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Classical fields have been considered in the past either as
characterizing a non-trivial ground state of QFT /v or as
external fields, i.e. as fields describing the influence of
the environment on the quantum sysiem under investigation /2/@
Homogeneous background flelds should rather be taken as ex-
ternal ones because the imaginary pari of the effectiive

potential could be understood as an indication of instability.

The aim of our contribution is to clarify the physical role
of Im Veff by going beyond the i-loop level. In Part 1 we
present new resulis on the gauge field propagator. The struc-
ture of the renormalization terms for the polarization tensor
obtained in Part 2 will be used in Part 3 to study the prop-

erties of Im Vepp at the 2-lc0p level.

1. The gauge field propagator in backeground fields

Choosing the gauge fixing term in covariant form

KR
Lyg =-5 (v.(0)a,) (1.1)
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where Br(Frp) is a solution of the classical fisld equations

Dﬁb(B)ER =0 the Lagrangian staris with the quadratic term

b ab b
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Here and in the following Buclidean QFT is slways understood.
Gauge and ghost field propagators are defined by
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From the idemtity
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we obtain without specifying gauge group or background field
ab be sd ad -
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and
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Both relatlons have to be understood as fumctional egualities.
Using (1.4) and (1.6) we sxpress /3/ Gab(xgyyw) i.e. the gauge
propagator for arbitrary gauge parameter « in terms of the
special gauge propagstor Gab(xgygﬁ)

ab - ; ac <d . db
C—,/w fey,e) = c,iwb{w,y,oi) (4t} [z 6/‘“ (,\»,z,ﬂ(l)w ;DA) Gyy (z,y,4), (1.8)

This relation reduces the problem of finding the gauge propa-

gator to the easier case «=1. Here a warning should be kepi
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in mind. In order to apply (1.8) we have to assume that
DrGf,(z,y,'i) vanishes sufficiently fast for z--00 as to allow
partial integration. Therefore without knowledge of the long-
distance behaviour of the special propagator er(x,,yﬁ)

expression (1.8) will remain a formal ons.

Now we restrict ourselves to the gauge group SU{2) and to the
special background field

Beh V=~ Elx

P I B (L ..‘;22::)

e B;ﬁ;i fadin 3333 (1@9)
Fad = Y

i.e. to a constant magnetic field with a 3rd colour compo-
nent only. Gauge and ghost propagators for the special case
=1 have been evaluated earlier /4/ with the result

obf W) Do) + A ,
GoHniy) = 47W) Do) ey (1.10)
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her
where . preo" b= pr-p~
= =5 2 (1.92)
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have been used. By the way, 4 is nothing else but the phase
factor exp ig ?d%r %, in the adjoint representation,

taken along th;!straight line connecting x and y. The props-
gators (1.13-15) appear in & real proper-time representation
in contrast to esarlier attempts /5/8 The pole term in {(1.15)
which is due to the negative modes of the gauge kernel has
been specified as a distribution with non-zero imaginary part
in accordance with the imaginary part in the i1-loop effective
action. A detailed discussion of the propagators (i.%1e), {1.11)
has been given in /3/e

At short distances one is interested in the lesading and in the
background-dependent non-leading terms. We note the following

results

I L 38 8
& ab 43 b3 o~ L i =) N B
Gl‘j txya)= (@ +d }%Mt./s v ¢ Fn* ’%‘{ w i)) “ b (1.18)
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for (x-y)g—«wo° This result could have been also obtained
directly from a Schwinger-DeWitt analysis /8/ without knowing

the propagators completely. The large-distance behaviour is

given by Ty v N
- N3 B8Oyt = 2 lrp=vs)
G ) BWM%QW"*W’ g
gk geb 33T d (1.20)
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it

-
for (x-y)Q—woo@ It is the behaviour (1.20) which decides
whether the construction (1.8) for the general propagator
makes semnse or not. A caveful investigation shows that the
slowly decreasing term of (1.20) is projected to zero by Qr
80 that (1.8) is well-defined. The second term in (1.8) can

be rewriitien in the form /3/
(dz [Guy (21) Dy Dy Gy (29,07

al Te 1%""* )ﬁaiv
$0) Ra @y (ey) + §2ly) Ten Ly () =9 ’J ;(um" Va.22)
with N
Q. fo) = (Axef”” (5.- 2B L)W (5, £ 0%)
g 1 Eer 1.2

Concerning (1.22) two points should be emphasized. At firet,
the final form of the general propagator is almost tramslation

invariant (i.e., of the form phase factor times functiocn of
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the difference coordinate) which could not have been antici-
pated from the lefi-hand side of (1.22). Furthermore, the o-
dependent part does not contain any imaginary part. In other
worde, the imaginary part in (1.11) cannot be mocdified by the
gauge fixing term in (1.3). This fact is in accordance with

the point of view which connects Im Guy with a physical
quantity namely the guantum instability of homogeneous magnetic

rie1d 7%/,

2. Renormalization of the polarization tensor

Because of the lack of full translation invariance of the
propagators all Feynman diagrams will be studied in x-space.
The x-space vertices are of the same algebraic structure as
in the case Br=0 except that derivatives are ito be under-
stood as covariant ones. Prior to any explicit calculation we

note the general structure of the polarization tensor

Tf (k\, 4) r», v) T'( y () E;‘“’i’(\-\{) W::){:r—y) Je3gPiyy ) -y}

v
nre) W;? ' n“;z,\ - TT[_L\ /‘ (2&1)
which fOIlows from (1.10), (1.11) and the relations
e I L A e LR IR AT
DR [ e flenf = 79 F +aBat (R g, (2.2)

Taking into account the complexity of the 3-gluon vertex as
well as the unusual form of the gauge propagators the deter-
mination of TT . turns out to be a2 wather complicated task.

