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Analytical approach to an integrate-and-fire model with spike-triggered adaptation
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The calculation of the steady-state probability density for multidimensional stochastic systems that do not obey
detailed balance is a difficult problem. Here we present the analytical derivation of the stationary joint and various
marginal probability densities for a stochastic neuron model with adaptation current. Our approach assumes weak
noise but is valid for arbitrary adaptation strength and time scale. The theory predicts several effects of adaptation
on the statistics of the membrane potential of a tonically firing neuron: (i) a membrane potential distribution with
a convex shape, (ii) a strongly increased probability of hyperpolarized membrane potentials induced by strong
and fast adaptation, and (iii) a maximized variability associated with the adaptation current at a finite adaptation
time scale.
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I. INTRODUCTION

Nonequilibrium systems with significant fluctuations are
encountered in diverse scientific areas such as laser physics
and neurobiology. Stochastic differential equations (Langevin
equations) and their associated Fokker-Planck equation for the
probability density provide a well-established framework for
the description of such systems. However, for systems far away
from thermodynamic equilibrium, analytical solutions for even
the simplest statistics such as the steady-state probability
density are known in only a few cases.

A well-known class of nonequilibrium models that are
difficult to treat analytically are limit-cycle systems, i.e.,
multidimensional systems that display an asymptotic periodic
solution. In the presence of noise, the condition of detailed
balance is violated [1] and the steady-state probability density
can be calculated only for particularly simple (symmetric)
cases [2] or approximated in the case of a pronounced time-
scale separation between variables [3,4]. Note that for such
models one is interested not only in the probability density but
also in the mean rotation frequency (or rate) and the irregularity
of the round-trip time.

An excellent example of a noisy system out of equilibrium is
the nerve cell (neuron), which are the basic units of information
transmission and processing in the brain. If subjected to a
constant input current or other stereotypical stimuli, they
often display periodic firing, i.e., they generate the small
stereotypical depolarizations of the membrane potential which
are known as action potentials or spikes. In this tonic firing
regime of repeated spiking, the action potential can be regarded
as a projection of a limit-cycle motion in a space that is
spanned by the voltage and one or more gating variables
of voltage-dependent ion channels [5]. This motion is noisy
because of different sources of fluctuations such as channel
noise, synaptic noise, and quasirandom input from other nerve
cells, and consequently, the generated spike train can be
described as a stochastic point process [6].
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While stochastic spiking can be biophysically well de-
scribed in the frame of a stochastic Hodgkin-Huxley model,
not much analytical progress can be made with this kind
of model and even fitting it to limited experimental data
may be difficult. Integrate-and-fire (IF) models [7,8] are
one-dimensional caricatures of neural limit-cycle behavior or
of neural excitability, in which a simple reset mechanism is
employed: upon reaching a threshold, the generation of a spike
is postulated and the voltage variable is reset to a lower value.
Despite its simplicity, this class of models and extensions of
it can capture the firing times and subthreshold membrane
voltage of some neurons under noisy current stimulation
surprisingly well [9,10]. Furthermore, the voltage probability
density, spike-train statistics, and interspike interval (ISI)
statistics can be either analytically calculated or efficiently
numerically computed.

Ironically, with the aim of better understanding the fir-
ing statistics of real cells, researchers have more recently
extended IF neurons to multidimensional models, keeping
only the fire-and-reset mechanism. Additional variables may
describe synaptic filtering [11], external sources of colored
noise [12,13], dendritic compartments [14], and subthreshold
oscillations [15].

Particularly important in order to mimic the firing of
real cells seems to be the inclusion of slow ionic currents
that mediate spike-frequency adaptation, a ubiquitous phe-
nomenon across the nervous system [16]. In conjunction
with fast fluctuations, adaptation currents shape spontaneous
spiking by generating ISI correlations [17–20]. In response to
time-dependent stimuli, spike-frequency adaptation endows
neurons with computational flexibility and may enable them
to respond rapidly to novel features of the stimulus [16,18,19].

Analytical approaches to stochastic IF neurons with spike-
frequency adaptation are often limited to the case of slow
adaptation [17,21–26]. Our own recent contributions on the
perfect IF (PIF) [27] and a general multidimensional IF
model [20] with adaptation focus on the calculation of the
serial correlation coefficient in the weak-noise limit. Other
statistics, such as the probability density, have not been
addressed so far (except for the adiabatic treatment in [26]),
despite the accessibility of membrane potential distributions
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in experiments [26,28–34] and the importance of this model
class.

Here we present a detailed weak-noise approximation for
the PIF model with spike-triggered adaptation. The PIF model
provides a valid description of a tonically firing neuron for
a sufficiently high base current. It has proven successful in
matching the spontaneous spiking statistics of sensory neurons
[35,36], but also that of more complicated stochastic neuron
models [35,37]. Our aim here is to extend the approach
presented in [27] in order to compute the probability density
of membrane voltage and adaptation current in the case of
weak noise but for an arbitrary time scale of the adaptation
variable. Our study can also be seen as an important example
of a nonpotential system lacking detailed balance, in which the
probability density in the weak-noise limit can be calculated
analytically without invoking a separation of time scales.

Our paper is organized as follows. In the next section, we
introduce in detail the model and statistics of interest. We then
consider the deterministic dynamics of the adapting PIF model
in Sec. III. In Sec. IV we formulate the stochastic problem in
terms of a Fokker-Planck equation and its nontrivial boundary
conditions. Here we also sketch the derivation of our solution,
which is largely based on the Wentzel-Kramers-Brillouin
(WKB) theory but also involves the matching of boundary
conditions which are due to the nature of the reset mechanisms
for the voltage and adaptation variable. We compare our results
to those of numerical simulations of the model in Sec. V for
the joint density along the deterministic limit cycle and for
the marginal probability densities for the membrane voltage
and for the adaptation variable upon firing. We conclude with
a brief summary in Sec. VI and present further details of our
analytical calculation in the Appendix.

II. MODEL AND QUANTITIES OF INTEREST

We consider the white-noise-driven PIF model with a
spike-triggered adaptation current [27,38,39]. In this model,
the dynamics of the membrane potential V and the adaptation
current a are given by

V̇ = μ − a +
√

2Dξ (t), (1a)

τaȧ = −a + �̃y(t), (1b)

where the Gaussian white noise ξ (t) with correlation function
〈ξ (t)ξ (t ′)〉 = δ(t − t ′) represents fast channel noise, a massive
synaptic input from surrounding neurons, or simply a time-
dependent current injected experimentally. The right-hand side
of Eq. (1a) does not depend explicitly on the voltage (we deal
here with a PIF neuron), but only via a fire-and-reset rule:
whenever V (t) reaches the threshold value Vth > 0, a spike is
emitted and the membrane potential is reset to V = 0. This
defines the spike times {ti} and the output spike train

y(t) =
∑

i

δ(t − ti). (2)

The spike train affects the adaptation variable via Eq. (1b): an
output spike leads to a jump by � = �̃/τa in a, while between
spikes the adaptation variable decays exponentially with the
time constant τa . For an illustration of the model [deterministic
paths of both V (t) and a(t)], see Fig. 1(a).

(a)

(b)

FIG. 1. (Color online) Deterministic dynamics and limit cycle.
(a) Typical trajectories V (t) (upper panel) and a(t) (lower panel)
for D = 0. Values of a(t) immediately after the jumps define the
sequence {ai} as indicated. This sequence converges to the fixed point
a∗ (dashed line). Note that in this example a∗ < μ. (b) Corresponding
trajectory in the phase plane: the system moves along the curvesCi that
start at ai on the reset line and end at the threshold line (dashed vertical
lines). At this point a jump occurs to the initial values of the successive
curve Ci+1. For better visibility, we plot vertical and horizontal lines
corresponding to the reset events only for the asymptotic curve C∗,
i.e., the limit cycle. Parameter values: τa = 3, �̃ = 3, D = 0.

The main quantity of interest in this paper is the probability
density,

P (V,a,t) = 〈δ(V − V (t))δ(a − a(t))〉, (3)

in which a(t) and V (t) (with a time argument) indicate the
stochastic variables governed by the Langevin equations,
Eq. (1), whereas a and V (without a time argument) are
the independent variables of the probability density. We also
discuss the marginal density of the membrane voltage,

P (V,t) =
∫ ∞

0
da P (V,a,t), (4)

a quantity that can be compared to experimental data. Note
that the adaptation variable is usually not accessible.

Of course, spike train and interval statistics are likewise
important and may be even more easily comparable with
experiments in which only the spike times but not the
membrane voltage can be determined. The most important
statistics is the firing rate, directly defined by an ensemble
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average of the spike train,

r(t) = 〈y(t)〉, (5)

but also related to the probability density—or, more specifi-
cally, the probability current—as outlined below.

III. PHASE-PLANE ANALYSIS OF THE
DETERMINISTIC SYSTEM

We assume that at time t = ti the neuron has fired a spike
and has been reset instantaneously, i.e., V (ti) = 0 and a(ti) =
ai [cf. Fig. 1(a)]. Without noise the integration of the system,
Eq. (1), yields

a(t) = ai exp

(
− t − ti

τa

)
, (6)

V (t) = μ · (t − ti) − τaai

[
1 − exp

(
− t − ti

τa

)]
. (7)

This solution holds true for the interval t ∈ [ti ,ti + Tdet(ai)],
where Tdet(ai) is the deterministic ISI needed to reach the
threshold, i.e., V (t) = Vth at time t = ti + Tdet(ai). From
Eq. (7) it can be inferred that Tdet(ai) is the solution of the
transcendental equation

Vth = μTdet(ai) − τaai

[
1 − exp

(
−Tdet(ai)

τa

)]
. (8)

At the next spike time ti+1 ≡ ti + Tdet(ai) the adaptation
variable a(t) is incremented by an amount � and V is reset
to 0. This results in the new initial values a(ti+1) = ai+1 and
V (ti+1) = 0. Subsequent initial values are related according to

ai+1 = ai exp

(
−Tdet(ai)

τa

)
+ �. (9)

From this, the trajectory [a(t),V (t)] in the next interval,
t ∈ [ti+1,ti+1 + Tdet(ai+1)], is obtained by replacing i with
i + 1 in Eq. (6) and Eq. (7). A trajectory obtained by repeating
this procedure is illustrated in Fig. 1(b). Reset and threshold
potentials correspond to vertical lines in the phase plane.
We refer to the piece of the trajectory within a specific
time interval, t ∈ [ti+1,ti+1 + Tdet(ai+1)], as Ci . Each curve
Ci is completely determined by its initial value ai . Hence,
it is sufficient to study the sequence {ai} instead of the full
dynamics a(t) and V (t).

