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Osssaddd Radiative Correction to the Casimir Energy for Penetrable Mirrors
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The leading radiative correction to the Casimir energy for two parallel penetrable mirrors (realized by
d-function potentials) is calculated within QED perturbation theory. It is found to be of ordera like the
known radiative correction for ideally reflecting mirrors from which it differs, for a mirror distance much
larger than the electron Compton wavelength, only by a monotonic, powerlike function of the frequency
at which the mirrors become transparent. This shows that theOsa2d radiative correction calculated
recently by Kong and Ravndal for ideally reflecting mirrors on the basis of effective field theory methods
remains subleading even for the physical case of penetrable mirrors. [S0031-9007(98)07449-3]
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The existence of zero point fluctuations of all quantu
fields is shaping our modern view of the physical vacuu
which is thought to be a complicated medium [1]. As the
vacuum fluctuations cannot be made to disappear co
pletely, their modification by means of external fields o
boundary conditions as they occur at conducting surfa
plays a significant role in studying the vacuum propertie
The Casimir effect [2,3], i.e., the mutual attraction of tw
parallel uncharged conducting plates (mirrors)in vacuo,
represents a key phenomenon in the modern study of
vacuum (in recent experiments it has become well est
lished quantitatively [4,5]). For ideally reflecting paralle
mirrors the distance-dependent part of the vacuum ene
(per unit area of the mirrors) reads (h̄ ­ c ­ 1)

E0 ­ 2
p2

720
1

d3 , (1)

whered denotes the distance between the mirrors. With
quantum electrodynamics (QED), this result can be calc
lated by means of free field theory and the Casimir press
p can be derived from it using the relationp ­ 2≠E0y≠d.

Radiative corrections to the Casimir energy have be
studied for QED in [6–12] and for scalar field theor
in [13–17]. Although they are of no experimental sig
nificance in QED (but possibly within the bag model i
QCD) their correct calculation is a challenge for the ab
ity to understand the underlying physical structures a
the field theoretic methods applied in their study. With
standard QED perturbation theory the calculation of t
(leading)Osad radiative correction to the Casimir energ
(1) was performed in [6] (and has been confirmed by
independent method in [7]). Recently, the analogous c
culation has successfully been completed for the sin
sphere geometry in [8]. TheOsad radiative correction
originates from the two-loop vacuum diagram shown
Fig. 1. Qualitatively, the result for the leading correc
tion DE0 to the ground state energyE0 turns out to be of
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DE0

E0
, a

lc

d
, (2)

wherea is the fine structure constant,lc ­ 1ym is the
electron Compton wave length (m is the electron mass),
and d ¿ lc is the characteristic geometric length (dis-
tance between the mirrors or radius of the sphere, respe
tively). As in the calculation leading to Eq. (1), it was
assumed that for the photon vacuum fluctuations condu
tor boundary conditions apply at the ideally reflecting mir-
ror surfaces and, in addition, that there are no bounda
conditions for the spinor field (which would only con-
tribute geometry-dependent terms which are exponential
suppressed ford ¿ lc [18]).

Effective field theory methods have widely been used i
various branches of quantum field theory, including QED
in recent years ([19,20] and references therein). They a
thought to be able to correctly encapture the relevant lo
energy information. As the Casimir effect is a true infrared
phenomenon, it appears natural to employ these metho
also to the calculation of Casimir energies. This idea ha
been pursued by Kong and Ravndal [11,12] for two paralle
ideally reflecting mirrors. In contrast to Eq. (2), they find
for the leading radiative correctionDE0 to the Casimir
energy (1)

DE0

E0
, a2

√
lc

d

!4

, (3)

