
Theory of Disordered Systems

Prof. Dr. Igor Sokolov

Lecture 2: Perturbation theories and EMA

In this lecture we discuss the simplest question on how e.g. the effective
conductivity of a (truly) disordered mixture of materials with different con-
ductances can be obtained within simple perturbative approaches as well es
within the effective medium approximation (a kind of a mean field approxi-
mation). The perturbative theories are effective when the fluctuation of the
local conductance is (in some specific sense) small. This is the case either for
the low contrast between the components (e.g. in a two-component medium
|σ1 − σ2| ≪ σ1,2) or for low concentration of one of the components.

1 Low contrast

The discussion follows Landau+Lifshitz, vol. VIII, chapter II, §9. We con-
sider first the case when

σ(r) = σ̄ + δσ(r)

with |δσ(r)| ≪ σ̄ (see L+L, VIII, p.52). σ̄ can be considered as arithmetic
(volume) mean of the corresponding conductivity, so that 〈δσ(r)〉 = 0. Then

E(r) = E0 + δE(r).

The mean deviation 〈δE(r)〉 = 0. Moreover, in a fully disordered system
showing the isotropy on the average, δE(r) is isotropic. The mean current
density

〈j(r)〉 = 〈(σ̄ + δσ(r))(E0 + δE(r)〉 = σ̄E0 + 〈δσ(r)δE(r)〉 :

the first non-vanishing correction is of the second order in δσ(r) (since δE(r)
is caused by δσ(r)). The mean current flows in the direction of the mean
electric field E0, i.e. parallel to the x-axis, so that (since δσ(r) is a scalar)

〈δj(r)〉 = σ̄E0ex + 〈δσ(r)δEx(r)〉 ex. (1)
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To find the connection between δσ(r) and δE(r) we use the fact that

div j(r) = 0

and that j = σ(r)E(r), so that in the first order in “deltas”

σ̄div δE(r) + E0grad δσ(r) = 0,

or

div δE(r) = −E0

σ̄
grad δσ(r).

Since the direction of E0 is parallel to the x-axis the scalar product in the
r.h.s. can be rewritten:

div δE(r) = −E0

σ̄

∂

∂x
δσ(r).

Since

div δE =
∂δEx

∂x
+

∂δEy

∂y
+ ...

and since in an isotropic system all these partial derivatives are typically equal
(a somewhat uncontrolled assumption in which our vague understanding of
what is “disordered” is mathematically transformed), we get

div δE = d
∂δEx

∂x

where d is the dimension of space (number of partial derivatives entering the
divergence). Then

∂δEx

∂x
= −E0

dσ̄

∂

∂x
δσ(r).

Integrating this equation (and noting that the integration constant vanishes
since δEx = 0 for δσ = 0) we get

δEx = −E0

dσ̄
δσ(r).

Inserting this into Eq.(1) we get

〈j(r)〉 = σ̄E0 +
E0

dσ̄

〈

δσ2(r)
〉

so that

σ∗ = σ̄ − 〈δσ2(r)〉
dσ̄

.

Note that the minus sign here is quite plausible and complies with the in-
equality σ∗ ≤ 〈σ〉. The corrections appear in the second order of perturbation
theory.
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2 Dilute solution at arbitrary contrast

We consider now a different situation which corresponds e.g. to an emul-
sion, a dilute mixture of spherical droplets of different radii ri with conduc-
tivity σ2 in the matrix of conductivity σ2. Different variants of the corre-
sponding results are known under names Maxwell(1873)-, Clausius(1879)-
Mossotti(1850)-, Lorenz(1880)-Lorentz(1880)- or Maxwell-Garnett(1904) -
relations. The most general form (not discussed here) is usually quoted as
Maxwell-Garnett (MG) one.

Let us consider a single spherical inclusion (“particle”) in an otherwise
homogeneous medium. The electric field far from the particle is homoge-
neous and equals E0. Finding the corresponding potential in the presence
of the particle is a typical problem of electrostatics (change j for D for the
divergence-free field, and you get it!).

