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Deterministic transport of passive tracers in steady laminar plane
flows of incompressible viscous fluids through lattices of solid
bodies or arrays of steady vortices can be anomalous. Motion
along regular patterns of streamlines is often aperiodic: Repeated
slow passages near stagnation points and/or solid surfaces serve
for eventual decorrelation. Singularities of passage times near the
obstacles, dictated by the boundary conditions, affect the char-
acter of transport anomalies: Flows past arrays of vortices are
subdiffusive whereas tracers advected through lattices of solid
obstacles can feature superdiffusion. We calculate the transport
characteristics with the help of the simple and computationally
efficient model: the special flow.

anomalous transport | laminar flows | special flow

Transport of passive tracers by flow patterns on large spatial
and temporal scales is commonly quantified in terms of the

effective diffusion tensor,

Dij = lim
t→∞

1

2t
〈(xi(t)−〈xi〉)(xj (t)−〈xj 〉), i , j = 1, 2, 3, [1]

where angular brackets denote averaging over the initial tracer
position. For a wide class of flows including certain steady (1,
2) and random (3) ones as well as flows with the Lagrangian
chaos (4, 5), the limit is finite and distinct from zero, and hence
the large-scale dispersion is normal: The mean-squared displace-
ment (MSD) 〈|xi(t)−〈xi〉|2〉 grows linearly with t .

However, the turbulent mixing (6), extensively studied in vari-
ous physical contexts and on different scales (7, 8), often features
unusual scaling laws for energy, momentum, and particle den-
sity transfer (9, 10). Specifically, the dependence of the tracer
MSD on time can be nonlinear, invalidating the effective dif-
fusion approach. Such anomalous transport happens, e.g., when
the Lagrangian phase space has a complex structure with islands
and chaotic regions (11) or in a random velocity field with slowly
decaying velocity correlations (12).

Here we discuss another mechanism of anomalous transport,
present even in certain laminar flows. In the simpler context
of time-independent spatially periodic flow patterns (i.e., in the
absence of Lagrangian chaos), persistent anomalous growth of
dispersion in the comoving reference frame was reported in refs.
13–15. For this phenomenon to occur, the tracers should repeat-
edly visit the vicinities of stagnation points or of solid obstacles
where their velocity becomes arbitrarily small. In such situations,
the tracer motion features unusual spectral properties: Neither
discrete nor absolutely continuous with respect to Lebesgue mea-
sure, the Fourier spectra of Lagrangian observables are sup-
ported by fractal sets. Interrelation between the spectral char-
acteristics and the transport properties results in unconventional
evolution of ensembles of tracers, carried by such flows: Despite
the absence of both chaos and spatial disorder, a certain slow
mixing takes place. An example of this effect is shown in Fig.
1, where an ensemble of tracers is transported by the steady vis-
cous Stokes flow across the doubly periodic array of circular solid
obstacles; repeated passages of particles arbitrarily close to the

obstacle borders are enforced by the imposed irrational mean
inclination of the flow. After a certain time, particles from the
initially compact cloud can be found virtually everywhere in the
domain.

Here we investigate transport anomalies caused in steady
plane flows by singularities of the passage time. We start from
description of exemplary steady flow patterns with stagnation
points and stagnation zones that arise in incompressible fluids
under the action of spatially periodic time-independent forces,
as well as in viscous flows past solid obstacles. We quantify
the logarithmic and power-law–like singularities in the distri-
butions of passage times for tracers carried along the stream-
lines of such flows. We assume the sufficiently low density of
particles, so that their hydrodynamic interaction can be disre-
garded. The main modeling tool is the special flow construc-
tion (16, 17), explained below. Simple geometry of the flow pat-
terns allows us to replace direct solving of the partial differen-
tial equations of fluid mechanics by iterations of the special flow,
based on circle maps with irrational rotation numbers. (In phys-
ical terms, rotation number for a doubly periodic flow is the
tangent of the mean inclination of the streamline to the lattice
axis.) Extensive numerical studies demonstrate that monotonic
(power-law or logarithmic) temporal dependences of dispersion,
common for all rotation numbers, are “decorated” by nonmono-
tonic patterns, dictated by the continued fraction representa-
tion of the rotation number. Within the formalism of the spe-
cial flows, the growth rate of the mean-squared deviation can be
evaluated explicitly, yielding theoretical predictions that match
well the numerically obtained estimates of this growth rate. Fur-
thermore, due to presence of singularities in the distributions of
passage times, the transport is not merely anomalous, but also
multifractal.

