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Results for the strong coupling lattice Schwinger model with Wilson fermions
from a study of the equivalent loop model
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Salmhofer has demonstrated the equivalence of the strong coupling lattice Schwinger model with Wilson
fermions to a self-avoiding loop model on the square lattice with a bending rigjdit§/2. The present paper
applies two approximate analytical methods to the investigation of critical properties of the self-avoiding loop
model for variabler, discusses their validity, and makes a comparison with known Monte Carlo results. One
method is based on the independent loop approximation used in the literature for studying phase transitions in
polymers, liquid helium, and cosmic strings. The second method relies on the known exact solution of the
self-avoiding loop model withy=1/\2. The present investigation confirms recent findings that the strong
coupling lattice Schwinger model becomes critical &gr=0.38—0.39. The phase transition is of second order
and lies in the Ising model universality class. Finally, the central charge of the model at criticality is discussed
and predicted to be=1/2.[S0556-282(197)04316-9

PACS numbgs): 11.15.Ha, 05.58q, 11.10.Kk

[. INTRODUCTION string physics, to be exploited in its investigatifiti7—23.
At the same time, its equivalenda another languageto
Recently, the strong coupling lattice Schwinger modelsome eight-vertex moddR3] makes further results avail-
with Wilson fermions (N;=1) has received some attention able.
[1—6] following work by Salmhofef7] who has shown that Self-avoiding loop model$24—-26G have a long history
it is equivalent to a certain eight-vertex mod@ seven- due to their prominent role in polymer physics as well as
vertex model, more precisglyvhich also can be understood their inherent attractiveness as a simple problem of non-
as a self-avoiding loop model on the square lattice with aarkovian nature. In addition, systems of closed noncross-
bending rigidity »=1/2 and monomer weight=(2«) 2. ing lines or systems, which can be approximated by them,
Beyond its toy character, interest in the lattice Schwingemppear in a variety of contexts ranging from condensed mat-
model[two-dimensional QED (QER] mainly derives from ter physics through cosmology to quantum field theory
the similarity of some of its major features with those of which generates common interest for appropriate model
QCD in four dimensions. However, because the result obuilding [27,17]. Recently, quantum field theoretic methods
Salmhofer{ 7] is related to the polymeihopping parametgr have been exploited to study the critical behavior of self-
expansion of the fermion determingi&,9] the strong cou- avoiding loop models in two dimensiofi28—31. Somewhat
pling Schwinger model is also interesting from the point ofless attention has been paid so far to the self-avoiding loop
view of the dynamical fermion problem within lattice gauge model with a variable bending rigiditivhile for open chains
theory. While some investigations have been devoted to thwith bending rigidity a number of investigations exists, e.g.,
polymer expansion of the fermion determinant in the case of32] and references thergirBeyond the work of Meer and
staggered fermiongl0—14, to date, almost no attention has Rys [33,34], certain insight in this direction has been ob-
been paid to the corresponding case of Wilson fermjda$ tained in connection with the study of two-dimensional
due to the additional difficulties involved in general, as thevesicles[35—-37.
larger number of Grassmann variables per lattice site and the From the point of view of the eight-vertex model, a gen-
explicit breaking of chiral symmetry. However, while in the eral solution to the self-avoiding loop model with a variable
strong coupling limit the system with staggered fermionsbending rigidity on the square lattice is not known. However,
(QCD, QED reduces to a pure monomer-dimer sys{ei@], for the special casey=1/\/2, the free-fermion condition
the same is not true for Wilson fermions as the investigatior}38,39 is satisfied and it can be solved exaddp—49. This
of Salmhofe 7] demonstrates. The equivalence of the strongvay, one point on the critical line of the the self-avoiding
coupling lattice Schwinger model with Wilson fermions to a loop model with a variable bending rigidity is known exactly
self-avoiding loop model enables certain methods used imand, consequently, one may use analytic perturbative meth-
other branches of physics, e.g., in condensed matter physicgls to approximately find the critical line in its neighbor-
(polymers, defect-mediated phase transitjcarsd in cosmic  hood.
The plan of the paper is as follows. In Sec. Il we briefly
review the relevant facts concerning the lattice Schwinger
*Present address: Instituf rflPhysik, Computational Physics, model with Wilson fermions and discuss the relation of re-
Humboldt-Universitazu Berlin, Invalidenstr. 110, D-10115 Berlin, cent studies of if4—6] to the earlier Monte CarldMC)
Federal Republic of Germany. Electronic address:results of Miser and Ry433,34. Section Il is devoted to
scharnh@linde.physik.hu-berlin.de the approximate analytical study of the self-avoiding loop
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Foo —— I— J I— —| FIG. 1. Vertices of the eight-vertex model and
their weights[cf. Eqgs.(4)—(7)].