The electric field inside the sphere is homogeneous, and the field outside
of it is a combination of the homogeneous external field E0 and of the dipole
field. Thus, the potentials inside the sphere, φi and outside the sphere φe are
given by

φi(r) = −BE0r

φe(r) = −E0r + AE0

r

r3

with the constants A and B which have to be determined from the boundary
conditions at the boundary of the sphere: the continuity of the potential

φi(r) = φe(r)

and the continuity of the normal component of the current ji,⊥ = je,⊥. Using
the fact that j = σ(r)E(r) the last one can be rewritten as

σ1

∂φi

∂r
= σ2

∂φe

∂r

at the boundary. The result in three dimensions for the field inside the sphere
reads:

Ei =
3σ2

2σ2 + σ1

E0,

(see e.g. Landau+Lifshitz, vol. VIII, chapter II, §8). In d dimensions we
have

Ei =
dσ2

(d − 1)σ2 + σ1

E0. (2)
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Let us now consider the integral

1

V

∫

(j − σ2E) dr = J − σ2E0

(the notation follows our Lecture 1). The integrand differs from zero only
within the spheres, since in the matrix j = σ2E. If the spheres lie very
far from each other, the external field felt by each sphere does not differ
considerably from E0 since the dipole contributions from other inclusions
decay quite fast with the distance between them, and therefore the fields
inside all these spheres can be approximated by Ei given by Eq.(2). Therefore
our integral is

J − σ2E0 =
1

V

∫

Ω

(σ1Ei − σ2Ei)dr = ν
d(σ1 − σ2)σ2

(d − 1)σ2 + σ1

E0

where the integration runs over the total volume Ω inside the inclusions, and
ν is the quotient of volume inside these inclusions and the total volume of
the system. Therefore

J = σ2E0 + ν
d(σ1 − σ2)σ2

(d − 1)σ2 + σ1

E0

and

σ∗ = σ2 + ν
d(σ1 − σ2)σ2

(d − 1)σ2 + σ1

. (3)

This equation holds for small ν (large distances between the spheres) but
for arbitrary contrast (i.e. for arbitrary difference between σ1 and σ2). It
evidently has a structure of the first order perturbation theory fully disre-
garding the interactions between different inclusions. The approximation can
be generalized to multicomponent systems and leads to the one with the sum
over different components,

σ∗ = σmatrix +
∑

i

νi

d(σi − σmatrix)σmatrix

(d − 1)σmatrix + σi

.

3 Effective medium approximation (EMA)

We now consider a self-consistent approximation for calculation of the effec-
tive conductance of a mixture (D.A.G. Bruggeman, Annalen der Physik, 5
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Folge, 24, 636 (1935)). The method delivers a good interpolation formula
between the results of perturbation approaches when one or another medium
is considered as a matrix.

Let us consider our mixture and take a small spherical (in 2d - circular)
domain of it as a probe. This one belongs to the domain with conductivity
σ1 with probability ν or to the domain with conductivity σ2 with probability
1 − ν. Let us consider the rest of the disordered medium as a homogeneous
and isotropic medium with the effective conductivity σ∗.

The field inside the test domain is then equal to

E1 =
dσ∗

(d − 1)σ∗ + σ1

E0 with probability ν

E2 =
dσ∗

(d − 1)σ∗ + σ2

E0 with probability 1 − ν

The averaged field in the probe domain has to be equal to the volume mean
of the electric filed,

νE1 + (1 − ν)E2 = E0,

which delivers the self-consistency condition. Putting all this together we get

ν
dσ∗

(d − 1)σ∗ + σ1

+ (1 − ν)
dσ∗

(d − 1)σ∗ + σ2

= 1,

or in general (e.g. for a multicomponent system or for a system with contin-
uously changing σ(r))

〈

dσ∗

(d − 1)σ∗ + σ

〉

σ

= 1 (4)

which is considered as an equation for σ∗. The average here can be considered
either as a volume average or as an average over the distribution p(σ):

∫

dσ∗
(d − 1)σ∗ + σ

p(σ)dσ.

Eq.(4) can be rewritten in the form
〈

σ∗ − σ

(d − 1)σ∗ + σ

〉

σ

= 0.

For two-component medium in the limiting cases ν → 0, 1 the result
coincides with the Maxwell-Garnett one, and for δσ small delivers our second-
order formula, Sec. 2.1 (prove this!).
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In d = 2 for a two-component medium with ν = 1/2 it gives

σ∗ =
√

σ1σ2

which coincides with the exact result following solely from the isotropy on
the average and the invariance under renaming 1 ↔ 2.

For a medium with infinite contrast (e.g. for a mixture of a conductor
with σ1 = σ and a dielectric with σ2 = 0 in proportion ν to 1 − ν) EMA
predicts the percolation transition at ν = 1/d: it gives

σ∗ =
dν − 1

d − 1
σ

for ν > 1/d and negative values of σ∗ for ν < 1/d, which are interpreted as
the transition to a non-conducting state.
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