As i → ∞, the sequence of curves Ci converges to a limit
curve C∗ [cf. Fig. 1(b)], which can be regarded as the essential
part of a limit cycle. The convergence of trajectories to C∗
has a counterpart in the convergence of the sequence {ai} to
a limiting value a∗. Thus, C∗ is attracting if the map, (9),
possesses a stable fixed point a∗, which requires that ai+1 =
ai = a∗ or

a∗ = a∗ exp

(
−T ∗

τa

)
+ �. (10)

Here, T ∗ ≡ Tdet(a∗) denotes the ISI if the system is on the
limit cycle C∗. This interval has to fulfill Eq. (8) evaluated at
ai = a∗:

Vth = μT ∗ − τaa
∗
[

1 − exp

(
−T ∗

τa

)]
. (11)

(a) (b)

(c) (d)

(e)

FIG. 2. (Color online) Dependence of the limit cycle on the
system parameters. Examples of limit cycles are shown in the phase
plane (a–d) by solid lines for parameter sets A–D as indicated in
(e). Reset and threshold lines are represented by thin solid lines; the
dashed line represents the nullcline a = μ, where V̇ = 0. (e) The
fixed point a∗ normalized by μ = (Vth + �̃)/T ∗ in the parameter
space spanned by the adaptation time constant τa and the adaptation
strength �̃. The solid line divides the parameter space into two
regions, corresponding to a∗ > μ (afterhyperpolarization regime;
upper region) and a∗ < μ (lower region).

Solving Eq. (10) and Eq. (11) yields

T ∗ = Vth + �̃

μ
, a∗ = �

1 − exp(−T ∗/τa)
. (12)

which permits the parametrization of C∗

a(t) = a∗e−t/τa , V (t) = μt − τaa
∗(1 − e−t/τa ) (13)

for 0 � t � T ∗.
The initial value of a on the limit cycle, a∗, is important

because in a system with noise a∗ sets the order of magnitude of
the peak currents ai , which are distributed in the neighborhood
of a∗. Furthermore, a∗ defines two regimes, depending on
whether a∗ is smaller or larger than the base current μ = (Vth +
�̃)/T ∗. In Fig. 2(e) the magnitude of a∗ normalized by μ is
displayed as a function of the system parameters τa/T ∗ and
�̃/Vth of the deterministic system. The two regimes mentioned
before are separated by the line

�̃

Vth
= 1 − e−δ

δ − 1 + e−δ
, δ = T ∗

τa

. (14)

Above this line (strong adaptation), the limit cycle exhibits
an excursion to negative membrane potentials V (t) [afterhy-
perpolarization; Fig. 2(a) and 2(b)]. Below the separating line,
i.e., for a∗/μ < 1, the drift on the limit cycle is always positive
[Figs. 2(c) and 2(d)]. In this case the limit cycle does not go
below the reset voltage.

An increase in the adaptation time constant τa has two
distinct effects [cf. Figs. 2(b) and 2(d)]: First, because a de-
creases more slowly the phase-space is stretched horizontally.
Second, because the jump size � = �̃/τa scales inversely with
the adaptation time constant, the jump in a at the reset becomes
smaller with increasing τa .

We, finally, mention that our model can be transformed
into a nondimensional form by measuring time in units of the
deterministic ISI T ∗ and voltage in units of the threshold Vth:
t̄ = t/T ∗, V̄ = V/Vth, and ā = aT ∗/Vth. In these units the
dynamics reads

˙̄V = 1 + �̄ − ā +
√

2D̄ξ (t̄), (15)

τ̄a ˙̄a = −ā + �̄
∑

δ(t̄ − t̄i), (16)
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with a rescaled threshold V̄th = 1. The system is completely
specified by the three dimensionless parameters

τ̄a = τa

T ∗ , �̄ = �̃

Vth
, D̄ = D

T ∗

V 2
th

. (17)

These parameters are reported for the simulations below. From
this, the parameters μ and �, which appear in our theoretical
expressions, can be inferred as

μ = (1 + �̄)
Vth

T ∗ , � = �̄

τ̄a

· Vth

T ∗ (18)

[cf. Eq. (12)]. Without loss of generality, one can choose Vth =
T ∗ = 1, which we have adopted in our simulations, unless
stated otherwise.

IV. WKB THEORY FOR THE PROBABILITY DENSITY
IN THE LIMIT OF WEAK NOISE

We now turn to the case of a finite noise intensity and
derive an approximate solution of the Fokker-Planck equation
corresponding to the Langevin equations, Eq. (1). The essential
small parameter of our theory is the noise intensity D.

A. Boundary value problem

The Fokker-Planck equation for the joint probability density
P (V,a,t), defined in Eq. (3), in the domain V < Vth, a > 0,
can be written as a continuity equation:

∂tP (V,a,t) + ∂V JV (V,a,t) + ∂aJa(V,a,t)

= −JV (Vth − ,a,t)δ(V − Vth)︸ ︷︷ ︸
absorption at V = Vth

+ JV (Vth − ,a − �,t)δ(V )︸ ︷︷ ︸
jump and reinsertion at V = 0

. (19)

Here, the notation f (x−) and f (x+) indicates the left-
and right-side limit, respectively. In Eq. (19) JV (V,a,t)
and Ja(V,a,t) are the components of the two-dimensional
probability current J = (JV ,Ja), defined by

JV (V,a,t) = [(μ − a) − D∂V ]P (V,a,t), (20)

Ja(V,a,t) = − a

τa

P (V,a,t). (21)

The right side of Eq. (19) represents the source and sink terms:
trajectories that reach the threshold at point (Vth,a − �) are
absorbed (sink) and are reinjected at point (0,a) (source).

As an alternative to Eq. (19) we can write the Fokker-Planck
equation without sink and source terms,

∂tP (V,a,t) = [−(μ − a)∂V + 1

τa

∂aa + D∂2
V ]P (V,a,t),

(22)
and, additionally, impose boundary conditions at V = 0 and
V = VT as explained in the following.

Because the process is driven by white noise in the voltage
variable, P (V,a,t) has to be continuous with respect to V at
every point and, in particular, at the reset voltage:

P (0 − ,a,t) = P (0 + ,a,t). (23)

Furthermore, the sink at the threshold implies that there is no
probability beyond the threshold, which, combined with the
continuity equation, implies that

P (Vth,a,t) = 0. (24)

Integrating the continuity equation, Eq. (19), about the reset
potential from V = −ε to V = ε and letting ε → 0 yields the
condition

JV (0 + ,a,t) − JV (0 − ,a,t) = JV (Vth,a − �,t).

Using the definition of the current JV , Eq. (20), and accounting
for the continuity and the absorbing boundary, Eqs. (23) and
(24), the latter condition becomes

∂V P (V,a,t)|0+ − ∂V P (V,a,t)|0− = ∂V P (V,a − �,t)|Vth .

(25)

This discontinuity in the derivative ∂V P realizes the jump and
reset. Furthermore, all probability and currents should vanish
at infinity, which leads to the natural boundary conditions

lim
V →−∞

P (V,a,t) = 0, lim
a→∞ P (V,a,t) = 0, (26a)

lim
V →−∞

∂V P (V,a,t) = 0. (26b)

Finally, the probability density must be normalized:∫ Vth

−∞
dV

∫ ∞

0
da P (V,a,t) = 1. (27)

We do not specify initial conditions except for the constraint
that the density is confined to {V,a|V � Vth,a > 0}.

In the following we focus on the stationary probability
density P0(V,a), which is approached in the limit t → ∞ and
obtained by setting the time derivative in the Fokker-Planck
equation to 0. Knowledge of the stationary solution permits us
to determine the following important statistics of the system:

(1) The stationary firing rate,

r0 =
∫ ∞

0
da J

(s)
V (Vth,a) = −D

∫ ∞

0
da ∂V P0(Vth,a), (28)

where the stationary probability current J
(s)
V = [(μ − a) −

D∂V ]P0(V,a) has been used.
(2) The distribution of the subthreshold membrane poten-

tial,

P0(V ) =
∫ ∞

0
da P0(V,a). (29)

(3) The distribution of the adaptation current upon firing,

Pf(a) ∝ J
(s)
V (Vth,a − �) = −D∂V P0(Vth,a − �). (30)

Even in the stationary case the two-dimensional Fokker-
Planck equation cannot be solved exactly. The essential
assumption for our approximate solution presented in the
following is a weak noise. It is convenient to introduce a small,
nondimensional parameter ε that scales the noise intensity as

D = εD̂, (31)

where D̂ is of order 1 and carries the physical dimension of the
parameter. Because of this slight change in notation and for
the convenience of the reader, we specify the Fokker-Planck
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equation and its boundary conditions for the stationary case.
The equation itself reads

−(μ − a)∂V P0 + 1

τa

∂a(aP0) + εD̂∂2
V P0 = 0. (32)

The boundary conditions, Eqs. (23)–(26), lead in the stationary
case to the following equations:

P0(Vth,a) = 0, (33)

P0(0 − ,a) = P0(0 + ,a), (34)

