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Prof. Dr. Igor Sokolov

Lecture 8: Conductivity and diffusion on
fractal structures.

We now come back to the question, how does the conductivity or the
resistivity of the lattice percolation system depend on the concentration.
Here we use our already existing knowledge on the geometric structure of
the infinite cluster. Moreover, the nontrivial dependence of the conductivity
on size in the fractal domain is reflected in the anomalous nature of diffusion
in such systems.

1 Conductivity exponent

As already discussed, close to pc the conductivity σ of a percolation system
behaves as

σ(p) ∝ (p − pc)
µ

with µ > 1 (at variance with the EMA prediction µ = 1).
As we have seen previously, the percolation cluster slightly above the

threshold can be considered as a homogeneous structure on scales larger
than the correlation length ξ. This structure is built of fractal blocks of
size ξ. Therefore, if the corresponding effective resistance Rξ of one block is
known, the overall conductivity as a function of the system’s size L follows
from the parallel switching of (L/ξ)d−1 columns of blocks, in each of which
L/ξ blocks are switched in a sequence. Therefore

Rtot = Rξ
L

ξ

(

L

ξ

)

−(d−1)

= L−d+2Rξξ
d−2.

Thus, if the dependence of Rξ on ξ in a fractal regime is given by a power
law

Rξ ∝ ξζ

the overall ξ-dependence of the resistance is given by

Rtot(ξ) ∝ L−d+2ξζ+d−2.
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To see that the dependence of the resistivity of the fractal object can indeed
be given by a power-law one can again consider the Sierpinsky gasket ex-
ample. Taking the resistance between the two terminals of the gasket of a
lower generation to be r we can easily calculate the resistance between the
corresponding terminals of a gasket of the next generation by performing the
triangle-star transformation (see Fig. 1) to get

R = 2
r

2
+

1

1/r + 1/2r
= (5/3)r

so that

ζ =
ln(5/3)

ln 2
≈ 0.737....

Figure 1: Triangle-star transformation for a Sierpinsky gasket

Taking now ξ ∝ (p− pc)
−ν and using the definition R ∝ (p− pc)

µ we get

R(p) ∝ L−d+2[(p − pc)
−ν ]ζ+d−2.

Translating this into the conductivity of the system (σ = R/L2−d) we get

µ = ν(d + ζ − 2).
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One often introduces the reduced exponent µ̃ = µ/ν. This one is given by

µ̃ = d + ζ − 2.

Calculating µ̃ from the known values of µ and ν gives µ̃ ≈ 0.97 in d = 2
and µ̃ ≈ 2.2 in d = 3, i.e. in this cases µ̃ is not too far from d− 1 and thus ζ
is not too far from unity (although it is not equal to unity and can be both
larger and smaller). The value ζ = 1 would correspond to simple sequential
switching of “elementary resistors”, i.e. to a simply wired regular network
at the lower scales. The values ζ < 1 (slower growth) show that considerable
part of the “wires” are shunted by parallely switched parts of the network
(“blobs”), as we have seen in the example of Sierpinsky gasket. The values
ζ > 1 correspond to the cases when the predominant effects stem from the
tortuosity of the corresponding paths, so that the wires whose ends are at a
typical distance ξ are effectively much longer than ξ.

Note: The situation gets more involved when the continuum percolation
models are considered (B.I. Halperin, S. Feng and P.N. Sen, Phys.Rev. Lett.
54, 2391 (1985); see S. Havlin and D. ben Avraham, Adv. in Physics, 36

695-798 (1987) for a review). As an example let us discuss the so-called
Swiss cheese model (where the percolation takes place over the cheese, and
the ”holes”, all of the same radius r, do not conduct) or in the inverse swiss
cheese model, where the holes conduct and the cheese does not. For the
cheese model close to its percolation transition the conductivities gi of the
(weakest) existing bonds are distributed according to a power law

p(g) ∼ g−α

(for small g) with

α =
2d − 5

2d − 3

(a nice electrotechnical problem!). The distribution is nonsingular in d = 2
(α = −1) but strongly singular in d = 3 (α = 1/3), many extremely small
conductivities) in d = 3. The existence of very weak bonds changes the
critical exponent of conductivity from its value µ to some other value µ′ for
the continuous model.