model (SALM) with a variable bending rigidity by means of a polymer configuratioth. is built of, and|A| is the number
the independent loop approximation. Section IV then ex-of lattice points of the lattice\. Z,[z, »] is the partition
plores the application of the exact solution of the SALM function of a SALM with a monomer weiglztand a bending
with a bending rigidity=1/y2 to the study of the critical rigidity # (the loop multiplicity/fugacity is 1 in this modgl
behavior of the SALM in a neighborhood of this point in the The same expression fdr, can, of course, also be obtained
relevant parameter space. Section V finally discusses the pifer noncompact QER It should be mentioned that the ther-
ture emerging from the present investigation paying specianodynamic limit for a large class of models, to which the
attention to the central charge of the SALM with a variable SALM belongs, has been studied [#3].

bending rigidity on the critical line. From the point of view of lattice field theory it is inter-
esting to know the phase structure of the lattice Schwinger
Il. THE STRONG COUPLING SCHWINGER MODEL model. For free fermionsg=x), the critical value of the
WITH WILSON FERMIONS hopping parameter reads,(B8=«)=1/4. In order to pin

- ) . ) down the critical line forB8<<o, it is of particular interest to
_The partition functionZ, of the Schwinger model with 6\ where it ends g=0). There is a critical point for
Wilson fermions(with Wilson parameter =1) on a certain ko(B=0)=o because then the strong coupling Schwinger

lattice A is given by the standard expression model reduces to a six-vertex model whose behavior is
known from its exact solutiofi7,23]. This point, however, is

ZA:I DUszDIe*S, 1) believed to be isolated and not to be the end point of the
critical line starting at ()= 1/4[3]. Recently, exact stud-

ies of the partition function of the strong coupling Schwinger
model have been made on finite lattides5]. It has been
found «.(0)=0.38-0.39 and that the phase transition is
S=S:+8Ss, ) likely a continuous onésecond order or highgf5]. A very
recent high precision MC study has confirmed these findings
1 . _ [characteristic signals for a second order phase transition at
Se= 2 (52 [+ ) (1F 9,)U (X)) + §(X) Ker(0)=0.3805(1) are four{6].
xeh \ < u It is worthwhile to compare the result obtained[i6]
R . with the MC investigation of the SALM with a variable
X(1- VM)UL(X) P(X+u)]=Mp(X)h(x) |, (3 bending rigidity undertaken by Mer and Ry$33,34 (see
also[44] for some computational background heir inves-
andU ,=exg —iA,], M=2+m, 8= 1/g%. S, is the standard tigation has be_en |nsp|req by the generalized loop model of
Wilsoﬁ action arlfd the hopping parameteris given by Rys and Helfrich[25]. Muser anq Rys(33,34 e_mploy a
x=1/2M. Salmhofer has showjv] that in the strondinfi- dlﬁgrenF parameter set t{:z,n_} which we are going to _de-
nite) coupling limit =0 the partition functionz,, equals scribe first. Their language is thermodynamic in spirit and

that of an eight-vertex mod@more precisely, a seven-vertex ';he(;r pa(;atrrr]]et]?r”temperatur.e and line stiffn¢Sss} are in-
model due to Eq(5)] [23] with weights(cf. Fig. 1: roduced the following way:

whereD denotes the multiple integration on the lattice. The
actionS is defined by

—all=-9)/T
1 . z=e , (10
w;=2=—=M", 4 -
4k p=e % (11
w,=0, (5) which in turn entails
Z 1
Ws= Wg=W7= Wg=N=73. (7 |n;
Consequently, one can write |
ny
S=—". 13
Z\=2,[2.3), ® X 13
z
= [A]=IL] ,C(L)
Zalz.7] 2 z o ©) For positive temperaturées, negative values of the line stiff-