∂V P0(0 + ,a) − ∂V P0(0 − ,a) = ∂V P0(Vth,a − �), (35)

lim
V →−∞

P0(V,a) = 0, (36)

lim
a→∞ P0(V,a) = 0, (37)

lim
V →−∞

∂V P0(V,a) = 0. (38)

The solution of this set of equations is complemented by
the normalization condition, Eq. (27). In our weak-noise
approximation it is, however, also possible to determine the
free multiplicative factor (usually fixed by normalization) as
follows. In the limit ε → 0, the firing rate is given by 1/T ∗.
Assuming that a weak noise does not change the firing rate,
we obtain, using Eq. (28), an additional boundary condition,

−εD̂

∫ ∞

0
da ∂V P0(Vth,a) = 1

T ∗ , (39)

which completes the boundary value problem for P0(V,a).
For weak noise, we solve the Fokker-Planck equation, (32),

in different regions. These regions are sketched in Fig. 3;
they depend on whether a∗ < μ or a∗ > μ. The solutions
in different regions are matched according to the continuity
and reset condition. Specifically, for a∗ < μ [Fig. 3(a)] the
equation is solved separately below the reset line (V < 0;
region I) and between the reset and the threshold line (0 < V �
Vth; region II). The division of the plane is different for a∗ > μ

as indicated in Fig. 3(b). In both cases, the solution in region
II is further subdivided into a solution within a thin boundary
layer in the vicinity of the threshold (“inner solution”) and
beyond (“outer solution”). The outer solution can be obtained
within the frame of WKB theory, yielding the asymptotic

(a) (b)

FIG. 3. Different regions of solutions and locations of the
boundary layers. (a) Case a∗ < μ; (b) case a∗ > μ. The solution is
calculated separately for region I (hatched area) and region II (white
area). In boundary layers of thickness O(ε) [indicated by shaded
(gray) areas], the solution drops off rapidly.

form of the probability density around the deterministic limit
cycle C∗. In the deterministic limit, the probability density
is proportional to a δ function along the limit cycle. The
WKB solution describes the noise-induced softening of this
δ singularity by approximating the probability density by a
Gaussian perpendicular to the limit cycle—a Gaussian with a
variance that is proportional to ε.

B. Stationary solution of the Fokker-Planck equation

In the following we sketch the derivation of the stationary
solution; details are presented in the Appendix (Sec. A). In
region I, the Fokker-Planck equation is solved in perturbation
theory. Using the stretched variable x = V/ε we avoid the
singular behavior of P0(V,a) at V = 0 (reset) in the limit
ε → 0 (Fig. 4). The leading-order solution in region I can be

(a)

(b)

FIG. 4. (Color online) Structure of the stationary solution of the
Fokker-Planck equation. (a) Stationary probability density in the
vicinity of the limit cycle. (b) The density along the path of
the solid (red) line γ is shown. The plot illustrates the different regions
of solutions and indicates how the solutions are patched together. In
region I (corresponding to V < 0 in the case a∗ < μ) the solution
rises steeply in a boundary layer of thickness O(ε) below the reset.
In region II, We use a WKB ansatz for the solution, which must
be continuous at V = 0. This ansatz cannot, however, capture the
steep decline to 0 in a second boundary layer close to the threshold
(absorbing boundary). The inner solution of this boundary layer is
asymptotically matched to the WKB solution (outer solution).
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written as (Sec. A 1)

P0,I(V,a) = M(a)√
ελ(a)

exp

(
λ(a)V

ε

)
, (40)

with

λ(a) = μ − a

D̂
, (41)

and M(a) is a function that is determined by the continuity
condition, Eq. (34).

In region II, boundary layer theory [40] is used to find
separate solutions outside and inside the boundary layer, which
are then matched asymptotically. The inner solution, i.e., the
solution close to the threshold (0 � V � Vth), is obtained as
in region I: Using the stretched variable x = (V − Vth)/ε the
Fokker-Planck equation is solved perturbatively, which yields
(Sec. A 2)

P0,II,in(V,a) = N (a)√
ελ(a)

[
exp

(
λ(a)(V − Vth)

ε

)
− 1

]
. (42)

Here, N (a) is determined by the reset condition, Eq. (35).
The outer solution is obtained in the WKB approximation

(see, e.g., [41]).We make the following ansatz for the outer
solution:

P0,II,out(V,a) = 1√
2πε

�(V,a) exp

(
−�(V,a)

ε

)
. (43)

The functions �(V,a) and �(V,a) are independent of ε and
can be regarded as a nonequilibrium potential [42] and a pref-
actor, respectively. Both functions obey first-order, nonlinear
partial differential equations, to be solved by the method of
characteristics. Further constraints on �(V,a) ensure that the
nonequilibrium potential attains a local minimum on the limit
curve C∗.

For the calculation it is advantageous to switch to a
coordinate system given by the characteristics of the system
(see Fig. 5 for an illustration). The new coordinates are
denoted s and τ . The variable s distinguishes the characteristic
curves γ (s) = (V (τ ; s),a(τ ; s)), whereas τ can be regarded
as a time-like variable describing the propagation along
the characteristic curves. Specifically, the initial conditions
read a(τ = 0; s) = s and V (τ = 0; s) = 0 (see Fig. 5 and
Appendix, Sec. A 2, for more details). For s = a∗, the charac-
teristic curve coincides with the deterministic limit curve C∗
and τ plays the role of time t in the limit-cycle parametrization,
Eq. (13). However, for s = a∗, the characteristic curve does
not coincide, in general, with a trajectory starting at V = 0 and
a = s. Using these coordinates, the method of characteristics
yields the parametric solution (Appendix, Sec. A 2)

V (τ,s) = [μ + 2D̂p0(s)]τ − τas(1 − e−τ/τa ), (44)

a(τ,s) = se−τ/τa , (45)

�(V,a) = D̂p2
0(s)τ + φ0(s), (46)

�(V,a) = ψ0(s)eτ/τa

×
√

μ − s + 2D̂p0(s)

2D̂p0
′(s)sτ/τa + μ − s + 2D̂p0(s)

, (47)

FIG. 5. Parametrization of region II by the characteristic coor-
dinates τ and s. For each value of s there is a characteristic curve
parametrized by the coordinate τ (solid lines). Along these curves the
functions �(V,a) and �(V,a) obey ordinary differential equations
with respect to the “time” τ . The parameter s corresponds to the
initial condition at time τ = 0, where, in the original coordinates,
V = 0 and a = s. A particularly important characteristic is given
by the initial value s = a∗: this curve is identical to the limit curve
C∗, where all probability is concentrated in the deterministic limit.
Because the deterministic period is T ∗, the characteristic curve for
s = a∗ crosses the threshold V = Vth at time τ = T ∗. Dashed lines
are isochrons, where τ = const.

where

p0(s) = −μ − s

2D̂
+ sgn(μ − a∗)

√
(μ − s)2

4D̂2
+ sφ′

0(s)

D̂τa

. (48)

The functions φ0(s) = �(0,s) and ψ0(s) = �(0,s) are deter-
mined by the reset condition and normalization condition,
respectively. However, we could not find a solution that obeys
these conditions for all s > 0. Instead, we require that these
conditions are satisfied only close to the limit cycle (s = a∗),
which is justified for a sufficiently small noise intensity. To this
end, we consider the leading order of the functions in s − a∗:

φ0(s) = φ′′
0 (a∗)

2
(s − a∗)2 + O((s − a∗)3), (49a)

ψ0(s) = ψ0(a∗) + O(s − a∗). (49b)

Hence, we only have to determine φ′′
0 (a∗) and ψ0(a∗) from

the reset and normalization condition, respectively. Because
the reset condition also involves the the probability density at
the threshold, inner and outer solutions have to be matched
asymptotically in a common overlap region (Fig. 4). The final
result of these considerations (Appendix, Sec. A 3) is

φ′′
0 (a∗) = τ 2

a μ�[2a∗(μ − a∗ + �) − μ�]

2D̂a∗2T ∗(a∗ − �)2
. (50)

Further, by the normalization condition, we obtain (Appendix,
Sec. A 4)

ψ0(a∗) =
√

φ′′
0 (a∗)

|μ − a∗|T ∗ (51)
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and the functions

M(a) = μ − a√
2πD̂

ψ0(a∗) exp

[
−φ′′

0 (a∗)

2ε
(a − a∗)2

]
, (52)

N (a) = − λ(a)√
2π

|μ − a∗|
μ − a∗ + �

ψ0(a∗)

× exp

(
−φ′′

0 (a∗)

2ε
(a − a∗ + �)2

)
. (53)

Let us summarize the full solution. With Eqs. (40) and (52),
the solution in region I reads

P0,I(V,a)=ψ0(a∗)√
2πε

exp

(
μ − a∗

εD̂
V − φ′′

0 (a∗)

2ε
(a − a∗)2

)
.

(54)

In region II, using Eqs. (42) and (53) the inner solution can be
written as

P0,II,in(V,a) = ψ0(a∗)√
2πε

|μ − a∗|
μ − a∗ + �

×
[

1 − exp

(
μ − a∗ + �

εD̂
(V − Vth)

)]

× exp

[
−φ′′

0 (a∗)

2ε
(a − a∗ + �)2

]
. (55)

The outer solution in the neighborhood of the limit cycle
reads, in parametric representation,

P0,II,out(V,a)

= ψ0(a∗)eτ/τa

√
2πε

√
μ − s + 2D̂p0(s)

2D̂p0
′(s)sτ/τa + μ − s + 2D̂p0(s)

× exp

[
−1

ε

(
D̂p2

0(s)τ + φ′′
0 (a∗)

2
(s − a∗)2

)]
, (56a)

V (τ,s) = [μ + 2D̂p0(s)]τ − τas(1 − e−τ/τa ), (56b)

a(τ,s) = se−τ/τa (56c)

for 0 � τ � T ∗ and p0(s) given by

p0(s) = −μ − s

2D̂
+ sgn(μ − a∗)

×
√

(μ − s)2

4D̂2
+ s(s − a∗)

D̂τa

φ′′
0 (a∗). (57)

In the solution variations of s should be considered only in
a small interval around s = a∗, i.e., s ∈ [a∗ − O(ε1/2),a∗ +
O(ε1/2)], because outside this neighborhood the probability
density is exponentially small. In particular, s should not attain
the critical point s = μ but must be either below or above this
point. We would like to emphasize that our weak-noise theory
does not cover the singular case a∗ = μ.

