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Abstract

Within Buclidean SU(2) Vang-Mills theory considered in certain constant non-abelian
background fields the expljéit construction of gluon and ghost Green functions is presented
paﬁng special attention $o unsiable modes. The propagators obtained turn out fo be
purely real. The propagator expressions given for two differznt background fields are
related to each cther in the coincidence limit of these background comﬁguratioﬁs. On the
basis of the derived resulte the imaginary part of the Euclidean Yang-Mills theory effective
action is discussed showing that no higher loop corrections beyopd the well known 1-loop
result appear. Also arguments are given that the 1-loop imaginary part should not be
“trusted in. |



1. Introduction

Non-Abelian gauge theory in background fields has been an issue by now for over a decade.
Started by the investigation of Batalin, Matinyan and Savvidi [1] numerous papers dealing
with the subject appeared. Continued interest in these background field problems is tightly
_ connected with the search for the ground siate in QCD — 2 problem which remained
unsolved so far — a3 well 2 with certain closacs of problems in electro-weak theory. One

ihe peculiar fectures of non-abelian gé,uge theories in {constant) baclzg:ebuﬂd ficlds is the
appearance of unstable modes as has been pointed out by Nieken and Olezen [2]. These
unstable modes lead to a 1-loop effective action T't] which calculated on the basis of the
master formula T ~ In det K exhibiis an imaginary part. This is said to signal an
instabilily of the trial‘ ground state modelled by the given background field configuration,
Over the time there has been much trouble about these unstable modes and their impact.
Different lines of thought have been tried to tackle the problem {The few selected references
[2}-]11] given should represent here the subject only.). So, we felt motivated o consider

~ the whole problem on a broader footing [12].

Considering Yang-Mills theory in constant background fields lef us remind you that
the imaginary part in the i-loop effective action already shows up in the Buclidean version
of the theory in opposition to the imaginary part of the QED effective action in the case
of a constant electric field [13]. Therefore, in the present article we focus on the Euclidean
Yang-Mills theory .eﬁective action. We are going to report on the explicit consiruction of
gluon and ghost Green functions in certain constant non-abelian background fields paying
|  special attention to the unstable modes. On the: basis of these resulis we discuss the
jmaginary part of the Euclidean efiective action. |

" We are considering Euclidean SU(2) Yang-Mills theory in the covariant backgrourd
gauge (SU(2) has been chosen for simplicity). Before starting the explicit construction of
Green functions let us give a few general properties of SU(N) gluon and ghost Green func-
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tions in non-abelian background ficlds obeying the classical field equalicn ( 20y = 5%,-)

ng F gv =0 , ' {1)
D8P = DEN(B) = §% .8, + gf > Bi(s)
F&, = oF%,(B) = +0,B%z)— 0, B3(z) + 9/ Bi(s)B;(2)

“The ghion and ghos$ Green functions are defined as the inverse of the respective quadratic

kernels of the action in the given background.

K (e;z) Gy ff’_:;;;(a; z,7') = §64 S 68 (2 — ﬂ - (2)
E(5) Gy %' (z,2) = 6% §4)(z - 2') (3)

K%{a;5) =6 K%(z)+({1-a™t) Dg° DY — 29 ¥ F, (22}
| _ E®z)=- Dy 74 (35)

- The operator relation {4} which holds due to eq. (1),

ch, (a2} =a~t H*(z) si}d’ {4

.yieids i;iae following identities,
| D¢ Go'ti ® (2,2 )= # D% Gy *%{z, ) (5)
oD% DY Gy oz, x ") = a §% §(8(z - ') )

Using the above equations one finde
Gy (05,5} = Go B (12,2 +{1—a) oD¥ 2 DFF j 2 Gy (s, 7) Gy (z,2") . (7)

Eq. (7) justifies the restriction to the case a = 1 in the further consideration inasmuch 28

expressions for general o can be derived from the knowledge of this special case.
. : .