Significance

Anomalous transport is usually regarded as a manifestation
of a spatiotemporal disorder. We predict a persistent anoma-
lous dispersion of tracers in time-independent spatially peri-
odic viscous flows, in the absence of either a Lagrangian chaos
or a Brownian motion. The origin of transport anomalies is the
slowdown near stagnation points and solid surfaces, responsi-
ble for singularities of the particle passage time. Remarkably,
both subdiffusive and superdiffusive dispersion of tracers can
be achieved by an appropriate choice of the flow geometry.
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Fig. 1. Temporal evolution of the ensemble of 104 passive tracers trans-
ported by the steady Stokes flow through the doubly periodic array of cir-
cular solid obstacles. Positions of the particles are projected upon one basic
cell of the flow. Values of t indicate the time instants at which the snapshots
have been made.

Patterns of Forced Flows with Stagnation Points
We restrict analysis to steady 2D flows of viscous incompress-
ible fluids. A description in terms of the stream function Ψ(x , y)
turns evolution of a tracer in a steady incompressible plane flow
into a case of integrable Hamiltonian dynamics with one degree
of freedom. Due to 2D geometry, no chaotic streamlines exist,
and both Lyapunov exponents vanish identically. Constancy of
velocity in every point of the physical space renders the Eulerian
observables static. In contrast, the Lagrangian observables, e.g.,
the characteristics of a tracer carried along the isolines of Ψ, are,
in general, time dependent; episodes of relatively fast motion can
alternate with epochs of slow drift.

Nontrivial transport characteristics are produced by the cumu-
lative effect of repeated passages of tracers through the regions
of fast and slow motion. Seeking for a flow pattern that guar-
antees infinitely many returns to stagnation regions, we turn
to forced flows on the 2-torus with irrational rotation number,
requiring also that the vector field on the torus vanishes in cer-
tain points or along certain curves. In terms of conventional fluid
mechanics, this is a flow on a square with periodic boundary
conditions and nonzero mean components. Irrational rotation
number ensures that the tracers repeatedly visit the stagnation
region(s).

The forced flow of the incompressible fluid with density ρ and
kinematic viscosity ν on the square (0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π)
obeys the Navier–Stokes equation

∂

∂t
~v + (~v ·∇)~v =−∇P

ρ
+ ν∇2~v + ~F , ∇·~v = 0, [2]

where ~v = (vx , vy) and P denote, respectively, the velocity and
the pressure fields. The boundary conditions are periodic:

~v(x , y) =~v(x + 2π, y) =~v(x , y + 2π). [3]

Further, we impose along both coordinates the fixed nonzero
mean flow across the square domain, parameterizing it by the
respective flow rates α and β:∫ 2π

0

vxdy

∣∣∣∣
x=0,2π

= 2πα,

∫ 2π

0

vydx

∣∣∣∣
y=0,2π

= 2πβ. [4]

The forcing term ~F in Eq. 2 is time independent and spatially
periodic; in experiments, such forces can be created in thin layers
of conducting fluids by positioning at the bottom regular arrays
of electrodes (18). The shape of the arising flow pattern depends
on the geometry of ~F (x , y). It is convenient to parameterize the
force by its amplitude f ; a simple example is delivered, e.g., by

~F = (f sin y , f sin x , 0). [5]

Without forcing (f = 0) the velocity field vx =α, vy =β corre-
sponds to the linear flow on the 2-torus with straight streamlines,
the same velocity value in every point, and the rotation number
α/β. If the ratio α/β is rational, all streamlines are eventually
closed. Below we focus on the generic case, irrational values of
α/β; there, every streamline is dense on the torus, and a passive
tracer carried by the flow repeatedly passes arbitrarily close to
any given position. At f = 0 transport is the trivial translation:
An ensemble of tracers, carried away from its original location,
preserves its size and shape.

