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1. Introduction

Effective Lagrangians or potentials can be considered as the
basic tools to determine the ground state of a QFT. Especially
constant homogeneous fields have been discussed as candidates
for ground state configurations in non-abelian gauge theories
/1/. in 1-loop approximation the effective potential Veff

of the gauge field sector has an imaginary part for colour
electric as well as for colour magnetic fields, which is
usually understood as a signal for the instability of such
configurations/1’2/. By studying radiative corrections in
constant background fields beyond the 1-loop approximation
we hope to obtain a better understanding of Veff and espec-

ially of the physical meaning of Im V ee.

What is the problem with Im V_pp ? To clarify this point
/3/

let us turn to QED. Since the classical Schwinger paper

jt is well-known that the i-loop expression for Vegs has an
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imaginary part for constant electric background fields (but
not for magnetic ones), which is simply connected with the
pair creation rate in an external electric field. The same
applies to the quark loop contribution to Veff in QCD/4/9
Recently alsc the 2-loop contributions to Veff for QED have
been obtained/s’e/e The imaginary part (in case of electric
fields) turned out to be finite and independent of the choice
of renormalization conditions/s/, This is fully in accordance
with the understanding that 1Im Veff is connected with an
observable quantity which is unigquely determined provided
that the usual renormalizations of QED (including the electron

mass renormalization) have been performed.

To determine radiative corrections in the non-abelian case

we derive in Section 2 the necessary propagators in the frame-
work of a modified real proper-time representation which
separately treats the contribution of the negative modes to
the gluon propagator. In comparison with formal generalize
ations of the Schwinger propagator to the non-abelian case/z/
the propagator obtained here is better suited to evaluate
radiative corrections and to disentangle real and imaginary
parts in Veffe Ip Section 3 radiative corrections and their
almost {i.e. up to phase factors) translation invariant
structure will be discussed. For this purpose choosing the
background field as Bp = ~§ FPV x, {(Fock-Schwinger gauge)

is of crucial importance. In the resulting expression for

Vgg% 211 the phase factors drop out and Im vég% can be
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easily expressed in terms of the renormalized gluon tensor
Itrv_ This finally allows to discuss the physical meaning of
Im Ve (gauge field sector) from a new point of view. A

discussion of the results will be given in Section 4.

2. Chost and Gluon Propagators in the Background Field

In a Euclidean SU(2)-symmetric Yang-Mills theory we intro-

duce a constant colour-magnetic background field

BiafEin =-209Bel x, £t S oo
ol B 2 L e CF, W T e g p ® (231)
@ 9 F- 22

The kernel for the ghost field is

E"H:—D;‘ D;b (2.2)
and for the gluon field

kfj" = R w2y e B (2.3)
where

p'j‘= ;“"Qr +q g2k B." . (2.4)

Here the background gauge fixing term with gauge parametex
«/=1 has been chosen as usual. For simplicitiy of notation we
take gB 0. It is straightforward to diagonalize iab
and Kﬁ? in colour indices
L R@. -
K= W ( ¥ d) U"‘
. . &
k = U ;ry;\ 4-21§gf’.v _ .
ol J;w&i -2;335,,4 ﬁ) u-* {2.5).
S

4= O
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and to diagonalize K

Py further in space-time indices
Bk 420885 = R

ke &J oo
-

o

(
-

(2.6)
Tk -2ia8ed = R - k_)?\“’*
where
L L] & i L ¢ i
P . a - e ] [
Tlo o Vi, ey ; T
(2.7}
WE =l e2yB, N2l 2258,

The Green function of an operator X with the eigenvalus
equation
Kbiﬁ m)@w IA“ (238)

is given by

wBt ()
Glox)e S % (2.9)
] i3

To compute the inverses of the operators

ki g [3%& - %ﬁi(&:}#&{;—) & “§ g{*ﬂ’}.& —N&QA)]

we substitute Z4 5 = QgB/2 X4 o and introduce the
5 b2

creation and annihilation operators

at e 2[00z, w2 (-0, +2,)]
do= F[ o ra, i +2)] (2.11)
Tt = 3 [-2 vz i +a)]
I =tz i (+a)]
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O s

with ‘the commutators properly normalized in accordance with
4 4% T T
[4,d)= [T Tt =4 ;;Z;‘ Waem (50) U (%)) = T (3, =%)
[33) e [A45TF] =[5, 5] «[Xdf=0 (2.12) Now we find for the inverses of our operators n* and n”
&t(,ﬂ,) (.& ‘&,,/Mr’}@, 5 ©anen I’u; B i)
and arrive after a Fourier transform for the XXy -dependence §”,, Ty ' -

e 2 e = i %ﬁe {5 =50 %)
at the expressions Ini (] e (2.18)
4 L ¢ % . ®
N ("q.".;.,’w) = hy +38 /lj 'i"'") (2.13) ? dst (,_';Tg’i) e 1l ?—% A
Iy (’(4, \1’ ﬁ,,) = %”" + ?_B {Ld*o‘ +4).

