Analysis module¶
This module provides functions to analyze and plot
the results from temporal network analyses, especially
from the tacoma.api.measure_group_sizes_and_durations()
routine. These functions are not imported by default
as they require matplotlib which cannot be easily installed
on some systems like compute clusters due to a missing
X server. If you want to use the routines of this
submodule, please make sure matplotlib is installed.
-
tacoma.analysis.
detailed_temporal_network_group_analysis
(result, P_k, max_group=5, time_normalization_factor=1.0, time_unit=None, plot_step=False, fit_power_law=False, ax=None, bins=100, bin_dt=None, use_logarithmic_histogram=True, marker=None, markersize=4, label=None)[source]¶ Analyze the result of
measure_group_sizes_and_durations()
and plot it.Parameters: - result (
tacoma.group_sizes_and_durations
) – The result of the temporal network analysis provided bytacoma.measure_group_sizes_and_durations
- P_k (list or numpy.ndarray of float) – average degree distribution
entry the \(k\)-th entry of
P_k
contains the average probability that a node has degree \(k\) - max_group (int, optional) – The maximum group size for which to plot the duration distribution. default: 5
- time_normalization_factor (float, optional) – Factor with which the time in the duration lists are rescaled default: 1.0
- time_unit (
str
, optional) – Time unit to put on the axes. default : None - plot_step (bool, optional) – If True, plot step functions instead of markers. default : False
- fit_power_law (bool, optional) – If True, fit and plot a power law to the distributions. default: False
- ax (
list
of matplotlib axes objects) – The axes to plot to (have to be a list of length 3 at least). If set to None, a figure and axes will be created and returned. default : None - bins (int, default : 100) – number of bins for the histogram
- bin_dt (float, default : None) – if given, do discrete binning to bins of this time-length
- use_logarithmic_histogram (bool, default : True) – if True, use logarithmicly growing bin sizes, otherwise use constant bin size
- marker (str, default : None,) – if set, all curves will be drawn using this marker
- markersize (int, default : 4,) – markersize for the plots
- label (str, default : None,) – if set, all curves will be associated with this label
Returns: - matplotlib figure – A matplotlib figure object.
- array_like of matplotlib axes – As the name says.
dict
– The results of the analysis (the distributions).
- result (
-
tacoma.analysis.
plot_contact_durations
(result, ax, marker=None, xlabel='duration', bins=100, time_normalization_factor=1.0, time_unit=None, bin_dt=None, plot_step=False, fit_power_law=False, use_logarithmic_histogram=True, markersize=4, label=None)[source]¶
-
tacoma.analysis.
plot_degree_distribution
(P_k, ax, xlabel='node degree $k$', plot_step=False, markersize=4, marker=None, label=None)[source]¶
-
tacoma.analysis.
plot_group_durations
(result, ax, min_group=2, max_group=5, xlabel='duration', bins=100, time_normalization_factor=1.0, bin_dt=None, time_unit=None, plot_step=False, fit_power_law=False, use_logarithmic_histogram=True, markersize=4, marker=None, label=None)[source]¶
-
tacoma.analysis.
plot_group_size_histogram
(result, ax, xlabel='group size $g$', plot_step=False, fit_power_law=False, markersize=4, marker=None, label=None)[source]¶
-
tacoma.analysis.
temporal_network_group_analysis
(result, max_group=5, time_normalization_factor=1.0, time_unit=None, plot_step=False, fit_power_law=False, ax=None, bins=100, bin_dt=None, use_logarithmic_histogram=True, markersize=4)[source]¶ Analyze the result of
measure_group_sizes_and_durations()
and plot it.Parameters: - result (
tacoma.group_sizes_and_durations
) – The result of the temporal network analysis provided bytacoma.measure_group_sizes_and_durations
- max_group (int, optional) – The maximum group size for which to plot the duration distribution. default: 5
- time_normalization_factor (float, optional) – Factor with which the time in the duration lists are rescaled default: 1.0
- time_unit (
str
, optional) – Time unit to put on the axes. default : None - plot_step (bool, optional) – If True, plot step functions instead of markers. default : False
- fit_power_law (bool, optional) – If True, fit and plot a power law to the distributions. default: False
- ax (
list
of matplotlib axes objects) – The axes to plot to (have to be a list of length 3 at least). If set to None, a figure and axes will be created and returned. default : None - bins (int, default : 100) – number of bins for the histogram
- bin_dt (float, default : None) – if given, do discrete binning to bins of this time-length
- use_logarithmic_histogram (bool, default : True) – if True, use logarithmicly growing bin sizes, otherwise use constant bin size
- markersize (int, default : 4,) – markersize for the plots
Returns: - matplotlib figure – A matplotlib figure object.
- array_like of matplotlib axes – As the name says.
dict
– The results of the analysis (the distributions).
- result (