2. Propagator construction for $wo special ‘backgrennd fields

Now, we will skefch the explicit cons’sruétion of gluon and ghost Green functions for two
special background configurations. As mentioned above we restrict our consideration to the
gauge group SU(2) (i.e. fo¥¢ = &¥*) and t;ke the gauge parameter @ = 1. Configuration
I is purely colormiagnetic while configuration H has a colorelectric component too (These
1abels are inspired by the Minkowskian version of the theory.), |

configuration [

¢ 19060 :
1 R -1 000
B;(x) =—3 ,'2'9% =—3 §&* B 5}!{950; EJI&-V =10 0060 , (8)
‘ 0 0 0 0
configuration If
0606 ¢ O
' 1 1 1 00 0 0
Bi(z) = -3 Fa,e, = ~3 6% [B ej 2, + B efl, 7o}, e, = 00 o 1] 8"
B S>B'> 0 6 0 -1 0
Note, that the gauge potentials (8), (8’) are chosen within the Fock-Schwinger gauge
z; B3(z) =0 (9)

The diagonalization of the gluon and ghost kernels (2a), (32) for configurations I and is a
straightforward $ask. Let us give a few details for case Iand 11 (Wherever formulas for‘ case
II differ from those of case I the corresponding equation‘numher carries a primé.). Color
gpace and cobrdihate space diagonalization is performed with the help of the matrices U

and R respectively. '
ht
K=U h- Ut (10)
_ A |

(5,,,, ht + 2igF3,

Eo=U S b~ — 2igF3, -t (11)
S A

A=-8,0;



Here, the following notation is used.

T

ek '
6y B :tzzng% =R k . B (12)
L[5 10 -
U=-—=f-1 — 0 i3

vVilo o v2 |
i 10 0 i 1 0 0 |
1 {1 - 6 O b -1 - 0 6 1 "
ﬁ__:'-/-%; 0 0 ‘V{E 0 s R“-JTE 8 B8 3 i. (“4)3(14)
6 0 © I/ 8 8 -1 — |
Bt = it 2268, A E=h" 2B, ¢ =ht, CgE=k (15

htE =Rt £2gB, At =h"+%B, ¢EF=htigH, ¢~F = kb~ 298 (15')

Now, using the creation and annihilation operators
(71,2 = IBTZ 21,3, 23,4 =45 [2 Z3,4)
i . 1
= 3 i*al + 2 —3-%(-33 +22)} d= 3 [@1 + 2 mi{g;z + 33)]

: : (16)
=2 [F0+a —i(-F + @)l d=5 [B1+ 2 +i(82+2)]
(2ad in the case T in 2ddition
4= % [-83+ 2 + 5(__34 +z)], ¢ é— [8s + 23 — i{B4 -+ 2a)] (161
&= % [~0a + 25— §{~B4 + 21)ls % [0 + 23 +8(8a + 25)] )
obeying the commuta aion relations
id, cs:é'j [d,d"] =1
[4,d) = ldf, "} = [, d"} = [4,d"] = (17)
(and the same relations hold for the é-opera%ors) we rewrile f;}ae operator A*
(51 = (%1,%a), 2y = (23, %4))
hE=A - %gﬂﬁ%i + §gBl2:85 — 238,) (18)
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A=A — -;;gg(ﬁ%i + By A igiB(2102 — 2301) + Bl(za8y — 2,85)]  (18")

in the following manner
ht(z) = gB{2did + 1) + Ay

: Tt (12)
h(z) = gBadid+ 1) + &y
by =—(5 +5)
!‘+{ ) gB(-ﬂg}{g"i' E}ngffgc C-i—l) ‘
i (1%}
' k{z) = gB{zdtd + 1) + s (256 + 1) .
In the case I we end up with a Z-dimensional hemmonic escillator problem for the 1,2-

direction and 2 frez field ciusbion lo the 84-epoce. On the cther hand, in case I we
arve dealing with $wo independznb 2-dircensionnl harmonic oscillator problems. Se, we find

immediately eigenvalues and eigenfunctions for $he operators (18) ard (18°) (m, n, p, ¢ ¢ I¥).

