
Theory of Disordered Systems

Prof. Dr. Igor Sokolov

Lecture 3: The Hashin-Shtrikman Bounds

In what follows we formulate a much finer variational principle for heat
production and obtain stronger bounds on the conductance of a disordered
system (again, as an example, in a two-phase setup). Using simple test func-
tions we then obtain the optimal bounds for a conductivity of such a system,
and discuss then the accuracy of our previous approximations, like EMA.
The ideas of this chapter again rely on the existence of two conjugated fields,
a potential and a solenoidal one, defining the total energy, the energy pro-
duction or a similar property. The original work (Z. Hashin, S. Shtrikman,
J. Appl. Phys. 33, 3125 (1962) ) considered magnetic permeability of a
composite material. The discussion below follows the original work (with
some additional explanations and corrections of misprints), but concentrate
on a conductance of a composite material to use the same notation as in the
previous lecture. The results can be generalized to more complex situations
like lattice problems, and to elastic problems. We do not discuss such situa-
tions here to keep the discussion as simple as possible (it is not quite simple
anyhow!).

1 The variational principle

We now formulate the stronger variational principle for heat production in a
disordered system with conductance

σ(x) = σ0 + δσ(x)

where σ0 will be considered (at the beginning) as an arbitrary constant (not
necessarily the “mean” conductance).

We introduce the two auxiliary quantities

E′ = E − E0

and
T = j − σ0E = δσ(x)E
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and show that

UT =

∫

Ω

(

σ0E
2

0
−

T 2

σ − σ0

+ 2TE0 + TE′

)

dV

is stationary under boundary condition

E′|∂Ω
= 0

and additional condition

divj = 0 i.e. σ0 divE′ + divT = 0

when
T = (σ − σ0)E. (1)

In this case the stationary value of UT is equal to the Joule heat

UT,stat =

∫

Ω

jEdV.

Moreover

UT = max if σ0 < σ(x) (2)

UT = min if σ0 > σ(x). (3)

Since the mean conductance is given by

σ∗ =
Q

V E2
0

we can use UT with different test functions T to obtain the bounds for Q
and thus for σ∗.

To see that if E is the actual field, UT = Q we substitute Eq.(1) into the
expression for UT which assumes the form

UT =

∫

Ω

[

σ0(E0)
2 − (σ − σ0)E

2 + 2(σ − σ0)EE0 + (σ − σ0)EE′
]

dV.

We now transform the integrand as follows:

σ0(E0)
2 − (σ − σ0)E

2 + 2(σ − σ0)EE0 + (σ − σ0)EE′

= σ0(E0)
2 − (σ − σ0)E

2 + (σ − σ0)EE0 + (σ − σ0)E
2

= σ0(E0)
2 + (σ − σ0)EE0.

2



We now note that
∫

Ω

σ0(E0)
2dV =

∫

Ω

σ0E0(E0 + E′)dV =

∫

Ω

σ0EE0dV

since
∫

Ω

E′dV = 0

because E0 = V −1
∫

Ω
EdV . Now we get

UT =

∫

Ω

σEE0dV =

∫

Ω

σE2dV = Q.

To check this it is enough to write E0 = −div φ0 and note that div j =
div (σE) = 0 so that

UT = −

∫

Ω

σE∇φ0dV = −

∫

Ω

∇(σEφ0)dV = −

∫

∂Ω

jφ0ds = −

∫

∂Ω

jφds = IU

(with U being the potential difference between the plates) since the potential
φ0 = φ at the two sides of the system where the potential is applied, and
j = 0 everywhere at the rest of the system’s boundary (outside of the area
filled by the conductive medium).

Now the variational principle itself has to be proved.

2 The proof

Let us consider the variation of UT under small variation of E′. Since our
functional is essentially a quadratic form of E′ ( T and E′ are connected via
linear relation), the variation of UT is restricted to the second order:

∆UT = δUT + δ2UT .

2.1 First order

In the first order we get:

δUT =

∫

Ω

[

2

(

−
T

σ − σ0

+ E0 + E′

)

δT − δTE′ + TδE′

]

dV (4)
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The terms in the round brackets add up to zero under the assumption that
T = (σ − σ0)E = (σ − σ0)(E0 + E′). It stays to show that

δUT =

∫

Ω

[−δTE′ + TδE′] dV (5)

vanishes.
This property follows from the additional condition div j = 0 i.e.

σ0 div E′ + div T = 0 (6)

from which it follows that
σ0E

′ + T = C (7)

where C is a solenoidal vector field,

div C = 0.

Note that δC also has to be solenoidal, div δC = 0.
Inserting Eq.(7) into Eq.(5) we get

δUT =

∫

Ω

(−δCE′ + CδE′) dV = −

∫

Ω

(δCE′) dV +

∫

Ω

(CδE′) dV. (8)

Now a simple mathematical trick follows. Let us introduce the potential
deviation ψ′ so that

E′ = −∇ψ′

and note that according to the fact that E′|∂Ω = 0 we have ψ′|∂Ω = const
(and this constant can be set to zero) and δψ′|∂Ω = 0. Now we note that

∫

Ω

(CδE′) dV = −

∫

Ω

(C∇δψ′) dV = −

∫

Ω

∇ (Cδψ′) dV

and, along the same lines,
∫

Ω

(δCE′) dV = −

∫

Ω

∇ (δCψ′) dV.

