VOLUME 81, NUMBER 18 PHYSICAL REVIEW LETTERS 2 MVEMBER 1998

O(a) Radiative Correction to the Casimir Energy for Penetrable Mirrors
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The leading radiative correction to the Casimir energy for two parallel penetrable mirrors (realized by
S-function potentials) is calculated within QED perturbation theory. It is found to be of ardiée the
known radiative correction for ideally reflecting mirrors from which it differs, for a mirror distance much
larger than the electron Compton wavelength, only by a monotonic, powerlike function of the frequency
at which the mirrors become transparent. This shows thatte’) radiative correction calculated
recently by Kong and Ravndal for ideally reflecting mirrors on the basis of effective field theory methods
remains subleading even for the physical case of penetrable mirrors. [S0031-9007(98)07449-3]

PACS numbers: 12.20.Ds

The existence of zero point fluctuations of all quantumthe order
fields is shaping our modern view of the physical vacuum AE A
which is thought to be a complicated medium [1]. As these N 2= 2
vacuum fluctuations cannot be made to disappear com- Eo d
pletely, their modification by means of external fields orwhere « is the fine structure constant, = 1/m is the
boundary conditions as they occur at conducting surfaceslectron Compton wave length(is the electron mass),
plays a significant role in studying the vacuum propertiesand 4 > A. is the characteristic geometric length (dis-
The Casimir effect [2,3], i.e., the mutual attraction of two tance between the mirrors or radius of the sphere, respec-
parallel uncharged conducting plates (mirroirs)vacuo, tively). As in the calculation leading to Eq. (1), it was
represents a key phenomenon in the modern study of thgssumed that for the photon vacuum fluctuations conduc-
vacuum (in recent experiments it has become well estalvor boundary conditions apply at the ideally reflecting mir-
lished quantitatively [4,5]). For ideally reflecting parallel ror surfaces and, in addition, that there are no boundary
mirrors the distance-dependent part of the vacuum energyonditions for the spinor field (which would only con-

(per unit area of the mirrors) reads & ¢ = 1) tribute geometry-dependent terms which are exponentially
2 suppressed fad > A, [18]).
Ey = -T2 , 1) Effective field theory methods have widely been used in
720 d* various branches of quantum field theory, including QED,

whered denotes the distance between the mirrors. Withirin recent years ([19,20] and references therein). They are

guantum e|ectr0dynamics (QED), this result can be Ca|cuthought to be able to COfreCtIy encapture the relevant low

lated by means of free field theory and the Casimir pressur@nergy information. As the Casimir effectis a true infrared

p can be derived from it using the relatipn= —9E,/od. ~ Phenomenon, it appears natural to employ these methods
Radiative corrections to the Casimir energy have beegdlso to the calculation of Casimir energies. This idea has

studied for QED in [6—12] and for scalar field theory Peen pursued by Kong and Ravndal [11,12] for two parallel

in [13—17]. Although they are of no experimental sig- ideally reflecting mirrors. In contrast to Eq. (2), they find

nificance in QED (but possibly within the bag model in for the leading radiative correctioAE, to the Casimir

QCD) their correct calculation is a challenge for the abil-energy (1)

ity to understand the underlying physical structures and AE, o Ac 4

the field theoretic methods applied in their study. Within N 7))

standard QED perturbation theory the calculation of the 0

(leading)O(«) radiative correction to the Casimir energy

(1) was performed in [6] (and has been confirmed by an

independent method in [7]). Recently, the analogous cal-

culation has successfully been completed for the single

sphere geometry in [8]. The®(«) radiative correction

originates from the two-loop vacuum diagram shown in

Fig. 1. Qualitatively, the result for the leading correc- FiG. 1. Two-loop vacuum diagram from which the leading
tion AE, to the ground state enerdy turns out to be of O(«) correction to the Casimir energy originates.
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which is suppressed relative to Eq. (2) by one power ofvhere E; (x) are the two suitably chosen photon polar-
a and three powers of./d. Kong and Ravndal observe izations which are affected by the boundaries (see [8] for
that Eq. (2) cannot be obtained by means of effective fieldletails). HereD(x, y) is the mirror-dependent part of the
theory methods [in contrast, Eq. (3) can, of course, be&orresponding scalar Green’s functid®®(x,y), which
obtained within full QED as a nonleading correction tofulfills Dirichlet boundary conditions at the mirrors. It ap-
Eq. (1)]. Although these authors have chosen not to compears to be reasonable to apply the formalism which was
ment on the problem, looking at [6,7] one quickly recog-used for the derivation of the representation (5) also in the
nizes the reason for this failure. Effective field theory iscase of penetrable mirrors. From Eq. (5) it is clear that it
always based on a derivative expansion of the effective ads sufficient to concentrate in the following on a massless
tion. On the other hand, the calculation of the correctiorscalar field which fulfills appropriate boundary conditions.
(2) technically relies on the consideration of the disconti- Penetrable mirrors can be modeled by means of delta
nuity of the (one-loop) photon polarization operator [seefunction potentials with support at the parallel mirror
Eq. (18), below] which is part of the QED effective ac- planesx; = d; (i = 1,2) ([18,21], see [22] for a related
tion and which the Uehling terms discussed by Kong andtudy). For a scalar field of mags the wave equation
Ravndal derive from. It is rather clear that this discontinu-reads
ity, which only starts at the pair-production threshold and
which, therefore, has rather to be viewed as a high energy [
feature, cannot be seen in any finite order of the deriva-

t?ve expansion of th_e effective action (it_is a nonpertur.ba—l-he potential is attractive far > 0 (and the spectrum con-
tive phenomenon with respect to the derivative expansion},ins hound states), and itis repulsivedox 0. The limit

