
Theory of Disordered Systems

Prof. Dr. Igor Sokolov

Lecture 7: Properties of percolation clus-
ters.

Let us recuperate what we have learned about percolation clusters (for
simplicity we adopt the language of the site model here). Below the percola-
tion concentration there are only finite clusters of intact sites, and their size
distribution ns(p) (the probability to find a cluster of s sites among all clus-

ters) can be obtained at least numerically. Above the critical concentration
an infinite cluster appears. The density of this cluster P (i.e. the probability
to find a site belonging to it among all sites) scales as P∞ ∝ (p − pc)

β with
0 < β ≤ 1. The typical size (gyration radius) of a finite cluster behaves as
ξ ∝ |p− pc|

−ν on both sides of the transition. This ξ defines the scale above
which the whole system can be considered as homogeneous, i.e. above pc it
also gives the size of the largest holes in the percolation cluster.

At length scales smaller than ξ the mean density of the percolation cluster
measured as the number of sites N within a domain of radius L divided by
Ld explicitly depends on L. It was (numerically) found that this dependence
corresponds to a power law

N ∝ Ldf ,

which allows us to define the fractal (mass) dimension of the infinite cluster
df which is smaller than d. This df is connected with critical indices β and
via a simple scaling argument: The density of the cluster grows at L < ξ as

ρ(L) ∝ N/Ld = Ldf−d.

At L > ξ it stagnates and is equal to P∞(p). Exactly a ξ we thus have
ξdf−d ≃ P∞. Expressing both ξ and P∞ as functions of p − pc we get (p −
pc)

−ν(df−d) = (p − pc)
β so that

df = d −
β

ν
.

We thus see that just at percolation threshold the infinite cluster is fractal
(has a dimension smaller than the one of the embedding space), i.e. is an
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extremely inhomogeneous structure characterized by holes on all scales. Such
structures are quite peculiar and worth discussing (see next lecture). In the
present lecture we will find the connection between the geometrical properties
of the clusters and the properties of the distribution of finite clusters ns(p).
To gain some intuition on what can happen close to the transition we first
revisit our tree model discussed in the previous lecture.

1 Percolation on a tree

1.1 The correlation length

Let us recall the situation with a tree when

P∞ ∝ (p − pc)
1

with pc = 1/(Z − 1). In this case the critical exponent β is β = 1. The
correlation function g(r), giving the probability that two sites at distance r
from each other are connected by an intact path, for the tree can be easily
calculated in the chemical space (where the distance r is measured as the
number of steps (bonds) of the path connecting each two points; on a tree
there is exactly one such path):

g(r) = Z(Z − 1)r−1pr

where Z(Z − 1)r−1 is exactly the number of paths of length r. This gives us
the possibility to calculate the correlation length in the chemical space

ξ̃2(p) =

∑∞
r=0 r2g(r)

∑∞
r=0 g(r)

(at least below pc when both sums converge). The trick used for such a
calculation is quite standard: we note that

∞
∑

r=0

g(r) =
Z

Z − 1

∞
∑

r=0

[(Z − 1)p]r =
Z

Z − 1

1

1 − (Z − 1)p

and denote (Z − 1)p = x so that

∞
∑

r=0

g(r) =
Z

Z − 1

1

1 − x
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We moreover note that

∞
∑

r=0

r2g(r) =
Z

Z − 1

∞
∑

r=0

r2[(Z − 1)p]r

so that

∞
∑

r=0

r2g(r) =
∞

∑

r=0

r2xr =
d

dx
x

d

dx

Z

Z − 1

∞
∑

r=0

[x]r

=
Z

Z − 1

d

dx
x

d

dx

1

1 − x
=

Z

Z − 1

1 + x

(1 − x)3
.

We finally get

ξ̃2(p) =
1 + x

(1 − x)2
=

1 + (Z − 1)p

[1 − (Z − 1)p]2

= (Z − 1)−1 (Z − 1)−1 + p

[(Z − 1)−1 − p2]
= pc

pc + p

(pc − p)2
.