Now we transform both volume integrals into the ones over the boundary of
the system:

∫

Ω

(CδE′) dV =

∫

∂Ω

Cδψ′ds

and
∫

Ω

(δCE′) dV =

∫

∂Ω

δCψ′ds

and note that both vanish due to the fact that ψ′|∂Ω = δψ′|∂Ω = 0. Applying
these results to Eq.(8) we see that δUT = 0.
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2.2 Second order

To check to whether the stationary value corresponds to a minimum or to
a maximum of the corresponding functional it is necessary to consider its
second order variation. In this order we have

δ2UT =

∫

Ω

(

−
(δT)2

σ − σ0

+ δTδE′

)

dV.

To obtain the inequalities (2) and (3) we rewrite this expression using Eq.(7)
and expressing δT via δE′.

Thus, δT = δC − σ0δE
′ so that

δ2UT =

∫

Ω

(

−
(δC − σ0δE

′)2

σ − σ0

+ (δC − σ0δE
′)δE′

)

dV

=

∫

Ω

[

−
1

σ − σ0

(δC)2 −

(

σ2

0

σ − σ0

+ σ0

)

(δE′)2

]

dV

+

(

2
σ0

σ − σ0

+ 1

)
∫

Ω

δCδE′dV

The last integral vanishes, since δE′ = −∇δψ′ and ∇δC = 0 so that
∫

Ω

(δCδE′) dV = −

∫

Ω

(δC∇δψ′) dV = −

∫

Ω

∇ (δCδψ′) dV

= −

∫

∂Ω

δCδψ′ds = 0

because the variation of ψ′ on the boundary is zero. The first integral is
however definitely negative for σ > σ0. Thus the inequality (2) is proved.

For σ < σ0 we first note that due to the same reason
∫

Ω

(δT)2 dV =

∫

Ω

(δC − σ0δE
′)

2
dV =

∫

Ω

(δC)2 dV − σ2

0

∫

Ω

(δE′)
2
dV

(since the integral of the cross-term vanishes as shown above) and use this
expression to eliminate δE′ from the previous result. We obtain

δ2UT =

∫

Ω

(

−
(δC − σ0δE

′)2

σ − σ0

+ (δC − σ0δE
′)δE′

)

dV

=

∫

Ω

[

1

σ0

(δC)2 −
σσ0

σ − σ0

(δT)2

]

dV

which is definitely positive for σ < σ0. This finishes the proof of this remark-
able relation.

5



3 A homogeneous and isotropic system

Taking T = const in each of the phase (with jumps at each phase boundary),
i.e. T = Ti in phase i, we get:

UT

V
=

m
∑

i=1

(

σ0E
2

0
−

T 2

i

σi − σ0

+ 2TiE0

)

vi +
1

V

∫

Ω

TE′dV.

where m is the number of different phases, and vi is the portion of the total
volume occupied by the phase i,

∑

i vi = 1. The last (integral) term, in
which both T and E′ depend on i has to be transformed in a more handy
form. We now perform this transformation to show that this term U ′ =
V −1

∫

Ω
TE′dV = 〈T 2〉−〈T〉2. To do so we pass to the Fourier representation.

Let us consider the system in form of a large cube with side L and write

T(r) = 〈T〉 +
∑

k6=0

Tk exp (2πikr) .

where k = n/L defines the wave number (n is here a triple of whole numbers)
and 〈T〉 is the zeroth Fourier component. We note that since T(r) is real
Tk = T−k. We note that according to Eq.(6)

−σ0∆ψ
′ + ∇T = 0,

i.e.
σ0k

2ψ′
k

+ ikTk = 0,

so that

ψ′
k

=
1

iσ0

kTk

k2
.

Returning to E′ we can put down

U ′ = −
1

σ0

∑

k6=0

(kTk) (kTk)
∗ 1

k2
.

For L → ∞ we can pass from the sum to the integral over k. We moreover
assume that the integral converges quite rapidly to neglect the role of the
boundaries.