Consequently, effective field theory methOd.S are U”ab"? 9 corresponds to imposing Dirichlet boundary con-
reproduce Eq. (2). From a formal pomt of view, all this IS ditions atx; = d., d>. Although all subsequent formulas
perfectly clear and would not require any further study, ifyain valid for arbitrary values of we restrict ourselves

not for the following question with respect to the physicaly, ; = (. The delta function potential can be reformulated
adequacy of the calculations performed in [6—8]: To what, arms of matching conditions

extent does the result of the formal calculation within full

QED, which relies on the discontinuity of the polarization OO0 = PO g0 (7)
operator, encapture real physics if one takes into account

that the frequency at which the mirrors become transpar- 9 9

entis much smaller than the pair-production thresRel® 5. Pyy0 = 7 - @@y T 200, . (8)

GX3
Could it be that the correction (2) calculated for ideally re-
) y The parametea sets the scale for the (smeared) threshold

flecting mirrors, although formally the leading one rela- b hich th . b For th
tive to (3), is suppressed for realistic mirrors in such a220ve which the mirrors become transparent. For the

way that the effective field theory result (3) turns out tomoment, consider Eq. (6) with Just one delta fungnon
be the leading correction to the Casimir energy (1) frompOtential (atvs = 0). The part of its solution depending
a physical point of view? To answer this question, in the®"*3
present paper we consider a mathemgtical m_od_el for penegy (x;) = [e* + r(k)e *210(—x3) + t(k)e™ @ (x3)
trable mirrors. We show that the leading radiative correc- 9)
tion to the Casimir energy continues to be of the same order
as given in Eqg. (2). It depends in a monotonic and pow-has a transmitted and a reflected wave with the coefficients
erlike manner on the parameter describing the threshold ai{k) = ia/(k — ia), t = 1 + r. The propagator for a
which the mirrors become transparent. From an effectivescalar field in the presence of one delta function potential
field theory point of view, this result seems to teach an incan be written as
teresting lesson.

The photon propagator in the covariant gauge with $p¢(x,y) = 3 -
boundary conditions on a surfadecomposed of ideally @m)* -2l
reflecting mirrors was initially calculated in [6], and a X {e Tl — ()T nl+lsDy - (10)
more accessible discussion is given in [8]. It reads

with T =vig -k K- p2+i0, B=012

S e _ c _ N

Dy (,y) = D& = 3) = Dun(xoy). (8 ot Eqs. (3.10) and (3.12) in [18]]. When the reflection
where D5, (x — y) is the free-space causal propagatorcoefficient »(I') approaches zero fotl'| > |al, this
andD,,(x,y) depends on the boundary. In plane geomepropagator turns into the free-space propagator (in Fourier

O+ u? - 2a Z S(x3 — di):|g0(x) =0. (6)
i=12

dSk eikg(xﬂfyﬁ)

try it can be represented as space). Note, that Eq. (10) also applies for a general
choice of the reflection coefficiemt(I") which describes
Dyy(x,y) = Z E; (x)D(x,y)E;(y), (5) dispersive mirrors [entailingt — —iI'r(I')/[1 + r(I')]
s=12 in the Fourier transformed Egs. (6) and (8)].
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The Casimir energy for two parallel planes with the scalar field in [22]. The propagator for a scalar field in the
reflection coefficient(I") corresponding to delta function background of two partly transmitting mirrors modeled
potentials has been calculated for scalar and spinor fieldsy delta function potentials [cf. Eq. (6)] can be written
in [18,21] and with a more general choicedl’) for a  asSD¢(x,y) = D°(x — y) — D(x,y) where D(x — y)

is the free-space causal propagator and
3 a _ikg(xP—yP)
Dx.y) Z[ (d k 5e

27)3 (T — ia)? + a? exp2il'd)

X H:<1 _ %)eirﬂh_dﬂ‘*bd_dﬂ) + iFaeiF(|x3—d1|+|Y3—dz|+d):| + (d) « dz)] (11)

is the boundary-dependent padt,= |d, — d;| [18,21]. i deriving Eq. (15) we have made use of the integral
[Equations (3.11) and (3.13) in Ref. [18] contain mis- (II" > 0)

prints, and the correct expression is given in Ref. [21], o ' ' 2T
Eq. (7).] It is clear that we need to sgt = 0 in the f dxy e Tdlitikn — 2= piksd (16)
following. *°° k

