
Theory of Disordered Systems

Prof. Dr. Igor Sokolov

Lecture 1: Continuous inhomogneous media

In this lecture we discuss the simplest question on how e.g. the effective
conductivity of a disordered mixture of materials with different conductances
can be defined and obtain the (simple and optimal) boundaries for this con-
ductivity.

1 Mean conductivity

In what follows we discuss the mean conductivity of a disordered system
between the two conducting plates as measured by an ohm-meter. We as-
sume that localy the medium is characterized by the coordinate-dependent
conductivity σ(r), for example it can be a binary mixture of two conductors
with conductances σ1 and σ2.

Let us consider our system as placed between the two conducting plates
kept at constant potentials. Locally the Ohm’s law applies:

j = σ(r)E(r) (1)

The current field is divergency-free, and (in the absence of time-dependent
magnetic field) the electric field is irrotational, so that Eq.(1) gives us a linear
realtion between a divergency-free and an irrotational field, and we have first
to understand what the corresponding mean σ∗ really means.

There are many mathematically equivalent problems of evaluating the
mean coefficient connecting an irrotational and a divergency free field; some
of them are summarized in the table below.

Conductivity Thermal Diffusion Dielectric Magnetic
conduct. const. permeab.

coeff. σ(r) λ(r) D(r) ǫ(r) µ(r)
div.-free j q j D B

irrotat. E ∇T ∇n E H
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Figure 1: A sketch of a binary mixture of two conductors with conductances
σ1 and σ2 placed between the plates of a flat capacitor. This setup will be
used for the discussion of the conductance of a disordered medium during
the whole first three lectures.

(it is assumed that the medium is free of charges and other sources of the
corresponding fieleds, and, in the magnetic case, free of external currents).
There are several related (but more complex) situations, like calculating the
elastic properties of an inhomogeneous media (mean coefficients character-
izing the linear dependence between the two tensors, e.g. stain and stress)
which follow the same lines. We do not consider this situations in the present
course.

To be concrete, in the first few lectures we concentrate on the electric
conductivity, keeping in mind that other situations listed in the table are
equivalent.

What is the mean conductivity of the medium? We know that the mean is
easily defind for the additive quantities, so that we have to look for an additive
thermodynamical quantity whose mean is per definition the arithmetic mean,
and then translate the properties of this additive quantity into the properties
of the coefficient of interest. In the case of electric conductivity such additive
quantity is a Joule heat.
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Let us consider our medium as put between the two parallel plates (of a
flat capacitor, see fig.1) at distance L from each other and kept at a constant
potential difference U . The heat production per unit time (Joule heat) is
defined by U and by the total current I: Q = UI. The total current is the
integral over the whatever plane (parallel to the plates) of the local current
densities: I =

∫

S
j(r)ds. Since I over a whatever plane is constant (here it

is where the divergency-free nature of the current plays the role), one can
write Q = (U/L)

∫

V
j(r)dr where V −1

∫

V
j(r)dr = J defines the mean current

density over the volume of our system and U/L = |E0| is the mean absolute
value of the electric field. Therefore Q = V E0J , which relation holds also in
general (in a vector form) Q = V E0J.

Now we solve the equation for the Ohm’s law under the condition divj =
0, find actual values E(r) and the one of the mean field

E0 =
1

V

∫

E(r)dr,

the mean Joule heat per unit volume

q =
1

V

∫

σ(r)E2(r)dr

and finally determine define σ∗ comparing this q with the one obtained from
the averaged field:

σ∗E2

0
= q, (2)

so that

σ∗ =
V

∫

σ(r)E2(r)dr
(∫

E(r)dr
)2

=
V

∫

σ(r) (∇φ(r))2 dr
(∫

∇φ(r)dr
)2

.

Note that the integral in denominator
∫

∇φ(r)dr = −V E0 =
∮

φ(r)ds de-
pends only on the boundary conditions (prescribed potentials of plates) but
not on the internal structure of the system and that it is a true volume mean
of the electric field in the system.

Equivalently, the effective conductivity can be defined via the heat pro-
duction and the mean current:

J2

σ∗

= q. (3)
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2 Variational principle

Now we formulate a simple variational principle which allows us to find the
bounds on the possible conductivities of an inhomogeneous medium (later
we dwewrive much more involved ones). The simplest one is:

• The Joule heat prodiced in a body under given boudary conditions is
extremel (minimal). (VP1)

Let us prove this statement. Thus, the Joule heat is

q(r) = jE =
j2(r)

σ(r)

under additional constraint

div j(r) = 0.

We look for the condition under which δQ = 0 with

Q =

∫

qdr.

