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We study dynamics in ensembles of identical excitable units with global repulsive interaction.
Starting from active rotators with additional higher order Fourier modes in on-site dynamics, we
observe, at sufficiently strong repulsive coupling, large-scale collective oscillations in which the el-
ements form two separate clusters. Transitions from quiescence to clustered oscillations are caused
by global bifurcations involving the unstable clustered steady states. For clusters of equal size, the
scenarios evolve either through simultaneous formation of two heteroclinic trajectories, or through
two simultaneous saddle-node bifurcations on invariant circles. If the sizes of clusters differ, two
global bifurcations are separated in the parameter space. Stability of clusters with respect to split-
ting perturbations depends on the kind of higher order corrections to on-site dynamics; we show that
for periodic oscillations of two equal clusters the Watanabe-Strogatz integrability marks a change
of stability. By extending our studies to ensembles of voltage-coupled Morris-Lecar neurons, we
demonstrate that similar bifurcations and switches in stability occur also for more elaborate models
in higher dimensions.

I. INTRODUCTION

Oscillatory states, ubiquitous in natural and artificial
systems, are of particular interest when they emerge as
collective phenomena through interactions in ensembles
of smaller coupled units [1–3]. Depending on the individ-
ual dynamical properties of the ensemble constituents,
three cases may be roughly distinguished: (a) the case
where already in the absence of interaction every single
unit is oscillating, treated e.g. in the seminal paper of Ku-
ramoto [4] and, under the assumption of weak coupling,
reducible to a system of phase oscillators [5], (b) the case
where without coupling some units oscillate on their own
whereas the others are at rest [6, 7], and (c) the case
where all units stay at rest as long as they do not inter-
act with each other but can show non-trivial collective
dynamics if they interact [8].

Systems where every single unit is quiescent if isolated
but may oscillate if “stimulated” in some appropriate
way, play a crucial role in neuro-science: a typical sin-
gle neuron on its own is at rest, but a sufficiently strong
input, e.g. in form of incoming action potentials from
other neurons in a network, provokes spikes in its mem-
brane voltage. This property, known as excitability [9],
allows to view the neuron as a dynamical system, close
to some kind of limit cycle bifurcation [10]. In the course
of the spike, a sufficiently large perturbation away from
the stable state of rest rapidly grows before eventually
converging back to rest, thereby tracing fragments of
a hidden large scale limit cycle. In particular, what is
known as class I excitability [11] relates to the neuron
being close to a saddle-node homoclinic bifurcation [12],
also known as the saddle-node bifurcation on an invariant
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circle (SNIC). The scenario of this global codimension-1
bifurcation with normal form ẋ = ε + x2, x ∈ R ∪ {∞}
begins with negative value of the bifurcation parameter
ε: the stable equilibrium at −√−ε and the unstable one
at
√−ε are connected by two orbits that start at the lat-

ter and end at the former. At ε = 0 two equilibria merge
into a neutrally stable state of rest with a homoclinic tra-
jectory (imagine x diverging towards +∞ and “coming
back” to the origin from −∞) which for ε > 0 gives rise
to a periodic orbit.

Probably the simplest example of a class I excitable
unit is the active rotator [13] which obeys the Adler equa-

tion [14] φ̇ = ω − sinφ for the variable φ. For ω2 > 1, φ
rotates on the circle S1. Here, e.g. ε = |ω| − 1 can serve
as a bifurcation parameter for the two SNIC at ω = ±1.

Coming back to the general classification of ensembles
of potentially oscillating units in terms of neuro-science
vocabulary, the first two cases of ensemble dynamics,
listed in the opening paragraph, may be referred to as
pure ensembles of oscillating units or mixed ensembles
of oscillating and excitable units while the third case re-
gards pure ensembles of excitable units.

While there is a large body of literature for the first
two cases, less attention has been paid to ensembles of
exclusively excitable units, perhaps because many con-
texts favor attractively coupled elements. Let us infor-
mally separate two types of coupling. Whenever two units
are put at a close distance, and the action of the cou-
pling between them tends, regardless of the position in
the phase space, to decrease this distance, we call the
coupling between these units attractive. If, on the con-
trary, the coupling between two close units, regardless of
their position, contributes to the increase of the distance
between them, we call the coupling repulsive. Below, we
consider the interactions that vanish when the states of
interacting elements exactly coincide.

Attractive coupling for excitable units leads to triv-
ial dynamics. Each decoupled unit, if perturbed, eventu-
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ally converges to its stable state of rest. Attractive cou-
pling (for identical elements) only makes this tendency
collective. Hence, non-trivial dynamics for ensembles of
excitable units needs at least some of the units to be
coupled repulsively [15].

Below, we restrict ourselves to ensembles of identical
units. If, in absence of coupling, each element possesses
the unique robust stable state of rest, the synchronous
collective equilibrium with every unit at the rest position
exists and remains stable as long as repulsion is weak. Re-
cently, a scenario of destabilization of this state of rest
for the case of identical all-to-all repulsively coupled ac-
tive rotators was discussed [8]. One of the main results
was the existence, for sufficiently strong repulsive cou-
pling, of the continuous family of periodic solutions with
neutral stability where different initial conditions lead to
different asymptotic periodic states. This neutral stabil-
ity has to do with the fact that the model, treated in [8]
and based on sinusoidally coupled active rotators [13],
features what is known as the Watanabe-Strogatz (WS)
integrability [16]. The latter phenomenon holds for a set
of N identical phase variables that obeys a fairly gen-
eral set of conditions [17]. It leads to highly degenerate
dynamics, caused by foliation of the phase space in in-
variant three-dimensional manifolds and goes along with
the existence of N − 3 conserved quantities. At least for
N large enough, the WS formalism shows that this con-
tinuum of periodic states emerges exactly when one of
the synchronous states of rest changes its stability un-
der sufficiently strong repulsive coupling [18]. Since neu-
tral stability is a strong hint that a periodic solution is
not persistent under perturbations of the vector field, the
question arises how common this family of periodic or-
bits really is. To investigate more persistent scenarios of
transition from rest to collective oscillations is the main
objective of the current paper.

It turns out that there exists another type of periodic
oscillations that, in the course of enhancement of the re-
pulsive coupling, emerges independently from the WS-
related family of periodic orbits. This type of solution is
a state where the ensemble splits in two groups, inside
which all units assume the same instantaneous values:
a 2-cluster state. In this work, we investigate, through
which bifurcation scenarios these periodic states emerge,
and how their stability is affected by higher order Fourier
modes in their on-site dynamics.

This paper is divided in two parts. In section II, we
present the ensemble of active rotators (II A) and our re-
sults concerning the existence and stability of 2-cluster
solutions. Starting in section II C with a reduced (two-
dimensional) description in terms of cluster coordinates,
we discuss in sections II D and II E the global bifurcation
scenarios, observed within this reduced model for clus-
ters of equal or unequal size at different choices of sys-
tem parameters, and complete our discussion in II F by
numerical stability analysis of collective oscillations. In
section III, we go beyond active rotators and consider an
ensemble of two-dimensional excitable units: of Morris-

Lecar neurons [19]. This is a common choice for systems
of mixed ensembles [6, 7] because its parameters can be
tuned to ensure class I excitability or oscillatory behav-
ior [20, 21]. We briefly discuss emergence and stability of
periodic 2-cluster states in this system and how the re-
sults for the phase model translate to ensembles of more
general excitable elements.

II. COUPLED ACTIVE ROTATORS

A. The Model

We start by discussing the active rotator model and
basic properties of observed 2-cluster periodic solutions.

Consider the system φ̇ = f(φ, δ) for a phase-like1 vari-
able φ ∈ S1 with the bifurcation parameter δ in some
open interval around 0, and assume that for δ < 0 the
function f possesses exactly two regular zeros f(φs, δ) =
f(φu, δ) = 0 with f ′(φs, δ) < 0 and f ′(φu, δ) > 0, and no
zeros whatsoever for δ > 0 (f ′ denotes the derivative of
f w.r.t. φ). The zero point φs is then the stable equilib-
rium of the system and φu is the unstable one. At δ = 0
the system undergoes a saddle-node bifurcation on the
invariant circle S1. (Interested in class I excitability, we
always implicitly assume that δ < 0 is chosen such that
two zeros φs and φu lie “close enough” to each other on
the circle). We call this system an active rotator.

