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i, We start with a review on a gquantum field theorefisal forma-
lism for QED with boundary eonditions developped esrliex [4]
The boundary sonditions eomsidered here are that of the slas-
sieal Casimir effect: There are two parallel ideslly conducting
infinitely thin plates 34‘ {X3=a;,~1‘-1z§on which the appropriste
components of the em field have to vanish:

E'=0

B+=0

The electron field should not obey boundary conditions.

o My o, S’*N’BA,,L(X):@ for xe8;.

The gquantization of the em field is performed by means of &
functional {dntegeal
modifiedYwhere e boundary conditions are introduced by the

help of functional § functions. Accordingly the generating fun¢ -

tional reads
. _ . 1)
27 m)= Cfe@ArﬁB DEDY oxp A{ [ (2 ‘“??‘r#*%‘f’?}'}
2
+ g fd'SK(KB K(i) Haér(x/gx) A'k(’()
7
~t 2, SHSdS) %02 2, D 8%y
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Here ‘f:w%grvgruﬂi@rﬁf* Y(ig-mteK)¥

is the usual Lagrangisn of QCD with a gesuge fixing term. The
three component vector BKA(@ﬁL)denoteg an suxiliary field which
is defined on the plate k(k>4,l) i.e. at X4 only. Purthermore
dSc= dtx8xz-ax) ; k=12

= ap
Hapfx 8 )= - East pry 2

‘B)(r

{x.) = ( Xo/}ﬁ/’(z) .

In writing down expression (1) the stendard Paddeev-Popov de~

m>a(0,0,0,1)

terminent of QED and two similiar determinants corresponding
to the gauge freedom in BK have been omitted as beeing inde-
pendent of the distance of the plates Q»IQ;GZL
Formula (1) smerves as the starting point for usual T=0 QED as
well as for QED at T=0 with boundary conditions. If the inter-
action par’ is transformed into functional deriveatives as uma-
a1l &ll the functional integrals are of CGsussian type.
Z(i74,7)= C opifd I S 8
X . —9_ - -2
(e d /3 \g‘d ozl'ld' 8§ / .,:5"‘7 ’ up?v—
_ CEXP =L (A dty y Soy - Z () (2)
=D g
£~ for 24 w@d«(% A KM Ay + 5At) - (3)
— Z .
A < K¢, 7 NG B ?
N K‘dek(x)Ol «ly) B {1,2%< %ﬂD[k‘fy"/a)B b
?}x =& T %‘ S(x3=a, ) B Hpo (<% )
Kt s gt o - (=% )99
Integration over A leads to
o
Az CA )
Z= [DA KM% op(-8fiK7G) fDB exp 4 f
{2 ?a_foisi()offé(y)i? [x)[{:ﬁ(x/ijﬂﬁ(y) Ltf‘)

- ; 5‘0{"“ J"‘)’ g(xg'—fu(} B Hdluég’gk ){K")ﬁv/x_y/;}'v{y) %

with
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Here {K-1)r\,= D;, is the well known photon propagator in covariasnt

gauge. For the kemelK:‘}; we find the explicit form

Ki‘\e(x'V) = - _Z_ (Eft};j 6‘1 P(;’)\")rﬂ(P)

3 5
Joun~ 20 hy & BEE Sy}, wpetanns ()
s ~ ~ A;,
with P:(Po/ﬂ,Pz) , XH(%o, Xa Xz )/3"7 (p) “(Puz‘ﬁz“le) 2
( pomitive imaginary part understood)
(Mlag~-a;]
wnd h,l'\’ = £ * ! .

The following integration over B gives the final result
Z(i)= [2et K s @‘P"iUfﬁ‘d"yi%xb,i/w)jV(y)§
(6)

with the full photon propagator
S.Dcr\v (x%,y)=> .Dcf.u ("’7) + E/Av["/}’} (—‘?)
D = 2 Sds;2)dS; (2 Dis 02) W02, 9 ) (K ‘)xf,(ea')
- HP R D) Df,v *-y)

A 4Ff*—)’1 I seg-al | f1=1 4F§y3—r<,‘i
Q.«, (ZW)S P(P) R‘V(P)e {i‘[

- Pppy - N v
Polp)s { g =B (o pvE3 [ 0 for »»3 o v=3)
Equs. (2}, (6) and (¥) determine the QED with boundary condi-
tiones in perturbation theory. We note once more that all func-

tional and Faddeev ~Popov determinants which are independent of

a have been omitted.