Moy = ¢BRm+1)+ 1], Agup, =gBn+1)+5 (20
;\gm gﬁ(ﬂm + 14952 +1), Agap= gﬁ(zn + 1) + ¢B'(2g -!- 1) , (20)
1
TP . zz
u”mh“ (2:) — iﬁ;l & \_J = ( }m (gﬁ')“ e L
i,

7.L
- Sk HZEi g8 ¢ 2 .
Gl nt pmdn

E( )( m_n+fa_ygﬂ+V(zl) Hoin—p-v{z) {21)

By \
e 1
BE ~z2
R o A O COC
_la
g BB e 2~

27 \[ minl pl @t Zmietete

[BE)G)r sttt

2 ) (g)s'p—m-sg +(2) Bprg-a _,,(34}} _ (21}



Usmg the integral representation of the Hermsue poiynomlals

Helz) = ( 1) & [ dk e"“‘z ik (22)
we rewrite egs. (21), (21') in the foﬂowmg manner.
‘ i
=23

_ ikyz /913 e
ﬂmﬂkﬁ(Z)—- %I It m

_Lma L EAT /i L AR
£hye 4W_L 45k 2y ( 25:12%-.}32) ( 3&:12 kg) (23)

lzz

o) =1V Bﬂ’azﬁsrm

1,
fdéif‘e 4‘2 +skz —i% +k‘3 -Skl—kg
2 2

e Lo e

The éigenfuncﬁons (23), (23’) have been normalised properly in order to fuifil conditions
(24), (24).

[ o Tt €] Sty () = 59 =) o
z Umapg(Z) %:n:npq(z’) =619 (z- 5’ ) ‘ (24')

Let us comment here on the unstable modes prezent in sifuation I and II. Inspection of
egs. (15}, (16, (20}, (20°) shows that A*~ in both caces exhibits negative eigenvalues,
namely {{l] = I e [N, where 1 > I ~ 1> 0) |

'gonﬁguré.tien I Ag,ﬁmﬂ = Aol = i‘ﬁ - 9B, kﬁ < g3, {25)
configuration IT Aopg =98 (20 +1)~¢B, p< [; (:g,— - 1)]

- 1/8B
Mnopg = 9B'(2¢ +1) - 9B, ¢< [ (B, )} . (287
In coﬁstmcting the inverse of the gluon kem:el (2a) negative modes do not irépose any

problem but gero modes do. The latter may be prevented in the case 11 without serious
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loss of generality by choosing .B_i’B’ # (2p +_'1),p_e IN. Furthermore, to deal with an
isolated zero mode a8 it may occur in case I is a manageable problem [14]. On the other
hand, configuration I shows a gero mode in any case for g8 > 0. So, the Green function
construction has o be supplemented by a pfeecgipfion $o deal wiﬂ; the pole conixe«:.ted
with the zero mode. A few lines below we will discuss $his point in greater detail.
| Now, we are constructing the inverse of the operator (A% + ), b ¢ € in the case L.
R 8,2 =
Pk Yimak, (2) “s*nn!cu("")
(27)2 Z Amaky +b

_ f z_‘Le'kn(z - 2')) e:i:-;egB (512 — 22}
27)3 4 ‘

K+b) —z) 88 1lta,
lldaa (ZgB( i+b) )e S il
e

(26)

Introducmg a Fourier transformation in the 1,2-space and subshtutmg a = e~8 we find
(for p(z, ) see eq. (30))

(A + 8~ (z,2) = -
: K
— ctin(z, 2) [ d4 k sk{z ') j‘ cog.:!a —(kﬁ +b)s- —L tanh yB(zT )

ths
gB 3
_ gB io(z,z’) [~ ds e —(z z’)f —~ 2—(z — z')} cothgBs
"~ 1627 ) 0 ssmths 4 -(270)