If the function g : S1 → R has a regular zero at zero
argument, we call it an attractive coupling function if
g′(0) < 0 and a repulsive coupling function if g′(0) > 0.

We are interested in systems of N identical active ro-
tators which we assume to be coupled in such a way that
the interaction (i) is pairwise, (ii) depends on the dif-
ference between the phases, (iii) is all-to-all, and (iv) is
repulsive. Such a system can be written as

φ̇j = f(φj , δ) +
1

N

N∑
k=1

g(φk − φj)

with f(φ, δ) describing the “internal” (on-site) dynamics
of each phase variable and g being the coupling function
between any pair of phases. Cyclic nature of the phase
implies 2π-periodicity of f and g with respect to phase
arguments. The phase space is a torus TN := S1 × · · · ×
S1 of dimension N . Notably, phases cannot surpass each
other, in other words, for a lift of the system from TN to
RN , a fixed order of phases, say φ1 ≤ φ2 ≤ · · · ≤ φN <
φ1 + 2π at some time t leads to the same order at any
other time t′. Equivalently, φj(t0) = φk(t0) at time t0
implies φj(t) = φk(t) for all t.

1 Below, we use the term “phase” in the colloquial sense: unlike
a proper phase, φ does not rotate uniformly; moreover, for a
non-oscillatory system the proper phase cannot be introduced.
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The arguably simplest model of this type, introduced
by Shinomoto and Kuramoto [13], is of the form

φ̇j = ω − sinφj +
κ

N

N∑
k=1

sin(φk − φj)

where for each isolated unit j, a SNIC occurs at ω = ±1
and the coupling is repulsive if κ < 0. Each unit is an
active rotator if |ω| < 1 so that |ω| − 1 may serve as
the bifurcation parameter δ. Publications on variants of
this model, mostly involving action of noise, include [22–
24] as well as [8]. Since the model fulfils provisions of
the Watanabe-Strogatz integrability (identical units are
coupled to the common field only via their first Fourier
modes), the class of possible attractors is immensely re-
duced [25]. Therefore, to account for more generic kinds
of ensemble dynamics, the system should be modified;
a natural way to do this is to take into account higher
Fourier modes. Below, we violate the WS condition by
including the higher modes in the on-site part f(φj) of

φ̇j = f(φj) +
κ

N

N∑
k=1

sin(φk − φj). (1)

On introducing

V (φ1, . . . , φN ) = −
∑
k

∫
f(φk) dφk−

κ

2N

∑
j,k

cos(φk−φj),

we observe that regardless of the particularities of f(φ),
dynamics of the system (1) is of the gradient type:

φ̇j = −∂V/∂φj . This property (shared by arbitrary odd
coupling functions g(−ξ) = −g(ξ)) prohibits small-scale
periodic motions and, as a consequence, the Hopf bifur-
cations. Hence, emergence of periodic states occurs only
through global bifurcation scenarios.

In the space of all periodic f(φ), the WS case – absence
of all higher Fourier harmonics – has infinite codimension,
and does not occur in generic families with finite number
of parameters (like Hamiltonian dynamics does not oc-
cur in generic families of ODEs). However, at our starting
point – the rotators of [13] and [8] – this degeneracy is
ensured by design, therefore we consider below specially
tailored families of functions for which simultaneous van-
ishing of all higher order terms becomes the codimension-
1 event. Choosing appropriate re-scaling and shift of the
variables φj and time t, we rewrite local dynamics as

f(φ) = ω − sinφ+ ε

∞∑
n=2

(
cneinφ + cne−inφ

)
, (2)

separating the higher order Fourier terms from the zeroth
and first order term. Here, z denotes the complex con-
jugate of a complex number z, and the new parameter ε
controls the deviation from the WS case (i.e., ε = 0).

To make the problem more definite, we consider two
exemplary cases of local dynamics:

f(φ) = ω − sinφ+ ε sin 2φ, (3a)

f(φ) = ω − sinφ+ ε

(
1

sinφ− 2
+ a+ b sinφ

)
. (3b)

The case (3a) where merely the second Fourier har-
monic is added, is a simple way to perturb the original
system; it allows for explicit expressions for certain bi-
furcations (see below). The case (3b) features infinitely
many Fourier harmonics and is a representative of more
common “perturbations” away from the WS-integrable
system of [8]. Below we fix a = 1/

√
3 and b = 4/

√
3− 2.

so that the perturbation starts from the second Fourier
harmonics. With both perturbation terms bounded by
±ε, the function f at |ω| < 1 and sufficiently small |ε|
still possesses two regular zeros nearby, so that both cases
indeed describe an active rotator.

Since all units are identical, their arbitrary permuta-
tions for a periodic state trivially yield different periodic
states. Therefore, we henceforth assume the units to be
in a natural order φ1 ≤ φ2 ≤ · · · ≤ φN < φ1 + 2π.

Integrating Eq. (1) numerically for different choices
of f reveals various kinds of periodic attractors. Among
them, two types play the prominent role. The first one in-
cludes splay states: periodic solutions of the form φj(t) =

φ
(
t+ j

N T
)
, j = 0, . . . , N − 1 for some T -periodic func-

tion φ(t). There, the consecutive units j and j + 1 are
always separated by the time interval T/N in their re-
spective dynamics. The other type is a 2-cluster peri-
odic solution: the ensemble is comprised of two groups
of oscillating units within which the instantaneous states
coincide. We will discuss the properties of splay states
elsewhere [18], and concentrate here on the origin and
properties of the 2-cluster solutions.

Besides these two, there can be other, possibly stable,
periodic solutions. Among them is kind of a combina-
tion of both types: the clustered splay states where the
ensemble splits in a set of clusters that are regularly stag-
gered in time. Further, if the clusters are not of the same
size, this staggering is, at best, approximate. It seems
that these states emerge in the same way as the true
splay state. Yet other periodic states can exist but in our
simulations the majority of initial conditions has lead to
either 2-cluster states or (clustered) splay states. This is
why we focus on these two types.

Both choices for f(φ) characterize on-site dynamics in
terms of two parameters ω and ε. Together with the cou-
pling strength κ this yields a three-parameter description.
Being interested in the coupling-induced effects, below we
largely discuss the scenarios that evolve when |κ| is in-
creased and plot slices of the parameter space along the
planes of constant ω.
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B. Destabilization of the Synchronous Equilibrium

In absence of coupling, the ensemble of active rotators
(1) possesses a unique simple attractor: the synchronous
steady state Φs, with every unit at its stable state of
rest φs. The value φs, entirely prescribed by on-site dy-
namics, is independent of the coupling κ. Growth of the
repulsion intensity gradually weakens stability of this col-
lective equilibrium, until, at a threshold negative value
of κ, its destabilization occurs. Permutation symmetry
of the units turns the latter into the global event: a tran-
scritical heteroclinic bifurcation [8, 26]. For the on-site
dynamics of the type (3a) the critical values of the pa-
rameters κ, ω, ε are interrelated by

κ2 + ω2 + 12ε2 − 48ε4 + 64ε6 + 4ε2κ2−
−32ε4κ2 − 4εκ3 + 4ε2κ4 − 80ε2ω2+

+64ε2ω4 − 128ε4ω2 + 32ε2κ2ω2 = 1.

(4)

At small values of |ε| this translates to the explicit ex-
pression for the critical coupling intensity:

κ0 = −
√

1− ω2+2ε(1−ω2)+2ε2ω2 4ω2 − 5√
1− ω2

+O(ε3) (5)

As described in [8], destabilization of the synchronous
equilibrium is a highly degenerate event: N − 1 Jacobian
eigenvalues simultaneously vanish. At the moment of bi-
furcation, ∼ 2N−1 steady states coalesce with the syn-
chronous equilibrium. For the overwhelming majority of
them, the bifurcation is transcritical. There is, however,
one important exception: the clustered steady states in
which the ensemble splits into two equal groups, branch
off the synchronous steady state via a pitchfork bifurca-
tion. Depending on the values of ω and ε, this pitchfork
can be super- or subcritical, see Fig. 1. As derived in Ap-
pendix B, for the local dynamics of the kind (3a) at not
too big |ε|, the pitchfork is subcritical if the quantity

c =
(sinφs − 4ε sin 2φs)2

cosφs(cosφs − 2ε cos 2φs)

exceeds 1. If c < 1, the pitchfork is supercritical.
Change of the pitchfork character is a codimension-2

bifurcation that in the space, spanned by ε, ω, κ, happens
on a one-dimensional set. It is convenient to parameterize
it e.g. in terms of ε: the corresponding value of ω(ε) is
found from

4(1− 2ω2)2 − ε2(48− 545ω2 + 1924ω4 − 1796ω6)

+4ε4(48− 1393ω2 + 9390ω4 − 22272ω6 + 16384ω8)

−4ε6(64− 273ω2 + 256ω4) = 0

(6)

[Equally, one can parameterize the curve by ω and
solve the same equation for ε(ω).] Finally, the value of
κ
(
ε, ω(ε)

)
on the curve is recovered from Eq. (4). Along

this curve in the parameter space, the two-dimensional
surface of saddle-node bifurcation branches off the two-
dimensional surface (4) of the pitchfork bifurcation.