In this section we have obtained an approximation for the
full two-dimensional joint probability density in the stationary
case. Simplified expressions for various marginal statistics are
derived in the following section.
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FIG. 6. Sample trajectories in the presence of noise. Trajectories
of V (t) (upper panels) and a(t) (lower panels) for a small noise
intensity, D̄ = 0.01 (a,b), and a moderate noise intensity, D̄ = 0.1
(c,d). (a,c) Trajectories for slow and weak adaptation (τ̄a = 10, �̄ =
3); (b,d) trajectories for fast and strong adaptation (τ̄a = 1, �̄ = 10).
Threshold and reset potentials are indicated by horizontal gray lines.
Note that, above threshold, spikes have been explicitly added for
better visibility; they do not contribute to the membrane potential
distribution.

V. COMPARISON OF THEORY
TO NUMERICAL SIMULATIONS

We have worked out approximate expressions for the prob-
ability density of the two-dimensional stochastic nonpotential
system in the limit of weak noise. In order to estimate how
“weak” the noise has to be for these approximations to be
meaningful, in the following we compare our results to those
of extensive numerical simulations, which were obtained
as follows. We simulated long trajectories [V (t),a(t)] that
contained N = 104 and N = 105 spikes, from which we built
histograms approximating P0(V ) and P0(V,a), respectively.
Voltages and times are measured in units of Vth and T ∗,
respectively. That is, all parameters are nondimensionalized
such that Vth = 1 and T ∗ = 1. Equation (1) was solved by
the Euler-Maruyama method with a time step �t = 10−5.
For a given adaptation strength �̃, we set the base current
to μ = 1 + �̃ to get T ∗ = 1 [cf. Eq. (18)]. Short sections of
typical trajectories are shown in Fig. 6. For better visibility,
the spikes above threshold are added here to highlight the
spike train, although they do not contribute to the subthreshold
voltage distribution P0(V ).

We test our theoretical predictions in three ways. First, we
compare the probability density along the deterministic limit
cycle, for which we obtain particularly simple expressions.
Second, we derive the marginal density with respect to
the membrane potential and compare this experimentally
accessible statistics with simulation results. Third, we derive
the probability density of the adaptation variable upon firing
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and test its agreement with numerical simulations. The latter
density is an important statistic because it quantifies the degree
of adaptation-induced variability of the ISI.

A. Stationary solution evaluated on the limit cycle

We first consider the solution on the limit cycle, where the
expressions can be considerably simplified. In region I, the
solution at a = a∗ reads

P0,I(V,a∗) = ψ0(a∗)√
2πε

exp

(
μ − a∗

εD̂
V

)
. (58)

In region II, the inner solution at a = a∗ − � is given by

P0,II,in(V,a∗) = ψ0(a∗)√
2πε

|μ − a∗|
μ − a∗ + �

×
[

1 − exp

(
μ − a∗ + �

εD̂
(V − Vth)

)]
. (59)

The outer solution on the limit cycle can be expressed as [see
Appendix, Sec. A 3, Eqs. (A68) and (A69)]

P0,II,out(V (τ ),a(τ ))|C∗ = ψ0(a∗)eτ/τa

√
2πε(ντ + 1)

, (60a)

a(τ ) = a∗e−τ/τa , (60b)

V (τ ) = μτ − τaa
∗(1 − e−τ/τa ), (60c)

where τ ∈ [0,T ∗] and

ν = 2D̂a∗2φ′′
0 (a∗)

τ 2
a (μ − a∗)2

.

We show the stationary probability density along the limit
cycle in Figs. 7(b), 7(d), and 7(f); for comparison, the color
plots at the left [Figs. 7(a), 7(c), and 7(e)] also display the joint
density in the phase plane together with the deterministic limit
cycle. As expected for weak noise [Fig. 7(b)], our analytical
results agrees well with the simulation result [Fig. 7(b)]. For
a larger noise intensity [Fig. 7(d)], we observe quantitative
deviations, although our theory still captures qualitatively the
change in the density, e.g., the broadening of the distribution in
region I and the smoother shape of the inner solution in region
II. The quantitative deviation of the outer solution in region
II from our prediction is most likely due to the fact that the
maximum of the probability density function is not attained
on the deterministic limit cycle [cf. Fig. 7(c)], contrary to
what we assumed in our WKB approximation. A shift of the
maximum away from the limit cycle could appear in our theory
if higher-order terms of � were taken into account.

While Figs. 7(a)–7(d) explore the simple case a∗ < μ,
Fig. 7(f) demonstrates that our theory also works for a∗ > μ,
i.e., for strong adaptation. In this case, the density along C∗ is
not a unique function of V anymore and we have to consider
two functions corresponding to different segments of the
deterministic limit cycle. Both functions show a quantitative
agreement between theory and simulation results.

B. Distribution of the membrane potential

An important experimentally accessible statistical measure
is the stationary distribution of the (subthreshold) membrane

FIG. 7. (Color online) Stationary probability density P0(V,a).
(a) P0(V,a) obtained from numerical simulations for weak noise
(D̄ = 0.01). The solid black line indicates the limit cycle in the region
0 � V � Vth, the dashed vertical line indicates the reset line, and
the dashed horizontal lines indicate the locations of a∗ and a∗ − �.
(b) A cross section of P0(V,a) along the solid black curve γ is
depicted by the gray line (simulation). The theory based on the WKB
solution, Eq. (60), and the solution in region I, Eq. (58), is represented
by the solid black line. The inner solution of the threshold layer,
Eq. (59), is depicted by the dashed line. (c, d) The corresponding
curves for D = 0.1. (a–d) τ̄a = 10, �̄ = 3, for which a∗ < μ; (e, f)
D̄ = 0.1, τ̄a = 1, �̄ = 10, which corresponds to the case a∗ > μ.
Arrows indicate how the stationary solution is traced out.

potential. How does adaptation shape this probability density?
To this end, it is useful to compare this function to the
probability density of the voltage for a PIF neuron with the
same mean ISI T ∗ but without adaptation current. This density
is given by [43]

PPIF(V ) = 1

Vth

⎧⎨
⎩

1 − e
Vth

DT ∗ (V −Vth), 0 � V � Vth;

e
Vth

DT ∗ V (1 − e− V 2
th

DT ∗ ), V < 0.

(61)

In the case of the adapting PIF model, the marginal
distribution P0(V ) is obtained by integrating P0(V,a) over
a [cf. Eq. (29)]. For the contribution to the integral arising
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from region I, we can use our result Eq. (54):

P0,I(V ) = ψ0(a∗)√
2πε

exp

(
μ − a∗

εD̂
V

)

×
∫ ∞

0
da exp

(
−φ′′

0 (a∗)

2ε
(a − a∗)2

)
. (62)

For small ε we can extend the lower integration bound to −∞,
and using Eq. (51), we find

P0,I(V ) = 1

T ∗|μ − a∗| exp

(
μ − a∗

D
V

)
. (63)

Similarly, using the solution, Eq. (55), for the inner solution
of region II, we find

P0,II,in(V ) = 1 − exp
[

μ−a∗+�

D
(V − Vth)

]
T ∗(μ − a∗ + �)

(64)

for V = Vth − O(ε).
In contrast, the integration of the outer solution of region II

over a is considerably more difficult for two reasons. First, the
outer solution is known only in the parametric form, Eq. (56);
i.e., the dependence on the integration variable a is only
implicit. Second, for the case a∗ > μ, the vertical integration
path in the phase plane [Fig. 3(b)] can have zero, one, or
two intersections with the limit curve C∗, depending on the
membrane potential V . For the approximation of the integral,
these three cases have to be treated separately.

To overcome these difficulties, we start with the WKB
solution, Eq. (43):

P0,II,out(V ) = 1√
2πε

∫
da �(V,a) exp

[
−�(V,a)

ε

]
. (65)

Because the integrand is strongly peaked about the limit cycle
C∗ we can employ Laplace’s method (see, e.g., [40]) to obtain
an approximation for this integral. The idea is to find the values
amin that minimize the potential �(V,a) for a given V because
these values dominate the integral, Eq. (65), asymptotically
for ε → 0. The minima of �(V,a) (at a fixed V ) are simply
given by the intersections of the integration path with the
limit curve C∗. According to Laplace’s method, the integration
can be reduced to small neighborhoods of the minima amin (if
minima exist). In these neighborhoods, we can expand �(V,a)
and �(V,a) to leading order:

�(V,a) ≈ �(V,amin),

�(V,a) ≈ (a − amin)2

2
∂2
a�(V,amin).

Then the integral can be approximated by the sum over all
neighborhoods,

P0,II,out(V ) =
∑
amin

�(V,amin)√
∂2
a�(V,amin)

=
∑

τ∈τ (V )

ψ(τ,a∗)√
∂2
aφ(τ,a∗)

,

(66)

where the functions ψ(τ,s) and φ(τ,s) correspond to �(V,a)
and �(V,a) in characteristic coordinates. In the last step, we
have used the fact that the limit curve is given by s = a∗ and
0 � τ � T ∗. The sum is over the values of τ that correspond

to a given value of V . This is provided by the inverse mapping
τ = τ (V ), being the solutions of

V (τ ) = μτ − τaa
∗(1 − e−τ/τa ) (67)

[cf. Eq. (44)]. The functions ψ(τ,a∗) and ∂2
aφ(τ,a∗) are derived

in the Appendix [Eqs. (A67), (A78), and (A76)]. Because of
the different numbers of possible minima, we consider the
cases a∗ < μ and a∗ > μ separately.