+ - . st 2
The operators h' and h™ are 2-dimensional harmonic oscillator By means of a Fourier transform of the factor exp(u(x&-xi_)z)

Hamiltonians. Their eigenfunctions are and with the substitution et=e”° we can rewrite the result

cons $® R o zi /.3-
U (2,) g? /J) (’l ) ¢ in the form of the propagator for scalar QED
.z /,, (2.14) Wl A Eiehal ¥R ik
- coneh. L Z ( w'“"’f"V u, (zn) u {'3&) E ' )) o i§3 \S r(l,,,, e e
T oamen m r re ety o s g.*
" fs S R (2.19)
and their (infinitely degenerate) eigenvalues o eosh ¥ € } ¥
- %
PR Tl (2msa) g 8, Yow = by (20 4a) 48 (2.15) where the phase
8
o B i ’
for h¥ and h™ respectively. We emphasize that the complete § 6] g (ranl—n %) (2.20)
set of eigenfunctions for the 2-dimensional oscillator can be represented as an integral along the straight line
problem is given by the wu_  of eq. (2.14) and mot by 1w, connecting x and x;,
or wu,, alonme. ; N kf 4y, B, (2.21)

Apart from the phase the expression (2.19) is translation-
We use the integral representation of the Hermite polynomials

L4 s invariant.
4 e e Y
H, ()= (——1 e~ [a ()% e Bl (2.16) +
- The inverses of the cperators 1~ + 2gB are simply obtained

to evaluate (2.14) and obtain by substituting exp{-s{i+ kﬁ/EgB)) for exp(-skg/ZgB)

3&/2 2 %2/ s =
‘! 2 e y S TRL BE S TN
umw(zJ_); i_f m fé %L € [ in {2.19).
(2.17) "
b aks ),ﬁ {»;iﬁ Y )s\ in the case of the inverses of h™ -2gB we have a negative
< & mode at m=0 resp. n=0. The formal substitution
exp(-s{-1+ k;/ZgB)) in {2.19) would lead to a divergent
35
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integral over s. Therefore we separate the negative mode.

We take uon from (2.17) and perform the sum

B
H ' wl2y =27V /2
Z uple) ui (2] = & o8I (o (2.22)
This gives the m-O contribution 8 N
L TR WS colewt) - %!
[k(**’)-z;B]"' ) (.l 8, gibalrxly e,g(’r,x)e Ly, )

farm)* 11 ~43
tglux) dYA ei“*-*” S (2.23)
Fee ({:R’)T" ﬁ,,"—QB e 4
The remaining sum
oD rd a“@ ,)
s Z Vi {2) U (2 (2.24)

mea @Se '\nm 2}3
contributing to [h*-ng]'1 can be done without difficulties.

The result for |[h™-2gB] ' is obtained from |n*-2g8]"" by

changing the sign of the phase.

Collecting all contributions we present the final results:
The ghost propagator is f“gj“

G,“‘b{»,x') = 4)“"/&,&”) Pole) YT (2.25)
and the gluon propagator
Gh ) = § o [EELANETD g2 pei) 7]

. . Y o B ey &3 bl 2@26
+ = [F 45/\ w'))‘s L + ————; I o ( )
Blmrr z bt A o) >

where the phase factor is given by

o fdy By ab 23 b3
4>“5/W)«=(e"“" ") -5 (2.27)
involving the line integral as in eq. (2.21). Furthermore,
st . L £2
(Fu) = -2 B, : (2.28)

is the field sirength in the adjoint representation.
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The D-functions read explicitely

oitx Fds s -?‘iuv
D°(K= (1Y (9
) 13.5 f(ln)w' u,[\% e 2?8 &f
A ik - ty)s v

by e e [ EE ] 2
b 19'3 y(;")"' wk ‘/.v. r

- TN h - A

- !u‘:z e WE 3 4oy ————et L ] (2.29)
s &p .
;% ki

8 F
- J;l ;%N&Js 134')5“ "'Bl‘ah!aq/g
D= 153 f(.?n)" & ‘(;nsi, w7

Let us note finally that choosing the background field in a
different gauge (e.g. By=-Bx,, B2=B3=B4=O) one would not

arrive at structures like (2.25) or (2.26)

2. Two-Loop Corrections to Im V eo

Evaluating 2-loop corrections to Veff amounts essentially to
perform perturbation calculations where the usual propagators
are replaced by those in a background field. Of course, all
the interactions with the background field are summed up
already. Let us also mention that - due to the negative modes
- an intermediate regularization of the underlying functional
integral has to be supposed. Note, however, that it is one

and the same procedure which on the one hand justifies func-
tional integration and the appearance of the gluon determinant
in the 1-loop expression for Veff and on the other hand the

perturbation theory around the background field configuration.