κ0

φ
A

Σ1

Σ2

Φs

(a)

κ1 κ0

Σ1

Σ2

Λ1

Λ2

Φs

(b)

FIG. 1. Variants of the pitchfork bifurcation involving the syn-
chronous state of rest Φs and steady states, built by two equal
clusters. Solid curves: stable steady states: dashed curves: un-
stable ones. Left panel: subcritical pitchfork at κ0. Global bi-
furcations involving the saddles Σi (i = 1, 2, cf. II D) can
only occur for κ ≥ κ0 (blue disks). Right panel: supercritical
pitchfork at κ0. New stable steady states Λi branch off Φs at
κ0 and vanish at κ1 in simultaneous saddle-node bifurcations
with Σi. Here, the periodic 2-cluster orbit is born in either
of two possible ways. In the first scenario it is created in the
double heteroclinic bifurcation for some κhet ≥ κ1. There is a
hysteresis: at κhet ≥ κ0 (blue disks) with the stable Φs, and at
κ1 < κhet ≤ κ0 (orange triangles) with the stable Λi. Basins
of attraction are separated by separatrices of the saddles Σi.
In the second scenario, the periodic orbit comes into existence
at κ1 via a double SNIC (red squares).

C. Reduced Description

Since identical units group as a cluster in finite time
only if they are initialized as one, it is reasonable to con-
sider a reduced (i.e. two-dimensional) model. We order
the ensemble in such a way that the first pN units have
equal phase, as have the remaining (1 − p)N ones; here
p ∈ {0, 1/N, 2/N, . . . , 1} is the proportion of cluster A
and (1− p) is the proportion of cluster B. We introduce
the cluster coordinates φA(t) and φB(t) that obey

φ̇A = f(φA) + (1− p)κ sin(φB − φA)

φ̇B = f(φB)− p κ sin(φB − φA)
(7)

since units within the same cluster do not interact. If the
ensemble forms two clusters of unequal size (i.e. p 6= 1

2 )
we deal thus with a system of two non-identical units
that both repel each other; this setup close to a SNIC
bifurcation was investigated in a more general setting
under the assumption of weak coupling in [27]. The phase
space of the reduced system (7) is a 2-torus.

Noteworthy, each value of p defines a different invari-
ant subspace in the phase space of the full system. Every
value of p prescribes how many units belong to each clus-
ter so that any two subspaces with different values of p
intersect only along the line of complete synchrony (one-
cluster state) φA = φB . This observation becomes useful
in the discussion of bifurcation scenarios in section II D.

Two-cluster states of rest of Eq.(1) are solutions of
Eq.(7) with vanishing time derivatives. For each of them,
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−2 −1 0
κ

0.0

0.5

1.0
p

(a)

−2 −1 0
κ

(b)

FIG. 2. Existence of periodic 2-cluster solutions of (1) in de-
pendence on κ and p at fixed ω = 0.8 and ε = 0.1 for two
choices of f . Panel (a): on-site dynamics of the type (3a).
Panel (b): on-site dynamics of the type (3b). Dark shading:
existence of the periodic 2-cluster state with the cluster A
of size pN and the cluster B of size (1 − p)N . In the white
region no periodic 2-cluster solutions exist. Black curves: ap-
proximate bounds on p for the existence of periodic 2-cluster

states of size ratio
p

1− p , given by Eqs. (10) and (11).

Np coordinates assume the value φA whereas N(1−p) co-
ordinates are equal to φB . Due to coincidence of the val-
ues, the spectrum of the Jacobian matrix at these states
is highly degenerate [28]. Along with two simple eigenval-
ues λ+ > 0 and λ− < 0, obtained from the linearization
of (7) at the point (φA, φB), there is the eigenvalue

λA = f ′(φA)− κ
(
p+ (1− p) cos(φA − φB)

)
(8)

with multiplicity Np− 1, as well as the eigenvalue

λB = f ′(φB)− κ
(
1− p+ p cos(φA − φB)

)
(9)

with multiplicity N(1− p)− 1.
In the eigenspaces corresponding to λA and λB , we

choose a basis {ej}j=2,...,Np of the form eji = δj,i − δ1,i
and {ej}j=Np+2,...,N with eji = δj,i − δNp+1,i (δi,j being
the Kronecker delta). Thereby, a perturbation along each
vector in these eigenspaces leaves one cluster intact but
kicks units off from the other cluster.

On the other hand, one-dimensional eigenspaces for
λ± are of the form e± = (a, . . . , a, b, . . . , b) with a 6= b, so
that the first Np entries are equal, as are the last N(1−
p) ones. Hence, along these eigenspaces the clusters stay
whole. Therefore, we call the eigenspaces either splitting
(for λA and λB) or non-splitting (for λ+ and λ−).

Proceeding from steady to oscillatory states, a nat-
ural question is: what choices of parameters (ω, ε, κ, p)
enable existence of periodic 2-cluster solutions? Since ω
and ε only decide whether the units are active rotators or
not, we fix them and determine the existence of 2-cluster
states in dependence on κ and p; this is equivalent to the
existence of periodic solutions in the parameter space of
the reduced system (7). Fig. 2 shows the existence regions
for ω = 0.8, ε = 0.1 and two kinds of f . Other choices for
ω, ε, or the perturbation type lead to similar results.

Depending on the coupling strength κ, only those pe-
riodic 2-cluster orbits can exist that are sufficiently bal-
anced in size. In general, the more repulsive the coupling

(i.e. the larger |κ|) the more the two oscillating clusters
can differ in size. This is reasonable: for weaker coupling
the influence of the smaller cluster A on the larger one
B wanes so that the latter, as if isolated, converges ap-
proximately to its single unit state of rest. Unable to
overpass B, A cannot perform a large-scale oscillation
either. This observation prompts a rough estimate on
the lower and upper bounds for the values of p that,
at |ε| � 1, enable periodic states. Consider the general
case of f(φj , ε) = ω − sinφj + εh(φj) and p < 1

2 which
implies that cluster B is the larger one. Without loss of
generality, let ω ≥ 0. We view the smaller cluster φA as a
time-dependent perturbation of the isolated dynamics in
the large cluster: φ̇B = f(φb, ε) + pκ g(t). The strongest
repulsion between the clusters occurs at φA−φB = ±π/2
so that the influence of φA upon φB is bounded by ±pκ
which yields

φ̇B ≥ ω − sinφB + εh(φB)− pκ.

Hence, the flow of φB must possess a stable fixed point
φ∗B if the right hand side of this equation has a zero in φB .
For small |ε|, this implies a lower boundary at ω−pκ ≈ 1.
From this, we conclude that for the existence of periodic
2-cluster states with size ratio p

1−p

pmin ≈ −
1− ω
κ

(10)

is a lower bound in p . Similarly, the upper bound is

pmax ≈ 1 +
1− ω
κ

. (11)

In Fig. 2, these bounds are plotted as black curves, along
with the actual domain of existence of the periodic states.