nesss correspond to values of the bending rigidig>1
where L denotes any self-avoiding loop configuratidh, (i.e., bending preferrgdand positive values of to <1
andC(L) are the number of links and corners, respectively,(i.e., bending is costly The JacobianF of this coor-
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FIG. 2. The critical line of the self-avoiding loop model
25 ¢ with a variable bending rigidity as found by MC calcula-
tions on a 64 64 lattice by Miser and Ry§33,34. The
solid line interpolates(using a polynomial interpolation
schemgbetween those points for which C results are avail-
able (given by black dots and hollow circles, the degen-
eracy points=1, T=0 is specially emphasized by a black
half disk [34]. The domains I-VI are mapped to the cor-
respondingly labeled domains in the, } plane(see Fig.
3, boundary lines are plotted in the same style in both fig-
ureg. ff denotes the exactly known critical point
{Te=2/(3In2)~0.962, s,=1/3} (z,=2) of the free-
fermion model ¢= 1/\2) [40-43. Ig stands for the ordi-
nary self-avoiding loop modelf=1, s=0) with the criti-
cal pointT,=1.157 (,=2.373)[45,46. sm denotes the
critical point x.(0)=0.38 (T,,=0.81,s,=0.56,z,=1.73)
of the strong coupling Schwinger modej € 1/2) as found
in [4—6].

dinate transformation frord(z, %) e (0,20) X (0, )\[(r,r):r amplitudes, in pajtagree well with those of the Ising model.
€ (0°)]} to {(T,s) e (0,°) X R} reads The free-fermion model=1/\2, see Sec. I}, of course,

3 also lies in the Ising universality class. This immediately

F=129 InE (14) suggestgfor a further discussion see Sec) ¥at in general
7 the SALM with a variable bending rigidity at criticality lies
in the Ising universality clasén the parameter regions I,
1 ). From this we immediately infer that the strong coupling
=§e<1*25)”, (15  lattice Schwinger models=1/2) also belongs to this class.

In [5], however, a critical exponent=0.63 has been re-
eorted for the strong coupling Schwinger model which is
Eit;uite off the Ising resulv=1. The discrepancy very likely
stems from finite size effects of the small lattices with non-
square geometry investigated. These nonsquare geometry lat-
tices, however, can be exploited in other ways as we will see
in Sec. V. In agreement with the findings of b&r and Rys
[33,34), the recent high precision MC study by Gausterer and
é_ang yieldsv=1 [6].

and has, consequently, singular lines beyond the given ran
of the map. Figure 2 displays the result of 84w and Rys
[33,34] for the critical line of the loop model with line stiff-
ness and Fig. 3 displays the same informatioqzny} co-
ordinates(for further comments see the figure captiprs
regions Il and Il the system at criticality is found to exhibit
Ising-like behavior while in region | some nonuniversal be-
havior is seen. For better orientation, the ordinary loop ga
(n=1) result is specially shown in Figs. 2 and[45,46.
One immediately recognizes that the results found for the
strong coupling Schwinger modé#—6] fit well onto the
critical line given by Miser and Rys. Moreover, the MC  Inasmuch as exact expressions for the partition function
result of Miser and Rys also well agrees with the exactly(9) for generalz are not available, analytical attempts to
known critical point for the free-fermion modeb& 1/1/2) understand the phase structure of the self-avoiding loop
to be discussed in Sec. IV. For the ordinary loop gas it hasnodel with a variable bending rigidity have to rely on certain
also been found numericall¢#7] that critical exponentéand  approximations. A method also applied in related situations

IIl. THE INDEPENDENT LOOP APPROXIMATION

FIG. 3. This is the equivalent of Fig. 2 shown here
for the {z,n} coordinate system. For further explana-
tions refer to Fig. 2. Although MC results so far are not
available for region VI, it seems reasonable to expect
that the critical line drawn in region | will continue in
region VI and end ax=0, »=1/2 where it would meet
the end of the critical domain of the six-vertex model
(z=0, n=1/2) [23].
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in condensed matter physics and cosmic string physics is th2k on the latticeA. It can be expressed by means of the
so-called “independent loop approximatiofl7-22,48,42  numberp,, of 2k-step self-avoiding loops per lattice site
The approximation is approached by writing the partitionwhich is a standard quantity that has been investigated in the
function Z,[z, 7] as a sum over partition functions with a literature:

fixed number of (polymen loops:
. Z2x[2k,1]
- Pai= lim —rr— (22)
Z\[z,9]=2NY Z,[1,2,79]. (16) A
=0

o _ . The n—0 limit of the lattice Of) spin model provides us
The approximation now made is to express tHeop parti-  now just with the information necessary to study the critical

tion functionZ,[1,z, 7] exclusively by means of the single pehavio24,26 (see also, e.g[28], Sec. 2. For largek, p,x
loop partition functionZ,[1,z, 7]: reads[29]

2k —2v—-1
201 2m)= 1 Zo[12,7) an o Bu 2K @3
Here, u denotes the connective constéeffective coordina-
leading to tion numbey for the self-avoiding walk problem on the given
lattice A [50] andB is some lattice-dependent constant. The
(universa] critical exponent is believed to be given in two
dimensions byv=3 (obtained on a honeycomb lattice
Tél,SZ. Inserting Eq.(23) into Eq. (20), one finds