2. Casimir pressure at non-zero temperature.

For the investigation of the Carimir effect at TH0 we choose
the Matosubars formaliem. This mesns we have to start with sn
euclidean functional satisfying appropriate boundary conditions.

Without reviewing this further we shsll note the necessary modi-
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fications only. As general rules we have to take into sccount

TS, esrepei pedp,

P‘, 2%53—‘ for boson momenta
"dpy d3p 42 j‘c@
f('u)* = 5.2, T?f?
. 4
C(p) = 20, & =(Arr2er?) 2,
The ( real ) photon propagstor for non-zero temperature QED
with boundary conditions is given by { compare (7) }
D= DG 3 BE
- _»i £ 4
D,w (x-y)= Z j(nfﬁ 2 S}w f* 57 /?&42;:}

v :w—— ﬂl > - 2—& )’)
‘Di* 9y ) Zf{qf;)!- ,WCF}Q

P ~ Pz~ a«"&’(k% z e”“éa‘”‘;s'fd" (g)

el

with
P«(F): {8 v ?—-@ {or p38, vz 0 {N}«»‘} o y:g}

The relevant physicel quantity ie the free energy per unit sur-
face which is connected with the Z functionsl by [ =~§'Vz /&?,Z@
From equs. { 2 )/ (&) we obtain up to order £ and neglecting

s- independent terms (9)
/6%?'-\ - % /eafa, o@o’( K: iﬁx a(yf .wa( 7—;;‘, [x )/}

ﬂ;f is the polarizetion tensor of QED at I‘#O@

fhe lowest order contribution from 1&3 e@a(qu can be evaluated
easily taking into account that !( by depends on the difference
X“y only which allows to apply the uswl Fourier transform

technique

[e% Dot 1(:; = T+ Leg é(;,l‘j
\/ ? f dﬁ ’&5‘(’{54 ’
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In spite of the fact that K depenés on the gauge fixing
parameter J. there is no a-dependent contribution to fﬁ%w K

from \ . This follows from a varistion with respect to V,)\

8 g ok K & Log old (44 KTSK ) = o cot [ 55y 1 L8501

So one may choose the most convenient value of L\ 5€e8o A=A
and obtains, up to an a-independent term (for details see[2])

Loty Dot Ky =V, T [ttt s [

(2%} 4B 4
[S&ﬁ q..s *(S - P;Eﬁ%é\,}”»!\%d)j

=2V e, Log - s
e
The evaluation of this integral is straightforward. By the

help of the‘fuseful formula [z,cj |
k’i M_%Z;—ﬂl it ? [155 szi?;"
S
= /wo ?Z [.i :Afhg;i v fz\% m] (/wa)

we write the o. order contribution to the free ensrgy

For) = E vy & ) (10y)
o:PZN C"al‘ré-fﬁ_'f)’g
Pivh 2: K® OLiLzs

( Compare [‘é] and [61 ).
The 2.order contribution has been evaluated [2]using

WU (x-y) ~ j(z 3 (K){”‘k(k »)

and
Jdxg dys e*!‘l)(3~aeI(H«)Meﬁ’lyj-m e..;zQ (x3-v3) {(10¢)

2
= _ o {fvﬂéa(‘~mal(5}

‘PzainAay
2
so that Ffa,ﬁ) takes the form
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/Canay —Coaakgj,

U ) = A3k
Fai) ~-3 7[5 LT All)

>'< '\:{kl‘tk't fk‘z 'i'k %‘4/ / ah_:ik*é_k’isz)’!/ (,@A
For [[ ® we refer to results from the literature [ 5]

P
Tt kpkv i
= -___c__) v K ity Wy z)
Hr\/(k) Cgrv P2 A-}.(&“__ .Lft‘_,._.w_l“-b-«(b—i\—jlk B
)Z
A = ~k2ﬂ.° -+ AF k A
/ ?‘ %
¥4 8
~»—kLWD+HW / A,L~(//Z,,o,o,o)
Here ']To is & contribution with the seme stucture as in T=0
QED
z
o(k¥) = fdz (1~2%) Aog [4+4- ZZ)W,_j (42)
Th$etalled stucture of Ap andTTp is not necessary for the
following. It is sufficient to know that /:%P and T‘f? both vanish
for k—aeo and behave { due o the statistical weight of the
electron which appears in the integrsl representation ) as