However, if one is interested in the structure of the ryenor-
malization terms only one may restrict the investigation to

the fermimnic (gquark) contribution which is considerably
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easier than that of the pure gauge sector.

There cannot be any doubt that the fermionic term indepen-
dently reveals the structure of Tgw dictated by gauge in-
variance in presence of a background field. We determine the

ultraviolet divergent part of the fermionic conitribution

Ti;f"“'?l«.\n = - g% de {47, S00y) £y Sl (2.3)
along the following lines. Taking into account the leading
and nonleading short-distance singular parts of 8S(x,y) only
we obtain all the uv singular parts of the product (2.3}
leaving aside the finite parts; of course. We use, for the

moment, & simple light-cone regularization

4 —s 4
M-y i* (r=y)¥ 4 a*

(2.4)

which like Pauli-Villars regularizstion suffers from ficti-
tious quadratic singularities beeing absent in & proper gauge
invariant regularization. Without going into details we note
that usual dimensional regularization poses specific problems
in connection with background fields where, due to the com-
plicated structure of the propagators, we have to resirict
the considerations to the leading and nonleading singular

parts,

The fermionic propagator in the background (1.9) is determi-
ned by

iy ~3B4)Stxy) = =Jboy), 6=2("..) (2.5)

(we take massless fermions for simplicity). It can be cobiained

in terms of the electiron propagator in a homogeneous magnetic
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background field /1
ECQI:\. $+{-\"‘!) o )

s = (5, %2 5 (my) (2.6)

Here &3¢/2 s¥(x-y) eand e-i¢/2 8" (x~y) denmote the elsctron
propagator an where in the propagator equation the electrie
charge e has been replaced by g/2 or «g/2 respectively.
The phase ¢ (x,y) 4is given by (1.16) and st by

o

Sthey) = - 2 ), (£ o ROV AT - 1——’}’-‘? - e

Y 3B {(K 1 Fnp o tosl? ¥ ? 4 (2.7)
5 (4% chlx-y F AT —L“;r—’-f;hukr iiﬂ?} ¢
+(2{ ):/f(;;#?— ,f:s'(.—r e 58 %8 @ .
The short-distance expansion of g® starts with
ES 4 e [ESN)]

R el B = RN (2.8)

The uv divergencies in (2.3) arise from multiplying the
leading singularities but also from the mixed products. The
result depends crucially on the colour indices a and b. Fox

a=b=3 the mixed products as well as the phase factors cancsel

33 _ st 1 _ JUEE)
-ﬂ;-v fey) = Frrlie [zl»-y)/,. fesyly = Ty (r=y 1], (2.9)

This ill-defined i.e. non-integrable expression can be trans-

formed intoc standard form either using directly

4 E9-2V A ;v a
i 45 J;“"g‘ = [w W+ f{?ﬂ] z% {(2.%0)

2

o |

or using the regularization (2.4}, For regularized expres-
sions the velations {2.1¢) are valid op to terms O(a°2)

enly. Using finally

{4) = = =t 4 J(z) + regular terms (2.11)
rea .

;,; (zz+al)g

we obtain the venormalization term for (2.9)
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et =2 4%}1 G (2] (902 =3 £) T 6=). (2.12)
This standard form corresponds to the result an for abelian
theory (QED) in a homogéneous background. Significant devi-~
ations from the abelian case occur for (a,b = 1,2) because

1 104)

4 o =<
t =3 (40 )

and t° = 7 (~ °

[

are non-diagonal. As a rule,
the phase factors do not cancel and the mixed products cannot

be neglected. We obtain
A T tey) = = 2o pget) [ 6%y [3,9, -3y 4]
C1ageh e ) Sy, fmbena) (201D
It should be noted that the phase factors in (2.6) did com-
bine into the phase factor (1.16) in the adjoint representa-
tion, The counter term depends in a specific manner on the
background field. Since §“frwdley)=*Jh-y) the expressions
(2.12) and‘(2@13) are in accordance with (2.1). From the
identity

ab @b B 1 b3 -
(pml;’?-‘l’(i}vd’;)/—gv)«y/’(-‘l)* [J}vm‘_’ "(D/‘-Dv) + %: s)-v £ ] J( vl (2»;"4)

which is valid if integrated with a test function £2(x) the

counter term (2.13) can be rewritten as

8

b * A ab b3 )
M=t ae [;}vlp) SOt 2gBeR 120l Gbena) (o ey

This is a structure which could have been anticipated from
general considerations /8/; (in fact the renormalization

/3/)0

terms for Il are not given in
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3, Two-loop corrections to Im veff

The effective potential Tfor homogeneous background fields

is well-known in i-loop approximation /9;10/
82 By W =
Vg =~ pa BV & (B2) £ il B, (3.)