Introduction of weak force deforms the streamlines (Fig. 2A)
and makes the velocity field nonuniform. However, at sufficiently
small |f | the qualitative picture persists: Local variations of veloc-
ity result in weak oscillations of the distance between the neigh-
boring tracers, but on average the ensemble does not spread.

The steady solution of the Navier–Stokes equation yields time-
independent components of the velocity field; in the case of the
force Eq. 5, this is

vx =α− f cos(y −φ2)√
β2 + ν2

, vy =β− f cos(x −φ1)√
α2 + ν2

[6]

with φ1 = arctan(ν/α), φ2 = arctan(ν/β).

At sufficiently small values of |f | both vx and vy preserve their
signs in the whole square domain. The picture changes when
the forcing amplitude reaches the critical value |fcr|: Cusp points,
in which both velocity components vanish, appear upon certain
streamlines (Fig. 2B). When |f | is increased beyond fcr, each cusp
splits into a pair of stagnation points: the saddle and the elliptic
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Fig. 2. (A–D) Patterns of streamlines on a doubly periodic domain (A) without singularities, |f|< fcr; (B) with cusps on streamlines, |f|= fcr; (C) with
counterrotating vortices, |f|> fcr; and (D) with corotating vortices, |f|> fcr (four elementary cells are shown).
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point. As a consequence, vortices (eddies) appear on the torus.
Each vortex, filled by nested closed streamlines, is located around
one of the elliptic points and is encircled by the separatrix of
one of the saddles. The forcing term from Eq. 5 generates two
counterrotating vortices (Fig. 2C); other, more elaborate, forc-
ing patterns can produce corotating vortices as well (Fig. 2D with
the velocity components vx =α+ sin y − sin x sin y , vy =βx −
cos x − cos x cos y). For |f |> fcr the phase space of the system is
mixed, with simple periodic motions inside the vortices, and the
global component is populated by aperiodic motions with rota-
tion number α/β. Each trajectory outside the vortices is dense
in the global component, and hence a tracer repeatedly tra-
verses the vicinities of the saddles, whereby its velocity becomes
arbitrarily small.

Whenever two initially close tracers enter the region near the
saddle point, the particle with a streamline closer to the saddle is
subjected to a stronger slowdown. Therefore, the former neigh-
bors move apart and leave the stagnation region nonsimultane-
ously. The strongest decorrelation of this kind occurs when two
particles tend to the saddle along opposite sides of its incom-
ing separatrix: On passing the saddle, one tracer leaves the slow
region along the “nonclosed” outgoing separatrix, whereas the
other one encircles the vortex, enters the stagnation zone for the
second time, and slows down again. The tracers stay attached to
neighboring streamlines, but the average distance between them
grows in the course of accumulating passages near the saddle
points. In its turn, decorrelation is reflected in the spectral prop-
erties: The Fourier spectra of Lagrangian observables in Eq. 2
are neither discrete nor absolutely continuous but sit on the frac-
tal sets (13). In a pattern like the one in Fig. 2C with symmet-
ric counterrotating vortices, the repeated slowdowns and accel-
erations are in a rough balance, and the autocorrelation of a
Lagrangian observable (say, of a velocity component) does not
ultimately decay. In contrast, the configuration with corotating
vortices from Fig. 2D is not balanced, and autocorrelation of the
velocity features algebraic decay (13).

A still faster decay of correlations occurs in the hydrodynami-
cally different situation, in which there is no forcing (save for the
pressure gradient, necessary for the flow across the cells): motion
of a viscous fluid through a regular lattice of solid obstacles. The
flow pattern is sketched in Fig. 3.

