Lösung der Bewegungsgleichung für

 erzwungene, gedämpfte Schwingungen

Wir hatten die Gleichung


[image: image1.wmf]t

cos

F

Dx

x

r

x

m

E

0

k

w

=

+

+

&

&

&


Mit den Abkürzungen
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erhalten wir
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Hierin bedeuten 
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 die Eigen(kreis)frequenz des Oszillators, 
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 die Erreger(kreis)frequenz, ( das logarithmische Dekrement, welches die Stärke der Dämpfung beschreibt) und a0 die Beschleunigung des Oszillators durch die angreifende periodische Kraft. Um die Gleichung lösen zu können, ersetzen wir die Kraft 
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 durch den komplexen Ausdruck  
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Dies ermöglicht den ebenfalls komplexen Lösungsansatz
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Da die angreifende Kraft eine reelle Größe ist, interessiert als Lösung auch nur der Realteil des Ansatzes 
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. Der komplexe Ansatz ermöglicht jedoch das Lösen der Differentialgleichung.

 Mit
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erhalten wir
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Einsetzen in die Ausgangsgleichung und Division durch expi(Et liefert:
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Diese Beziehung wird aufgeteilt in eine Gleichung für den Realteil und eine Gleichung für den Imaginärteil:
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Aus diesem Gleichungssystem können die Amplitude xA und der Phasenwinkel ( in Abhängigkeit von der Erregerfrequenz bestimmt werden. Unter Ausnutzung von sin2( = 1 - cos2( folgt für die Amplitude:
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Division beider Gleichungen ergibt den Phasenwinkel
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Darstellung der Lösung in der komplexen Ebene
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Die komplexe Exponentialfunktion 
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 kann als Zeiger in einem Polardiagramm (Zeigerdiagramm) dargestellt werden, der den Betrag xA und den Phasenwinkel (Et - ( hat. 

· Die Elongation des Oszillators ergibt sich aus dem Realteil von x ( Re(x) ). 

· Die Phase des Oszillators erhält man aus dem Verhältnis von Imaginär- zu Realteil.
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