ZA[Z,ﬂ]:ZlA‘eZA[l’Z'n]. (18)

This approximation can be expected to give reasonable r
sults for those parameter regions where the loop system
sufficiently dilute[filling on average only a certaifsmal) oc oK
fraction (say,<0.5) of the latticeA ]. According to Eq(18) Z\[1z1]=|A|BD, [2k]5’2( ﬁ) _ (24)
the investigation now may concentrate on the single loop k=1 z
partition functionZ,[1z,»]. One can easily convince one- o o
self that in the independent loop approximation the averagdhis is a justified approximation because we are mainly in-
number of |oops in the System is given by the value of theterested in the critical domain which is related to the o«
single loop partition functiof18, Eq.(56)]. The free energy behavior. From Eq(24) one easily recognizes that the criti-
density f reads, in the independent loop approximationcal point is given byz.,= u. Most recentprecis¢ estimates
(Br=1/T), for u on the square lattice can be found 58—-59. We keep
here only a few digits and write =2.638. Consequently, we
1 havez,=2.638 (T.,=1.031) which is to be compared with
Bri(zm)== lim FrinZ,[z,7] the numerical resule,=2.373 (T,=1.157)[45,46. Equa-
[Al—e tion (24) inserted into Eq(19) gives immediately the free
ZA[1z, 7] energy and one recognizes that the phase transition at
A (19 z,=u=2.638 found within the independent loop approxi-
mation is of second order. Usin{56,57)

=—Inz— lim

|A|—ee

To proceed further, the single loop partition function can ©  n
now be written as sum over the loop length: F(x,k)= 2 X—=F(1—k)(— Inx)k—1
" A1 nK
Z\[12,7]= 2, 27 *Z\[2k,7], (20 (Inx)"

n! ’ (25

+ nZO {(k—n)
where Z,[ 2k, 5] is the conformational partition function of
a single loop of length 221]. (Here, we already have taken one reobtains for the critical exponent of the specific keat
into account that on a square lattice the length of a loop ishe hyperscaling relatioa=2— 2v entailing in the indepen-
always even; unless, of course, toroidal boundary conditiondent loop approximatiorr=1/2 which is to be confronted
on a lattice with an odd number of sites in a given directionwith the expected Ising resudi=0 [47].
are used.The conformational partition function is then rep-  We are now prepared to study the general case with a
resented as sum over all single loop configuratibnwith  variable bending rigidityy. First, we have to find an appro-
length X: priate expression for the numbBi(2k,C) of self-avoiding
loops with length & and C corners. Let us count first the
B cL)_ c number of random nonbacktracking walkise., nonclosed
2al2k, nl= ‘EZK K _CE:O N(Zk.C)7™, (2D pathg of length % with C corners[21]. It should be stressed
' that the following argument does not depend on the dimen-
where N(2k,C) is the number of self-avoiding loops with sion of the lattice. There arek2-1 vertices available th€
length & andC corners. corners can be placed at, i.e., there éF@f) possibilities to
Let us start with the consideration of the ordinary loopdo so. To each prospective corner exist(2d—1)—1
model (=1). In this caseZ,[ 2k,1] denotes the total num- ways of bending wherd is the dimension of ghypencubic
ber of possibilities to place a self-avoiding loop with length lattice (in our case of a square lattice=2). (2d—1) here is

2k
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the nonbacktracking dimension of the lattice and it has to be *J ,
diminished by 1 corresponding to the straight line choice.
Consequently, we find

c hC. (26) 1.5

2
Nng(2k,C)= |A|(

Using Eq.(21), the correspondingnonbacktrackingconfor-
mational partition function reads then

ZAL2k, 7]ne=|A[[1+h7]* L, (27

We now obtain an approximation to thek-Btep self-
avoiding walk (SAW) conformational partition function by
simply replacing h=(2d-1)[1-1/(2d—1)] by 05
h=pu[1-1/(2d—1)] (this is based on the assumption that
the self-avoidance constraints effectively encodedlimre
independent of whether propagation is straight or bent

where 1 is a certain effective coordination number to be o
determined in a moment. This yields in our case

2 2k—1 FIG. 4. The critical line according to the results of the indepen-
ZA[2K, 7]saw= |A|U(2k) 1+ lutdd (28) dent loop approximatioi37) (dotted ling and of the free-fermion
' 3 model related approactb2) (dashed lingin comparison with the