Due to no-slip boundary conditions, both components of
velocity vanish not in isolated stagnation points, but along the
entire boundary of every obstacle. From the point of view of
dynamics, boundaries turn into continua of fixed points, and the
creeping motion along these continua is rather slow.

Singularities of Passage Time
For tracers advected by a spatially periodic velocity field, a reduc-
tion of dynamics in continuous time to the discrete Poincaré map

Fig. 3. (Left) Streamlines of the stationary Stokes flow through the reg-
ular array of solid circular cylinders (19, 20). (Right) Construction of the
Poincaré map.

looks natural; the boundaries of the square cell (e.g., any of the
horizontal borders in the patterns from Figs. 2 and 3) serve as
natural secants.

Fig. 3, Right shows that one-dimensional Poincaré mapping
induced by the flow is equivalent to the circle shift z→ (z +
ρ)mod 1 with rotation number ρ=α/β. Since dynamics of such
mappings are ordered, correlations do not decay along their
orbits, and the power spectra are discrete. The Fourier spectra of
the underlying flows, in contrast, include a (singular) continuous
component whose existence is related to singularities in temporal
characteristics of motion across the phase space (21). In a sense,
an iteration of the mapping requires “as long” as a trajectory of
the continuous flow needs for a passage from the secant onto
the next secant—for a passage across the elementary cell of the
flow pattern. Tracking the red streamline in Fig. 3, Right shows
that passages close to the obstacle border alternate with pas-
sages far from it; correspondingly, the length of the time interval
between the sections displays enormous fluctuations. If the stag-
nation points and/or obstacles are absent, this time is bounded,
and the mapping dynamics mirror the dynamics of the underly-
ing flow. The presence of vortices and obstacles, albeit leaving
the mapping intact, bears a drastic influence upon the timescale:
The passage (return) time τret(x ) diverges when the initial loca-
tion x of a tracer approaches the streamline which exactly hits
the saddle stagnation point (the incoming separatrix of the sad-
dle) or the border of the obstacle.

Quantitatively, the cases of isolated stagnation points and solid
obstacles bear different implications. We start with the flow past a
structurally stable stagnation point. Straightforward linearization
discloses the divergence of the passage time τret(x )∼Cl,r log |x −
x0|, where x0 is the coordinate of intersection of the separatrix
with the Poincaré secant. The prefactors Cl and Cr refer to orbits
which start on the Poincaré secant, respectively, to the left and to
the right of x0. Since the streamlines on one side of x0 encircle
the vortex, the tracers on them hover near the saddle twice before
returning onto the secant, while the tracers from the opposite side
of x0 go straight from the saddle to the secant. Hence, the pref-
actors Cl and Cr differ by the factor of 2. In the flow pattern from
Fig. 2C with two vortices per basic cell, the passage time τret(x )
diverges in two points; due to the symmetry of the pattern, the
sum of both Cl equals the sum of both Cr. In contrast, the pas-
sage time for the pattern from Fig. 2D has just one asymmetric
(Cr = 2Cl) logarithmic singularity per basic cell.

Singularities of return time affect dynamical properties of the
flows. In the absence of equilibria (in our case, at f < fcrit), flows
on 2-tori possess a discrete spectrum and do not mix (22). Flows
on 2-tori with symmetric logarithmic singularities of return time
(e.g., Eq. 6 at f > fcrit) do not mix as well (23). Flows on 2-tori
with asymmetric logarithmic singularities of return time (24) and
the flows on 2-tori with power-law singularities of return time
(25) mix.