D. Heteroclinic Bifurcation Scenarios

We begin with the case p = 1/2 (and therefore implic-
itly assume N to be even2) not only while this choice
is the simplest, but also due to the empirical observa-
tion: in our numerical simulations, 2-cluster states with
p far off the value 1/2 have been rarely encountered as
asymptotic attractors for random initial conditions. As
discussed in the next section, for p 6= 1/2 the scenarios
are not much different, because every invariant 2-cluster
subspace offers the same types of saddles. We start at
κ = 0 where the interaction is formally absent and the
ensemble consists of uncoupled units. On denoting the
stable and unstable equilibrium of a single active rotator
by φs and φu, respectively, the ensemble has altogether
2N collective equilibria with each coordinate being either

2 At the values of ω, ε, κ ensuring two stable equal clusters for even
N , simulations with close odd values of N mostly end up with
two equal oscillating clusters and a solitary element.
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φs or φu. Fixing, without loss of generality, the ordering
of phases φ1 ≤ · · · ≤ φN < φ1 +2π, leaves two symmetric
2-cluster steady states Σ1 = (φs, . . . , φs, φu, . . . , φu) and
Σ2 = (φu, . . . , φu, φs, . . . , φs) where the first N/2 phases
and the last N/2 ones form distinct clusters A and B.

Since the periodic 2-cluster orbits must emerge
through a global bifurcation and form by definition clus-
ter states, it is reasonable to inspect dynamics in the re-
duced system (7). Reminiscent of a single excitable unit,
observed bifurcation scenarios always involve a set of 2-
cluster equilibria on an invariant curve.

At κ = 0, the reduced system possesses four equilib-
ria: a stable and an unstable synchronous points Φs =
(φs, φs) and Φu = (φu, φu), as well as two saddles Σ1 =
(φs, φu) and Σ2 = (φu, φs) (which we may, in an abuse of
notation, identify with the steady states of the full sys-
tem). Since in this uncoupled case, each coordinate of the
state φ = (φA, φB) represents a class I excitable unit, the
toroidal phase space contains a contour C: the union of
one-dimensional unstable manifolds U(Σ1) and U(Σ2) of
the saddles Σ1 and Σ2. Naturally, Φs lies in C at the in-
tersection of U(Σ1) with U(Σ2) so that C is shaped like
a figure eight. This contour is robust under sufficiently
small changes in κ since for κ = 0 is forms a normally
hyperbolic invariant manifold [29] and so is preserved in
the case of (weakly) coupled clusters A and B. In fact,
numerical results confirm its persistence for fairly large
|κ|. The contour C is a natural building block for the
emergence of periodic 2-cluster states.

For the synchronous state of rest Φs, stable for suffi-
ciently small |κ|, the invariant diagonal φA = φB is tan-
gent to the stable eigenvector (1, 1) of the Jacobian at Φs.
In the normal direction, Φs eventually undergoes a pitch-
fork bifurcation, discussed above. Whether the latter is
sub- or supercritical can have implications on how a pe-
riodic state forms from C since a supercritical pitchfork
creates new equilibria that may interact with C (Fig. 1).

For a detailed discussion of the bifurcation scenarios,
we restrict ourselves to the local dynamics governed by
Eq. (3a). Fig. 3 shows, from left to right, a typical bifurca-
tion scenario for the case when the pitchfork bifurcation
of Φs is subcritical. On-site parameters are ω = 0.8 and
ε = −0.2. On the torus, at moderate repulsive coupling
κ
(
panel (a)

)
, the unstable manifolds U(Σ1,2) of the sad-

dles, shown by orange curves, lead from Σ1,2 to Φs. Addi-
tionally, the unstable node Φu is connected to the saddles
Σ1,2 by the components of their stable manifolds (blue
curves). As repulsion increases, the curves U(Σ1,2) come
closer to the stable manifolds of the counterpart saddles
(b), and merge with them, simultaneously forming two
heteroclinic connections between Σ1,2 (c). Their subse-
quent breakup leaves the global smooth invariant curve:
the periodic 2-cluster state (d). Its stability within the
reduced subspace is decided in the competition between
expansion and contraction near the saddles: by the ratio
|λ−/λ+| at the bifurcation [12]. According to our numer-
ics, |λ−| > λ+: contraction prevails, hence the orbit is
stable. We note that in terms of the reduced system of

two cluster coordinates, this double heteroclinic bifurca-
tion corresponds to the T -point in Fig. 16 of [27]. At this
stage of the scenario the system is bistable; basins of at-
traction of the newborn periodic orbit and the still stable
synchronous state of rest Φs are separated by separatri-
ces of the saddles Σ1,2. Finally, the saddles merge with
Φs in the subcritical pitchfork bifurcation (e), and the
periodic orbit remains the only attractor.

As seen in the panels of Fig. 1, locus of the double hete-
roclinic bifurcation can, depending on the values of ω and
ε, wander along the saddle branches of the bifurcation
diagram. In the case of the subcritical pitchfork bifurca-
tion, this wandering may end on the turning points of the
diagram in Fig. 1(b): at the saddle-node bifurcation of
steady states in the reduced system. This codimension-2
event is known as the orbit flip [12]: change of the di-
rection from which a separatrix approaches the saddle.
In terms of global dynamics, birth of the clustered pe-
riodic solution from the double heteroclinic bifurcation
gets replaced by its birth from the double SNIC bifurca-
tion. The latter bifurcation scenario, to our knowledge,
has not been so far discussed in the context of collective
oscillations of repulsively coupled excitable units.

Fig. 4 sketches how, at fixed ω = 0.6 and ε = 0.2,
the periodic 2-cluster orbit forms after the supercriti-
cal pitchfork of Φs. Initially, in panel (a), two saddles
Σ1,2, are connected with their respective stable manifolds
(blue curves) to the unstable synchronous steady state
Φu, and with their unstable manifolds (orange curves) to
the stable Φs. At κ ≈ −0.712, two new stable equilibria
Λ1,2 branch off Φs in the supercritical pitchfork bifurca-
tion. Unstable manifolds of the saddles detach from Φs

and instead connect both saddles to each of the newborn
steady states

(
panel (b)

)
. Close to the pitchfork, the con-

tour C features two cusps at the steady states, eventually
smoothed by further growth of |κ|

(
panel (c)

)
. In the next

stage, the pair (Σ1,Λ1) comes closer, merges and disap-
pears, undergoing a SNIC

(
panel (d)

)
; the same happens

to (Σ2,Λ2). As a consequence, C forms the orbit of a pe-
riodic 2-cluster state. Since, in terms of the decrease of κ,
the double SNIC occurs after the pitchfork, the periodic
orbit in this case is born when Φs is already unstable.

Note that whether the pitchfork bifurcation of Φs is
sub- or supercritical is not a strict indicator for the kind
of bifurcation that creates the periodic orbit. While a su-
percritical pitchfork is necessary for the double SNIC to
occur, as long as no other steady states (besides Φs, Φu,
Σ1,2, and Λ1,2) exist, it is not sufficient. For example,
for decreasing κ at ω = 0.6, the orbit flip – transition
from double heteroclinic to the double SNIC – occurs at
εflip ≈ −0.0245 when the pitchfork of Φs is still super-
critical. Only for ε < ε1 ≈ −0.1342, the pitchfork of Φs

becomes subcritical so that for ε1 < ε < εflip there is
a double heteroclinic bifurcation, followed by two simul-
taneous saddle-node bifurcations of Σ1,2 with Λ1,2. At
ε = εflip, both bifurcations coincide, and for ε > εflip, the
periodic orbit emerges through the double SNIC.

Both discussed scenarios: via the double heteroclinic
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FIG. 3. Scenario of double heteroclinic bifurcation, creating a periodic 2-cluster state (φA, φB) at p = 1/2, ω = 0.8, and
ε = −0.2 for on-site dynamics of the type (3a). Here and in further Figures, black arrows delimit domain of periodicity for
the unfolding of the toroidal 2-cluster subspace on the plane. In the panel (a), at small |κ|, two synchronous steady states Φs

(green disk) and Φu (red disk) coexist with two saddles Σ1,2 (black disks). Each saddle is connected to Φs via two components
of its unstable manifold U(Σ1,2) (orange curves). Components of the stable manifolds of Σ1,2 (blue curves) start at Φu. Panel
(b): Decreasing κ lets U(Σ1,2), on their way from Σ1,2 to Φs, approach the opposite saddle Σ2,1. Panel (c): the incoming and
outgoing separatrices of counterpart saddles merge in a simultaneous heteroclinic bifurcation. Panel (d): The resulting invariant
curve detaches from the saddles and becomes a periodic 2-cluster state, stable with respect to non-splitting perturbations. Panel
(e): Finally, both saddles disappear in the course of a subcritical pitchfork bifurcation with Φs.
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FIG. 4. Double SNIC bifurcation, producing a periodic 2-cluster state (φA, φB) at p = 1/2, ω = 0.6, and ε = 0.2 for on-site
dynamics of the type (3a). Panel (a): at small |κ|, two synchronous steady states Φs (green disk) and Φu (red disk) coexist
with two saddles Σ1,2 (black disks). Each saddle is connected with Φs via two components of its unstable manifold (orange
curves). Components of the stable manifolds of Σ1,2 start at Φu (blue curves). Panel (b): Decreasing κ leads to the supercritical
pitchfork bifurcation of Φs in which two new stable equilibria Λ1,2 (black disks) appear. Σ1,2 are connected with Λ1,2 by their
unstable manifolds. Panel (c): In the course of the further decrease of κ, Λ1,2 approach Σ1,2. Panel (d): Four states of rest
undergo a simultaneous SNIC, leaving

(
panel (e)

)
in the phase space a periodic orbit as the only attractor.

connection and via the double SNIC, have been confirmed
for the type of on-site dynamics (3b) as well.