FIG. 1. Two-loop vacuum diagram from which the leading
Osad correction to the Casimir energy originates.
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which is suppressed relative to Eq. (2) by one power
a and three powers oflcyd. Kong and Ravndal observe
that Eq. (2) cannot be obtained by means of effective fie
theory methods [in contrast, Eq. (3) can, of course,
obtained within full QED as a nonleading correction t
Eq. (1)]. Although these authors have chosen not to co
ment on the problem, looking at [6,7] one quickly recog
nizes the reason for this failure. Effective field theory
always based on a derivative expansion of the effective
tion. On the other hand, the calculation of the correcti
(2) technically relies on the consideration of the discon
nuity of the (one-loop) photon polarization operator [se
Eq. (18), below] which is part of the QED effective ac
tion and which the Uehling terms discussed by Kong a
Ravndal derive from. It is rather clear that this discontin
ity, which only starts at the pair-production threshold an
which, therefore, has rather to be viewed as a high ene
feature, cannot be seen in any finite order of the deriv
tive expansion of the effective action (it is a nonperturb
tive phenomenon with respect to the derivative expansio
Consequently, effective field theory methods are unable
reproduce Eq. (2). From a formal point of view, all this i
perfectly clear and would not require any further study,
not for the following question with respect to the physic
adequacy of the calculations performed in [6–8]: To wh
extent does the result of the formal calculation within fu
QED, which relies on the discontinuity of the polarizatio
operator, encapture real physics if one takes into acco
that the frequency at which the mirrors become transp
ent is much smaller than the pair-production threshold2m?
Could it be that the correction (2) calculated for ideally r
flecting mirrors, although formally the leading one rela
tive to (3), is suppressed for realistic mirrors in such
way that the effective field theory result (3) turns out
be the leading correction to the Casimir energy (1) fro
a physical point of view? To answer this question, in th
present paper we consider a mathematical model for pe
trable mirrors. We show that the leading radiative corre
tion to the Casimir energy continues to be of the same or
as given in Eq. (2). It depends in a monotonic and po
erlike manner on the parameter describing the threshold
which the mirrors become transparent. From an effect
field theory point of view, this result seems to teach an i
teresting lesson.

The photon propagator in the covariant gauge w
boundary conditions on a surfaceS composed of ideally
reflecting mirrors was initially calculated in [6], and a
more accessible discussion is given in [8]. It reads

SDc
mnsx, yd ­ Dc

mnsx 2 yd 2 D̄mnsx, yd , (4)

where Dc
mnsx 2 yd is the free-space causal propagat

andD̄mnsx, yd depends on the boundary. In plane geom
try it can be represented as

D̄mnsx, yd ­
X

s­1,2

Es
msxdD̄sx, ydEs

nsyd , (5)
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where Es
msxd are the two suitably chosen photon pola

izations which are affected by the boundaries (see [8] f
details). Here,D̄sx, yd is the mirror-dependent part of the
corresponding scalar Green’s functionSDcsx, yd, which
fulfills Dirichlet boundary conditions at the mirrors. It ap
pears to be reasonable to apply the formalism which w
used for the derivation of the representation (5) also in t
case of penetrable mirrors. From Eq. (5) it is clear that
is sufficient to concentrate in the following on a massle
scalar field which fulfills appropriate boundary condition

Penetrable mirrors can be modeled by means of de
function potentials with support at the parallel mirro
planesx3 ­ di (i ­ 1, 2) ([18,21], see [22] for a related
study). For a scalar field of massm the wave equation
reads"

h 1 m2 2 2a
X

i­1,2

dsx3 2 did

#
wsxd ­ 0 . (6)

The potential is attractive fora . 0 (and the spectrum con-
tains bound states), and it is repulsive fora , 0. The limit
a ! 2` corresponds to imposing Dirichlet boundary con
ditions atx3 ­ d1, d2. Although all subsequent formulas
remain valid for arbitrary values ofa we restrict ourselves
to a # 0. The delta function potential can be reformulate
in terms of matching conditions

wsxdjx3­di 20 ­ wsxdjx3­di 10 , (7)

≠

≠x3
wsxdjx3­di 20 ­

≠

≠x3
wsxdjx3­di 10 1 2awsxdjx3­di

. (8)

The parametera sets the scale for the (smeared) thresho
above which the mirrors become transparent. For t
moment, consider Eq. (6) with just one delta functio
potential (atx3 ­ 0). The part of its solution depending
on x3

wsx3d ­ feikx3 1 rskde2ikx3gQs2x3d 1 tskdeikx3 Qsx3d
(9)

has a transmitted and a reflected wave with the coefficie
rskd ­ iaysk 2 iad, t ­ 1 1 r. The propagator for a
scalar field in the presence of one delta function potent
can be written as