Qkp{“ %) for %94, Therefore [ can be expreseed as

2 *1 o(3k H(kz) —a

2 b2 Y B
- n kﬁkz &k
Q.Ti {(2 )!é( [ 22 “‘f?
. . Sy
- Corh & —Cmaks) A3
kq’&wl‘q‘ ( r M ¢ '}
In the first term an a—lndependent quantity has been subiracted
according to C“;&‘:Y e *’f so tha$ this term is uv convergent.
Ahakin aini\q
The second term is convergent because of the asymptotic proper-
ties of Aﬁ and Eﬁf Purthermore we take into account
for a1l temperatures which are physically meaningful in connso-

tion with the Casimir effect. Then the second term in(43) is ex-
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ponenentially suppressed and will be neglected. Ingerting (42}

into(dS)and doing the k3 integration we arrive et

1] kS
FlaB)= Pe(w) 2 zgl:l(s gz ofdg (a-2%)
,jﬁ m y €—as_e—aW
1%_ tW Gi%[« a¥

4~ET
Fow one should remember that in any realistic case the plate
digtance =& is much larger than the Compton wave length of

the electron. Therefore using

am >> A

we have ( up to terms of the order eam
F(Q(’P): %) 3 Fil _§ J"deg fdi("‘gz)fdf z
z%al,,; zma

2 et 3 «
F(aﬁ)z Ty 8‘ a2 Z A CWL(‘ZY 373)
(T 28 P’ i [kg L)

na g2 Co ZW&
(F) oz eI )%1%’(?’% (14)

( tor details compare [3] ). By means of a Turther transformation

formula of the type () we write

= A g ez TR o 3 c2 )
a e P PP -
F( d}) ho o U new ma ) * &5 pElér ma

Lz (s )T eah(%h)
4 PaZ \ A2 ™Ma /) = Kk A;,gk(km/i;} @5,)
The fully equivalent representations (B9 and (f5) have been de-
rived assuming 45 <M “*’”'(%’A«me They are convenient for study-
ing low and high temperature limits, respectively. Collecting

the results @), (19 and ¢5) we find the free energy per unit

surface and the Casimir pressure ?=—§§ (up to order et )
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- PN ) DRSS S 3 2 lq_
Fam- - H &l 5 21

P - &
Pep - ~Fr i $ 5 -F LT ()
it Ta &« lg K m

and

Flaf) = ~ Sa {saz %o [1- Gig ,,fi] /
Plap) = — I 2 [~ ] &3
it Yo« tp Kmo,

Phe latter condition selects ftempersbures which are high com~
pared with& but nevertheless small compared with the electron
mass. It is fulfilled eg. for Qwav e and T~ 10 &/ Formule %)
shows an interesting aspect if we introduce the necessary
dimengional constants O % and k ( Boltzmann constant ):

plaT) = = j’(3)(4 s

- b mw ke mca/ ol

The Planck constant 7 drops oub in spite of the fact

thgt expressions (16) and (1¥) without any doubt sre of gquantum

theoretical origin.

The same results have been cbieined [3_] by combining our method

of gusntization (4 } with a recently proposed resl fime thermo-

£ield formalisml 7.

3, Constant external fields.
The contribution of extermal fields to the Casimir pressure
will be estimated at zeroc temperature. The most natural starting

poink would be the vacuum expectation value of the energy-momen-
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tum tensor <0l oo | 0> . Following this line one would run
into considerable difficulties because of the complicated
structure of the electron propagator in constant external
fields [8]. Portunately our esrlier experience in evaluating
the Casimir pressure at zero temperature without fields [3,1,3]
tells us that there are two absolutely equivalent procedures:
either via the energy-momentum tensor or via the Z functional.
By direct evaluation of ihgéaefkcg and expression (9) at T=0
and comparison with the results of‘D ] we come to the concliu~

gion

E...(a 50(.3}( <0 Ty l6) = ,w&mw 4 Log £ (W)

This equation is valid up to contributions which are indepen-
dent of a2 . It is just the evaluation via Z which is the cone
venient one in case of external fields.

Switching on the external field is without any effect on our
quantization of the radiation field in presence of conducting
plates. The electron propagator in (2) , however, has to be re=
placed by the propagator in the background field. In case of
constant electric or magnetic fields to which consideration

is restricted the electron propagator Sextand the polarization
tensor77}g¢are explicitely given in literature[BJ,

The field dependent contibutions to the Casimir pressure start

with order e’, As usual the tadpole term to ,5%335

OO0

vanishes because of 'trCrﬁ??;; ,Therefore the 2. order contri-

bution depending on the distance and on the external field reads

11

wt S
Loy 2 = - Jak dty T Cex) DvCoy) (49)
or, uging a formuls analogous to { 10¢c }

g2 =~ G JF Sk T 25 0k) Ptk) -

(k) conallk)=conaks (20)
[M)- kel Dimall

Further evaluation makes use of the explicit expression for the
P

renormalized polarization tensor LQW corresponding to & constant

magnetic field [g]
S7 ext 2 1 P
™= % —?_ﬂv{e gk k)N, (29)