Permutation symmetry, graphically recognizable in
Fig. 3 and Fig. 4 as reflection invariance of phase por-
traits with respect to the main diagonal, is inherited by
the newborn periodic trajectory. Symmetry in the phase
space translates into the spatio-temporal one: during the
oscillation, instantaneous cluster positions are shifted,
with respect to each other, by half of the period. Thereby,
in the reduced system the oscillation is a splay.

E. Scenarios for Unequal Cluster Sizes

The fact that both discussed bifurcation scenarios in-
volve two simultaneous bifurcations (either heteroclinic
or SNIC) clearly owes to the equal sizes of the clusters.
The answer to the question what happens for two un-

equal clusters is, at least for moderate difference in cluster
size, that the scenarios are largely similar: periodic orbits
emerge from trajectories, biasymptotic to the equilibria.
The pitchfork bifurcation of the synchronous steady state
Φs is replaced by a transcritical bifurcation [8]; this, how-
ever, does not affect the onset of oscillations. There, the
main difference is that in the first scenario, two global
bifurcations and in the second one, the two SNIC occur
one after another, see Fig. 5 and 6 for a system of two
clusters of size ratio p = 2/5. For the case in Fig. 5, at
first the contour C detaches from the saddle Σ2 via the
formation of heteroclinic connection from Σ1 to Σ2, and
then, after forming the homoclinic loop to Σ1, it turns
into the attracting smooth closed curve. In the unfolding
of the double SNIC in Fig. 6, the pair Σ2 and Λ2 first
vanishes in a SNIC before the same happens to Σ1 and
Λ1. Note that in both cases the periodic orbit is born at
stronger repulsion than under p = 1/2, especially in the
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FIG. 5. Stages of bifurcation scenario, creating a periodic 2-cluster state (φA, φB) with p = 2/5 (e.g., in an ensemble of N = 4+6
units), at ω = 0.8 and ε = −0.2 for on-site dynamics of the type (3a). In the panel (b) the heteroclinic connection from Σ1 to
Σ2 is formed. In (d), a homoclinic trajectory to Σ1 is present; its breakup leaves the smooth attracting trajectory

(
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)
.
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FIG. 6. Stages of SNIC bifurcation scenario, creating a periodic 2-cluster state (φA, φB) with p = 2/5 at ω = 0.6 and ε = 0.2
for on-site dynamics of the type (3a). Two SNIC bifurcations of the respective pairs of steady states Σ1,2 and Λ1,2 happen at
non-coinciding values of κ

(
panels (c) and (d)

)
.

latter case, while the formation of heteroclinics or SNIC
happen at weaker repulsion compared to the symmetric
case. This matches the observation from Sect. II C that
stronger asymmetry (deviation from p = 1/2) requires
larger repulsion for periodic orbits to form, see Fig. 2.

F. Stability of 2-Cluster Periodic Orbits against
Splitting

1. General Remarks

The reduced system (7) offers full information on
whether periodic 2-cluster solutions of (1) exist and how
they emerge, but is of limited use for the question of the
asymptotic stability of these states: it characterizes only
the perturbations that leave both clusters whole. Pertur-
bations that split one or both of the clusters should be
considered in the frame of the full original system.

Periods of oscillatory states, born in the heteroclinic or
SNIC bifurcations are infinite at the bifurcation param-
eter values. At small deviations from these values the
periods are large, with the dominating portion spent in a
slow passage across the immediate vicinity of the saddle
point. Hence, right after the bifurcation, stability against
splitting is inherited from the parent saddle point: a clus-
tered periodic orbit, branching off the separatrices of the

non-splittable saddle, is stable against splitting pertur-
bations as well. If, on the contrary, the saddle is unstable
towards cluster-splitting, the newborn periodic orbit is
also unstable. Further into the domain of its existence,
the orbit spends less time near the saddle, and the picture
may change; as we will see, this indeed happens.

Asymptotic stability of a periodic solution is deter-
mined by its Floquet multipliers: eigenvalues of the mon-
odromy matrix of the orbit. Since instantaneous coordi-
nates inside clusters coincide, this matrix is highly de-
generate, its spectrum featuring similar characteristics
to the Jacobian of a 2-cluster state of rest. Two simple
“non-splitting” multipliers (one being the trivial value
1) determine stability inside the 2-cluster subspace. At
cluster sizes pN and N(1− p), there are just two “split-
ting” Floquet multipliers, with multiplicities pN − 1 and
N(1 − p) − 1 respectively. On naming these degenerate
multipliers after the clusters, affected by the correspond-
ing perturbations, |µA| and |µB |, the stability condition
becomes |µA| < 1, |µB | < 1.

For a clustered T -periodic orbit (φ0
A(t), φ0

B(t)), these
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FIG. 7. Existence and stability of periodic oscillations for two
equal clusters (p = 1/2) with on-site dynamics of the type
(3a) at ω = 0.6, in dependence on κ and ε. White shading: no
periodic 2-cluster states exist. Blue/red shading: asymptotic
stability/instability of the 2-cluster periodic state. A switch
in stability occurs at ε = 0 via WS-integrability. At ω = 0.6,
periodic solutions are born for ε < εflip ≈ −0.0245 in a double
heteroclinic bifurcation (dashed black curve), and for ε > εflip

in a double SNIC (solid black curve). Solid green curve: pitch-
fork bifurcation of the synchronous state of rest Φs, subcritical
for ε < ε1 ≈ −0.13429 and supercritical for ε > ε1. The in-
set shows that for negative ε the newborn oscillatory state is
unstable as well; it gets stabilized only at some distance from
its birth.

splitting Floquet multipliers are given by

µA = exp

(∫ T

0

λA(t) dt

)

µB = exp

(∫ T

0

λB(t) dt

) (12)

with the time-dependent versions of (8) and (9)

λA(t) = f ′(φ0
A)− κ

(
p+ (1− p) cos(φ0

B − φ0
A)
)

λB(t) = f ′(φ0
B)− κ

(
(1− p) + p cos(φ0

A − φ0
B)
)
.

If the sizes of clusters A and B coincide, the oscillation,
as noted above, is invariant against permutation of A and
B. Hence, in that case µA and µB coincide as well, and
all N − 2 splitting Floquet multipliers are equal.

2. Stability of equal oscillatory clusters

We start the discussion of stability of clustered oscil-
latory states with the case of equal clusters (p = 1/2).
Exemplary diagrams in Fig. 7 and 8 refer to on-site dy-
namics of the type (3a); Fig. 9 characterizes the type
(3b). There, blue shaded regions indicate presence of a
stable periodic 2-cluster state whereas red shading means
the existence of an unstable periodic 2-cluster state. In

−1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7 −0.6
κ

−0.4

−0.2

0.0

0.2

0.4

0.6

ε

FIG. 8. Existence and stability of periodic oscillations for two
equal clusters (p = 1/2) with on-site dynamics of the type
(3a) at ω = 0.8 in dependence on κ and ε. White shading: no
periodic 2-cluster states exist. Blue/red shading: asymptotic
stability/instability of the 2-cluster periodic state. A switch
in stability occurs at ε = 0 via WS integrability of the sys-
tem. The green curve marks the pitchfork bifurcation of Φs.
When periodic solutions are born in the double heteroclinic
bifurcation (dashed line), the state of rest Φs is still stable.