The O(«) radiative correction to Eq. (1) has to be Itis useful to further transform the representation (14)
derived from the vacuum diagram shown in Fig. 1. Theby making use of the analytic propertiesldfx?). It has
corresponding (divergent) shift in the vacuum energy (pef cut starting at® = 4m?* with the discontinuity (disc)
unit area of the mirrors7V, is the infinite space-time (k* = 4m?)

volume in the directiong = 0, 1, 2) reads disc T1(k?) = (k> + i0) — (K> — i0)
i _ . 2
AEq — 4 f D¢ (x — v) — D, 2i 4m? 2m
0 2TV, d’x d y[ ’u,,(x y) o (x’)’)] = —qu g 1 — 7 1+ 7 . (17)
X I (x = y), (12)

The integration path along the redh axis can be
where I1,,(x) = [gu,0 — 9,9,]11(x?) is the standard deformed upwards into the complex plane in such a
one-loop photon polarization tensor. The boundaryway that it encloses the cut (cf. Fig. 2 on p. 045003-8 in
independent (divergent) first term connected with the8]). By means of

free-space propagatoD;,(x) can be disregarded in = TI(T2 — k2)

the following. Any effect from the renormalization of dk T2 [A + B codkd)]

the photon polarization tensodlx?) ~ consté®(x)] o k 3

can also be disregarded as it also leads to boundary- _ —i[wd discIl(g?) [A + Be5d] (18)
independent terms [by virtue of the defining equation m 9 gJq? — T2

of D¢ (x,y)]. We can now insert Egs. (5) and (11) i i i
into Ela. (12). The sum over the Lorentz indices which(ks = v¢*> — I'>) which entails a change of variable we

involves the sum over the polarization vect@s can be ~ Obtain

performed immediately and simply results in a factor of 2. d*k  [* dg discTl(¢?)

This corresponds to the k_nov_vn fact that in a plane geome- AEy = —4a —(277)3 o 27T 461@

try the two photon polarizations have to obey the same )  d iTd

boundary conditions (this is true for Dirichlet boundary < I(I' — ia + iae”™%e" ) (19)

conditions as well as for the applied penetrable mirrors (I' — ia)? + a’>exp2il'd)
model). To proceed further, it is useful to introduce theFyrthermore, the Wick rotatiorky — iks, ' — iy =
Fourier transform of1(x?)
d*k s
M%) = | —— ™). 13

@) = | Gy e 6 (13)
Then, in Eqg. (12) the integrations overand y can be
carried out explicitly. We arrive at

i\k? + ki + k3 can be performed. The resulting expres-
sion for AE) still contains ultraviolet divergencies which,
however, do not depend on the distance between the mir-
rors (these divergencies arise from immersing single mir-
rors into the vacuum). After subtracting these divergent
terms the finite, distance-dependent partAdf, finally

AEy =i f 34"4 KTI(k*)D(k), (14) reads )
() AE, — —4i d*kg (7 dg discIl(g?)
where 0T ) @wy Lo 2w g\/q* + ¥?
= _ 4Ta [T — ia + ia codksd)e'"?] yae ae " + (y — a)e 4]
bt (k2)2 [(T — ia)? + a2 exp2il'd)]” (15) G =y —aP - @ exp—2yd)]’ (20)
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In the limit @ — —o, which can be performed in the

above, that the)(«) radiative correction to the Casimir

integrand, the expression for impenetrable mirrors, withenergy experiences a powerlike modification for pene-

Dirichlet boundary conditions, is reobtained.

We are interested in the leading term of Eq. (20) for

d/A. = md > 1. Then, in Eq. (20) the contribution
containing exp—ksd) [= exp(—2md)] in the nominator

trable mirrors.

We thank G. Barton, K. Kirsten, J. Lindig, and D. V.
Vassilevich for reading a draft version of the paper and
comments on it.

can be neglected at leading order. Also, in the denomina-

tor we can approximatg/q? + y2 by ¢. So the integral

related to the fermion loop decouples in this approxima-

tion and with
*  disc fl(qz) 3im @

jzm - 32 m (21)
we obtain to Ieading order in/md
AE, = 3277'2 ma’ ,[ dy

yle
(7 — ad)[(y — ad)* — (ad)* exp(—2y)]
(22)

It looks structurally quite similar to the analogous expres-

sion (4.4) in [18] for the Casimir energly, itself. As a
function of a it is monotonic (fora < 0). The limiting
cases are

ad—0 «

1= 3
AE, iy 2( ad)® + (23)
and
ad——» 772 1 o
- — + ...
Ao md 2560 B\ T “ad (24)

with o = 4[1 + 45(5)/7*] ~ 5.92.
Using the expression for the Casimir enerfy ob-
tained in [18] [in Eq. (4.7) in [18] a factor of /R is miss-
ing], the relative weight of the radiative correctidv,
i.e., the ratio (2), can be shown to be a monotonic functio
of a with the limiting cases
AEp ai—0 a 3

ad + .
Ey

2
md 16 (25)

o—3

—ad

+> (26)
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