Now, the most important point comes! If the system is macroscopically
homogeneous and isotropic, all properties depend only on the absolute value
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of k and not on its direction: Tk = Tk. Therefore the corresponding integral
can be rewritten as

U ′ = −
1

σ0

∑

k6=0

1

k2
(kTk) (kTk)

∗

= −
2π

σ0

∫

1

k2
[(|Re(Tk)||k| cos θ + i|Im(Tk)||k| cos θ) ×

× (|Re(Tk)|k| cos θ − i|Im(Tk)|k| cos θ)] d cos θk2dk

= −
4π

3σ0

∫

TkT
∗
kk

2dk (9)

Now we can use the relation

〈T 2〉 =
1

V

∫

Ω

T 2dV =
∑

k

TkT
∗
k

= 〈T 〉2+
∑

k6=0

TkT
∗
k

= 〈T 〉2+4π

∫

TkT
∗
kk

2dk

(Parceval’s identity) to rewrite the whole expression as

UT

V
=

m
∑

i=1

(

σ0E
2

0
−

T 2

i

σi − σ0

+ 2TiE0

)

vi −
1

3σ0





∑

i

T 2

i vi −

(

∑

i

Tivi

)2




(10)
and look for the stationarity condition by writing Ti = (Tx,i, Ty,i, Tz,i), E0 =
(Ex,0, Ey,0, Ez,0), differentiating the corresponding expression with respect to
Tα,i and setting the corresponding derivatives to zero. One obtains then

−
2

σi − σ0

Tα,ivi + 2Eα0
vi −

2

3σ0

Tα,ivi −
2

3σ0

vi

(

∑

i

Tivi

)

= 0

i.e.

Ti =
E0 + (

∑

i Tivi) /3σ0

(σi − σ0)−1 + (3σ0)−1
=

E0 + 〈T〉/3σ0

(σi − σ0)−1 + (3σ0)−1
.

Now we multiply both parts of these expressions for different i by vi and sum
them up to obtain

〈T〉 =
∑

i

E0 + 〈T〉/3σ0

(σi − σ0)−1 + (3σ0)−1
vi.

We solve this equation for 〈T〉,

〈T〉 =
A

1 − A/3σ0

E0
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with
A =

∑

i

vi

(σi − σ0)−1 + (3σ0)−1

and substitute the full expression into Eq.(10). Using the fact that

σ∗ =
1

E2
0

UT,stat

V

and the corresponding inequalities (2) and (3) we get that

σ∗ > σ0 +
A

1 − A/3σ0

for σ0 < σi, i = 1, ...,m

and

σ∗ < σ0 +
A

1 − A/3σ0

for σ0 > σi, i = 1, ...,m.

4 Application to a two-phase system

Now we explicitely consider the two-phase situation m = 2 with σ1 < σ2 and
set v1 = p and v2 = 1 − p. Taking σ0 = 0 and σ0 → ∞ we obtain the pair of
constraints

pσ1 + (1 − p)σ2 ≤ σ∗ ≤

(

p

σ1

+
1 − p

σ2

)−1

(11)

reproducing the bounds of parallel/sequential layers known from Lecture 1.
The borders are quite weak, and they are realized in anisotropic situations,
i.e. are not optimal for the isotropic case. Now let is consider the bounds
generated by σ0 = σ1 − ǫ and σ0 = σ2 + ǫ with positive ǫ → 0. Now the
following bounds are obtained:

σ1 +
1 − p

1/(σ2 − σ1) + p/3σ1

≤ σ∗ ≤ σ2 +
p

1/(σ1 − σ2) + (1 − p)/3σ2

.

Since the only place the dimension of space enters our discussion is the eval-
uation of the integral, Eq.(9), the last result can be easily generalized to a
whatever space dimension d and the final relation reads

σ1 +
1 − p

1/(σ2 − σ1) + p/dσ1

≤ σ∗ ≤ σ2 +
p

1/(σ1 − σ2) + (1 − p)/dσ2

. (12)
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For weak to medium contrast the bounds Eq.(12) are quite close to each
other (much closer than the ones given by Eq.(11)), see Homework 2.

Hashin and Shtrikman have shown that the borders are indeed optimal,
i.e. can be realized in a system which is homogeneous and isotropic on the
average by an Apollonian package of two phase balls, as shown in Fig.1. The
system shown in the right panel is not “disordered” in the everyday sense,
but the order is really extremely complex! For the discussion I strongly
recommend to read the original work!

Figure 1: A sketch of a situation which realize the boundary of the conduc-
tivity of a mixture of different conductors, Eq.(8). The situation corresponds
to dense filling of the whole space with balls with the core made of one of the
conductors (the one with larger conductivity for the lower bound, the one
with smaller conductivity for the upper one) and with the outer shell made
of the other one. Note that the situation does not correspond to what we
could call a “disordered” system, but the order (Apollonian packing) is now
extremely complex.
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A more important thing is the following. Let us consider a composite
consisting of insulator and conductor, with σ1 = 0 and σ2 = σ. Rewriting
the corresponding expression we get

0 ≤ σ∗ ≤ σ
1 − p

1 − p/(d− 1)
.

Thus, in 1d the conductivity of such a composite has to vanish for any p
except for p = 0. In d = 2 the bounds are still unsatisfactory since it
is anyhow clear that σ∗ ≤ σ (the weak bound can even be considered as
“stupid” since it proposes values of σ∗ which might exceed σ). The case
σ1 = 0 is therefore a very complex one: systems with high contrast show
indeed quite peculiar behavior.
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