The same expression holds essentially also on the other side of transition
(note that in this case the infinite cluster has to be disregarded). Thus,
ξ̃ ∝ |p − pc|

−1. In the (infinitely dimensional) Euclidean space in which the
tree leaves each such path corresponds to a trajectory of a random walk,
and its “real” length ξ scales as a root of its chemical length and therefore
ξ ∝ ξ̃1/2 ∝ (p − pc)

1/2, so that ν = 1/2.

1.2 Cluster size distribution

Let us consider a cluster with s sites. For this cluster its t perimeters sites (i.e.
immediate neighbors of the cluster sites not belonging to the cluster) has to
be blocked, otherwise the cluster would be larger. Therefore the probability
to find such a cluster is

ns = Ns,tp
s(1 − p)t,

where Ns,t is the number of different geometric configurations of a cluster
with s sites and t perimeter sites. On a whatever lattice other than a tree
calculation of t and Ns,t is a hard job. On a tree t is a simple function of s:

t(s) = Z + (Z − 2)(s − 1).
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To see this it is enough to note that t(1) = Z and that

t(s + 1) = t(s) − 1 + (Z − 1) = t(s) + (Z − 2)

(passing from a cluster with s sites to a one with s + 1 sites we change one
of the perimeter sites for an internal one and add Z − 1 new perimeter sites
to block its neighbors), and to use mathematical induction.

Therefore

ns = Nsp
s(1 − p)Z+(Z−2)(s−1) = Ns(1 − p)2[p(1 − p)Z−2]s.

Let us assume that exactly at pc ns

ns(pc) = Ns(1 − pc)
2[pc(1 − pc)

Z−2]s

is known (and follows for large s a power law ns(pc) ∝ s−τ , which can be
verified later). Then, at any other concentration than pc we can write

ns(p) = Ns(1 − p)2[p(1 − p)Z−2]s = ns(pc)
(1 − p)2[p(1 − p)Z−2]s

(1 − pc)2[pc(1 − pc)Z−2]s

i.e. we see that ns(p) = ns(pc)fs(p) where the function

fs(p) =
(1 − p)2

(1 − pc)2

[

p(1 − p)Z−2

pc(1 − pc)Z−2

]s

tends to unity for r → pc for any s. For p = pc + δp = (Z − 1)−1 + δp we can
expand the function in the square brackets and get

fs(p) ≃ 1 −
1

2

(Z − 1)3

Z − 2
(δp)2 = 1 −

1

2p2
c(1 − pc)

(p − pc)
2.

(the first term of the expansion vanishes at pc). Therefore close to pc and for
s large

fs(p) ≃

[

1 −
1

2p2
c(1 − pc)

(p − pc)
2

]s

≈ exp

[

−
(p − pc)

2

2p2
c(1 − pc)

s

]

,

a strongly decaying (exponential) function. This shows that the cluster size
distribution at p follows the one at pc for smaller clusters, but has a cutoff
at the maximal cluster size sc ∝ |p − pc|

−2.
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Now we use the fact that the mean size of a finite cluster

S(p) =
1

p

∞
∑

s=1

s · sns(p)

and calculate it using our expression for ns(p) ∝ s−τ exp[−const ·(|p−pc|
2s)]:

S(p) ≃

∫ ∞

1

s2−τe−const·(|p−pc|2s) ≈

∫ ∞

0

s2−τe−const·(|p−pc|2s)

≃

∫ |p−pc|−2

0

s2−τ ∝ |p − pc|
2(τ−3).

On the other hand,

S(p) = 1 +
∞

∑

r=1

g(r) = pc
1 + p

pc − p
∝ (pc − p)−1

(at least below the percolation concentration). Therefore 2(τ − 3) = 1 i.e.

τ =
5

2
,

so that for larger clusters

ns(p) ∝ s−5/2e−const·(|p−pc|2s).

There is strong numerical evidence that also in general

ns(p) = s−τf±
(

|p − pc|
1/σs

)

(1)

where the values of critical exponents τ and σ may depend on the lattice
(essentially only on its dimensionality), and the functions f may differ below
and above transition. In our case

σ =
1

2
.