SDcsx, yd ­
Z d3k

s2pd3

eikbsxb2yb d

22iG

3 heiGjx32y3j 2 rsGdeiGsjx3j1jy3jdj , (10)

with G ­
q

k2
0 2 k2

1 2 k2
2 2 m2 1 i0, b ­ 0, 1, 2

[cf. Eqs. (3.10) and (3.12) in [18] ]. When the reflectio
coefficient rsGd approaches zero forjGj ¿ jaj, this
propagator turns into the free-space propagator (in Four
space). Note, that Eq. (10) also applies for a gene
choice of the reflection coefficientrsGd which describes
dispersive mirrors [entailinga ! 2iGrsGdyf1 1 rsGdg
in the Fourier transformed Eqs. (6) and (8)].
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The Casimir energy for two parallel planes with th
reflection coefficientrsGd corresponding to delta function
potentials has been calculated for scalar and spinor fie
in [18,21] and with a more general choice ofrsGd for a
e

lds

scalar field in [22]. The propagator for a scalar field in th
background of two partly transmitting mirrors modele
by delta function potentials [cf. Eq. (6)] can be writte
as SDcsx, yd ­ Dcsx 2 yd 2 D̄sx, yd where Dcsx 2 yd
is the free-space causal propagator and
D̄sx, yd ­
Z d3k

s2pd3

a
2 eikb sxb2ybd

sG 2 iad2 1 a2 exps2iGdd

3

("√
1 2

ia
G

!
eiGsjx32d1j1jy32d1jd 1

ia
G

eiGsjx32d1j1jy32d2j1dd

#
1 sd1 $ d2d

)
(11)
ral

4)
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is the boundary-dependent part,d ­ jd2 2 d1j [18,21].
[Equations (3.11) and (3.13) in Ref. [18] contain mis
prints, and the correct expression is given in Ref. [21
Eq. (7).] It is clear that we need to setm ­ 0 in the
following.

The Osad radiative correction to Eq. (1) has to b
derived from the vacuum diagram shown in Fig. 1. Th
corresponding (divergent) shift in the vacuum energy (p
unit area of the mirrors,TV2 is the infinite space-time
volume in the directionsb ­ 0, 1, 2) reads

DE0 ­
i

2TV2

Z
d4x

Z
d4yfDc

mnsx 2 yd 2 D̄mnsx, ydg

3 Pmnsx 2 yd , (12)

where Pmnsxd ­ fgmnh 2 ≠m≠ngPsx2d is the standard
one-loop photon polarization tensor. The boundar
independent (divergent) first term connected with t
free-space propagatorDc

mnsxd can be disregarded in
the following. Any effect from the renormalization o
the photon polarization tensor [Psx2d , constds4dsxd]
can also be disregarded as it also leads to bounda
independent terms [by virtue of the defining equatio
of SDc

mnsx, yd]. We can now insert Eqs. (5) and (11
into Eq. (12). The sum over the Lorentz indices whic
involves the sum over the polarization vectorsEs

m can be
performed immediately and simply results in a factor of
This corresponds to the known fact that in a plane geom
try the two photon polarizations have to obey the sam
boundary conditions (this is true for Dirichlet boundar
conditions as well as for the applied penetrable mirro
model). To proceed further, it is useful to introduce th
Fourier transform ofPsx2d

Psx2d ­
Z d4k

s2pd4 eikxP̃sk2d . (13)

Then, in Eq. (12) the integrations overx and y can be
carried out explicitly. We arrive at

DE0 ­ i
Z d4k

s2pd4 k2P̃sk2d ˜̄Dskd , (14)

where

˜̄Dskd ­ 2
4Ga
sk2d2

fG 2 ia 1 ia cossk3ddeiGdg
fsG 2 iad2 1 a2 exps2iGddg

. (15)
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In deriving Eq. (15) we have made use of the integ
(IG . 0) Z `