We can now make an estimate on how does this singularity affect the
critical exponent when assuming the simply-wired network (the one with
ζ = 1, i.e. neglecting the tortuosity and the blobs) on the lowest scale.
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Eq.(1) corresponds to the following distribution of the resistivity R = 1/g of
the bonds,

p(R) ≃ p(g(R))
dg

dR
∼ Rα−2.

For 0 < α < 1 the sum of N such random variables tends in distribution to
a Lévy stable law of index γ = 1 − α and its typical value depends on N as

R(N) ≃ N1/γN
1

1−α . (1)

Since the number of resistors in our simply wired model is proportional to
the size of the fractal cell, this corresponds to the value of ζ ′ = 1

1−α
and to

µ′ ≈ ν

(

d − 2 +
1

1 − α

)

.

A more detailed argumentation lead to an inequality

ν(d − 2) +
1

1 − α
≤ µ′ ≤ µ +

α

1 − α
.

Those not acquainted with Lévy laws may rationalize Eq.(1) by noting that
for strongly singular distributions the overall resistance R of the chain is
practically dominated by the largest resistance RL, i.e. R ∼ RL. This
maximal resistance can be evaluated from

N

∫

∞

RL

p(R)dR ≃ NRα−1
L ∼ 1

so that R ∼ RL ∼ N
1

1−α .

2 Percolative conduction and anomalous dif-

fusion

The problem of calculating the conductivity of a random sample is math-
ematically equivalent to the problem of calculating the diffusion coefficient
of the particles in the corresponding percolation structure. In this case a
typical model is the one allowing the transition between each connected pair
of lattice sites i and j in the bond model, or a transition from an intact site
i to any of its intact neighbors in the site model of percolation theory. The
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typical waiting time on a site is taken to be τ , the value D0 = a2/dτ defines
the diffusion coefficient for the non-diluted network (i.e. the one with p = 1).

The random walks of particles on a network can be described by a master
equation (which is perfectly valid for the exponential waiting time distri-
bution on a site and asymptotically valid in case of all other waiting time
distributions with finite mean waiting time τ): Let p(t) be the vector with
elements pi(t) being the probabilities to find a particle at node i at time t.
The master equation that gives then the temporal changes in this probability
(remember the Kinetics lecture) reads

d

dt
p = i + Wp (2)

where i = {ii} is the vector comprising the probability currents to (from)
site i in the case the particles are introduced to this site from the outside.
A similar equation with the temporal derivative changed to d/dn describes
the n-dependence for the probabilities pi,n in a random walk as a function
of the number of steps, provided n is large enough to be considered as a
continuous variable. The matrix W describes the transition probabilities
between the nodes of the lattice or network. The non-diagonal elements of
the corresponding matrix are wij, the transition probabilities from site i to
site j per unit time or in one step. The diagonal elements are the sums of
all non-diagonal elements in the corresponding lines taken with the opposite
site: wii = −

∑

j wji, which represents the probability conservation law. The
situation of unbiased random walks corresponds to a symmetric matrix W:
wij = wji. Considering homogeneous networks and putting all nonzero wij

to unity, one sees that each the difference operator represented by a line
of the matrix is a symmetric difference approximation to a Laplacian. The
master equation (2) is pertinent to the situations corresponding to the initial
value problems, and also to situations when some pi(t) are given (e.g. kept
constant on the boundaries), and the other ones have to be calculated.

In course of the time the stationary situation establishes, the one with

Wp = −i (3)

giving the stationary concentration distribution. For this stationary distri-
bution the diffusion (random walk) problem is absolutely equivalent to the
electrical one of calculating the conductivity for given potentials or currents
at some nodes. Calculating concentrations formally corresponds to calculat-
ing the voltages on the nodes of the resistor network of the same geometry
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using the Kirchhoff’s laws. The fact that the probability current between
nodes i and j is proportional to the difference pi − pj is replaced by the
Ohm’s law. The conductivities of resistors connecting nodes i and j have to
be taken 1 if the nodes are connected and zero otherwise. The total probabil-
ity conservation corresponds then to the second Kirchhoff’s law representing
the fact that the sum of all currents to/from the node i is zero, and the first
Kirchhoff’s law follows from the uniqueness of the solution.

