
Theory of Disordered Systems

Prof. Dr. Igor Sokolov

Lecture 5: Lattice systems: EMA et al

Often, especially in the case of very high contrast, it is easier (both from
the conceptual and from the numerical point of view) to consider lattice
models instead of continuum ones. We concentrate here on the lattice models
for conductivity, which are of high experimental relevance in the case of high
contrast. In this lecture I follow to a large extent the article by S. Kirkpatrick,
Rev. Mod. Phys. 45, 574-588 (1973).

Let us first consider a lattice model (e.g. on a square lattice, see Fig.1).
A large piece of the lattice is switched between the (super)conducting bars
kept at a constant voltage. The conductances gi = 1/Ri of the resistors are
taken from some probability distribution. The definition of the characteristic
conductivity of the system can be given via the total heat production, or via
the connection between the applied voltage and the overall current through
the system. The existence of the corresponding variational principles leads
to the possibility to obtain the corresponding numerical solution by use of
relaxation algorithms which can be formulated and implemented in a very
elegant way.

1 EMA for a random resistor model

Let us consider the effective medium approximation for the random resistor
lattice model.

Let us consider an ordered medium (a lattice with conductances gm)
with the same overall conductance as our disordered medium. This gm is
essentially exactly what we are looking for. Let Vm be the voltage between
the nodes A and B of the lattice in such an ordered medium. Let us consider
one resistor with conductance gi switched between the nodes A and B of the
lattice. Since this is different from gm, the voltage VAB differs from Vm by
some amount ∆V :

∆V = VAB − Vm.
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Figure 1: First steps of discussion: the effective circuit of the EMA.

The effective medium is defined (i.e. gm is chosen) in such a way that 〈∆V 〉 =
0.

Finding gm fulfilling this condition is a task which now will be performed
in several elegant steps following from linearity of underlying equations (cor-
responding to Kirchhoff’s laws): The sum of voltages along each closed loop
in the system vanishes, the sum of the currents in each node vanishes as well

∑

j

iij = 0

(with iij being the current flowing from i to j). The current through the
resistor between the two nodes i and j is given by

iij = gijVij = gij/(Vi − Vj),

where Vij is the voltage between the sites i and j and Vi and Vj are the
corresponding potentials. As always, the system has to be considered as
placed between the “superconducting” plates of a flat capacitor situated at
a macroscopic distance from each other and kept at constant potentials.

One can obtain the solution of the problem without solving them, which
is a noble art of theoretical physics.

If gi under consideration were equal gm, than we would have VAB = Vm,
since gi differs from gm, there is some deviation of VAB from Vm (the potentials
at neighboring nodes will also differ from their values in the ordered system).
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Let us now connect an additional current source (a battery) to the nodes
A and B and tune its voltage until the potential difference between A and
B gets equal to Vm. This means that after introducing such a battery the
potentials of all nodes are restored, and all currents through other resistors
are the same as in the case when gi were equal to gm. Let i0 be the current
flowing into node A and from node B under such situation, see Fig.1. Since
restoring Vm between the nodes A and B restores all other potentials, all
currents in such a system with the additional current are the same as they
were if gi were equal to gm. This means that the whole additional current
flows through gi and does not redistribute over other resistors. Therefore the
current i0 is connected with gi via i0 = (gm − gi)Vm. Let us now consider
what happens if we switch off this current (i.e. add a current of strength i0
flowing in the opposite direction). Since the equivalent circuit consist of the
two conductances, gi of the resistor considered and G′

AB of the rest of the
system, switched parallel, the voltage will change by

∆V =
i0

gi + G′

AB

i.e. by

∆V = Vm

gm − gi

gi + G′

AB

.

The self-consistency requirement of the EMA then suggests that this ∆V
has to vanish on the average if gm is chosen correctly, i.e. gives the following
equation for gm:

〈

gm − g

g + G′

AB

〉

g

=

∫

gm − g

g + G′

AB

p(g)dg = 0 (1)

where p(g0) is the probability density of the distribution of g.
Our next task will be to find G′

AB. To do so we consider our ordered
system (all resistors have the conductance gm) as placed into a supercon-
ducting box (of spherical shape) of a very large (infinite) size, and compare
three situations depicted on Fig.2 (from the left to the right): (a) the exter-
nal current of magnitude i is entering the system at site A and leaving the
system through the outer border, (b) the current, same in the magnitude, is
entering the system through the outer border and leaves it through a wire
connected to site B, and (c) the current of magnitude i enters the system in
A and leaves it via B.
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In the first case, since the border is very far away, the entering current is
equally distributed among all z branches connected to A, so that the current
through the particular resistor between the terminals A and B is exactly i/z.
The same is true in the case (b). In the case (c), due to linearity, the current
through the resistor is the sum of those in cases (a) and (b) (no current leaves
the system via the external boundary, all currents are the sums of those in
cases (a) and (b)), i.e. is equal to iAB = 2i/z.

