
Hauptträgheitsachsen, Stabilität und Drehimpuls bei 
der Rotation um freie Achsen 

 
 
Das Massenträgheitsmoment eines Körpers hängt von der Lage der 
Rotationsachse ab. Wir betrachten einen Quader, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
der um verschiedene Achsen durch den Schwerpunkt rotiert. Es zeigt 
sich, dass bei der Rotation des Körpers um seine Symmetrieachsen 
das Massenträgheitsmoment extremal wird. Trägt man I in Abhängig-
keit von der Orientierung der Rotationsachsen bezüglich des körperei-
genen Koordinatensystems (x,y,z) auf, so erhält man ein Ellipsoid: 
 
 
 
 
 
 
 
 
 
 

xω
&

yω&
zω

&

SP

yI

zI

xI



Mathematisch beschreibt man diese Eigenschaft durch den Träg-
heitstensor. Das ist im einfachsten Falle eine diagonale Matrix, die die 
Hauptträgheitsmomente enthält: 
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Die Bewegungsgleichung für rotierende Körper ändert sich dadurch 
nicht: 
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Die Beziehung zwischen den beiden Vektoren D
&

 und ω
&
�  wird jetzt 

jedoch durch einen Tensor vermittelt. Damit erhält man drei Glei-
chungen: 

xxxx ID ω=
&
�  

zyyy ID ω=
&
�  

zzzz ID ω=
&
�  

Die Komponenten iω
&
�  entsprechen dabei den Komponenten der Win-

kelbeschleunigung um die Hauptträgheitsachsen. 
Wir betrachten jetzt den Fall einer Rotation um eine Achse, die nicht 
mit der Hauptträgheitsachse zusammenfällt. An jedem Punkt des Kör-
pers greifen Fliehkräfte an, die ein Drehmoment erzeugen, deren 
Summe den Körper u.U. in eine andere Position drehen. Der Körper 
befindet sich im stationären (weil er rotiert, sonst statisch) Gleichge-
wicht, wenn das resultierende Drehmoment verschwindet: 
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Das an den 4 gezeichneten Punkten angreifende resultierende Dreh-
moment ergibt sich zu 
 

22z11z aF2aF2D +=  
 

und bewirkt eine Drehung des Körpers um die y-Achse in die folgen-
de Lage: 
 
 

 
 

 
 
 
 
 

Wegen a1 = a2 und Fz1 = Fz2 gilt jetzt nach Summation der Drehmo-
mente: 

0aF2aF2D 22z11z =−=  

 
Diese Betrachtung kann für alle anderen Punkte des Quaders wieder-
holt werden. 
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Man gelangt zu dem Resultat, dass sich die Drehmomente bei der Ro-
tation um symmetrische Achsen paarweise aufheben. Allgemein gilt 
für die 4 eingezeichneten Punkte: 
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Hierin bedeuten ai den senkrechten Abstand der Kraftwirkungslinie 

zum Drehpunkt und 2
i

2
i ar −  den Abstand des rotierenden Punktes 

zur Drehachse (für die Fliehkraft wirksamer Radius). In der symmetri-
schen Lage gilt a1 = -a2 und die Drehmomente der an gegenüberlie-
genden Punkten oberhalb und unterhalb des Schwerpunktes angrei-
fenden Fliehkräfte heben sich paarweise auf. Dies gilt auch für die 
folgende symmetrische Position: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ein geringes Abweichen aus der Gleichgewichtslage führt jedoch zu 
einem Drehmoment, welches den Körper in die oben diskutierte Posi-
tion dreht. Daraus folgt zumindest im diskutierten Beispiel: 
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• Die Rotation um eine Hauptträgheitsachse ist eine Gleichge-

wichtslage. 
• Die Rotation um die Hauptträgheitsachse mit dem maximalen 

Trägheitsmoment (hier z-Achse) ist stabil. 
• Die Rotation um die Hauptträgheitsachse mit dem minimalen 

Massenträgheitsmoment ist instabil. 
 
Rotiert ein Körper um eine instabile Achse, so wird er versuchen, in 
eine Position überzugehen, in der das Massenträgheitsmoment nicht 
nur extremal, sondern auch maximal ist. Dies ist natürlich nur mög-
lich, wenn ihm hinreichend viel Energie zugeführt wird. 
 

siehe Experiment in der Vorlesung 
 

Ein stationäres Gleichgewicht liegt vor, wenn gilt: 
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Das dynamische Gleichgewicht wird durch die Bewegungsgleichung 
für die Rotation beschrieben: 
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Sie führt auf ein neues Bewegungsintegral, den Drehimpuls. Mit 
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definieren wir folgende Begriffe: 

 

Drehstoß dtD
t

t
A

0

∫
&

 

Drehimpuls ω
&

I  
 
Aus obiger Gleichung folgt : 
 

Der Drehimpuls ist eine Erhaltungsgröße, wenn die 
 Summe aller äußeren Drehmomente gleich Null ist. 

 
Daraus ergibt sich, dass im stationären Gleichgewicht eines rotieren-
den Körpers gilt: 
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Für einen Massenpunkt erhält man mit I = mr2 hieraus den Drehim-
puls 
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Ist der Impuls eines Massenpunktes sowie sein Ortsvektor gegeben, so 
ist der Drehimpuls durch 
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gegeben. Hieraus folgt sofort wieder 0
2
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, wenn ra dem Ab-
stand der Masse zur Drehachse entspricht. 

 