N ] MC result(solid line) of Muser and Ry$33,34. For further expla-
The additional factoJ(2k) also to be determined below nations refer to Fig. 2.

takes care of some additional length dependence which

might show up in the transition from nonbacktracking to already displayed an expressidgg. (23)] which now serves
SAW. Specializing Eq.(28) to =1 we obtain the total as reference expression to determié2k). We obtain
number of SAW of length R on the square lattice which has

i B
Lo be confronted with the standard expectafi@8] for large M (2k) = X [2k]~2v~7 (34)
Za[2k,1 leading to
Cox=lim Zal2saw A 2K]7 T 9
aloe AL ke 29 Bu
ZA[1z,7]=|A | ————
A FEpE T

where A is some lattice-dependent constant aywd 43/32

i i i - 1+(u—1)75\ %
[51,52. From Eq.(29) we immediately find szl [2k]5’2( (MZ )77) . (35
p=3(p—1), (30)
Consequently, the critical line is found to be
U(2k)=Au[2k]?" 1. (31)
(Ze— 1)
Now, we need to know the conformational partition func- Ned Zer) = (o—1) (36)

tion for the self-avoiding loop problem. In order to be able to

make further progress let us assume tR&2k,C) for self-  This translates into th€T,s} coordinate system as
avoiding loops is just a certain fractioM(2k) of ur

Nsaw(2k,C) at least for largek independent of the number Ser(Ter) =Tgln[e™ er—p+1]. (37)

of cornersC. According to Eq.(21), we can then write Applying Eq.(25) to Eq.(35) yields, for arbitraryn, a=1/2.

_ From the above equations we obtain for the strong coupling
Zi[2k, n]=M(2k) Z,[ 2k, , 32 i
al2k.n] (2K 252k rlsaw (32 Schwinger modelz,=1.819 (T,=0.774,s,=0.537). We
which reads, after having taken into account Eg8), (30),  find for the critical hopping parameter
(31),

1
zA[zk,n]=|A|M(2k)Au[1+(u—1)n]2k‘1[2k]7‘1(é3) O G o %9

. : . . hich is to b d with th It of ter studi
M(2k) is the fraction to be determined. We here S|mply\:(v Eg)fo%sfocgg[psasr;lv‘g_@ © resuit of computer studies
. . cr . . l ) d

ignore the fact that for any loop the number of corners is It should be emphasized that the result of our approximate

even, necessarily. This is justified for the study of khe o ; ; .
. SN . consideration Eq. (37)] entailss,—1 for T,—0 0
behavior we are primarily interested in. Fge=1 we have I lorEq. (37)] 'S Ser— o0 (7e—
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2, ’ IV. THE EXACT SOLUTION OF THE SELF-AVOIDING
Y LOOP MODEL WITH A BENDING RIGIDITY
e »=1/\/2 AND ITS USE

/ While in general the self-avoiding loop modeéALM)
BT / with a variable bending rigiditfwhich is equivalent to a
y Y seven-vertex model due to,=0) cannot be studied exactly

Ve 7 . so far, there exists an exact solution to it fge=1/y2 first

/ investigated by Priezzhgwl0] (see alsd41]). This solution

W . B was later rediscovered by Blum and Shdgi?] who appar-

- ently were unaware of the earlier work of Priezzhev. The
solution relies on the general study of the eight-vertex model
by Fan and WuU38,39. They found that the eight-vertex
model is exactly solvable if the free-fermion condition
0.5 oA

e ,"/ w1w2+ W3W4= (1)5(1)6"' w7Wg (39)

is satisfied(cf. Fig. 1 for the labeling of the verticednsert-

0 v . . ; ing Egs.(4)—(7) into Eq. (39) (7 taken arbitrary hene one
immediately finds that the free-fermion condition is satisfied
FIG. 5. This is the equivalent of Fig. 4 shown here for {her} for 7]:1/\/5 (T'=2s/In2). The partition function for the