Therefore the diffusion coefficient of the particles through a percolation
system behaves as

D(p) ∝ (p − pc)
t

vanishing exactly at the percolation threshold. Close to this threshold the
diffusivity in the fractal regime (i.e. for length scales L < ξ) is a function of
the size of the system and goes as a power law

D(L) ∝ L−ζ

This power-law explicit dependence of the diffusion coefficient on the size
means that the diffusion close to the percolation threshold is anomalous and
does not follow the normal Fickian pattern according to which

〈x2(t)〉 ∝ t.

Numerical simulations of random walks on percolation clusters (the ant in

the labyrinth model) show indeed that

〈x2(t)〉 ∝ tα (4)

with α < 1 (subdiffusion) as long as 〈x2(t)〉 < ξ, i.e. for quite a time for p
close to pc and at all times exactly at pc. Assuming this power law, we can
find the connection between the exponent of anomalous diffusion α and ζ and
therefore t, i.e. establish the connection between the short time behavior in
diffusion and the concentration dependence of conductivity in the percolation
system.

Here we use the qualitative scaling arguments which are strongly backed
by the results of numerical simulations.

First, we note that one can reverse Eq.(4) and use it e.g. for the mean
first passage time 〈T 〉 from the origin to the boundary at the distance R from
the point where the particle is introduced into the system

〈T 〉 ∝ R2/α. (5)
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Here another notation can be used. The number of steps, or the time nec-
essary to make the walk can be considered as a measure of the ”mass” of
the trajectory of the random walk, and R is its size in the Euclidean space.
Therefore Eq.(5) can be interpreted as the one of the type M ∝ Rdf with
df being the fractal dimension of the walk’s trajectory (which is typically
denoted as dw and called the walk dimension), and therefore

dw =
2

α
.

We now find the connection of dw (and thus of α) with already known critical
exponents df and ζ characterizing the infinite cluster.

The mean first passage time to the boundary (or mean sojourn time of
particles inside the boundary) can be calculated using the flow over popula-

tion approach (see the Kinetic course, or remember the introductory lecture
to Complex systems and macromolecules).

Let us consider particles as inserted at some site with a system, on the
average I per unit time. Using the flow-over-population method we then
get 〈T 〉 ∝ N/I, where I is the probability current through the system (the
number of particles entering A per unit time), N is the overall stationary
number of particles within the system. Here 〈T 〉 is essentially the mean
time a particle spends inside the system, which coincides with the mean first
passage time from A to B.

The mean number of particles inside the system is proportional to a
typical concentration of particles, which, in its turn is proportional to their
concentration at some given place (and thus, say, to the probability pA to
find a particle at site A for the given current I), and to the number of sites.
The concentration (being a counterpart of the voltage) for a given current
scales as the system’s resistivity, pA ∝ R ∝ Lζ , and the number of sites scales
as Ldf where L is the system’s size, so that 〈t〉 ∝ Ldf+ζ . Comparing this with
Eq.(5) we thus get

dw = df + ζ.

Considering the d-dimensional generalizations of Sierpinski gaskets and
using analogous considerations we get ζ = log[(d + 3)/(d + 1)]/ log 2. Com-
bining this with the fractal dimension df = log(d + 1)/ log 2 of a gasket this
gives us for the dimension of the walks dw = log(d + 3)/ log 2.

The relation between the scaling exponent of the conductivity and the
dimension of a random walk on a fractal system can be used in the opposite
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way, since dw can easily be obtained numerically for a whatever structure.
On the other hand, the solutions of the Kirchhoff’s equations on the com-
plex structure (i.e. the solution of a large system of algebraic equations)
in a dimension higher than 2, which is typically achieved using relaxation
algorithms, is numerically much more involved.