The total balance of probabilities is given by

1 = (1 − p) + P∞ + p
∑

s

sns(p)
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(the first term in the r.h.s. is the probability that the site is broken, the
second one is the probability that it is intact and belongs to an infinite
cluster, and the third one corresponds to the probability that it is intact and
belongs to a finite cluster. Therefore

P∞ = p − p
∑

s

sns(p) (2)

Exactly at pc the density P∞ vanishes, and

0 = pc − pc

∑

s

sns(pc).

Using expressions from our previous discussion we get

P∞

p
=

∑

s

s[ns(pc) − ns(p)] =
∑

s

sns(pc)[1 − fs(p)]

≃

∫ ∞

0

ss−τ (1 − e−const·(|p−pc|2s))ds.

Introducing the new integration variable z = |p − pc|
2s and assuming that

the integral in

P∞

p
≃ |p − pc|

2(τ−2)

∫ ∞

0

ss−τ (1 − e−const·(|p−pc|2s))ds.

converges, we compare now this expression with our previous one for P∞ ∝
(p− pc)

1, to obtain the same value of tau as before: 2τ − 4 = 1, i.e. τ = 5/2.
In general for σ different from 1/2 and for β different from one we will get

β =
τ − 2

σ
,

an expression of general validity. Haven learned about cluster properties in
a tree and assuming that the overall behavior of the cluster size distribution
is always given by Eq.(1) we can turn to systems other then the tree and
obtain general relations between the critical exponents.
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2 Scaling theory of percolation clusters

The expression for ns(p), Eq.(1) allows to obtain the moments of the cluster
sizes:

Mk =
∞

∑

s=1

skns(p) =
∞

∑

s=1

sk−τf±(|p − pc|
1

σ s)

∼

|p−pc|
−

1
σ

∑

s=1

sk−τ ≃

∫ |p−pc|
−

1
σ

1

sk−τds

≃ sk+1−τ
∣

∣

|p−pc|
−

1
σ

1
.

Depending on k (which does not have to be a whole number) this expression
can either diverge for p → pc or converge to a constant. Thus, for k > τ − 1

Mk ∝ |p − pc|
− k+1−τ

σ

and for k < τ − 1
Mk = const − A|p − pc|

− k+1−τ
σ

with A being some prefactor. The zeroth moment M0 =
∑∞

s=1 ns(p) is evi-
dently unity, due to normalization. The first moment

M1 =
∞

∑

s=1

sns(p) = const − A|p − pc|
− 2−τ

σ

Comparing this with the expression (2) from the previous section leading us
to

∑

s

sns(p) = 1 − P∞

gives us the value of the constant and the expression for β already discussed.
The second moment M2 giving

M2 =
∞

∑

s=1

s2ns(p) ∝ |p − pc|
− 3−τ

σ

defines the value of the critical exponent γ:

γ =
3 − τ

σ
.
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Our nest aim will be to connect the exponent ν of the correlation length with
τ and σ. On one hand, ξ(atleastbelowpc) is defined as

ξ2(p) =

∑∞
r=0 r2g(r)

∑∞
r=0 g(r)

,

on the other hand, as the mean gyration radius of the finite cluster, it can
be obtained via

ξ2 =

∑∞
r=0 r2(s)s2n(s)
∑∞

r=0 s2n(s)

where r2(s) is a typical distance between the two sites of a cluster of s sites,
and s2n(s) is proportional to the probability that these two sites belong to
the same cluster. Assuming that large finite clusters have the same fractal
geometry as the infinite one we can take

r(s) ∝ s1/df

so that

ξ2 =
M2+2/df

M2

≃ |p − pc|
− 2

df σ

Therefore

ν =
2

dfσ
=

2

(d − β/ν)σ
.

In the last equation the relation df = d − β/ν was used. Resolving this last
equation as an equation for ν we get

ν =
τ − 1

dσ
.

Combining this relation with the ones for β and γ we get

dν = 2β + γ.

Introducing the “classical”values of critical exponents (the one for the tree)
β = 1, γ = 1 and ν = 1/2 we obtain that these ones correspond to d = 6
which is the upper critical dimension for percolation problems.
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