) . . SALM with a bending rigidity »=1/\/2 has been found in
(Cé);;gg? t“en;yStem and relating to E¢86) (dotted fing and (S E‘4?é:§sby standard method$1,62. The free energy density

for z,—1). This is well in line with the expectation spelled 1 (2 om

out in[33]. In the limit »— 0, the SALM degenerates into an  Bf(z,1/\/2)= — _zj deJ d¢ In[2+Z°+ 2z cosd
ensemble of straight line®n a toru$ and it can, therefore, 8mJo 0

be compared with certain limits of other models encompass- +227cosp+2 cog cosp]. (40)
ing the same limit. In Sec. 2 468], it has been found that

for the straight line systerm=1 is the critical point. This is A second order phase transition occurs fap,=2

supported by numerical studies reported58] (see, in par- |1 _ 5/(3 1n2)-0.962,s,~ 1/3] which will be of main inter-
ticular, Fig. 3 therein Corresponding exact information is .ct t5 us. There is, of course, also a critical poinzat0
furthermore available from the solution of the five-vertex ojated to the exactly solvable six-vertex mof28,7]. Be-
model [60] [see Sec. IV, in particular, Eq30) and Fig. 1 5,5 the system can be represented by means of free fermi-
therein. Finally, it seems to be interesting that the |ndepen-ons[62] the SALM with a bending rigidityn=1/\2 lies in

de_r)t Ioop. approximation Qellver§ the correct result for thethe Ising universality clasp42]. In accordance with this it
critical point of the SALM in the limityp—0. has been showffor w, chosen arbitrarilythat the partition

. The critical Iine[Eqs.(B’_G) a_nd (37)] obtain_ed \_Nithin the function of the free-fermion model can be expressed in terms
independent loop approximation is plotted in Figs. 4 and 50f that of the regular Ising moddB3]. It finally deserves

One recognizes that the critical line found analytically agrees antion that the result of the MC calculation of Ber and

qualitatively quite well with the result of the MC calculation R i ; :
. S ys[33,34] is in complete agreement with the exact solution
of Muser and Ry$33,34]. However, it is clear that the va- of the free-fermion modelcf. Figs. 2 and R

lidity of the independent Ioop approxi_mation is_ confineo! 0 The above exact solution lying on the critical line of the
the low (polymey loop density domain. The high density SALM with a variable bending rigidity is quite useful be-

rZeSUEO?I Muser agd R%’)@B.&?gﬂ dishplayﬁd in region | ?}f Figs.l cause this way one may take advantage of universality argu-
Ian ”cakmnot f704 ta;?]et erlt'l In t'tﬁ' prtisentdsc emde. tt 'hents to draw conclusions about the model at criticality for a

aiso we n_own[ 48 at whiie within the independen fairly wide range of the bending rigidity;. This will be

loop approximation the critical line can be determined in A4iscussed further in Sec. V. Here, we will study the approxi-

qualitatively correct way, res_ults for critical exponents A®mate calculation of the critical line in a neighborhood of the
less accurate. This also applies to our case as we have seen

above. While we would have expected, e.g., for the critica odel for »=1//2. This discussion is in a certain sense a
. A _ generalization of that given if¥1,40. Let us write the par-

exponenta the Ising result &=0; at least forp=1 [47]) ” .

o . L tition function (9) as

within the independent loop approximation we see 1/2.

Finally, it should also be mentioned that the relative simplic- IA|

ity of the independent loop approximation has its price be- _ [A]-2I )

haeistilyad Z\lz =2 2z 7

cause so far no way of systematically improving it is known =) LT

and one consequently has no quantitative control over the

approximation made. Perhaps this drawback is offset by the [A] =

a_ppllcab|llty of the approximation to systems in any dimen- :2 ZAl-2l ; z kT[C(L)In”]k (42)

sion. = L,|[T=21 k=0 K!

(41)
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|A] “ [yl SALM with a variable bending rigidity in the neighborhood
=> ZAF2Y T<C(L)k>2' . (43)  of the free-fermion pointcf. also Figs. 4 and)5
=) k=0 k!
Here Nel Ze) =27 5/225'" (51)
This equation reads, ifiT,s} coordinates,
C(L)yy= C(L)X. 44
(C(L)* L,E:m (L) (44 2(2—5¢)
Ted(Ser) = W (52

One may now expres&C(L)), as

— Consequently, we obtain for the strong coupling Schwinger
(C(L)2a=CaN(2l), 49 model z,=2%1~1.682 [T,=4/(7In2)~0.824, s,=4/7
— ~0.571]. This yields, for the critical hopping parameter,
Cy=2Inc(21). (46)
: : Kke(0)=2711%~0.386. (53)
N(21)=(1), denotes the number dfmulti)loop configura-
tions of total length B on the lattice A and nc(21),  we see(cf. also Figs. 4 and)5that the approximation based
0=nc(2l)=<1, stands for the average relative density of cor-on the exactly solvable free-fermion model yields a numeri-
ners in the considered loop ensemble of total lendthtds  cal value of the critical hopping parameter fairly close to the
a purely geometrical quantity as it does not dependnon result found in computer studiesc,(0)=0.38-0.39
The following, of course, holds for the higher moment<Cof  [33,34,4—8. As mentioned above, systematic improvements
can be obtained by taking into account correlation functions
0=(C(L)921=(21)* N(2)). (47) of C. This apparently is necessary as one learns from Figs. 4
and 5 if one wants to find the critical line beyond the region
defined by the critical points of the ordinary loop model and
|A| { nc(ZITI the strong coupling Schwinger model, respectively.