In a generic situation of vortices encircled by separatrices of
hyperbolic stagnation points, the singularities of passage time
are logarithmic. Stronger singularities occur near nonhyperbolic
equilibria, at the transition that transforms a flow pattern with-
out stagnation points into the pattern with equilibria. In such
critical situations, the departure along the separatrix of the new-
born stagnation point is algebraic in time. In Eq. 6 at f = fcrit,
as well as at the birth of corotating vortices and in similar flows
without additional local degeneracies, the Hamiltonian saddle-
center bifurcation takes place. Near the linearly neutral equi-
librium, dynamics can be brought to the form z̈ − z 2 = 0, and
the return time diverges near the separatrix as |x − x0|−1/6. In
the case of additional degeneracies of the vector field near the
neutral stagnation point, the quadratic term (as well as some of
the higher-order terms) in the equation of motion can be absent.
For the appropriate normal form z̈ + zn = 0, n ≥ 2, the time of
passage near the neutral equilibrium diverges as |x − x0|−κ with
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Fig. 4. Special flow over the circle map. The trajectory moves upward from
the abscissa with unit velocity, until hitting the curve T(u). Solid blue curve:
continuous evolution. Dashed red curve: instantaneous iteration of the circle
map. (Left) Passage time without singularities. (Right) Special flow with a
singularity of passage time.

κ=
n − 1

2n + 2
. [7]

An example with the local mirror symmetry n = 3 corresponds to
the “Hamiltonian pitchfork bifurcation” and κ= 1/4. For all such
bifurcations of isolated equilibria in plane Hamiltonian flows, the
singularities of passage time are stronger than logarithmic ones,
but stay relatively weak: κ< 1/2.

Flows through arrays of solid obstacles are characterized by
stronger singularities of passage time. Assuming high viscosity
for the flow in Fig. 3, nonlinear terms in the equation of motion
can be discarded. The resulting Stokes flow obeys, in terms of
the stream function ψ(x , y), the biharmonic equation ∆∆ψ= 0,
with vx = ∂ψ/∂y and vy =−∂ψ/∂x . In local coordinates, with
the circular obstacle of radius R centered at the origin, the solu-
tion of this equation reads

ψ(x , y) =
(αy −βx )(x2 + y2−R2)

2

x2 + y2
+ h.o.t .

Duration of a tracer passage near the obstacle scales as τret∼
|x − x0|−1/2, where x0, like above, marks the intersection of the
Poincaré secant with the separatrix that hits the obstacle. This
singularity of return time is sufficiently strong to cause the power-
law decay of the autocorrelation of velocity (14).

Transport of Tracers Through Arrays of Obstacles
Power spectra of all these flow patterns, despite integrability of
the underlying dynamical systems, contain the fractal compo-
nent. Since transport characteristics are related to spectral prop-
erties, it is only natural to expect unconventional behavior from
ensembles of tracers advected by such patterns. A compact cloud
of passive tracers gets distorted and stretched with every passage
near a stagnation point or a solid obstacle. As visualized in Fig. 1,
integrability does not hinder mixing: After a sufficient time inter-
val, tracers from the initially localized droplet get scattered over
the whole basic cell.

The rate of the mixing process depends on the type of singular-
ity of passage time: Slow in the presence of logarithmic singular-
ities, mixing is much faster for the power-law–like ones. Vicini-
ties of stagnation points/obstacles serve as a kind of trap: As the
tracer ensemble is carried past the trap, some of its elements get
captured and bog down, while the bulk of the ensemble moves
on. As the tracers, one by one, leave the trap, new particles get
into other traps farther downstream, and the ensemble becomes
elongated in the stream direction. As long as no molecular diffu-
sion is allowed, transport across the streamlines is absent. We
characterize the time-dependent dispersion along the stream-
lines by “unwrapping” the torus onto the plane and computing
the MSD in the comoving reference frame attached to the drift-
ing center of the ensemble,

ξ2(t) = 〈(x (τ + t)− x (τ)− vx t)
2〉τ , [8]

where vx is the mean velocity in the direction x and averaging is
performed over the values of time τ .

According to numerical studies in refs. 13 and 14, the MSD
is, on average, growing in the course of time t . Remarkably, the
growth turns out to be strongly sublinear for flows with ensem-
bles of vortices and mildly superlinear for the flow through a lat-
tice of circular solid obstacles. This means that repeated close
passages near isolated stagnation points generate subdiffusion
whereas passages along the no-slip boundaries lead to superdif-
fusion. In this way, presence of either “hard” (solid bodies) or
“soft” (vortices) obstacles in the flow pattern delivers a purely
deterministic mechanism of anomalous transport.