Such a perturbation theory and the resulting radiative correc-
tions will differ considerably from the structures known in

the zero-field case., The reason is that the phase factors in
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the expressions (2.25), (2.26) for the propagators are neither

diagonal in colour space nor translational invariant.

Let us first note the couplings between the gauge field fluc~-
tuations Q . The case of the ghost-gluon vertex is obvious.
From the gauge fixing term (in background gauge) we get the
Paddeev-Popov Lagrangian éaD;ab(B)DBd(B-i-Q)cd which leads to
the vertex 85anb(Bszdle°d* Expanding the 3- and 4-point
vertices of the gauge field around B one obtains, besides
the well-known Q4 term, the cubic term

a0 0 (e tonta)l) (3.1)
As a rule, the couplings in the background case are the
usual ones up to the modification that all derivatives must
be replaced by covariant ones. This fact, together with the
form (2.25), (2.26) of the propagators, allows to simplify

the expressions for radiative corrections to a large extent.

Since we are primarily interested in the imaginary part of
the 2-loop effective potential Vé%% it is sufficient to
restrict the consideration to the general structure of the

polarization tensor
Tfrv(x,y) = xyy o+ x Py

(the ljnes denote gluon resp. ghost propagators in the back-

ground field). These diagrams lead to the following form

for 71}y
T2 ) = 55539 T )+ % T8 o)
+ i{ (Fre 4’)&!‘ o)y (), = (,vew)} TT%%-v) (3.2)
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(compare (2.27) and (2.28)). Here ﬂ;?,Tﬁf, and Trﬁ) are
functions of x-y only, i.e. they are translation invariant.
The factors which are not invariant under translation are

present in (2.25) and (2.26) already. Therefore the expres-

sion (3.2) may be called almost translation invariant. In

deriving (3.2} we have used
po {4>b°(x ) £ (- )? 2CLn) 2 Llxey) ‘.ﬁ(p 4»?6 4
Yy V) £le-v) = @ ""’);xv Vit 7N (x'y)q"{k'\/)

ghee g %‘V&N)édéﬁwi= ST R

7 I3 c&l b
b VR, pn)” §T ) = 0 (3-3)

ghee ¥ (Frv‘i’(».v))&y{‘:w‘ff‘r«ﬂ)"&“ -2 3T B ir{" v

together with the obvious relations
oty = Pl
q‘)“/&.y) QL‘(\/,X) = J e (JM +J“l)i
GRfey) = GuiCy, ), G ()= G
Knowledge of the explicit expressions for TI::,TBSX TTG)in
terms of D+, D7, and p° is not necessary for the subsequent
considerations. What we have to study, however, is the struc-
ture of the conterterms which are required to compensate the
ultraviolet singularities in (3.2). Let us at first look at
the short-distance behaviour of the propagators. The leading
singularity of D+, D7, and D° is that of a scalar zero-field
propagator Dte D = D0~ (x-y) 2. With JDab(x,y)g 520 e
obtain gab ~'Jab(x-y)-2 and Gis,,Jab J}y (x-y)—z.
Therefore the short-distance singularity of Ttix,y) and
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correspondingly the counterterm has the structure

J'%(J}‘,d-QrE)y) J(x-y) as in the B=0 case.

Let us turn now to Veff° In the 2-loop approximation one has
to take into account the following diagrams (including

counterterms):

R v QR s S oy SR
o AP ‘@

This can be written in terms of the polarization tensor

> e

@) 4 ab ab
V"‘f = \7‘;‘ {Jxa‘y {6 v lx,y) Ti;-v f&r,‘y) - c,*,i (%3.4)

and applying (3.2), (3.3), and (2.26) we get
v pYeD” L i o s 2 @)
Veg = g ey [ [ 22 55 1) ST

/'\V
@l
@) Ty Ty (3@5)
e Borp) oot TV 4 P ],

The phase factors have completely disappeared from the final
expression (3.5). Thus Vé%% is given in terms of translation
invariant functions only, which has already been anticipated
in dividing out the (infinite) 4-volume V- The represen-
tation (3.5) allows to separate real and imaginary parts

immediately.