Here §4= -{118 -an)/48 ﬂ2 is the first coefficient of the
SU{N) ﬁ function. Furthermore the limit of vanishing fermion
{quark) masses is understood. Vﬁ}} does not depend on the
gauge parameter « within the class of gauge fixing terms
,m,.?:‘;—l(Z(:cr(B)a,.)z.a This result has been extended %o & large class
of general gauge fixing terms /10/3 Questions about the physi-
cal meaning of . Im Veff could arise from the fact that an
imaginary part appears already in the Buclidean variant of

the gauge theory. This is in contrast to QED in homogeneous
background fields /7/e

In orxder to arrive at a better understanding of this imaginary
part we turn to the 2-loop correctiomns. Our aim is to clarify
whether the properties of these corrections (in particular

the independence on renormalization arbitrariness and on the
choice of the gauge parameter) are consistent with those of

a guantity of physical relevance.
The 2-loop contributions are obtained vis

= b [2°04+ 2% 0] = (dx Vg (3.2)

from the 2-loop diagrams (including renormalization terms)

for the wvacuum functional Z
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In (3.3) we have indicated explicitely the combinatorial

P

:‘>\
-2 Pt -1 Y de) -

weights /2/ and we understand that the integrations fdxdy
have to be performed. The imaginary part of Veff arises
from insertions of the imaginary part of the gauge propa-
gator., The latter will be pictured by a crossed wav& line
whereas an uncrossed wavy will from now on correspond to the

real part of the propagator. From (1.11); {(1.15) we get

2
ab b ~od d¥e (hbey) Y 2_
oo = G y) =t T[E T 4 el [Fmm e TeThe S aB) (5

Taking into account the equivalence of the gauge field lines

in (3.3) we obtain N

mze G5 - p G - 1S -2
) (3.5)
c Iy -3 @ Jhe-vh,

It is instructive to write down the diagrams for BeTD,too

absen 4 4 oSy a
QQT(;‘, rey) =5 6% +LO\&VO -4y +

e

o
153

(3.6)
- O = OnanBaeg Jlvey ).

Comparing (3.5) with (3.6) it becomes obvious that the weight

factors combine in such a manner that we can write

{1y a B e 4
7’“\’@({ -_-:-»—V—‘; fs!yd\[{;_‘fr[éz&nrv %G/‘V]-Z %} (3.7)

Because of (2.1) and (3.4) the integrand in (3.7) is trans-
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lation invariant which allows to factor out the infinite

space~time volume V4e

What about a renormalization arbitrariness of Im Vég% ?
In accordance with {(2.13) RéTyj?xgy) is only determined
up to a term

consd w {éﬁb(x—,y) IJ;,I& —J,Dy] ﬂi ?Birt i“uf J.(\'-‘I). (3.8)

Inserting the contribution (3.8) for ReT@fhtogether with
the expression {3.4) for Im G., into (3.7) the result is
zexro. In other words, the renormalization arbitrariness
apparent in?Eﬁ"drops cut in Im Veff which therefore turns
out to be - contrary to our earlier expectations /4/ -

a uniquely determined quantity.

In this respect the result is similar to that for QED in
homogeneous electric background fields. For QED it is well-
known that Im V,pp corresponds to an (in principle) measur-
able guantity namely the pair production rate per space-iime
unit. So Im Veff must be uniquely determined provided the

usual renormalizations of QED have been done /1?/§

Our result is in accordance with a similar interpretation

of Im Veff for the non-abelian theory.

4. Conclusions

The construction of the gauge field propagater has been re-
duced to the case o=1 (Feynman gauge) which, in general, is
easler to handle. For the non-trivial example of a homogeneous

background field this construction is free of infrared prob-
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f.Jack, H.Osborn, Nucl.Phys. B234(1984)331
f.Jack, Nucl.Phys. B234(1984)365

/9/ E.Elizahle; J.Sotoc, Ann.Phys.(N¥) 162(1985)192

lems. The main conclusion to be drawn is that the imaginary /8/
part of the gauge propagator (due to negative modes) does not

depend on the gauge fixing term.
. /%o/ K.Scharphorst, unpublished

The structure of the renormalization part for the polarization /11/ S.L.Lebedev, V.I.Ritus, JETF 86(1984)408

tensor has been determined paying special attention to the
background-dependent terms. It is equivalent to a generalized
(covariant) gradient invariant structure but noi identical

with that,

At the 2-loo0p level Im Veff is & uniquely determined quan-
tity independeni of the renormalization arbitraripess in the
polarization tensor. This is in accordance with understanding

Im Véff as a physical quantity.
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