One can now write

Zp[z,7]1=2* X N(2I)
=0 z

V. DISCUSSION AND CONCLUSIONS

Let us first have a look at the larger picture emerging for
the critical behavior of the self-avoiding loop mod&IALM)
(48) with a variable bending rigidity. There is one point on the
critical line known exactly from the solution of the free-
where the ellipsis stands for a series in higher order correlaermion model ¢y=1/y2, z,,= 2) [40—-43. For this model it
tion functions of the corner numb& and Iny. The critical  is established that the phase transition is Ising-like, i.e., the
behavior of the system is related to largeFor | -, no ~ model experiences a second order phase transition with ex-

(Inp)2+ -

([C(L)=Cx 1)
X{” 2N(2I)

tends to some valuac and consequently pointgzy{,7,), actly the same critical exponents as the regular Ising model.
(z,,7,) on the critical line not too far away from each other BY the argument of universality we may conclude that neigh-
should obey to leading approximation the equation boring models which lie on the same critical line exhibit the
B - same behavior. This, in particular, concerns the ordinary
gl phc loop model (7=1) and the strong coupling Schwinger
2t 2 (499  model (y=1/2). For the ordinary loop model this has been
a4 confirmed by MC investigations in the pajt7]. For the

strong coupling Schwinger model this consideration specifies
the previously unknown character of the phase transition and
supports the recent suggestion that the transition might be a

corrections to the leading behavior only. Inserting into Eq. : . .y

= : > continuous ong5]. The very recent high precision MC study
(49) the e_xactly known cr|_t|cal po_mtz( )= (2’1/ﬁ) of the performed by Gausterer and Lang has confirmed this insight
free-fermion model leads in a neighborhood of it to the equa[6]

tion for the critical line:

The contribution of correlation functions & should be ex-
pected to be of minor importance in E@8), leading to

In order to extend the understanding of the SALM with a
(et 2)2ne Jling variable bending rigidity at criticality let us consider the cen-
Nl Ze) =27 7C €z (50 tral chargec of the corresponding conformal field theory
N L (CFT). Helpful information can be obtained most easily for
The only unknown quantity in this expression is the averaggye free-fermion model considered in Sec. IV. First, it seems
relative corner density ¢ . Its valuenc(2l—) is related to  worthwhile mentioning that the regular Ising model can be
the high density polymer limit which is reached for~0.  understood as a special free-fermion mdd]. A prelimi-
n¢ has been calculated 40,41 for the free-fermion model nary investigation along the lines given for the Ising model
and found to have the value 1/2. Expressions for the correin [66] indicates that the SALM with a bending rigidity
lation functions ofC for | — g can also be obtained along the »=1/\/2 can be represented at the critical pamt=2 by
same lines by tedious, but standard methd@s,65; the  one massles&ontinuum Majorana fermion(as in the spe-
latter is the English original of Ref. 16 i#0]). So, we end cial case of the Ising model just one-half of the fermionic
up with the following equation for the critical line of the modes needed to express the partition function becomes
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ir ‘ FIG. 6. The functionc [see Eq.(55)] in de-

pendence ork(0). Thesolid lines are the result

related to the bulk free energy density
=2 f[(2«) ~2,1/2] calculated on a & 8 lattice while
the dashed lines stand for the results related to the
6X 6 lattice free energy density. The followirg
values for thea X b tori have been use@urves in
order from top to bottom a=2, b=232,48,64
(practically one ling a=3, b=16,24,32,48;
a=4, b=16,24,32[76]. The value ofc at the
-3 critical point x(0)=0.38-0.39 has to be com-
pared with the expectation for the central charge
& (for a discussion see the main text