1. The case a∗ < μ

In this case, there is only one intersection with the limit
curve C∗ corresponding to a single value amin [Fig. 3(a)] and
a unique inverse mapping τ (V ) (Fig. 5). From Eq. (66) we
obtain

P0,II,out(V ) = 1

T ∗(μ − a∗e−τ/τa )
, (68)

which, together with Eq. (67), represents a parametric solution.
This expression is equal to the inverse drift velocity (μ −
a∗e−τ/τa )T ∗ of a deterministic trajectory starting at ai = a∗;
in particular, it does not depend on the noise intensity.

A uniform approximation in region II can be achieved by
adding the inner solution, Eq. (64), and the outer solution,
Eq. (68), and subtracting the common limits V → −∞ for
the inner solution and τ → T ∗ for the outer solution. Together
with Eq. (63), this results in the final solution

P0(V ) =
⎧⎨
⎩

1/T ∗
μ−a∗ exp

(
μ−a∗

D
V

)
, V < 0;

1/T ∗

μ−a∗e− τ
τa

− exp
[

μ−a∗+�

D
(V −Vth)

]
T ∗(μ−a∗+�) , 0�V �Vth.

(69)

Apart from the parametric representation, Eqs. (67) and (69),
an explicit representation is possible through the inverse
relation τ = τ (V ). This relation can be expressed in terms
of the upper branch W0(y) of the Lambert W function [44]:

τ (V ) = τ+(V,a∗)

≡ τa

[
W0

(
−a∗

μ
exp

(
−V + τaa

∗

μτa

))
+ V + τaa

∗

μτa

]
.

(70)

As a first check of our approximation for the probability
density of the membrane potential, one can show that Eq. (69)
converges to the probability density of the nonadapting PIF,
Eq. (61), in two limit cases: (i) for τa → ∞, �̃ = const. (with
μ replaced by the effective base current Vth/T ∗) and (ii) for
�̃ → 0, τa = const. (with the same parameters μ and D).

Further confirmation of our approximation comes from the
comparison to simulation results. The theory, Eq. (69), yields
an excellent fit to the simulations in the limit of weak noise
(cf. Fig. 8 for D̄ = 0.001 and D̄ = 0.01). The density in region
II is not as flat as in the case of the nonadapting PIF model;
the latter density, Eq. (61), converges to a “box,” PPIF(V ) →
V −1

th θ (V )θ (Vth − V ) for D → 0.
The convex decrease between reset point and boundary

layer reflects the above-mentioned fact that the outer solution
P0,II,out(V ) is equal to the inverse of the mean drift velocity
μ − a∗ exp(−τ (V )/τa). Close to the reset point the velocity
is small because of the large adaptation current a(t) ∼ a∗;
this increases the probability in this region. As the adaptation
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FIG. 8. (Color online) Distribution of the membrane potential in
the case a∗ < μ. (a, b) Probability density P0(V ) for slow adaptation
τ̄a = 10 and different noise intensities: (a) D̄ = 0.01 and (b) D̄ = 0.1.
The adaptation strength is �̄ = 3. Circles display the histograms
obtained from simulations; the solid (red) line displays the weak-noise
theory given by Eq. (69). The dashed (blue) line represents the
probability density of the corresponding nonadapting PIF model,
Eq. (61). (c, d) The corresponding figures for the case of fast
adaptation, τ̄a = 1, �̄ = 1, i.e., (c) D̄ = 0.01 and (d) D̄ = 0.1.

current decays, V (t) passes with increasing velocity towards
threshold, which leads to a reduced probability at a larger
membrane potential. This also explains why for a slower
adaptation current the decay of the distribution is also slower
[cf. Figs. 8(a) and 8(b)].

At a larger noise intensity (e.g., D̄ = 0.1 in Fig. 8),
the probability density is significantly overestimated by the
theory. However, the pronounced decay of P0(V ) is still in
qualitative agreement with the weak-noise theory. Note that
our approximation of P0(V ) is generally not normalized;
clearly, the theoretical curves for D̄ = 0.1 in Figs. 8(b) and 8(d)
are for all voltage values above the simulation result, and
hence, the integral is not 1. In our theory, the normalization
condition is satisfied only in the asymptotic limit of weak
noise.

The theoretically predicted convex shape of the probability
density outside the threshold boundary layer is a special feature
induced by a fast adaptation current. This feature is not present
in typical one-dimensional, white-noise-driven IF neurons
that operate in the tonically firing (superthreshold) regime.
In particular, the nonadapting PIF model clearly exhibits a
concave voltage distribution [cf. Eq. (61)]. Note, however,
that a convex membrane potential distribution can also emerge
without an adaptation mechanism: For instance, this is the
case for the leaky IF model with a resting potential sufficiently
below the threshold (subthreshold regime), in which case the
voltage distribution becomes approximately Gaussian.

2. The case a∗ > μ

The application of Laplace’s method for the integral, (65),
is more complicated because below the reset point in Vvertex <

V � 0 the stationary probability density now possesses two

maxima with respect to a [cf. Fig. 7(e)]. The vertex Vvertex

of the limit cycle is determined by V̇ = 0 or a∗eτ/τa = μ,
implying that

Vvertex = τa

[
μ − a∗ + μ ln

(
a∗

μ

)]
. (71)

The two maxima correspond to the upper branch C∗
− [where

a(τ,a∗) > μ] and the lower branch C∗
+ [where a(τ,a∗) < μ],

and both contribute to the integral, (65). For the lower branch
we find, in leading order,

P+(V ) = 1/T ∗∣∣μ − a∗e− τ+(V,a∗ )
τa

∣∣ − exp
[

μ−a∗+�

D
(V − Vth)

]
T ∗(μ − a∗ + �)

,

(72)
equivalent to the explicit solution in region II for μ < a∗ and
with τ+(V,a∗) given in Eq. (70). For the lower branch we
obtain

P−(V ) = 1

T ∗

∣∣∣∣μ − a∗ exp

(
−τ−(V,a∗)

τa

)∣∣∣∣−1

, (73)

where τ−(V,a∗) is given in terms of the lower branch of the
Lambert W function:

τ−(V,a∗) = τa

[
W−1

(
−a∗

μ
e
− V +τa a∗

μτa

)
+ V + τaa

∗

μτa

]
. (74)

Finally, for V > 0 the contribution from the lower branch is
complemented by the probability in region I [cf. Fig. 3(b)],
given by Eq. (63). Adding all parts together results in the
following distribution of the membrane potential:

P0(V ) =
⎧⎨
⎩

0, V < Vvertex;
P+(V ) + P−(V ), Vvertex � V < 0;
P+(V ) + P0,I(V ), V � 0.

(75)

Close to the vertex, the maxima approach each other and
the curvature �aa(V,a)|C∗ becomes small. At the vertex,
the curvature vanishes, �aa(Vvertex,μ) = 0, as seen from
Eq. (A76) with a∗eτ/τa = μ. As a consequence of Eq. (66),
our approximation diverges, which is obviously wrong.

The second problem associated with the divergence is
that we were not able to obtain a solution for V < Vvertex

which is continuous at Vvertex. This is why in Eq. (75) we
set the probability density to 0 for V < Vvertex. Apart from
the behavior around V = Vvertex, the theoretical prediction,
Eq. (75), agrees well with simulations if noise is sufficiently
weak [cf. Figs. 9(a) and 9(d), for D̄ = 0.001]. The probability
density attains a maximum close to the vertex, i.e., close to the
turning point of the negative voltage excursion. The probability
for V < 0 is large because (i) for negative values of V the
deterministic velocity of V is small and (ii) the contributions
from the two branches of the limit cycle add up. There is a
rather sharp transition in the density at the reset point: here
the density drops to about half the value observed just below
the reset point. The two convex decays of the density (below
and above the reset voltage), if observed in experiments, could
thus be regarded as an indication of a strong spike-triggered
adaptation current.
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FIG. 9. (Color online) Distribution of the membrane potential for a∗ > μ. As in Fig. 8, the probability density P0(V ) is shown for different
noise intensities: (a, d) D̄ = 0.001; (b, e) D̄ = 0.01; (c, d) D̄ = 0.1). Circles display the histograms obtained from simulations; the solid
(red) line represents the weak-noise theory given by Eq. (75). The dashed (blue) line indicates the probability density of the corresponding
nonadapting PIF model, Eq. (61). (a–c) The case of a strong adaptation current (�̄ = 10), which leads to a strong negative excursion of the
membrane potential [cf. Fig. 7(e)]. (d–f) The adaptation current is weaker (�̄ = 3), leading only to a small negative excursion [cf. Fig. 2(b)].
In all cases, τ̄a = 1.

C. Distribution of the adaptation variable upon firing

With noise, the initial value ai of the adaptation variable
at the beginning of the ith ISI becomes a stochastic vari-
able, which scatters around ai ≈ a∗ with a typical variance
σ 2

a . Because a(t) decays exponentially afterwards (a(t) =
ai exp[−(t − ti)/τa]) until the voltage hits threshold, the
variability of the ai is the only direct adaptation-induced cause
of ISI variability. This is why the distribution of the initial
values ai is particularly important.

The probability density of a sampled immediately before
firing, Pf,pre(a), is proportional to the efflux at the threshold:

Pf,pre(a) ∼ ∂V P (V,a)|V =Vth

∼ (μ − a)�(Vth,a) exp

(
−�(Vth,a)

ε

)
, (76)

which approaches a Gaussian with mean a∗ − � and variance
ε/φ′′

0 (a∗) in the weak-noise limit. Consequently, in the same
limit, the distribution of a sampled immediately after firing,
Pf(a) = Pf,pre(a − �), is given by

Pf(a) = 1√
2πσa

exp

(
− (a − a∗)2

2σ 2
a

)
, (77)

with the variance of ai given by

σ 2
a = 2Da∗2T ∗(a∗ − �)2

τ 2
a μ�[2a∗(μ − a∗ + �) − μ�]

. (78)

This approximation is in good agreement with simulations at
weak noise [cf. Fig. 10(a)]. For strong noise, the distribution
is slightly shifted to values of ai larger than predicted by the
theory, although the Gaussian shape seems to be preserved
[Fig. 10(b)].