A different discussion of the same problem based on the Einstein’s relation
between diffusion coefficient and conductivity an on crossover arguments can
be found in in the Havlin and ben Avraham’s review.

2.1 The spectral dimension

In the case of random walks on regular lattices, the probability to find the
walker at the origin behaves as

p(0, t) ∝
1

(Dt)d/2

i.e. follows the power-law decay governed by the spatial dimension of the
system. In a fractal system the power-law decay is also observed, and the
long-time asymptotics of this decay

p(0, t) ∝
1

tds/2
(6)

defines a new characteristics of a fractal system, its spectral dimension ds.
In the case of Euclidean lattices ds = df = d, but for fractals ds and df are
rather independent characteristics (although it is known the ds < df ).

Let us return to our means squared displacement, Eq.(4). This equation
can be interpreted in the sense that most of sites visited by the random
walker during time t are situated within a ball with radius of around R ∝ tα/2

centered at the walker’s initial position, and the overall number of the visited
sites (i.e. the ones within the ball) is given by N(t) ∝ [R(t)]df ∝ tαdf /2.
Assuming that all these sites can be visited with a comparable probability
and that the origin is just one of these more or less equivalent sites, we
conclude that P (0, t) ∝ 1

t
αdf /2

. Comparing this with Eq.(6) we get

ds = αdf =
2df

dw

,

connecting the properties of walks with geometric properties of the fractal
substrate.

8



For percolation clusters in any dimension ds is very close to 4/3. Although
the initial assumption that it is exactly 4/3 [S. Alexander and R. Orbach,
Journal de Physique Lett. 43, L625 (1982)] was proven wrong, with the
largest deviation of around 2% observed in two dimensions [P. Grassberger,
Physica A 262, 251 (1999)], the Alexander-Orbach conjecture ds = 4/3 can
still be considered as exact for a whatever practical purpose.

A few words about the history of the name ”spectral dimension”. From
the spectral (Laplace) representation of the solution of the master equation
we can easily find the probability P (0, t) that the walker starting at site 0 at
t = 0 is found at the same site at time t. This one reads

P (0, t) =
∞

∑

i=1

ai exp(−ǫit)

where ǫi is the i-th eigenvalue of the matrix W and ai is the amplitude of
its i-th eigenvector at site 0. Considering the lattice as infinite we can pass
from discrete eigenvalue decomposition to a continuum

P (0, t) =

∫

∞

0

N (ǫ)a(ǫ) exp(−ǫt)dǫ.

For long times, the behavior of P (0, t) is dominated by the behavior of N (ǫ)
for small values of ǫ. Here N (ǫ) is the density of states of a system de-
scribed by the matrix W. The forms of such densities are well known for
many Euclidean lattices, since the problem is equivalent to the calculating of
spectrum in tight-binding approximation used in the solid state physics: for
all Euclidean lattices N (ǫ) ∝ ǫd/2−1, which gives us the forms of famous van
Hove singularities of the spectrum. Assuming a(ǫ) to be nonsingular at ǫ → 0
we get P (0, t) ∝ t−d/2. The exponent ds replacing the Euclidean dimension d
in the expression for the probability of being at the origin and therefore also
in the one for the density of states (spectrum) of the corresponding disor-
dered system is then reasonably called the spectral dimension of a fractal
lattice. It describes the properties of spectrum of fractal analog of a Laplace
operator. In the early days it was also often called fracton dimension of the
structure, since the corresponding eigenvectors of the matrix (corresponding
to eigenstates in tight-binding model) are called fractons.

The spectral dimension of the network governs the behavior of the mean
number of different sites visited by the random walk. A random walk of n
steps having a property of compact visitation typically visits all sites within
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the radius of the order of its typical displacement Rn ∝ n1/dw . The number

of these sites is Sn ∝ R
df
n where df is the fractal dimension of the network, so

that Sn ∝ nds/2 (provided ds ≤ 2, i.e. provided the random walk is recurrent
and shows compact visitation).

10