This expression is valid for Reb > ~gB. In order to construct the inverse of the glutlm
kernel (22) we need a valid expression of the left hand side of eq. (26) for Reb > —2¢B
inasmuch as we have to deal with the negative modes (25) already discussed. To achieve
this goal we continue the k-space expression in eq. (27a) analytically aud supplement the
k-integration performed by a ’pfescription to deal with the created pole in kﬁ We find

(A% +8~Y(z,2) =



0

. R Py
_ ip(z,2) j' é‘_gz Jk(z—2), 9B { [ mg;m R

K |

—L.(1 — tanh gBs) 2

3( _1_—29Bs

ed . 1-¢ + -ﬁ-———-—k". 7B b} (28a)

gB
_ 9B xiglz,2) T BT Afreds —bs
E6n2 ) g &
gg(x — )3 (1 - coth gBs)

gink g9

re | &(EAEBr)
-5 (Mo (/=B =0) + = o =05 -))

Reb> —gB
~gB> Reb>-3gB’ weC (280)

—2¢7958] 4

This representation specified to b = —2¢B effectively corresponds fo the separation of a
term containing the contribution of the negative modes of the gluon kernel (2a).

Yok (z)u (z’)
[k &

&ry
(%)Lx z Yoalky (f‘)%nscﬂ(f ) {P V. [fﬁ-—}gﬁgl ~ 7 & 8(k} -—gB)}

iz |
. _Zegp(z,a:’)f d k FAHz — =) ;7@}?’{ !-Fﬁ B] -1:55{!‘:?—93)%

. _.9:?; — Y
- “%%gﬂﬂ(ﬂ’a £) e 4 _(@ ?)1 [I&Tg ( a8(z - :ir’}ﬁ + & (ﬁ [eB(z - z’}ﬁ }l
| - | '129)

The coefficient « is arbitrary here because in eq. (28) the term proportional o 5 is a golu-
tion f(z,5') of the homogeneous equation k= f(z,2') = 0 with an acceptable asympiotic
behaviour. The inverse of A%~ is not uniquely determined. Practically, the prescription

mentioned above to deal with the pole kﬁ =gB has o be specified by choosing «.
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In the case IT the same procedure leads to (we do not display eq. (26")

[ + 8 (z, =)

= i9(%,7') / 'k , dk(z—7) j mgﬂrs::;ng

;’ﬂT_ B
- tanh ¢B's — ﬁ tanh gBs

(27'a)
¢BB z,z’ et
= 16x3 e:hp( ) o Ssinh gB's sinh gBs
. -———(z ')} cothgB's — —(z )3 coth ng
(27b)

‘This representation is valid for Re 5> -§( Bﬁ*B’) only. Again, for the same reason as in
case I we have to perform an analytic continuation for the right hand side of eq. {27).

Employing the properiy that
Xz 0o .
1 —24B's - B
T TR = b, =0 x2S (8)
is a generating functional of the Laguerre polynomials we end up with

[h* + b]-l(x: z') = ' !

_§’BB (Hip(z, ) e—%{z—z’)i ® dg ¢—bs e——(z z')f cothgB's
16x3 o sinhgB's

L (a- 1 (1- cothgBs)
sinh gBs
B w I {28(s_,
. u—%—(z—z’)ﬁz I, (%(z - =)
gB+gB’[2p+l)+b ?