Figure 2: The constructions corresponding to cases (a), (b) and (c) discussed
in the text

The voltage between A and B in this case is equal to VAB = iAB/gm, and
the overall conductivity measured between A and B is

GAB =
iAB

VAB

= gm

z

2
.

Since GAB is the conductivity of the system corresponding to parallel switch-
ing of G′

AB and gm we get

G′

AB = GAB − gm,

and Eq.(1) gives us
〈

gm − g

gm(z/2 − 1) + g

〉

g

= 0. (2)
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In the case of a binary mixture with g = g1 with probability p and g = g2

with probability 1 − p we get

gm − g1

gm(z/2 − 1) + g1

p +
gm − g2

gm(z/2 − 1) + g2

(1 − p) = 0

leading to a quadratic equation for gm. In the percolation limit (infinite
contrast) g2 = 0, this solution is

gm = g1
(z/2)x − 1

z/2 − 1

for p > 2/z and
gm = 0

for p < 2/z which defines the critical concentration for the percolation tran-
sition pc = 2/z. For hypercubical lattices with z = 2d (d being the dimension
of space) we get pc = 1/d.

2 Numerics

Most of the theoretical information we have on the actual dependence of
conductivity of lattice systems (especially in the percolation setup) on the
distribution of the resistor strength is obtained from numerical simulations.
It is in general not to be advised to solve the (extremely large and extremely
rarefied) system of the Kirchhoff’s equations by use of matrix algebra, since
its implementation is time- and even more memory intensive. The existence
of the corresponding variational principles leads to the possibility to obtain
the numerical solutions by use of relaxation algorithms which can be formu-
lated and implemented in a very elegant way.

The relaxation algorithm to solve a system of equation for the site po-
tentials Vi consists in fixing Vi = 0 and Vi = V at the boundaries, and then
iteratively solving the linear system of equations for Vi in the bulk of the
system. Starting from

iij = (Vi − Vj)gij

and
∑

j

iij = 0
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for internal sites we get Vi

∑

j gij −
∑

j Vjgij = 0 or

Vi −
∑

j

Vjgij

/

∑

j

gij = 0. (3)

The naive way to perform iteration is to formally solve numerically the dif-
ferential equations

d

dt
Vi = −α

(

Vi −
∑

j

Vjgij

/

∑

j

gij

)

for the vector of potentials {Vi} whose solution will converge (in course of the
time t) to the vector leading to vanishing right hand side, i.e. to the solution
of Eq.(3). This is done explicitly by considering a difference approximation

V
(n)
i = V

(n−1)
i − α

(

Vi −
∑

j

Vjgij

/

∑

j

gij

)

(n is a number of the iteration). The parameter α > 0 is chosen in a way that
guarantees the convergence. The corresponding implicit schemes for better
convergence can be used as well.

The less naive way corresponds to putting Eq.(3) into a form

Vi =
∑

j

Vjgij

/

∑

j

gij.

We first chose all resistors to be of equal conductance, say g = 1, and initiate
Vi with the values they would have in such an ordered system. Then those
gij which will be zero in the percolation case are put to gij = 1/2 and the
potentials are iterated several times according to

V
(n)
i =

∑

j

V
(n−1)
j gij

/

∑

j

gij,

after which the corresponding gij are put to 1/4, 1/8, etc until the whole
converges.

In two dimensions there exists an exact method of calculation the conduc-
tivity for a given configuration of the system based on the bond propagation
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algorithm, see D.J. Frank and C.J. Lobb, Phys. Rev. B 37 302-307 (1988),
which has to be preferred in situations when very high accuracy is desired.
The example of implementation of this algorithm is discussed in Homework
3.

Numerical investigations have shown that percolation concentrations of-
ten differ from the predictions of EMA (the square lattice in 2d being a
seldom exclusion), and that close to pc the effective conductivity does not
vanish linearly in p − pc as predicted by EMA, but in a “softer” way, i.e.
together with its derivative, so that g∗ ∝ (p− pc)

µ with µ ≈ 1.3 in 2d, µ ≈ 2
in 3d and approaching µ = 3 in dimensions 6 and more.
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