massless at the critical pojntConsequently, this suggests for different tori (a=2,3,4, for the values db used see Fig.
that the critical SALM at the free-fermion point is equivalent 6) dependent o [z=(2«) 2 has been insertédf(z,1/2)
to ac=1/2 CFT. The central charge should be expected nokas been calculated by means of the®(solid lineg [4,76]
to change continuously on the critical line in the neighbor-and the 6<6 (dashed lines[76] lattice partition functions,
hood of the free-fermion model; therefore CFT’s correspondrespectively. For the moment let us concentrate on the dis-
ing to the SALM with a variable bending rigidity should all cussion of the results obtained by means of the bulk free
exhibit c=1/2 (along the critical line in the regions Il and energy density on the 388 torus (solid lineg. For suffi-
lI). This of course entails that the strong couplingciently largeb the functionc(z) should be expected to ap-
Schwinger model at criticality should be equivalent to aproach the value of the central charge at the critical point.
c=1/2 CFT. Consequently, in accordance with Zamolod-However, one has to be aware of the fact that on the very
chikov's ¢ theorem([67,68, z#0 is related to a flow from narrow (with respect toa) tori considered, massless and
the six-vertex model4=0) havingc=1 [69,70 towards a massive fields can contribute comparable amounts to the Ca-
model withc=1/2 (as discussed in general terms by Salm-simir energy. Inasmuch as the central charge is calculated by
hofer [7]; more precisely, this applies foj=1/2, where the means of Eqs(54) and(55) from the Casimir energy results
six-vertex model is criticaJ23]). This view is supported by obtained from very narrow tori may turn out to be mislead-
still another argument stemming from the SALM with no ing. In part, this is what we observe from Fig. 6. The result
bending rigidity (i.e., =1). As by universality the central for thea=2 torus rather suggests=1 (or some value close
charge should not depend on the lattice, that the SALM iso it); however, the torus is so narrow that massless and
defined on, we may rely on results obtained for the SALMmassive fields contribute comparably to the Casimir energy.
on the honeycomb latticesee, e.g.[71]). The SALM on the  Consequently, in agreement with our expectatienl/2 for
honeycomb lattice can be viewed as an&(1) model which  the widera=3 torus we already observe a much smaller
has a central charge=1/2[72] in agreement with the above value ofc(z) at the critical point and foa=4 some value
discussion. The consideration of the rp(model on the close to 1/2 is found. However, it turns out that the sizes of
square lattice confirms this resit3]. the tori for which the exact partition functions have been
We are now going to test the above insight by calculatingcalculated so far are too small to allow any final conclusions
the central charge for the strong coupling Schwinger modelor the central charge of the strong coupling Schwinger
This can be done most easily by considering the model on eodel at criticality. In particular, this applies to the square
strip of widtha and lengthb— o [74,75. The central charge lattices the bulk free energy density is derived from. From
is related to the partition functiofon a toru by the formula  Fig. 6 one easily recognizes that the curves related to the
[up to higher order terms in &/ f is the (bulk) free energy 66 bulk reference systerfilashed curvediffer quite sig-
density on the infinite plarje nificantly from those calculated for thex8 system. Unless
numerical stability foic(z) near the critical point is obtained,
no final conclusion can be drawn. Therefore, only partition
(54)  functions calculated on considerably larger lattices will allow
us to numerically test the predictia+ 1/2 in a reliable way.
To conclude, the study of the self-avoiding loop model

We, however, will approach the study of the central chargé"’ith a variable bending rigidity presented in this paper en-

of the strong coupling Schwinger model by means of thdhances the understanding of the critical behavior of the
exact partition functions calculated on finite lattices in Srong coupling Schwinger model with Wilson fermions. We
[4,5,76. In Fig. 6 we have plotted the function find that a second order phase transition, which lies in the

Ising model universality class, takes place at some finite
value of the hopping parameter,(0). Using certain ap-
proximate analytic methods the value of the critical hopping
parameter is confirmed to lie at,~=0.38—0.39 in accor-

InZA(aX b)[zcrvllz]
b

i o1
m ga

b0

=af(zy,1/2)+c

c(z):g%{InZA(aXb)[z,UZ]—abf(z,l/Z)} (55)
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dance with recent numerical investigatidds-6]. Certain ar- in Sec. IV is at least in part specific to two dimensions. This
guments considered suggest that the strong couplinguggests that the independent loop approximation might suc-
Schwinger model at criticality is equivalent taas 1/2 CFT.  cessfully be applied also to analogous systems in higher di-
Finally, it should be mentioned that the discussion of themensions where it can be expected to become even more
self-avoiding loop model with a variable bending rigidity accurate(e.g., to strong coupling QCD in four dimensions
seems to have a certain significance beyond the one-flavavhere the critical hopping parameter has recently been stud-
Schwinger model. Recent investigations indicate that for théed by other methodg78]).

qualitative understanding of the critical behavior of the gen-

eralN;-flavor strong coupling Schwinger model with Wilson ACKNOWLEDGMENTS
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