~4(B+B')> Reb >-¢(3B+%) (28'5)
10

— ¢ —9Bs| |




Again, this representation corresponds o the separation of a term containing the contri-
bution of the negative modes, | | '
Expressions (27), (27”) are translational invariant up to a phase
B, . R - o
p(2,7) = 5-{m2s — 731) ' ' (30)
| B B, e
oz,2) = L (32 - 209}) + - (mud ~ 5474 (30)

which may be written as an integral over a straight line connecting z and .
& I
o) = [ ds B9) | (31)

Collecting all contributions we obtain the desired final result for the ghost and gluon Green | .
functions in the background I and II. The ghost propagator reads

(1 &b _ Gab ‘ 0 ges 5% o "
G*(2,2) = 8%z, 2)D e - 2) + o | (32)
_ 63 563 » -
G(a, ) = 8%s, #)D0(s— ) + o @)
and the gluen propagatbr

Go (7,7 = @G”_(z, z') {-;-5;;, [D*(z-2)+ D (z~ )]+ 5}1,D°(z - z’)} +
+ 8%z, 2)e Leb [DH(z—2) - Dz~ )] + % (33)
Gy (1;2,2") = 8(z, 2) {%5,},, [D¥(z - &) + D%z - )] +
‘ + -;—&j!,, [D?*(z-z’)+D°-(z—z')]}+'
+ 80,2 {5 [De ) - D% -]+
+ 3, [0 (s—#) - D (z- z')]} +

593 §b3 §
4x(z ~ :r:'w; ) ' (3%)

4
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The phase factor 8%(z,2') is given by the following expression.
ot irolz. NP . o
6@(2, 5’) = (e 'TP(:G? - )) — = 553 (12) COSP(Q, Z') + 64,'3 smp(z, 3'), (34)
Note, that the phase factor (34) isa purely real ob]ect The used D- functions in the case
I read explicitly

ds kus — ﬁ—tantha

D%(z) = I__ gz [© §B (356)
0 C(/@h gB3 |
ds q’i— - -——ﬂ;ﬁ_ cotths
mﬂzf; m (355)

- B[ e 0

coshgBs
l- {1 — tanh ¢Bs)

. r ~1-¢"20Bs) 4
2 .
R QB} | (%)
_oB A (= de WP ooy
- 1672 0 L.
%}Ezﬁ_ (1 — coth gBs)
¢ ' _2e9Bs| _
sinh gBs
- 25 [No ( ngﬁ +r Jo (\ / ng'ﬁ ’]} {366}
—kfs — — tanh gBs
- SHET ds e~ 2988 gB
D (z)= [ (2%’)4 f cosh gBs ¢ (37a)
gB [®ds e 293“ —-Iﬁ— - —53_ cothgBs (370)

~ 1642 [, ssih gB §
For configuration II we are vsing the following D-funclions whereby for D+?(z) the analytic
continuation of I(b; 5) (lower line) has to be used.

\

B (z) = K(0;2), (35)
12



D*(e) = I(-2B;s), DP*(s) = K(~20B';2) (5%)

D-'-ﬂ(_x) = I(2gB;z), D" (z) = I(298'37) | (57)
| ‘ . , —bs -ﬁ— tanh B’a— —= tanh gBs
(2x) o codh gB'scosh ng _
- g*BB —gfzi ® ds ¢—bs ew»-g-zu co‘th gB' ‘
1672 o &oh gB‘s '
98
224 (1 —cothgBe
.3 i gBs) _pBs| .
sinh gis
gB f L, (&?-’-zﬂ) | '
Eﬁ BB+ 50 | (59)

- 3. Ambiguity for the gauge field propagator at B' — 0

Having obiained ike giuon and ghest' Green fﬁncﬁions for éonﬁguration 1 and I let us
discuss these results next. As is obvious configuration I {eq. (§)) can be obtained from
configuration H_.(eq.. (8")) by performing the limit B’ — 0. Therefore, it is legitimate
to ask for the limit B' — 0 of the Green functions in case IL Naively one would expect
getting the Greenﬁmctioﬁs in caﬁa I from the case II Green functions. But, as we ha.ve
seen bé' diccussing the negative and sero modes of the gluon kernel (2a) obviougly the
Yang-Liills theory i batter deﬁaad in the background I than in the background I The
caly fanction one has %o womry about I8 DH0(z) contained in the gluon Green fanction.
Does impr_.o D1O(z) = = D*(z) hold? We have seon that DH(s) containg 20 arbitrary
parameter & but D*9(z) does not and is completely ‘well defined. So, we are going to
define pow the Green functions in case Iby ta.kmg the B — 0 hmﬂc of the case Il Green
functions.