_(?’uvk“ Kr-‘ik‘\/”}/v;i +(%rv k.&,z 'L((‘&‘)A/z]
— e v ek kk) ¢

i No= == Z(cuvzv ~Veolz . 2luEY) (22)
N4 = N, \2%’42(&-‘%‘1&2
Nz = —No +—(§-\%(6@3¥—— coz )
F = mr -Gl )6t - BTk
2= eBs

If for definiteness B is choosen parallel to X, axis one has
§< (k@,kq,ﬁ 07 kl(ogk K;and corresponding to our metrlc §;w&
cieg (4,71, M): G = oliag (4, “1,00), gw (®,0,~1,-1).

In spite of this rather complicated structure further progress
can be achieved in special cases,

After introduction of the dimemsionless variables 7}:Q€F/Z:@R$
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the first exponential in (21) becomes (213)

Expfids] = exp-c |- (- 2Rt gy

Fow it is crucisl to take into account the two conditions

which are fulfilled in any realistic experiment

a>» 4 3«_233 0 4,7, (24)

The inequalities (24) leave room to choose B according to
fakeBx m? (25)
Let us therefore restrict consideration to the 1imit of the
largest available fields ( which nevertheless rvemain small in
comparigon with the critical Schwinger field (24) ). This
leads to an important simplification of {(23):
) il 12
oxpl-(8s) —>  expl im3)

We write the resulting expression for,é%gfz, in a form where

two of the integrations have been Wick-rotated ?0—3 4'7‘/ B-—:s-'i'Z:
/

/e z:: —’iez —61(7)— ’{“(3
" ey S (o
(e 7

000( 14 _ mzz
: <5 ,
oj ‘z}j dve TB7 22N, (i) 12l fi)

2 —as (if2+c{4 oy [-13)127,, [1- W/j
qe'= C/‘rz*‘iaz”‘/zz*‘fs ¥ 94249 2*?

Note that in transform1ng (20) 1nto (26) agesin an a-independent

quantity has been subtracted. Performing the<? integrals like

73 ~y_, 192 o
1 < _-Te
f 73 9’ 2 J’ \/;773 / CI_ 2 3"1—jz - 2 a’"‘ L4 ZLC .

—ed

£

and doing the elementary V integration we obtain
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’698'2 i (1 )5 mgfd"g"(?yd‘h“’?z mz)

Y Y Awdd
St N
;f"éfe‘? [pete- e, + B2 ()

Obviocusly the region ¥« 0 gives the dominant contrbution.
This allows to approximate the expression in curly brackets

by<w4%né931so that
Lyle-5 & T 2B J

The vacuum energy per unit surface follows from (18)

44e* /eB )2
Fr ()= 5 (S2) & (27)
& eR K m? .

Let us briefly note further results.

For a magnetic Tield orthogonal to the plates,which, for real
conducting pletes and a constant field at least is a physically
asdmissible configuration one obtuing the same result up %o a
minus sign. An electric field field orthogonal to the plates
can be dealt with by an appropriate transformation B‘>'AE'ZBJ

The result is the following

E 2 4 . Te Z — T&_Ml
EW(_(&}: Z‘F([{,:-)l l,t T aen q3< } :

(19)

Also the distance dependent part of the vacuum energy has an
imaginary part which signals pair creation processes§
It is intevesting to compare our result {(29) with the free

space pair production rate in constant electric fields which

is expressed in terms of the imaginary part of the effective
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Ls grangian{?l (e )2 wm
3ﬂm,1¥' = e ex (30}

Now one has to take into account that we have obtained a vacuum
energy per unit surface or a quantity integrated overXywhereas
(30) is an energy per unit volume. Let us therefore assume that
the plate induced vacuum energy density is localized in a s
region of extension hb,'what is to be expected from physical
reasons. The so estimated energy demsity §%h)=£%%g can now be
compared with T ze{{ :

e e T D

2R T ¢t (@PEJP\EE -

It turns out that there are configurations ( &2,E ) in accor-
dance with our condition%zd(CE “mzyielding an enhancement of
the ratio (31) by meny orders of magnitude. We conclude that
neutral conducting plates can be of rather strong influence
in the presence of electric fields. Fevertheless the peir crea-
tion rate remains far too amall to be observable in conventionsl

experimental set ups.
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