−1.2 −1.0 −0.8 −0.6 −0.4
κ

−3

−2

−1

0

1

2

3

ε

FIG. 9. Existence and stability of periodic oscillations for two
equal clusters (p = 1/2) with on-site dynamics of the type
(3b) at ω = 0.6 in dependence on κ and ε. White shading: no
periodic 2-cluster states exist. Blue/red shading: asymptotic
stability/instability of the 2-cluster periodic state. Periodic
solutions are born either in double heteroclinic bifurcations
for ε < εflip ≈ −0.245 (dashed black curve) or in a double
SNIC for ε > εflip (solid black curve). A switch in stability via
WS integrability occurs at ε = 0. Green curve: the pitchfork
bifurcation of Φs.

the white regions, there are no periodic 2-cluster states
whatsoever. In each diagram, the green curve marks the
transcritical heteroclinic bifurcation (THB) of the syn-
chronous equilibrium Φs [8], that involves the pitchfork
bifurcation, discussed in section II D. Solid black curves
denote the double SNIC while dashed black curves mark
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the double heteroclinic bifurcation.

In the diagrams, the right border of the existence do-
main of the 2-cluster periodic orbits distinctly does not
coincide with the THB which destabilizes Φs. This puts
2-cluster oscillations in contrast to the splay states which,
as we show elsewhere [18], are born in the THB.

The intersection, close to ε ≈ −0.09 and κ ≈ −0.91
in Fig. 7, of the solid curve of the pitchfork bifurcation
with the dashed curve of the double heteroclinic con-
nection between the saddles Σ1,2, is merely a projection
artifact, not a bifurcation point of higher codimension: in
the phase space, the pitchfork and the double heteroclinic
connection occur at distant positions.

The diagrams include regions of bistability: the stable
periodic oscillation of two equal clusters can coexist ei-
ther with the attracting synchronous state of rest Φs (if
the double heteroclinic bifurcation precedes the pitchfork
of Φs, and the newborn periodic orbit is stable, like in
Fig. 7-9 for ε < 0) or, in case of the supercritical pitchfork
of Φs, with the stable equilibria Λ1,2 (e.g. for ω = 0.6,
ε = −0.95, and κ = −0.96).

A common property of all three diagrams is the change
of stability exactly at ε = 0: clustered oscillations are
unstable at positive values of ε and stable in the large part
of the region ε < 0. The only exception at negative ε is
an additional narrow instability region in the immediate
vicinity of heteroclinic bifurcation at κhet: at ω = 0.6
this region, whose width shrinks to zero for ε → 0, is
shown in the inset of Fig. 7; at ω = 0.8 it is too narrow
to be resolved graphically. A further decrease of κ brings
stabilization with respect to splitting perturbations.

The periodic splay states, as well as the clustered splay
states, are not shown in these diagrams; they exist to
the left of the green lines of the pitchfork bifurcation. In
contrast to the periodic clusters, the splay formations,
according to numerics, are unstable for the negative val-
ues of ε, whereas some of them are stable at positive ε.
Thereby, the lines ε = 0 mark the transfer of stability be-
tween two kinds of collective oscillations: two equal clus-
ters vs. the splay or clustered splay. Stability exchange
is non-local: in the phase space 2-cluster states and the
splay formations stay separated by finite distances.

Unusual non-locality of the stability switch owes to
the fact that at ε = 0 and κ < κ0 (that is, after the
transcritical heteroclinic bifurcation of Φs) the families
(3a) and (3b) belong to the WS class. The phase space
of a system from this class contains a continuum of tra-
jectories with N − 3 zero Lyapunov exponents [16]; for
every periodic orbit this implies N − 3 Floquet multipli-
ers equal to 1. For each of these orbits, N − 3 constants
of motion are cross-ratios between the complex numbers
zj = exp(iφj) [16, 17]. In fact, a periodic solution with
two equal clusters possesses N − 2 unit multipliers: half
of them ensures neutrality with respect to splitting of
one cluster, whereas another half refers to splitting of
another one. Globally, at ε = 0 both the periodic states
with equal clusters and the splay formations are embed-
ded in the continuum of neutrally stable solutions, and

stability is “instantaneously transferred” along this con-
tinuum from the latter to the former.

Remarkably, the periodic 2-cluster state at ε = 0 can
exist also for κ > κ0, e.g. for ω = 0.8 (cf. Fig. 8) where
no further periodic orbits are yet present. In this case, a
perturbation of the 2-cluster solution tends to Φs.

For the 2-cluster state, the change of stability can be
understood by the following argument. Let the cluster
A contain, among the others, the phases φ1 and φ2 and
cluster B contain the phases φN−1 and φN . Since φA 6=
φB ∀t, the cross-ratio

CR1,2,N−1,N =
(z1 − z2)(zN−1 − zN )

(z1 − zN )(zN−1 − z2)
(13)

is well-defined in an open neighborhood of the periodic
state and additionally is a constant of motion for ε=0
due to the WS integrability. Take an initial state on the
clustered orbit, with instantaneous cluster coordinates
(φA, φB). For a perturbation (δ,−δ, 0, . . . , 0, δ,−δ), the
cross-ratio (13) equals

2 sin2 δ

cos(φA − φB)− cos 2δ
.

For a small |δ|, after the period T , the lin-
earized evolution transforms the perturbation into
(µAδ,−µAδ, 0, . . . , 0, µAδ,−µBδ), whereas the cross-ratio
of the perturbed orbit becomes

2 sin(µAδ) sin(µBδ)

cos(φA − φB)− cos(µAδ + µBδ)
.

Coincidence, regardless of (φA, φB), of both values of the
cross-ratio at zero ε and small |δ| yields the condition
µAµB = 1. Due to the permutation invariance of the
clusters, both multipliers are equal, rendering (µA)2 = 1.
The multipliers are positive (otherwise the perturbation
must vanish somewhere on the orbit), therefore µA = 1.

For systems governed by (2), the monodromy ma-
trix (and hence its eigenvalues) depends continuously
on the system parameters, in particular on ε. Accord-
ing to numerical evidence, at ε = 0 the Floquet multi-
pliers cross the critical value 1 transversely: there seems
to be no mechanism for additional degeneracies like non-
transversality. As a result, at ε = 0 there is a compulsory
change of stability for periodic solutions with two equal
clusters. For clustered states N − 2 Floquet multipliers
cross the value 1 from above; for the splay states the
multipliers move in the opposite direction. This stability
reversal at ε = 0 is common in one-parameter families
crossing the WS class.

For small non-zero values of ε, the cross-ratios turn
from constants of motion into slowly evolving variables.
Locally, velocity of the slow motion in the phase space
depends on the sign of ε. In particular, near the two-
clustered periodic orbit the motion is directed towards
this orbit for ε < 0 and away from it for ε > 0.
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At ε > 0, when the periodic 2-cluster state is unstable,
a perturbation slowly explores the landscape near the in-
variant manifold that formerly comprised the continuum
of periodic orbits, until reaching a new attractor which is
usually a (clustered) splay state. Sometimes simulations
disclose attractors that are not perfect clustered splay
states: clusters may vary in size. As an example, a small
perturbation of the periodic 2-cluster state in the ensem-
ble of 200 active rotators may, depending on its initial
configuration, evolve, towards a clustered splay state of
4 clusters with 50 units in each of them, or towards a
state of 4 clusters with 49, 49, 51, and 51 units. Numer-
ics confirms that at larger N dispersion of cluster sizes
in these (almost) clustered splay states wanes: the larger
N , the closer to each other in size are the single clusters.
Notably, while clustered splay states with high numbers
of clusters formally exist for large N , numerical tests for
weakly perturbed 2-cluster states mostly end up at those
with ≤ 10 clusters.

3. Stability for non-equal oscillatory clusters

When the sizes of the oscillating clusters differ, the
argument about the invariance, at ε = 0, of cross-
section for the perturbed clustered periodic orbit re-
mains valid and implies that the product of two split-
ting Floquet multipliers equals 1. This notable identity
holds for all WS-integrable systems with periodic two-
cluster states3 and matches a similar finding for a system
of Kuramoto-Sakaguchi oscillators under common multi-
plicative noise [30]. However, without the permutation
symmetry between the clusters, the Floquet multipliers
are not equal. The multiplier governing the stability of
the larger cluster exceeds 1; the multiplier responsible
for the integrity of the smaller cluster is, on the contrary,
smaller than 1: distant units from the larger cluster hold
the smaller one together by their repelling force.