2`

dx3 eiGjx32dj1ik3x3 ­
2iG

k2 eik3d . (16)

It is useful to further transform the representation (1
by making use of the analytic properties ofP̃sk2d. It has
a cut starting atk2 ­ 4m2 with the discontinuity (disc)
(k2 $ 4m2)

disc P̃sk2d ­ P̃sk2 1 i0d 2 P̃sk2 2 i0d

­ 2a
2i
3

s
1 2

4m2

k2

√
1 1

2m2

k2

!
. (17)

The integration path along the realk3 axis can be
deformed upwards into the complexk3 plane in such a
way that it encloses the cut (cf. Fig. 2 on p. 045003-8
[8]). By means ofZ `

2`

dk
P̃sG2 2 k2d

G2 2 k2 fA 1 B cosskddg

­ 2i
Z `

2m
dq

discP̃sq2d
q
p

q2 2 G2
fA 1 Be2k3dg (18)

(k3 ­
p

q2 2 G2) which entails a change of variable w
obtain

DE0 ­ 24a
Z d3k

s2pd3

Z `

2m

dq
2p

discP̃sq2d
q
p

q2 2 G2

3
GsG 2 ia 1 iae2k3deiGdd
sG 2 iad2 1 a2 exps2iGdd

. (19)

Furthermore, the Wick rotationk0 ! ik4, G ! ig ­

i
q

k2
4 1 k2

1 1 k2
2 can be performed. The resulting expre

sion forDE0 still contains ultraviolet divergencies which
however, do not depend on the distance between the m
rors (these divergencies arise from immersing single m
rors into the vacuum). After subtracting these diverge
terms the finite, distance-dependent part ofDE0 finally
reads

DE0 ­ 24ia
Z d3kE

s2pd3

Z `

2m

dq
2p

disc P̃sq2d
q
p

q2 1 g2

3
gae2gdfae2gd 1 sg 2 ade2k3dg

sg 2 ad fsg 2 ad2 2 a2 exps22gddg
. (20)
3817
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In the limit a ! 2`, which can be performed in the
integrand, the expression for impenetrable mirrors, wi
Dirichlet boundary conditions, is reobtained.

We are interested in the leading term of Eq. (20) fo
dylc ­ md ¿ 1. Then, in Eq. (20) the contribution
containing exps2k3dd [# exps22mdd] in the nominator
can be neglected at leading order. Also, in the denomin
tor we can approximate

p
q2 1 g2 by q. So the integral

related to the fermion loop decouples in this approxim
tion and withZ `

2m
dq

disc P̃sq2d
q2 ­ 2

3ip

32
a

m
(21)

we obtain to leading order in1ymd

DE0 ­ 2
3

32p2

aa3

md

Z `

0
dg

3
g3e22g

sg 2 add fsg 2 add2 2 sadd2 exps22gdg
.

(22)

It looks structurally quite similar to the analogous expre
sion (4.4) in [18] for the Casimir energyE0 itself. As a
function of a it is monotonic (fora , 0). The limiting
cases are

DE0
ad!0

­
a

md
3

64p2 s2add3 1 . . . (23)

and

DE0
ad!2`

­
a

md
p2

2560
1

d3

√
1 2

s

2ad
1 . . .

!
(24)

with s ­ 4f1 1 45z s5dyp4g , 5.92.
Using the expression for the Casimir energyE0 ob-

tained in [18] [in Eq. (4.7) in [18] a factor of 1y2 is miss-
ing], the relative weight of the radiative correctionDE0,
i.e., the ratio (2), can be shown to be a monotonic functio
of a with the limiting cases

DE0

E0

ad!0
­

a

md
3

16
ad 1 . . . (25)

and

DE0

E0

ad!2`
­

a

md
29
32

√
1 2

s 2 3
2ad

1 . . .

!
. (26)

From Eqs. (24) and (26), which apply in the physicall
interesting domain2ad ¿ 1, we deduce the result stated
3818
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above, that theOsad radiative correction to the Casimir
energy experiences a powerlike modification for pen
trable mirrors.
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