Consider $he essential part of the last term in expression (39) for Re b > —¢B. We
find-in terms of the confluent hypergeometric function ¥ (y=1/2+ (¢B+8)/29B', x=
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gB'z}/2)

X2
D) j ts L0 = [ @ ¢ 7T =T 9 L) (40
= ~8{x,1,x) Iy~ z_:o DoX” 1y pm) - 21 4m)] . (41)

The left hand side of eq. (40) for Re b < -gB is defined here by analytic continuation of
_ the right hand side of | eq. {40). Let us consider b = —2¢gB and construct the asymptotic
expansion of the right hand side of eq. (40) for B' — 0 using eq. (41). Define 7 =
~N~-6 NelN,O<Reé<land ¥ = QBc'ﬁ/é = (N+5+ 1/2)x. Then, performipg the
limit N — 0 is equivalent to B’ — 0. We expand the confluent hypergeometric function &
in powers of 1/N. | |

@(1,1’}()': (1_g+%—@%+ ) 2; (X (2;’;: ?;3: )+0(1¢2)
= -(1 + -2%) Jo (2/X) + O (fﬁla—) - {42)
Next, we expand the digamma fun;:tion for large argument. |

$(7+m) = $(~N -5 +m) = Y(N +5+1~—m) + xcot v
=IN+rcotxs+ i—%—'—'fho(ﬁg) (43)
Furthermore,
mgo 7)""‘ Y(1+m)= {mN+mts6+N[7(mN+mm)+a+ ]}Jo(2ﬂ+
+ YLD +0(55) (49

and

2#“2;?2'"—' (1+m)=

=2%’§ [¢(1+m)+-§ﬁ¢(2+m)] +0 (%)
= (1 + EZW) [Jo(zmhﬁ— %No.(z\(i—)] + g%.h (2vX)+0 (-};,—) - (48)
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o Lo {‘.,;“:ff._ wi?-fE -
i VL) (H:ﬁ_) [o{2/T) + 0ot 78 Jo(2/)] +O ( m} . (49)
ety

After ol we find
Jim, DY) = D) )

where 6 = 51 arctan k. So, this procedure yields purely real Green functions in case I too,
bud the paremcter x depends on $he kind of limit we are performmg As a problem presently
open we mention that it is not clear whether physical quantitics like the effective action
are rezlly indepsendent of . The singularity for 6§ = 0,1 cor;esponds to the :{sppeara.nce‘ of
sero modes in caes IL | |
Suminarizing the presented study we wounld like to poiﬁi out that the gluon and ghost
prepagators in cages 1 and I are real fanct,ons determined by convergent real proper fime |
reprasentations (in spie of the negative modes). 8o far the consideration of the analytical
resulls — leb us Giscusa now thelr irupact on the imaginary part of the Euclidean effective

action.
4. Imazinary part of the effective action

Firss, let us remind you the 1-loop result. I is given by ihe following expression [2],[14].

i TU(B, B v = + £ B 5‘3’[ (-g;—l)] @

Now, we are asking for higher loop corrections to the maagmary pa.ﬁ {47). As we have
mentioned already the gluon and ghost Green funciions (and, of course, the i'rerl;ices) in
the considered constant background are purely real. Therefore, we find thal no higher
order correckions o the 1-loop imagimary part (47) exist. Certainly, this inevitable con-
clesion generates serious doubis in a quile often épplied intlerpretation of eq. (47) asa

15



phystcal decay probabiliy . It would indeed be rather astonishing if a quantity like a decay
probabilisy would not be influenced by higher locp corrections,