In Fig. 11 we test the theoretical prediction for the standard
deviation of ai [i.e., the square root of the variance given in

Eq. (78)] as a function of the noise intensity [Fig. 11(a)] and
adaptation time constant [Fig. 11(b)] against the numerical
simulations. The square root dependence on the noise intensity
is confirmed over a large range of parameters and the theory
is quantitatively in agreement with simulation results up to
intensities of about D̄ = 1. Furthermore, the dependence on
τa reveals an excellent agreement for all values. This plot
illustrates that our theory does not hinge on assumptions about
the involved time scales, but only on the weakness of noise.

The standard deviation of the ai exhibits a pronounced max-
imum with respect to the adaptation time constant [Fig. 11(b)].
One can check quite easily that, with our scaling of the jump
amplitude in the a dynamics, in both limits τa → 0 and
τa → ∞ the variance σ 2

a must vanish. In the first limit any
initial value decays in finite time to 0, leaving no variability of
the adaptation variable when the threshold is reached and hence
no variability of the new initial values. In the second limit,
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0 1 2 3
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(a) (b)

FIG. 10. Stationary probability density of the peak adaptation
currents. The stationary probability density Pf(a) is shown for τ̄a =
10, �̄ = 3, and different noise intensities D̄ = DT ∗/V 2

th, as indicated
in the legends. Theoretical curves (solid, D̄ = 0.02; dashed, D̄ = 0.1;
dashed-dotted, D̄ = 1; dotted, D̄ = 10) are based on the Gaussian
approximation, Eq. (77). The probability density has units of T ∗/Vth

with T ∗ = 0.1 and Vth = 1.
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FIG. 11. (Color online) Standard deviation of the peak adaptation
currents. (a) The standard deviation σa normalized by a∗ and

√
D̄ as a

function of the noise intensity D̄ = DT ∗/V 2
th. Inset: σa normalized by

a∗ as a function of D̄ in a double-logarithmic plot. Parameters: τ̄a =
10, �̄ = 3. (b) Normalized standard deviation σa/a

∗ as a function
of the adaptation time constant τ̄a = τa/T ∗. Parameters: D̄ = 0.1,
�̄ = 3. In both panels, solid lines depict the theory, Eq. (78), and
circles represent simulations.

of infinitely large adaptation time, the jump size � = �̃/τa

vanishes, which leads once more to vanishing variance of the
adaptation variable. From the two limit cases we can conclude
that σa(τa)/a∗ must display at least one maximum.

VI. SUMMARY

In this paper we have calculated an approximation for
the stationary probability density of an adapting PIF model.
This solution is valid for weak noise but does not require the
common time-scale separation arguments of slow adaptation.
More generally, it is one of the rare cases for which the steady-
state density can be calculated for a two-dimensional stochastic
system that does not obey detailed balance (for other examples,
see [2] and [45]). It is conceivable that the method developed in
our paper can also be applied to other two-dimensional systems
[46] with simple piecewise constant or linear drift terms,
e.g., the piecewise-linear FitzHugh-Nagumo model [47–49].
In each stripe of the phase space with continuous dynamics, the
stationary probability density can be approximately calculated
close to a one-dimensional manifold using a WKB ansatz
if the noise is weak or the time-scale separation between
slow and fast variables is large. Similarly to the present
model, the probability density and the local curvature of the
nonequilibrium potential on the one-dimensional limit curve
then have to be matched at the interfaces of neighboring
stripes.

Most interestingly in the neurobiological context are two
findings that are well described by our theory. The first is
that the marginal probability density of the voltage attains a
particular shape due to the presence of adaptation. Although
adaptation currents become apparent first in the spike-train
statistics, the strongly convex shape of the membrane potential
probability density can be regarded as another indicator
of spike-triggered adaptation. It remains to be investigated,
however, whether subthreshold nonlinearities, which were
neglected in our model, can have a similar effect on the
probability density. If the resting potential μ is close to or
above the threshold, a simple leak term does not seem to
suffice to evoke a strongly convex shape of P0(V ) (see Fig. 2.5
in [50]).

Our second finding for the PIF model with adaptation
concerns the width of the distribution of the adaptation
variable upon firing. This density has special meaning because
it quantifies the amount of fluctuations that the adaptation
variable contributes to the variability of the ISI. Note that in our
model with deterministic adaptation dynamics, fluctuations
in the adaptation variable upon firing originate entirely in
the variability of previous ISIs. Dynamical noise, as it
may emerge in the dynamics of a(t) through channel noise
[27,35], would contribute additional variability to the ISI.
For our model we have shown that the variance of the
adaptation variable upon firing passes through a maximum
as a function of the adaptation time constant. The maximal
effect of adaptation variability is thus not observed in the
slow-adaptation time limit but rather in the case in which the
mean ISI and adaptation constant are of comparable orders of
magnitude.

An interesting problem for future research is to inspect
the response of the model to an external signal. As known
for one-dimensional IF models [51], the steady-state distri-
bution that we have calculated here could be the starting
point for the linear response calculation with respect to
a weak external signal. Importantly, our framework is not
restricted to slow adaptation approximations of the linear
response function [23,39]. This could help us to understand
from an analytical point of view aspects of signal trans-
missions in adapting neuron models that have been ob-
served in numerical simulations of conductance-based model
neurons [18].
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APPENDIX: SOLUTION OF THE STATIONARY
FOKKER-PLANCK EQUATION

Here, a detailed derivation of the stationary solution
P0(V,a) is given. The solution satisfies the boundary value
problem

−(μ − a)∂V P0 + 1

τa

∂a(aP0) + εD̂∂2
V P0 = 0, (A1)

with the boundary conditions

P0(Vth,a) = 0, (A2)

P0(0−,a) = P0(0+,a), (A3)

∂V P0(0+,a) − ∂V P0(0−,a) = ∂V P0(Vth,a − �), (A4)

lim
V →−∞

P0(V,a) = 0, lim
a→∞ P0(V,a) = 0, (A5)

−εD̂

∫ ∞

0
da ∂V P0(Vth,a) = 1

T ∗ . (A6)

We seek the solution in different regions as depicted in Fig. 3.
These partial solutions are then patched together according to
the boundary conditions.
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1. Region I

We first consider region I, which is defined by V < 0 in
the case a∗ < μ and by V > 0 and a > μ in the case a∗ > μ.
Taking the direct limit ε → 0 of Eq. (A1) yields

−(μ − a)∂V P0 + 1

τa

∂a(aP0) = 0. (A7)

This equation is valid if the third term εD̂∂2
V P0 vanishes in

limit ε → 0. The only solution of Eq. (A7) that satisfies the
boundary condition, (A5), is the trivial solution P0(V,a) = 0.
However, this solution cannot be reconciled with the continuity
condition, (A3), at V = 0 because the left-side limit P0(0+,a)
is finite, in general. This problem can be resolved by using
boundary layer theory [40]. In fact, the true solution develops
a boundary layer, −ε < V � 0, in which P0(V,a) rises steeply
from P0(V,a) = 0 to P0(0+,a) > 0 as V → 0− (Fig. 4).
Because of the rapid change in P0 within the boundary
layer, the diffusion term εD̂∂2

V P0 cannot be neglected versus
the first two terms in Eq. (A1) even for vanishing ε. To
obtain the leading-order solution in the boundary layer (the
so-called “inner solution”), we introduce the stretched variable
x = V/ε. Using the rescaled function P̂0(x,a) = √

εP0(V,a),
the Fokker-Planck equation reads

−(μ − a)∂xP̂0 + ε

τa

∂a(aP̂0) + D̂∂2
x P̂0 = 0. (A8)

In leading order, the second term can be dropped, resulting in
the ordinary differential equation

−(μ − a)∂xP̂0 + D̂∂2
x P̂0 = 0, (A9)

subjected to the boundary conditions

lim
x→−∞ P̂0(x,a) = 0, (A10)

P̂0(0−,a) = P̂0(0+,a). (A11)

The solution of Eq. (A9) that respects (A10) is

P̂0(x,a) = M(a)

λ(a)
eλ(a)x, (A12)

where λ(a) = (μ − a)/D̂. The function M(a) is determined
by the continuity condition, (A11). Returning to the variable
V , the leading-order solution in region I is

P0(V,a) = M(a)√
ελ(a)

exp

(
λ(a)V

ε

)
. (A13)

2. Region II

In region II (see Fig. 3), the solution is sought in the vicinity
of the limit curve C∗. In the deterministic limit, the prob-
ability density is singular, with all probability concentrated
in this limit set. For weak but finite noise, the probability
density will be smeared out, with a nonsingular, Gaussian-like
profile around C∗. To obtain this profile, we use the WKB
ansatz [41],

P0(V,a) = N (ε)�(V,a) exp

(
−�(V,a)

ε

)
. (A14)

The functions �(V,a) and �(V,a) are independent of ε and
the normalization factor must be proportional to 1/

√
ε (see

Appendix, Sec. A 4). Specifically it is chosen as

N (ε) = 1√
2πε

. (A15)

Inserting the ansatz, (A14), into the Fokker-Planck
equation, (A1), gives

0 =
[

(μ − a)�V − a

τa

�a + D̂�2
V

]
�

+ ε

[
− (μ − a)�V + a

τa

�a + 1

τa

�

− 2D̂�V �V − D̂�V V �

]
+ ε2�V V . (A16)

The indices on � and � are shorthand notations for the
respective partial derivatives, e.g., �V = ∂V �, �V V = ∂2

V �.
The terms inside the brackets must be 0, hence

(μ − a)�V − a

τa

�a + D̂�2
V = 0, (A17)

(μ − a + 2D̂�V )�V − a

τa

�a =
(

1

τa

− D̂�V V

)
�. (A18)

Equation (A17) is a first-order, nonlinear partial differential
equation for �(V,a) and independent of �(V,a). Inserting
the solution into Eq. (A18) yields a closed, linear, first-order
equation for �(V,a). In the context of WKB theory, Eqs. (A17)
and (A18) are known as the eikonal and transport equations,
respectively.