Special Flow Construction: Flow over the Mapping
Absence of positive Lyapunov exponents results in slowness of
mixing, especially in the case of relatively weak logarithmic sin-
gularities of the passage time. At nonsmall values of t , conver-
gence of averages in Eq. 8 requires billions of passages through
basic cells. This circumstance obstructs numerical estimates of
the transport characteristics through direct simulations of the
hydrodynamical equations, making them rather time-consuming.
Below, we draw conclusions on the character of transport from
simulations of a much simpler model that preserves both essen-
tial properties of dynamics: repeated passages arbitrarily close
to any given point and presence of singularities of the required
character in the passage times.

This model, proposed by von Neumann in ref. 16 and known
in ergodic theory as the “special flow” (17), is, in a sense, a
modification of the mapping that permits its iterations to pos-
sess “duration.” In expressions for average characteristics of con-
ventional mappings, all iterations share the same weight. Taking
duration into account allows us to assign higher weights to long
slow passages from the secant to the next secant and, respec-
tively, lower weights to short fast passages (compare segments of
the red streamline in Fig. 3, Right). A flow is built over the map-
ping in the following way: As sketched in Fig. 4, the phase space is
the plane region between the abscissa, parameterized by u , and
the given function T (u); the latter corresponds to the passage
time τret(x ). The variable u (the variable of the circle mapping)
is piecewise constant. The variable v mimics the passage time; its
dependence on time is piecewise continuous. Evolution starts at
some abscissa point and evolves as follows: The value of u stays
fixed whereas the value of the coordinate v increases with unit
speed (v̇ = 1) until reaching the value T (u); from there, the sys-
tem instantaneously jumps into the position

(
(u + ρ) mod 1, 0

)
,

begins the next segment of the motion upward with unit speed,
and so on.

 0.1

 1

 10

 10  102  103  104  105  106

M
S

D
(t)

t
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0.04 log2  t

0.06 log t

Fig. 5. Temporal evolution of MSD in special flows with logarithmic sin-
gularities of passage time. Solid lines: numerical data. Dotted curves:
growth laws.
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Fig. 6. Temporal growth of MSD in special flows with power-law singulari-
ties of passage time. Solid lines: numerical data. Dotted curves: growth laws.
(Left) Subdiffusion for T(x)∼ |x− x0|−1/6 and T(x)∼ |x− x0|−1/4. (Right)
Superdiffusion for T(x)∼ |x− x0|−1/2 and T(x)∼ |x− x0|−3/4.

The role of singularities in T (x ) was disclosed by von Neu-
mann who observed that presence of a discontinuity disrupted
the purely discrete spectrum by giving rise to the continuous
spectral component (16). Later, special flows with different kinds
of singularities were used for studies of mixing in flows on 2-tori
with points of equilibrium (24, 25).

Numerical Studies
For computations of the transport characteristics, we used the
special flow over the circle map u→ (u + ρ) mod 1 with golden
mean rotation number ρ= (

√
5− 1)/2. For logarithmic diver-

gence of passage times, the functions

T (u) = 1− log |u − 1/2|

and T (u) =

{
1− log |1/2− u|, u < 1/2
1− log 2− 2 log(u − 1/2), u > 1/2

(respectively, symmetric and asymmetric singularities) were
used. For power-law singularities, the functions T (u) = 2|u −
1/2|−κ with 0<κ< 1 were taken. As an observable we chose
the “phase” φ of the flow, defined in a point with coordinates
u(t), v(t) as the ratio v/T (u); φ varies between 0 and 1. For the
lift of φ onto the infinite line we calculated, in accordance with
Eq. 8, the stretching MSD ξ2(t). Trajectories of the special flow
until t = 1011 were computed numerically, displaying good con-
vergence of ξ2(t) in the range 0< t < 105.