The rather surprising result staied above encourages us o reconsider the 1-loop imagi-
nary part itseli. Let us underscore that the well known 1-loop resulé (47 has been obtained
by exploiting the Gauasian aporoxﬁmtion in the functions] integral by neglecting the ruies
of its applicability — the quadratﬁc kernel (22) of the gluou action in 2 constant background
has negative, Le. unstable, modc;; as meentioned above. Therefore, the applicasion of the
standard {ormula for the Gaucsizn approximatie Tl ~ In det X has to be copnidered
here more a3 2 kind of recipe or working rule rather then as a theoretically completely well
baged procedare. In difference to the imzginary pari of the GED elfective action i !;hé
case of a conssant elecizic field [13] which has clear physical implications the imaginary
part of the efactive 2ction i Yang-Bills theory found in accordance to usual wisdom in

1-loop appromimation is already present in the Euchidesn verzion of the theory. For the
ahove mentionsd reasons the 1-loop imunginary pert in the Yanp-1dills effective action looks
sugpicions and 2lso deserves 2 fresh lock from an alternative point of vie

In the following a,rmzment we are uging a recently ohtained gpecial representa%ion of
the effeciive action in terms of the polarization fenzor in a background fleld [15]. Specified

to the i-loop caza this reprecentation reads
Ty1L,[B] = TlB] - f drfi—1) f dtz 82 BT, & (rB; 2, #) B () (48)

Here Ef’; #{75;2,2) is the rencrmalized 1-loop gluon polarisztion fenser in the given

background which as usual can be depicted by the dizgrams shown in figure L.

l . _: N i:} /"}\\&

2
2 Xuosy T Zoxay TR Y

Figure 1. Diagrams contributing to the 1-loop gluon polarization fezsor.

Bere, the vertices and the propagators are those considered in the given background {in

16



- formula

additim;', for the representation (48) o be valid one has to fix the gauge parameter fo
@ = -3z the 1-loop case). The representation (48) holds at least for backgronnd fields
~ respecting the classical field equation (1) what is Just the case in our consxderatlon

Now, the argument goes as follows. On the basis of the gluon and ghcst propagators
constructed exp;xclﬂy in the present paper it is possible fo build up the I-loop gluon.'
polarization tenger in the background (8), (8').. Although this is 2 quite tedious task and
has not been done explicisly up to now it can be concluded that the polarization tensor
in $he given badtground is a purely real object iﬁasmuch as all involved pmpagators (and
vertices) have besn shown to be purely real. H?-lglu }‘f;(rB, 78;3,7') is 2 well defined object
forall 7 ¢ [0, 1] Therefore, the application cf (48) leads to the conclusion that the 1-loop
effective action of Euclidean Vang-Milla theory i3 purely real in contradiction fo usual
wisdom. ‘

Where does the difference come from? As we already mentioned é.bove_ the usual

It ~in det K | B (49)

is applicable for bosonic kerrels K caly if they are positive &eﬁnite. In the presence of
negative modes formula (49) has to be considered merely as a kind of recipe only. On the
other hand, formula (48) is not neéessaﬁly connected with the functional integral approach
and may equally be deﬁved in eome canonical quantization scheme. Test calculations in
simpler theorics have been shown that eq. (48} may be relied on [15]. Mbermore, eq.
(48) is not invalidated in the pressnce of negative modes. |

So, summarizing the results obtained we may conclude that the efeckive action of
Euclidean Yang-Mills theory considered for a constant’ colormagnetic and colorelectric
background does not exhibit any imaginary part {Although we have considered the gauge
group SU(2) only it should be pomted out that the argument glven equally applies to
the genera.i SU(N) cwe) In order to be cautious let the final lesson derived from our
investigation be expressed by the message: don’ trust in the i xmagma.ry part of the effective
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action of Buclidean Yang-Mills theory.
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