In general, the solutions � and � cannot satisfy both
boundary conditions at V = 0 and V = Vth because they
obey first-order differential equations. This again indicates a
boundary layer structure of the solution: The WKB solution,
(A14), that satisfies the boundary condition at V = 0 is valid
in region II except for a thin boundary layer of thickness
O(ε) close to the threshold [Fig. 4(b)]. In this boundary
layer, the actual solution drops rapidly to 0 because of the
absorbing boundary. To obtain an approximate solution that
fulfills both boundary conditions, the solutions outside the
boundary layer [V = Vth − O(1)] and inside the boundary
layer [V = Vth − O(ε)] are first calculated separately (“outer”
and “inner” solutions). We then use the method of asymptotic
matching to connect the solutions in the overlap region
V = Vth − O(

√
ε).

a. WKB solution

The boundary conditions of Eqs. (A17) and (A18) at V = 0
are given by the functions

�(0,a) = φ0(a) (A19)

and

�(0,a) = ψ0(a), (A20)

which are determined later using the reset condition. There are
further constraints of the WKB solution evaluated on the limit
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cycle: Because for ε = 0 all probability is concentrated on the
limit curve C∗, � must vanish on C∗:

�(V,a)|C∗ = 0. (A21)

Furthermore, the probability density should not diverge in the
neighborhood of C∗ as ε tends to 0. Hence, � must be locally
non-negative. This is ensured by the conditions

�V (V,a)|C∗ = 0, �a(V,a)|C∗ = 0 (A22)

and

�V V (V,a)|C∗ > 0, �aa(V,a)|C∗ > 0. (A23)

Equation (A17) can be solved by the method of character-
istics. This means that the solution is sought in a coordinate
system, in which the partial differential equation, (A17),
becomes an ordinary differential equation. To this end, V ,
a, and �, as well as its partial derivatives �V and �a ,
are regarded as functions of the characteristic coordinates τ

and s. To make this dependence explicit, we introduce the
functions

φ(τ,s) = �(V (τ,s),a(τ,s)), (A24)

p(τ,s) = �V (V (τ,s),a(τ,s)), (A25)

q(τ,s) = �a(V (τ,s),a(τ,s)). (A26)

The variable transformation V = V (τ,s) and a = a(τ,s) can
be found as follows: We require that τ = 0 corresponds to the
reset line, which we parametrize by the coordinate s:

V (0,s) = 0, a(0,s) = s, s > 0. (A27)

Thus, the coordinate s equals a on the reset line (Fig. 5). The
boundary condition, Eq. (A19), at V = 0 becomes

φ(0,s) = φ0(s), (A28)

whereas the constraints, Eqs. (A21)–(A23), give rise to the
initial conditions

φ(0,a∗) = 0, (A29)

p(0,a∗) = 0, (A30)

q(0,a∗) = 0, (A31)

qa(0,a∗) > 0, pV (0,a∗) > 0. (A32)

Equation (A17) can be rewritten in terms of p and q as

F (a,p,q) ≡ (μ − a)p − a

τa

q + D̂p2 = 0. (A33)

From the theory of first-order partial differential equations
it is known that the partial derivatives p and q obey
quasilinear first-order partial differential equations, which are
found as follows: Differentiating Eq. (A33) with respect to
V yields

FppV + Fqpa = 0, (A34)

where we have used qV = φaV = pa . Analogously, differen-
tiating Eq. (A33) with respect to a and using pa = φV a = qV

gives

FpqV + Fqqa = −Fa. (A35)

The quasilinear equations, (A34) and (A35), are solved by the
characteristic equations

dV

dτ
= Fp = μ − a + 2D̂p, (A36)

da

dτ
= Fq = − a

τa

, (A37)

dp

dτ
= 0, (A38)

dq

dτ
= −Fa = p + 1

τa

q. (A39)

The initial conditions p(0,s) ≡ p0(s) and q(0,s) ≡ q0(s) can
be derived from φ0(s)

q0(s) = �a(0,a) = ∂sφ(0,s) = φ′
0(s). (A40)

Furthermore, Eq. (A33) evaluated at τ = 0 yields

p2
0 + μ − s

D̂
p0 − s

D̂τa

q0 = 0. (A41)

The quadratic equation has two solutions, one of which
satisfies the constraints at s = a∗. From Eqs. (A30) and (A31)
it is known that p0(a∗) = 0 and q0(a∗) = φ′(a∗) = 0. Thus,
the only solution is

p0(s) = −μ − s

2D̂
+ S

√
(μ − s)2

4D̂2
+ s

D̂τa

φ′
0(s), (A42)

where S = sgn(μ − a∗) is the sign of μ − a∗.
Equation (A38) states that p is conserved along the

characteristics, hence

p(τ,s) = p0(s). (A43)

Furthermore, the solutions of Eqs. (A36), (A37), and (A39)
are

V (τ,s) = [μ + 2D̂p0(s)]τ − τas(1 − e−τ/τa ), (A44)

a(τ,s) = se−τ/τa , (A45)

q(τ,s) = φ′
0(s)eτ/τa − τap0(s)(1 − eτ/τa ). (A46)

A differential equation for φ(τ,s) can be obtained by
taking the total derivative of �(V,a) with respect to τ . Using
Eqs. (A36) and (A37) this yields

dφ

dτ
= d�

dτ
= �V

dV

dτ
+ �a

da

dτ

= pFp + qFq = p(μ − a) + 2D̂p2 − a

τa

q = D̂p2,

where relation (A33) was used for the last equality. The
parametric solution reads

φ(τ,s) = D̂p2
0(s)τ + φ0(s), τ,s > 0. (A47)

The characteristic curves C(s) = {(V,a,φ)(t)} with the initial
conditions V (0,s) = 0, a(0,s) = s, and φ(0,s) = φ0(s) are
uniquely characterized by the parameter s. The union of all
characteristics forms a surface in the V,a,� space, which
represents the solution �(V,a).
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We can now solve Eq. (A18) for �(V,a). This quasilinear
equation is equivalent to the characteristic equations

dV

dτ
= μ − a + 2D̂p(s), (A48)

da

dτ
= − a

τa

, (A49)

dψ

dτ
=

(
1

τa

− D̂φV V (τ,s)

)
ψ. (A50)

The solution for V and a is identical to Eqs. (A44) and (A45).
The integration of Eq. (A50) yields

ψ(τ,s) = ψ0(s) exp

[
−

∫ τ

0
dt ′

(
D̂φV V (t ′,s) − 1

τa

)]
.

(A51)

The function φV V can be obtained using the chain rule:

φV V (τ,s) =
(

∂p

∂V

)
a

= ∂p

∂τ

(
∂τ

∂V

)
a

+ ∂p

∂s

(
∂s

∂V

)
a

= p′
0(s)

(
∂s

∂V

)
a

. (A52)

Here, (∂f/∂x)y denotes the partial derivative of f with respect
to x with y fixed. This notation also indicates that f is regarded
as a function of x and y. Let us regard V as a function of s and
a:

V = V (s,a) = [μ + 2D̂p0(s)]τa ln
s

a
− τas + τaa. (A53)

Differentiating this relation with respect to V yields 1 =
( ∂V

∂s
)
a
( ∂s
∂V

)
a

or(
∂s

∂V

)
a

= 1(
∂V
∂s

)
a

= 1

2D̂p′
0(s)τa ln

(
s
a

) + τa

s
(μ + 2D̂p0(s) − s)

.

Thus, we obtain

φV V (τ,s) = p′
0(s)

2D̂p′
0(s)τ + τa

s
(μ + 2D̂p0(s) − s)

(A54)

and

ψ(τ,s) = ψ0(s)eτ/τa

√√√√ μ − s + 2D̂p0(s)

2D̂p0
′(s)s τ

τa
+ μ − s + 2D̂p0(s)

,

(A55)
which represents the solution of �(V,a) in parametric form.

b. Inner solution and asymptotic matching with the WKB solution

To treat the rapid change in the solution near the threshold,
we pass to the stretched variable x = (V − Vth)/ε. As before,
the function P̂0(x,a) = √

εP0(V,a) satisfies Eq. (A8). The
leading-order solution that vanishes at the threshold, x = 0,
is given by

P̂0(x,a) = N (a)

λ(a)
(eλ(a)x − 1), (A56)

where λ(a) = (μ − a)/D̂. The exponential term in Eq. (A56)
shows that the thickness of the boundary layer is d(ε) =
ε/λ(a) = O(ε) as ε → 0. Thus, the WKB solution is a
valid asymptotic approximation only for 0 < V < Vth − O(ε)
(Fig. 4). On the other hand, we assume that the inner solution is
valid not only inside the boundary layer [i.e., V = Vth − O(ε)],
but also at V = Vth − O(ε1/2). At this position both the
WKB and the inner solution are valid and should match
asymptotically. In the intermediate limit,

ε → 0, V → Vth, x = V − Vth

ε
→ −∞,

the outer solution, Eq. (A14), is asymptotic to

1√
2πε

�(Vth,a) exp

(
−�(Vth,a)

ε

)
.