Logarithmic Singularities of Passage Time. Fig. 5 presents tempo-
ral evolution of MSD ξ2(t) for two types of logarithmic sin-
gularities. The essential feature in both cases is remarkable
nonmonotonicity of ξ2(t) that is due to the properties of dynam-
ics on the torus with an irrational rotation number. Never clos-
ing exactly, an orbit returns from time to time arbitrarily close
to any given point. Local minima of ξ2(t) correspond to the
values of t at which the points on the average come espe-
cially close to their initial positions: The ensemble of particles
vaguely recalls its past. Rotation number ρ rigidly orders the
returns; the closest ones occur at the values of t , proportional
to denominators of the best rational approximations to ρ. For
the golden mean σ, the time of the nth closest return is pro-
portional to the term Fn of the Fibonacci sequence of inte-
gers; since limn→∞Fn/Fn+1 =σ, the positions of local minima
of ξ2(t) form the log-periodic sequence, well recognizable
in logarithmic coordinates. In the case of a different irra-
tional ρ, the sequence of local minima is log periodic when-
ever ρ is the quadratic irrational (i.e., its expansion into the
continued fraction is periodic); otherwise that sequence looks
disordered.

The overall (albeit nonmonotone) growth tendency in the evo-
lution of the MSD in Fig. 5 is doubtless: The system gradually
forgets its past, and the ensemble does not really contract to its
initial size. Nevertheless, in the case of the symmetric singular-
ity (the lower curve) when the passages along opposite sides of

the separatrix roughly compensate each other, dispersion along
the streamline grows rather slowly: After hundreds of thousands
of turnovers on the torus, the mean deviation does not exceed
the mere size of a basic cell. This is a very slow subdiffusion; on
average, ξ2(t)∼ log t .

For the asymmetric logarithmic singularity (Fig. 5, upper
curve), the growth of MSD occurs noticeably faster. Again, the
general tendency is decorated by the log-periodic Fibonacci pat-
tern. Fitting these results yields ξ2(t)∼ log2t .

Power-Law Singularities of Passage Time. A faster subdiffusion is
observed in special flows with singularities of the return time of
the kind T (x )∼ |x − x0|−κ with 0 <κ< 1/2. In the forced vis-
cous flows the singularities of this kind correspond to critical sit-
uations: bifurcations of isolated points of equilibrium. In Fig. 6,
Left we present numerical results for the cases κ= 1/6 (recall
that this singularity occurs at the saddle-center bifurcation) and
κ= 1/4 (pitchfork).

In both cases, a short initial segment with ballistic growth is
followed by subdiffusion: The MSD obeys the power law with
the exponent≈2κ. The law of average growth ξ2(t)∼ t2κ is com-
mon for irrational values of rotation numbers ρ; individual fea-
tures of ρ prescribe the sequences of closest returns and invoke
oscillations of the local prefactor before t2κ. Since for the golden
mean rotation number the return times form the geometric pro-
gression, these oscillations are log periodic; unlike the case of
logarithmic singularities, here they are masked by relatively fast
growth of the MSD, but are well visible, e.g., in plots of ξ2(t)/t2κ

vs. log t .
As κ approaches 1/2 from below, the subdiffusive process gets

closer to normal diffusion. Recall that the singularity T (x )∼
|x − x0|−1/2 does not occur in flows with isolated stagnation
points, but is typical for flows through arrays of solid obsta-
cles with no-slip borders. Remarkably, exactly at κ= 1/2 the
transport appears to be mildly superdiffusive: Numerical data,
shown in Fig. 6, Right, indicate that the mean-squared elonga-
tion follows the law ξ2(t)∼ t log t . As a result, within a relatively
short time the initially compact ensemble of tracers spreads in
a longitudinal direction along hundreds and thousands of cells
of the flow.