The imaginary part of»Vé%% originates from the negative mode

P

contribution to DV namely

ok /s8 -4 /5B [P £ indlaf-58)
g -48 = ° b 28 ’ ' e

In Euclidean theory it is not obvious how to justify an
a-priori choice of the sign. (Compare the analogous situation

in the 1-loop case.) Let us denoie the imaginary contribution
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to the gluon propagator graphically:
M =t B Sty ) e P/,
=t % A

Then we obtain trivially that Im Vé%% is determined by the

(3.7)

following diagrams (now uncrossed lines are understood toc
represent the gluon propagator from which the imaginary con-

tribution (3.7) is removed):

RV - 3 ED e B - G D

Here a warning is in order: The upper diagrams representi a

(3.8)

simple book-keeping of imaginary parts and have nothing to
Go with usual unitarity cutting rules! In (3.8} BRe Trren
denotes the polarization tensor evaluated with two real and
two imaginary parts of the gluon propagator, whereas in

Im T{ren (beeing in fact uv finite from the beginning) one

of the gluon propagators is reduced to the cut contribution:
Lo T, = 2 &5 (3.9)

Leaving aside the question whether the second diagram in
(3.8) is finite or not, we observe that Im Vé%% contains
ReTIrep which is undetermined up to an arbitrary term

const. Jab(ﬁ J}W —9,- %) d(x-y).

{ Lo X .
Therefore Im Vé%% remains undetermined in any case.
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4., Discussion

We regard three of the results presented here as useful new

achievements.

That is at first the representation (2.26), (2.29) of the
gluon propagator in constant homogeneous background fields
given in the form of a real Euclidean proper-time represen-
tation. It has turned out to be necessary, however, to sep-
arate the contribution of the negative modes to the propa-
gator, which later on becomes the origin of imaginary parts
of the radiative corrections. The explicit expressions for
the propagators allow to study radiative corrections in
perturbation theory. The justification for doing this is
the same regularizing procedure (tacitly agreed upon) which
makes the gluon determinant to appear in the one-loop effec=
tive potential in spite of the fact that the negative modes
spoil the Gaussian behaviour of the functional integral. We
would like to emphasize that whenever we discuss Vé}% the
two-{(and higher-)loop contributions should be kept on equal
rights.

The structure of Tgw and Vé%% given in (3.2) and (3.5) re-
spectively should be considered as the second interesting
insight. This shows especially that the phase factors in
(2.26) and (3.2) have been dropped out and Im Vé%% can be
obtained immediately from the imaginary part (3.6) related

to the negative modes.
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(2)

The final result concerns Im V_ 5,5 which turns out to be
subject to renormalization arbitrariness. Another linme of
arguments leading to the same result can be found in /7/&

In other words, Im Vég% can be chosen arbitrarily and e.g.
such as to compensate the one-loop expression for Im Veffse
This leads us to our main conclusion: The imaginary part of
the effective potential for constant colour magnetic fields
cannot have a quantitative physical meaning like Im Veff(E)
in QED. Whereas this is the statement of a direct result

from diagram analysis, physical questions concerning the
stability of colour magnetic external fields remain open.

To study whethef there is a non=-zero probability for gluon
ﬁair production would be eguivalent to discuss the time evol-
ution of an in-vacuum state characterized by such an external
field. The peculiar role of a colour magnetic field shows up
also in broken gauge theories (Yang-Mills-Higgs theories).

it is known that Im Vé}% is non-zero for gB >M§ but zero
otherwise. This could naively be interpreted as if weak fields
were unable to produce massive pairs. This is in sharp contra-

distinction to unstable QED situations: Arbitrarily weak

constant electric fields can produce e*e” pairs in principle.

The investigation of propagators and effective potentials
has been_perfofmed in the Euclidean variant of the gauge
theory. If one would like to study the effect of colour
electric fields one had to perform an analytic continuation

of all expressions together with the replacement Ewuclw@-iEs

Lty




This would additionally introduce those imaginary contribu- SUPERSYMMETRIC QUANTUM MECHANICS IN CURVED MANIFOLD

tions to Veff which are known from the QED case. Qur problem,

however, is mainly the imaginary part which originates from V. de Alfaro
. Dept. of Theoretical Physics
the negative modes of the gluon kernel. University of Torino, Italy
’

C. D'Azeglio 46, 10125 Torino Italy
The authors gratefully acknowledge interesting discussions

with J. Ambjern.
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