The inner solution, Eq. (A56), converges to
−N (a)/[

√
ελ(a)]. Equating both limits yields

N (a) = − λ(a)√
2π

�(Vth,a) exp

(
−�(Vth,a)

ε

)
. (A57)

c. Patching regions I and II

The still undetermined function M(a) can now be specified
by requiring the continuity of the probability density at V = 0
[boundary condition Eq. (A11)]. Equations (A13) and (A14)
result in

M(a) = μ − a√
2πD̂

�(0,a) exp

[
−�(0,a)

ε

]
. (A58)

3. Reset condition

The functions φ0(a) = �(0,a) and ψ0(a) = �(0,a) are de-
termined by the reset condition Eq. (A4) and the normalization
condition Eq. (A6). Unfortunately, to analytically satisfy the
reset condition for all a > 0 seems to be rather difficult.
However, in the case of weak noise, the knowledge of φ0(a)
and ψ(a) is not necessary for all a > 1. Rather, it is sufficient
to know the local behavior in the neighborhood of a∗ because
most probability is located close to the deterministic limit
cycle. Using this fact, we expand φ0(a) and ψ0(a) about a∗ to
lowest order in δa = a − a∗:

φ0(a) = φ′′
0 (a∗)

2
δa2 + O(δa3), (A59)

ψ0(a) = ψ0(a∗) + O(δa), (A60)

Here, we have taken into account that both φ0(a) and φ′
0(a)

vanish on the limit-cycle (cf. equations, (A29) and (A31));
i.e., φ0(a) is locally a parabola. The reset condition is now
used only locally to determine φ′′

0 (a∗) instead of the whole
function φ0(a). Likewise, the normalization condition is used
to calculate ψ0(a∗) (Sec. A 4).

The derivatives that appear in the reset condition, Eq. (A4),
can be found from the solutions, Eqs. (A13), (A14), and (A56),
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in the respective regions. For a∗ < μ, they are given by

∂V P0(0+,a) = 1√
2πε3

(ε�V (0,a) − �V (0,a)ψ0(a))

× exp

(
−φ0(a)

ε

)
,

∂V P0(0−,a) = ε−3/2M(a)

= μ − a√
2πε3D̂

ψ0(a) exp

(
−φ0(a)

ε

)
,

∂V P0(Vth,a − �) = ε−3/2N (a − �)

= −μ − a + �√
2πε3D̂

�(Vth,a − �)

× exp

(
−�(Vth,a − �)

ε

)
. (A61)

In the case a∗ > μ, the expressions for ∂V P0(0+,a) and
∂V P0(0−,a) have to be interchanged. The reset condition, (A4),
can now be rewritten in terms of the functions � and �,

(μ − a + �)�(Vth,a − �) exp

(
−�(Vth,a − �)

ε

)

= sgn(μ − a∗)(μ−a + D̂�V (0,a))ψ0(a) exp

(
−φ0(a)

ε

)
,

(A62)

where we have neglected the higher-order term ε�V (0,a).

a. Local reset condition

As mentioned above, we only demand that the reset
condition, Eq. (A62), is satisfied locally around a = a∗, i.e.,
close to the deterministic limit cycle. This approach is justified
for weak noise. To this end, we expand both sides of Eq. (A62)
about a∗ and use the properties Eqs. (A21) and (A22) for
�(V,a) on the limit cycle. In particular, �(Vth,a

∗ − �) =
φ0(a∗) = 0 and �a(Vth,a

∗ − �) = �a(0,a∗) = 0. As a result,
the right-hand side of Eq. (A62) reads, up to first order in
δa = a − a∗,

(μ − a∗ + �)�(Vth,a
∗ − �)

+ δa[(μ − a∗ + �)�a(Vth,a
∗ − �) − �(Vth,a

∗ − �)].

(A63)

The left-hand side reads

|μ − a∗|ψ0(a∗) + sgn(μ − a∗)δa

× [(μ − a∗)�a(0,a∗) − (D̂∂a�V (0,a∗) − 1)ψ0(a∗)].

(A64)

Equating the zeroth-order terms yields the condition

(μ − a∗ + �)�(Vth,a
∗ − �) = |μ − a∗|ψ0(a∗) (A65)

or, equivalently,

ψ(T ∗,a∗) = |μ − a∗|
μ − a∗ + �

ψ0(a∗). (A66)

To obtain the leading order of the stationary probability density
it is sufficient to compute φ′′

0 (a∗) and ψ0(a∗). These quantities

are completely determined by the zeroth-order condition (A66)
and the normalization condition (see below). We note that, in
principle, matching the first-order terms in Eqs. (A63) and
(A64) could be used to obtain ψ ′

0(a∗) and, hence, the first-
order term in the expansion, Eq. (A60), of the shaping factor
ψ0(s) = �(0,a). Taking into account this linear approximation
of ψ0(s), we found that it was possible to capture the deviation
of P (0,a) from a Gaussian distribution as quantified by the
skewness. This higher-order correction is, however, beyond
the scope of this paper.

b. Calculation of φ′′
0 (a∗)

From the full solution of ψ(τ,s), Eq. (A55), we also find

ψ(τ,a∗) = ψ0(a∗)eτ/τa

√
ντ + 1

(A67)

with

ν = 2D̂a∗2φ′′
0 (a∗)

τ 2
a (μ − a∗)2

. (A68)

Here, we have used p0(a∗) = 0 and the derivative of p0(s) at
s = a∗,

p′
0(a∗) = a∗φ′′

0 (a∗)

τa(μ − a∗)
(A69)

[cf. Eq. (A42)]. Inserting Eq. (A67) with τ = T ∗ into
Eqs. (A66) and taking into account that eT ∗/τa = a∗/(a∗ − �)
yields

ν = 1

T ∗

[(
(μ − a∗ + �)a∗

(μ − a∗)(a∗ − �)

)2

− 1

]
. (A70)

Using the definition of ν, Eq. (A68), we finally obtain

φ′′
0 (a∗) = τ 2

a μ�[2a∗(μ − a∗ + �) − μ�]

2D̂a∗2T ∗(a∗ − �)2
. (A71)

4. Normalization condition

It remains to determine the prefactor ψ0(a∗). This quantity
can be obtained from the known deterministic firing rate,

− lim
ε→0

εD̂

∫ ∞

0
da ∂V P (Vth,a) = 1

T ∗ (A72)

[cf. Eq. (A6)]. It turns out that a finite limit can be achieved
if the normalization factor N in Eq. (A14) scales like 1/

√
ε,

which is in line with our choice in Eq. (A15).
Using Eq. (A61) yields

1

T ∗ = −εD̂

∫ ∞

0
da

N (a)

ε3/2

= 1√
2πε

∫ ∞

0
da (μ − a)�(Vth,a) exp

(
−�(Vth,a)

ε

)
.

(A73)

For small ε � 1, the integrand is strongly peaked at a = a∗ −
�. Using Laplace’s method (see, e.g., [40]), the prefactor of
the exponential can be taken at a = a∗ − � and can be pulled
in front of the integral. Furthermore, �(Vth,a) is expanded to
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lowest order in δa = a − (a∗ − �):

�(Vth,a) = 1

2
�aa(Vth,a

∗ − �)(a − a∗ + �)2.

Finally, the lower integration bound is extended to −∞
because negative values a do not contribute to the integral
for small ε. Thus, Eq. (A73) takes the form

1

T ∗ = 1√
2πε

(μ − a∗ + �)�(Vth,a
∗ − �)

×
∫ ∞

−∞
da exp

(
−�aa(Vth,a

∗ − �)

2ε
(a − a∗ + �)2

)

= μ − a∗ + �√
�aa(Vth,a∗ − �)

ψ(T ∗,a∗). (A74)

Thus, due to our scaling of N (ε), ε has canceled out, leading
to a finite deterministic limit of the firing rate.

The second derivative of � with respect to a in Eq. (A74)
is taken on the limit cycle and on the threshold line, which
corresponds to s = a∗ and τ = T ∗. For general τ , �aa is given
on the limit cycle by

�aa|∗C = ∂aq(τ,a∗) = ∂q(τ,a∗)

∂τ

(
∂τ

∂a

)
V

+ ∂q(τ,a∗)

∂s

(
∂s

∂a

)
V

∣∣∣∣
V =V (τ,s=a∗)

. (A75)

From Eqs. (A39) and (A46) it follows that ∂q(τ,a∗)/∂τ = 0
because p0(a∗) = 0 and φ0(a∗) = 0; hence the first term in
Eq. (A75) vanishes. For the second term it holds that

∂q(τ,a∗)

∂s
= φ′′

0 (a∗)

[
eτ/τa − a∗

μ − a∗ (1 − eτ/τa )

]
,

where Eqs. (A46) and (A69) have been used. In order to
compute (∂s/∂a)V we regard V as a function of the variables

s and a, which is given by Eq. (A53). The partial derivatives
of this function at s = a∗ are(

∂V

∂a

)
s=a∗

= τa

(
1 − μ

a

)
,

(
∂V

∂s

)
a

∣∣∣∣
s=a∗

= τa

(
μ

a∗ + 2D̂p′
0(a∗) ln

a∗

a
− 1

)
.

Using Eqs. (A69) and (A68) and substituting a = a∗e−τ/τa

results in(
∂s

∂a

)
V =V (τ,s=a∗)

= −
(

∂V
∂a

)
s(

∂V
∂s

)
a

∣∣∣∣∣
s=a∗,a=a∗e− τ

τa

= μeτ/τa − a∗

(μ − a∗)(ντ + 1)
.

Thus, it follows that

�aa|C∗ = μeτ/τa − a∗

(μ − a∗)(ντ + 1)

×
[
eτ/τa − a∗

μ − a∗
(
1 − eτ/τa

)]
φ′′

0 (a∗). (A76)

It can be shown that the prefactor in front of φ′′
0 (a∗) becomes

unity for τ = T ∗. In other words, we have found that � exhibits
the same shape at the reset and the threshold:

�aa(Vth,a
∗ − �) = φ′′

0 (a∗). (A77)

Substituting the last equation into Eq. (A74) and using
Eqs. (A67) and (A70) yields

ψ0(a∗) =
√

φ′′
0 (a∗)

|μ − a∗|T ∗ . (A78)
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