As a result, periodic solutions with two clusters of non-
equal sizes feature in the WS case ε = 0 a remarkable
distinction: unlike the other periodic orbits, they are not
embedded in the (N − 3)-dimensional continuum of neu-
trally stable orbits, but are robust isolated phase tra-
jectories. These solutions are unstable towards pertur-
bations splitting the larger cluster [30]. Since the corre-
sponding Floquet multipliers are separated from 1, this
effectively rules out a possibility of such states as eventual
attractors for sufficiently small |ε|. However, at small neg-
ative values of ε the larger Floquet multiplier decreases,
opening possibilities for stabilization, so that the stronger
deviations from the WS case enable stable oscillations of
two unequal clusters.

3 This does not imply, however, conservation of the phase volume
near the periodic orbit: for non-equal clusters the Floquet mul-
tipliers have different multiplicities.
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FIG. 10. Existence and stability of periodic oscillations for
two unequal clusters with on-site dynamics of the type (3a)
at ω = 0.8. Ensemble size N=100. White shading: no oscil-
lating unequal clusters exist. Red shading: oscillating unequal
clusters exist but are unstable towards splitting. Blue shad-
ing: stable oscillation of two unequal clusters with p = 51/100.
Yellow shading: coexistence of stable oscillations for clusters
with p = 51/100 and p = 52/100. Magenta shading: coex-
istence of three stable oscillatory states with, respectively,
p = 51/100, p = 52/100 and p = 53/100. Green curve: trans-
critical bifurcation of Φs.

Fig. 10 shows on the parameter plane the domains of
stability for an ensemble of N = 100 units with slight
mismatches in the sizes of two clusters. A nested pattern
of the stability regions ensures multistability: regions for
larger deviations of p from 1/2 lie inside similar regions
for smaller deviations. Besides, these stable states coex-
ist with periodic oscillations of two equal clusters (cf.
Fig. 8) and (below the green curve) with the stable state
of rest. Here, we again observe the tendency, noted while
discussing the existence domains of unequal clusters in
the parameter space: the further the value of p from 1/2
(i.e., the larger the relative mismatch between the clus-
ter sizes), the stronger should be the repulsion and the
bigger the deviation from the WS case ε = 0, in order to
stabilize the clustered oscillation.

III. COUPLED MORRIS-LECAR NEURONS

For a look at existence and stability of periodic 2-
cluster states in ensembles of class-I excitable units with
individual dynamics of dimension higher than 1, we
take a set of coupled Morris-Lecar neurons [19]. This
conductance-based neuron model was originally designed
to describe the neuro-physiological properties of the bar-
nacle giant muscle fiber. Its variables are the membrane
voltage V of a neuron and the slow recovery variable
w that mimics the normalized conductance through the
cell membrane for K+ ions and instantaneous normalized
conductance for Ca2+ ions. In a region of its parameter
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space, the model displays class I excitability. A typical
setting in this context (see e.g. [6, 7]) involves a group
of N such neurons and assumes that they are all-to-all
coupled via their mutual voltage differences:

C V̇i = gCa n∞(Vi) · (VCa − Vi)− gK wi · (VK + Vi)

− gL · (VL + Vi) + Iapp +
κ

N

N∑
j=1

(Vj − Vi)

(14a)

ẇi =λ(Vi) · (w∞(Vi)− wi) (14b)

where j denotes the j-th neuron, the functions n∞(V ) =
1
2

(
1 + tanh V−Va

Vb

)
and w∞(V ) = 1

2

(
1 + tanh V−Vc

Vd

)
characterize the proportion of open ion channels for the
Ca2+ and K+ ions, whereas λ(V ) = λ0 cosh V−Vc

Vd
is the

V -dependent inverse recovery time for the K+ channels4.
The coefficients (gCa, gK, gL) and (VCa, VK, VL) denote,
respectively, the conductances and the reversal poten-
tials, Va,...,d are auxiliary constants and, finally, Iapp is
the external current. The original model (uncoupled sin-
gle unit) features a variety of intrinsic dynamics, depend-
ing on the choice of system parameters. On taking the pa-
rameter values from Table I, the system gets close to the
SNIC [20, 21]. Note, that the two choices of parameters
differ essentially in the scaling of the conductances: the
conductances in [21] are 4 times higher than in [20]. Al-
though the current Iapp is significantly different for the
two cases, an expansion of (14a) in powers of Vi ren-
ders very similar ratios of the zeroth to first order terms,
since those depend on the conductances as well. A suit-
able rescaling of the Vi then eliminates Iapp and leads to

the form V̇i = −c+ Vi + . . . where the constant c > 0 is
roughly the same for both choices of parameters. Since
Iapp only enters the zeroth order term and thus c, the
two choices of parameters indeed only differ significantly
in their respective conductances. In analogy to our phase
equations, varying the scaling of gCa, gL, and gK thus
acts in the same way as changing the parameter ε in (2)
while keeping ω approximately constant. The sign of κ
again determines whether coupling is attractive (κ > 0)
or repulsive (κ < 0), the difference to the phase model
being that it acts in the voltage variables and is linear.

Again, we focus on existence and stability of periodic
2-cluster solutions of (14) for repulsive coupling.

Like in the ensemble of active rotators, there is a syn-
chronous state of rest that undergoes the transcritical
bifurcation at a critical value of κ. Reminding the case of
active rotators, periodic 2-cluster states can emerge here
not via this transcritical bifurcation but through double
heteroclinic bifurcations of two 2-cluster saddle points,
see for example the top row in Fig. 11. Again, we choose

4 In [21], λ(V ) = λ0 cosh V−Vc
2Vd

. We use this function for parame-

ters from that reference.

clusters of equal size: p = 1/2. The top row shows birth
of a periodic orbit from the heteroclinic contour, simi-
lar to the one, found for the ensemble of phase variables.
Starting in panel (a) with κ above the bifurcation value
κ0 ≈ −1.23, two pairs of separatrices connect the saddle
equilibria with the stable state of rest. At κ = κ0, the
separatrices form two heteroclinic connections between
the saddles

(
panel (b)

)
. Finally, for κ < κ0 there is a sin-

gle periodic 2-cluster state where both clusters perform
large scale oscillations in anti-phase

(
panel (c)

)
.

Remarkably, taking the parameters from [21] but
choosing the current Iapp below the critical value I0 ≈
0.03264 leads to a different scenario, where not the unique
periodic 2-cluster state, but two distinct periodic states
emerge: see the bottom row of Fig. 11. There, the separa-
trices, shown in panel (a’), form in panel (b’) not hetero-
clinic connections but two simultaneous homoclinic loops
from which two separate periodic orbits emerge

(
panel

(c’)
)
. On each of the latter, one of the clusters performs

a large scale “spiking” oscillation while the other cluster
displays only weak “subthreshold” vacillation near the
state of rest. Compared to the phase model described
above, this “chimera-like” splitting in two populations
with different spiking properties is a different kind of dy-
namics.

Regarding the stability of the periodic 2-cluster states
with respect to splitting, we find that e.g. for an ensem-
ble of N = 20 neurons with the parameters from [21],
the orbit is stable close to the bifurcation (κ0 ≈ −0.2)
while for the parameters from [20] (κ0 ≈ −0.024), it is
unstable. This further justifies the interpretation of the
conductance scaling as an analog of the parameter ε. In
the second case, small perturbations of the unstable orbit
grow and eventually converge either to the still stable Φs

or, if |κ| is sufficiently large to destabilize Φs, towards a

TABLE I. Chosen parameters for equation (14), yielding class
I excitability, according to [20] and [21]a

Parameter Ermentrout & Kopell Tsumoto et. al.
C 1 1
λ0 0.33 1/3
gCa 1 4
VCa 1 1
gL 0.5 2
VL 0.4 0.5
gK 2 8
VK 0.7 2/3
Va -0.01 -0.01
Vb 0.15 0.15
Vc 0.1 0.1
Vd 0.145 0.145

Iapp
b 0.0332 395/1200

a For the values in [21], we re-scale V in such a way that
VCa = 1, and C and t so that C = 1 and λ0 = 1/3.

b The parameter I is free in [21] and fixed in [20]. We choose the
shown values to bring the single neuron closer to its SNIC.
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FIG. 11. Bifurcation scenarios for an ensemble of Morris-
Lecar neurons that lead to two equally sized oscillating clus-
ters. Φs,u: synchronous states of rest; Σ1,2: saddle equilib-
ria. In the top row, system parameters are chosen according
to [21] but with Iapp = 7/30 for a better resolution of the
depicted orbits. From panel (a) to (c), coupling κ gradually
becomes more repulsive, resulting at κ ≈ −1.23 in onset of
time-dependence via the double heteroclinic bifurcation, like
in the phase model. In the bottom row, system parameters
are chosen according to [20], but with Iapp = 0 for better op-
tics. Since Iapp is chosen sufficiently far from the SNIC of the
single neurons, the transition from (a′) to (c′) involves two si-
multaneous homoclinic bifurcations at κ ≈ −0.33, leaving two
periodic 2-cluster orbits; for each orbit one cluster is spiking
while the other performs weak subthreshold oscillations.