Using the Lagrange multiplier method we thus write

δQ = δ

∫
(

j2

σ
− 2φdiv j

)

dr = 0

(where the Lagrage multiplier is denoted by 2φ and may be position-dependent:
φ = φ(r)). Now

δQ =

∫
(

2
jδj

σ
− 2φdiv δj

)

dr.

Performing partial integration in the second term
∫

φdiv δjdr =
∫

φδjds −
∫

δjgrad φdr and noting that the surface integral vanishes since δj = 0 outside
of the system we get

∫
(

j

σ
+ grad φ

)

δjdr = 0

so that (due to the arbitrariness of δj) j/σ + grad φ = 0 or

j(r) = −σ(r)grad φ(r).
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Associating now φ(r) with the electric potential we obtain

j(r) = σ(r)E(r)

i.e. the Ohm’s law. Thus, the Ohm’s law follows from the continuity equation
under the assumption of the extermal propery of the heat production. If the
Ohm’s law holds, the heat production is extremal.

Notes:

• Calculating the second variation of Q we can prove that the extremum
is the (absolute) minimum.

• The existence of the variational pronciple is the basis for relaxation
methods for calculating the conductivity, which (calculation) is other-
wise numerically complex.

We can give another form of the same principle. Let us assume that
the Ohm’s law holds, and show that if the heat production is extremal, the
divergency of the current must vanish. To do this we restart from

Q =

∫

σ(r)E2(r)dr

with Ei = ∂φ/∂xi, so that

Q =

∫

σ(r)
∂φ

∂xi

∂φ

∂xi

dr

(summation over repeated indices!) and

δQ = 2

∫

σ(r)
∂φ

∂xi

δ
∂φ

∂xi

dr = −2

∫

∂

∂xi

[

σ(r)
∂φ

∂xi

]

δφdr.

From the extremality then follows:

∂

∂xi

[

σ(r)
∂φ

∂xi

]

= 0

i.e. divσE ≡ divj = 0: the continuity equation follows from the Ohm’s law
under the extremality of heat production, or, in other words, if both, the
continuity and the Ohm’s law are fulfilled, the heat production is extremal.
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Calculation of the second variation then proves again the minimality of this
production.

Therefore for whatever test functions jT (r) or ET (r)

Q ≤

∫

j2
T
(r)

σ(r)
dr

and

Q ≤

∫

σ(r)E2

T
(r)dr.

Dividing these expressions by V we obtain the inequalities for mean specific
heat production q.

Now let us note that E0 depends only on the boundary conditions and
not on the internal structure of the system and teake it as a test function.
According to the definition of σ∗ we get:

q = σ∗E2

0
≤

1

V

∫

σ(r)E2

0
(r)dr = E2

0

1

V

∫

σ(r)dr,

i.e.

σ∗ ≤
1

V

∫

σ(r)dr = 〈σ(r)〉 ,

where the mean value has to be understood as a simple mean over the volume
of the system. Analog, taking a test function for the current jT (r) = J =
const (which automatically fulfills the continuity equation) we get

q ≤
1

V

∫

J2

σ(r)
dr = J2

1

V

∫

σ−1(r)dr,

so that, according to Eq.(3) we have

J2

σ∗

≤ J2
1

V

∫

σ−1(r)dr

and
1

V

∫

σ−1(r)dr ≥
1

σ∗

i.e.
〈

σ−1(r)
〉

−1

≤ σ∗,

where the mean value is again the volume mean. Combining both boundaries
we obtain

〈

σ−1(r)
〉

−1

≤ σ∗ ≤ 〈σ(r)〉 (4)

which shows that the actual mean conductivity of the system always lies
between the geometric and the arithmetic volume means of the local conduc-
tivities.
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3 Optimality

The boundaries given by application of our simple variational principle to
the system are optimal which means that it is always possible to construct a
system for which both are realizable. Let us consider for example a medium
which consists of n different materials with specific conductivities σi. The
lower boundary is then realized in a layered medium in which the layers
of different materials are parallel to the plates of the capacitor, which cor-
responds to the sequential switching of the corresponding resitances. The
upper bound is realized e.g. in the case when the layers of different paterials
are perpendicular to the plates and their resistances are switched in parallel.

Figure 2: A sketch of the situations which realize the boundaries of the
conductivity of a mixture of different conductors, Eq.(4). Note that none of
them corresponds to what we could call “disordered”.

None of these constructions can be considered “disordered”, and indeed,
the probability that each of them would be realized without an external
(or internal) driving force is vanishingly small. Thus, we learned something
about conductivity but very little about disorder.

The situations are not disordered since they lack rotational symmetry.
Before turning to situations with rotational symmetry we will consider some
other cases, not pretending to build a consequent theory but following the
historical direction of the development of the theory of disordered systems.
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