Increase of κ beyond 1/2 results in even faster subdiffusion.
Uncommon for conventional viscous setups, singularities with
1/2<κ< 1 may be encountered in non-Newtonian flows. Simu-
lations for special flows with values of κ from this range (e.g., the
curve for κ= 3/4 in Fig. 6, Right) invariably indicate superdif-
fusion; on approaching κ= 1, the transport becomes nearly
ballistic.

Theoretical Estimates
The value of the growth exponent as well as the estimate for the
corresponding global prefactor can be derived explicitly via the
evaluation of the dispersion of the time that a special flow with
the prescribed singularity requires for carrying out n� 1 iter-
ations of the circle map. Approximation of the map iterations

Fig. 7. (Left) Exponents of anomalous transport for power-law singularities
of return time: transition from sub- to superdiffusion. (Right) Temporal evo-
lution of ratios rn(t) = 〈(x(t)−〈x(t)〉)n〉1/n of central moments for superdif-
fusive transport in the special flow with singularity T(x)∼ |x− x0|−2/3.
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by equidistant distribution predicts ξ2(t)∼ log2t for the asym-
metric logarithmic singularity and, respectively, ξ2(t)∼ t2κ for
power-law singularities with 0<κ< 1/2. Both estimates are
excellently matched by direct numerical simulations (compare
Figs. 5 and 6).

Singularities in the range 1/2≤κ< 1 are too strong for the
approach based on the equidistant distribution. Instead, we con-
sider special flows over the random circle map: On reaching
T (u), the point jumps to the position, randomly chosen from
the uniform distribution on the unit interval. Treating this pro-
cess as a unidirectional continuous-time random walk (CTRW),
we calculated the leading terms in the distribution of the number
of jumps within the fixed time t . For the marginal (but relevant)
case κ= 1/2 this yields the estimate

ξ2(t) =

√
2

16
t log t − 5 + log 2

16
√

2
t + . . .

which well matches the numerical results.
For κ> 1/2 the CRTW approach predicts superdiffusion with

the leading term in the evolution of ξ2(t) proportional to t3−1/κ;
like the previous ones, this prediction was corroborated by com-
parison with numerics. Transition from subdiffusion with trans-
port exponent 2κ to superdiffusion with transport exponent 3−
1/κ is shown in Fig. 7.

Remarkably, transport in these special flows is not only
superdiffusive but also multifractal. According to the CTRW cal-
culation of the higher-order central moments

mn(t) = 〈(x (t)−〈x (t)〉)n〉,

the dominating term for 1/2<κ< 1/ is given by mn(t)∼
tn+1−1/κ. In Fig. 7, Right we demonstrate the effect of multifrac-

tality for the case of the special flow with κ= 2/3 by comparing
the values of rn(t) =

(
mn(t)

)1/n.
Conclusions
Summarizing, we have considered transport of tracers in plane
steady viscous flows in a wide interval of temporal and spatial
scales. In a contradistinction to chaotic turbulent flows that typ-
ically feature normal transport, the laminar plane steady vis-
cous flows through periodic arrays of liquid or solid obsta-
cles can display transport anomalies. This kind of anomalous
transport is of purely deterministic origin: It is caused solely
by divergence of the passage times near the obstacle. Depend-
ing on the geometry of the flow pattern, advection of passive
tracers can be subdiffusive or superdiffusive. For the effect to
take place, it is sufficient to have just one vortex or obstacle
in every cell of the periodic flow pattern; if several singulari-
ties of passage time are present, the strongest of them deter-
mines the kind of transport anomaly. Otherwise, the effect is
largely independent from the details of forcing or the injected
energy. (Of course, the energy supplied by the forcing should
suffice for the onset of vortices.) By using the construction
of special flow over the circle map with appropriate singular-
ities of passage time, we arrived at explicit estimates for the
transport characteristics that well match the results of extensive
numerical simulations. Although the present study is restricted
to infinite periodic lattices of vortices or obstacles, qualitative
predictions of this theory can be relevant also for spatially dis-
ordered flow patterns with appropriate types of passage time
singularities.
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