(pure) splay state. This notable similarity to the picture
of stability for 2-cluster and splay states found in the
phase model hints that the interplay between the stabil-
ity of splay and 2-cluster states may be a more general
feature for systems of (identical) class I excitable units.

IV. CONCLUSIONS

Ensembles of identical one-dimensional class I ex-
citable units feature non-trivial dynamics only for re-
pulsive coupling. Two widespread modes of collective
oscillations, occurring in this context are splay states
and 2-cluster states. We have investigated how the latter
emerge through two different types of global bifurcation
scenarios, focusing on states with two clusters of equal
size. One type is a double SNIC where, on an invariant
curve, two pairs of 2-cluster saddle steady states simul-
taneously vanish, transforming thereby the curve into a
periodic orbit. The second type is a bifurcation in which
a periodic solution is born from the pair of heteroclinic
trajectories that connect 2-cluster saddles. According to
[27], this scenario should be typical in situations where
each of the single units, if decoupled, is sufficiently close
to the SNIC.

For a system of active rotators, stability of the periodic
with two clusters of equal size is directly linked to higher

Fourier harmonics of on-site dynamics. In the presented
case, a change of the sign of all higher order Fourier terms
in the equations of motion results in the stability reversal.

In general, two stable oscillating clusters may differ in
their sizes. For a given ensemble size, the stability regions
in the parameter space for solutions with larger difference
between the cluster sizes are nested inside the analogous
regions for solutions with smaller size mismatch.

To view our findings in a more general context, we
have also briefly discussed an ensemble of coupled two-
dimensional class I excitable units: the Morris-Lecar neu-
rons. For them, the double heteroclinic connection has
been verified as a mechanism for the creation of 2-cluster
oscillations. Stability of the resulting states with respect
to perturbations splitting the clusters depends on the val-
ues of the system parameters. Notably, in the case where
the oscillatory 2-cluster states are unstable, we, like in the
phase model, find instead a stable splay state. This looks
intriguing since the splay states and the 2-cluster states
have their origin in quite different bifurcation scenarios.
Interconnections between splay states and 2-cluster os-
cillatory states will be a subject of a future work.

Of course, ensembles of completely identical units are
idealizations, and the effect of introducing slight hetero-
geneity into the ensemble is of legitimate interest. Out-
side of bifurcations, the described periodic states are
structurally stable, and a sufficiently weak heterogeneity
can neither destroy nor destabilize them. Exact coinci-
dence of coordinates inside each cluster will be replaced
by formation of “imperfect clusters”: tightly grouped sets
of coordinate values. Transformation of bifurcation sce-
narios is less straightforward: robustness of heteroclinic
orbits often relies heavily on the permutation symmetry
among the units [31]. Since weak heterogeneity would not
change the dimension of invariant manifolds of the sad-
dle steady states, similar sequences of non-simultaneous
global bifurcations like in Sect. II E should be expected.
The same arguments should ensure persistence of bifur-
cation scenarios in the case when sufficiently small higher
order terms are included into the coupling function.

The discussed periodic solutions are not necessarily
the only possible states, let alone attractors. In numer-
ical simulations of the phase model we encountered ex-
amples when perturbations of unstable 2-cluster states
converged not to a perfect (clustered) splay state but
instead to a state that might be called an imperfect clus-
tered splay, where different clusters, while still roughly
stacked equally in time, are of different sizes. In models
of higher dimension, like the Morris-Lecar model, cer-
tain stable periodic states are hardly compatible with
the phase model; in an example two single neurons are
spiking in anti-phase while the remaining ensemble stays
relatively close to the unstable synchronous state of rest,
so that the two spiking neurons act as “shepherds” that
keep the flock of other neurons in place. For larger N ,
however, such intricate periodic states seem to become
increasingly rare to reach from generic initial conditions.
In this sense, 2-clusters and (clustered) splay states ap-
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pear to be most common asymptotic states.
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Appendix A: Expressions for the Bifurcation Curves
of the Synchronous Equilibrium Φs

To derive explicit expressions that interrelate parame-
ters at the bifurcations of the synchronous state of rest
Φs in the reduced system, equations (7), along with bi-
furcation conditions, are transformed with the help of the
Weierstrass (tangent half-angle) substitution

ψ ≡ tan
φ

2
, sinφ =

2ψ

1 + ψ2
, cosφ =

1− ψ2

1 + ψ2

to the form, polynomial in ψ. Bifurcational relations like
(4) and (6) are, then, obtained from the resultants of
the corresponding polynomials. Their counterparts for
the on-site dynamics of the type (3b) have been derived
as well, but are far too long to be cited here explicitly.

Appendix B: Criterion of Criticality for the
Pitchfork Bifurcation of Φs

Whether the pitchfork bifurcation of Φs at κ0 for the
reduced system

φ̇A = ω − sinφA + ε sin 2φA +
κ

2
sin(φB − φA)

φ̇B = ω − sinφB + ε sin 2φB +
κ

2
sin(φA − φB)

(B1)

is sub- or supercritical, depends on the values of param-
eters ω and ε. In the coordinates x = (φA − φB)/2 and
y = (φA + φB)/2, permutation invariance of (B1) trans-
lates to mirror symmetry along the y-axis:

ẋ = f(x, y)

ẏ = g(x, y)

with

f(x, y) =− 1

2

[
sin(x+ y) + sin(x− y)

]
+
ε

2

[
sin 2(x+ y) + sin 2(x− y)

]
− κ

2
sin 2x

g(x, y) = ω − 1

2

[
sin(x+ y)− sin(x− y)

]
+
ε

2

[
sin 2(x+ y)− sin 2(x− y)

]
The x-nullcline yx(x) and y-nullcline yy(x) are defined
by 0 = f(x, yx(x)) and 0 = g(x, yy(x)), respectively. The
trivial branch x = 0 of the x-nullcline corresponds to the
invariance of the diagonal φA = φB under the flow of
(B1) and can be factored out by considering the solution
of 0 = f(x, yx(x))/x. Mirror symmetry implies that the
nullclines are even functions of x:

yx(x) = ax +
1

2
bxx

2 +O(x4)
(B3)

yy(x) = ay +
1

2
byx

2 +O(x4).

Equilibria of the system correspond to intersections of
the nullclines. To determine whether the pitchfork is
sub- or supercritical we make use of the simple geomet-
ric consideration: Two parabolas y1(x) = a1 + b1x

2 and
y2(x) = a2 + b2x

2 with (i) b1 > b2 > 0 or (ii) 0 > b1 > b2
intersect if and only if a1 < a2.

With this observation in mind we determine criticality
of the pitchfork bifurcation. The bifurcation itself is, in
these terms, given by the condition ax = ay = φs where
φs, as above, denotes the position of the stable steady
equilibrium for the single rotator.

Substituting (B3) into the nullcline equations and ex-
panding them to the second order in x, we arrive at

by =
sinφs − 4ε sin 2φs

cosφs − 2ε cos 2φs
(B4)

and

bx =
cosφs

sinφs − 4ε sin 2φs
. (B5)

The bifurcation type is determined by the ratio

c(ω, ε) ≡ by
bx

=
(sinφs − 4ε sin 2φs)2

cosφs(cosφs − 2ε cos 2φs)
. (B6)

The pitchfork is subcritical if c(ω, ε) > 1 and supercritical
if c(ω, ε) < 1. Change of the character of the pitchfork
bifurcation occurs at bx = by, i.e., c(ω, ε) = 1.
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