for an arbitrary Grassmann al@etbagéed to an arbitrary
purely fermionic “lattice quantum field theory”—on a finite latticen the basis of the explicit
results obtained for low-dimensional Grassmann algebras an exact expression for the four-fermion
term of the finite lattice analogue of the effective action functional is derived in a heuristic manner
[Sec. IIE, Eq.(123]. From the point of view of the conceptual foundations of quantum field
theory, the present study demonstrates on the basis of a finite-dimensional example that the
(Grassmannintegral equation proposed in Refs. 28, 73 can have solutions which are equivalent to
non-Gaussian integralSec. Ill). This certainly will be of interest in various respect. To illustrate
this point let us repeat in compact form some of the results found for the Grassmann glgabra
Sec. Il C(these results are specific for this Grassmann algebefine for an arbitrary invertible
4 X4 matrix B (detB#0) the Grassmann bilinears

4

Gq= 2 BimXiXm=XBX, (208
4
Wo== 2 [Blinm7m=—71B]""7. (209

Then, the following equation applies:
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4
f |1;[1 (dys dxy) € XX exf Gy— 3 G2+ 3 GE — £ Gl = detB ex Wo— 3 W2+ 3 W3- W1,
(210

This should be compared to the well-known, corresponding result for a Gaussian integral
4 — —
f [ (dy dxy) X7 exd G,]=detB ex W,]. (211)
I=1

Moreover, in Sec. llIC it has been found that tf@rassmannfunction G, — %G§+% Gf;

— § Gy is the (first) Legendre transform of the function, — 3 Wi+3 W3 — § W; [cf. Egs.
(18D)—(183]. This entails that these functions behave exactly the same way as the fur@fjons
andW,. It is clear that any Grassmann algelifa, 1<ke N, supports equations of the type
(210 [simply by multiplyingk copies of Eq.210]. Given the role that Gaussian integrals and
their properties play in quantum field theory, statistical physics and probability theory it will be

interesting to explore the implications and applications of the above results in the future.
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APPENDIX A

Here we collect some formulas for compound matri®éd.et B, D be nxn matrices. The
compound matrix (B), O<k=n, is a () X () matrix of all orderk minors of the matrix8. The
indices of the compound matrix entries are given by ordered strings of l&ndthese strings are
composed from the row and column indices of the matrix elements of the nitifte given
minor of the matrixB is composed of. Typically, the entries of a compound matrix are ordered
lexicographically with respect to the compound matrix indid®¥e also apply this convention.
The supplementary (or adjugate) compound matriX €(B) (sometimes also referred to as the
matrix of the kh cofactorg of the matrixB is defined by the equatidref. Eq. (24)]

C"K(B)=Cy-«(B)". (A1)

The components of the supplementary compound métriX ¥(B) can also be defined by means
of the following formulalhere,l;<l,<---<I,, m;<m,<---<m,; Ref. 145, Chap. IV, Sec. 89,
p. 75, Ref. 146, Chap. 3, p. 18; also see our E§%)—(36)]

d

n—k —
C" (B)Lm Brm, B

detB. (A2)

KM

This comparatively little known definition ofmatrices of cofactors(supplementary compound
matrice$ is essentially due to JacofiRef. 147, Sec. 10, p. 301, p. 273 of the ‘Gesammelte Werke,’
p. 25 of the German transl.; also see the corresponding comment by Muir in Ref. 148, Part I, Chap.
IX, pp. 253-272, in particular pp. 262/263

For compound matrices hold4,(is ther Xr unit matrix, « some constant

Culal,)= akl(E). (A3)
Important relations are given by tli&net-Cauchy formula

C«(B)Cy(D)=C(BD) (A4)
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from which immediately follows
Ci(B™H=Cy(B) 1, (A5)
the Laplace expansion

Cu(B)C "K(B)=C ""XB)C(B)=C(B)C,_«(B)*=C,_(B)*C\(B)=detB Ly,

(A6)
Jacobi’s theorenja consequence of the Eq#6) and (A5)]
Ck(B_l):LC ”‘k(B)=LCn-k(B)*. (AT)
detB detB
and theSylvesterFranke theorem
detC,(B) = (detB) k-1, (A8)

Compound matrices are treated in a number of references. A comprehensive discussion of
compound matrices can be found in Ref. 149, Chap. V, pp. 63—-87, Ref. 150, Chap. V, pp. 90-110,
and, in a modern treatment, in Ref. 151, Chap. 6, pp. 142—-155. More algebraically oriented
modern treatments can be found in Ref. 75, Part |, Chap. 2, Sec. 2.4, pp. 116-159, Part I, Chap.
4, pp. 1-164(very thorough, Ref. 152, Chap. 7, Sec. 7.2, pp. 411-420, and Ref. 153, \ol. 3,
Chap. 2, Sec. 2.4, pp. 58—68. Concise reviews of the properties of compound matrices are given
in Refs. 154, 155. Also note Refs. 156 and 157.

APPENDIX B
Let B be a 3x3 matrix. Then, the following identities apply:
adjB=B?—B trB+ 3(tr B)21;— 5tr(B?)15, (B1)
tr(adjB) = (tr B)?— 3tr(B?). (B2)
Equation(B1) can be derived by means of the Cayley—Hamilton theofeine.g., Ref. 158,
Subsec. 2.4, p. 264, ER.4.7, Ref. 159, Sec. 7, p. 154, EQR9)].
APPENDIX C

In this appendix we want to rederive H§86) starting from a Euclidean space—timeersion
of the Egs.(1)—(5) on a finite lattice withk sites. The equation@), (5) then read

k
G[¢]=vv[a]—|§l Jién, (C1)
_ G
Ji= T (C2

In analogy to the Eq9175), (178 we define(B is a symmetridk X k matrix)

k

1
Ga=Cal¢]=~75 >

1
Bimdidm=—75 ¢B9, (C3
=5}

k

1 -1 1 -1
Wo=W,[J]== X (B™YHmdidn=5JB 1. (C4)
2|Ym=1 2
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Now we assume th&, W depend onp, J only as functions o54[ ¢], W[J], respectively, and,
in addition, that the identits =W holds. Then, in analogy to the Eq4.81)—(183) the Eqs.(C1),
(C2) read

k
G(Gg)=G(Wq) =~ 2 Jidh, (C5)
dG(Gy) )
== 54 = C'(Ga)(¢B): (C6)
Here, again
) _ dG(Gy)
G'(Gy)= G, (C7)
In view of Eq.(C6) it holds
Wy=—G¢[G'(GyT% (C8)
Taking into account the Eq$C6), (C8), Eq. (C5) can be written as
G(s)=G(—9[G'(s)]?)+2sG/(s), s= Gy (C9

and this equation completely agrees with ELB6).
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